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Abstract

Resting fluctuations in the blood oxygenation level-dependent signal have attracted
considerable interest for their sensitivity to pathological brain processes. However, these
analyses are susceptible to confound by nonneural physiological factors such as vasculature,
breathing, and head movement which is a concern when investigating elderly or pathological
groups. Here, we used simultaneous electroencephalogram (EEG) and functional magnetic
resonance imaging (fMRI) (EEG/fMRI) to constrain the analysis of resting state networks
(RSNs) and identify aging differences. Four of 26 RSNs showed fMRI and EEG/fMRI group
differences; anterior default-mode network, left frontal-parietal network, bilateral middle
frontal, and postcentral gyri. Seven RSNs showed only EEG/fMRI differences suggesting the
combination of these 2 methods might be more sensitive to age-related neural changes than
fMRI alone. Five RSNs showed only fMRI differences and might reflect nonneural group
differences. Activity within some EEG/fMRI RSNs was better explained by neuropsychological
measures (Mini Mental State Examination and Stroop) than age. These results support
previous studies suggesting that age-related changes in specific RSNs are neural in origin,
and show that changes in some RSNs relate better to elderly cognition than age.
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1. Introduction

Spontaneous, or resting state, fluctuations in the blood
oxygenation level-dependent (BOLD) signal are providing useful
insights into functional connectivity between brain regions, and
how such connectivity is affected by various pathologies. A char-
acteristic set of coactivating functional systems, typically referred to
as resting state networks (RSNs), have been consistently identified
in the brain across multiple studies (Allen et al., 2011; Biswal et al.,
2010), and clinical populations (Fox and Greicius, 2010; Zhang and
Raichle, 2010). These RSNs include basic sensory networks involved
in visual, auditory, or sensorimotor processing, or more functionally
complex networks such as the default-mode network (DMN) and
frontal-parietal attention network (FPN). Numerous resting state
studies have been conducted on aging populations and robust
differences have been reported, particularly within the DMN
(Buckner et al., 2008). However, the interpretation of RSN differ-
ences in aging and clinical research is complicated by the fact that
the BOLD response is susceptible to nonneural factors including
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head movement, respiration, and vasculature. The present study
explores the utility of electroencephalogram (EEG)-informed
functional magnetic resonance imaging (fMRI) to isolate RSN
differences that are truly neural in original.

One of the most robust and well-replicated findings in resting
state studies of aging is that DMN connectivity decreases with age,
an effect that has been observed at rest (Allen et al., 2011; Biswal
et al, 2010; Damoiseaux et al., 2008; Lustig et al., 2003) and
during task performance (Andrews-Hanna et al., 2007; Grady et al.,
2010). Andrews-Hanna et al. (2007) showed that age-related
decreases in DMN functional connectivity positively correlated
with reduced structural integrity (decreased white matter [WM]
integrity in the cingulum) and task performance (semantic memory
task). Rather than focusing on the DMN, Damoiseaux et al. (2008)
used independent component analysis (ICA) to investigate age-
related changes in 13 RSNs common to young and old partici-
pants including basic sensory regions and the DMN and FPN.
Damoiseaux et al. (2008) found that only the DMN showed
a significant aging effect, and unlike Andrews-Hanna et al. (2007)
this ICA-based approach did not yield significant differences in
the left or right FPN. DMN differences in Damoiseaux et al. (2008)
withstood additional correction for gray matter (GM) volume,
suggesting a functional rather than a structural deficit, and



correlated with performance on the trail making test. A number of
studies have shed light on the likely origins of DMN activity changes
by demonstrating that the structural connections between nodes of
the DMN decrease with age (Andrews-Hanna et al, 2007;
Damoiseaux et al., 2009; Teipel et al., 2010).

The robust nature of these aging effects has been further
underlined using large cohorts of resting state data to increase
statistical power. Biswal et al. (2010) collected a sample of 1093
participants and demonstrated decreases in posterior regions of the
DMN and left FPN with age. With a sample of 603 participants, Allen
et al. (2011) showed that all 28 RSNs within their study were
significantly modulated by age (all decreasing with age except for
the basal ganglia and medial portion of the superior frontal gyrus
which showed increases with age). Allen et al. (2011) also reported
the first investigation of the spectral properties of RSN time courses
in aging, and the correlations between RSNs. These additional RSN
measures (BOLD spectral power and functional network connec-
tivity [FNC|) were equally sensitive to aging because all 28 RSNs
show a decrease in spectral power (0.01-0.15 Hz) with age, and
connectivity between most RSNs decreased with age.

Though there is general consensus within the literature that
connectivity in the DMN decreases with age, the results for other
RSNs such as the FPN vary depending on the sample size and the
analytical approach taken. Aside from the variability of results for
certain RSNs another cause for concern is that RSNs might be
susceptible to nonneural factors such as vasculature, breathing, or
head movement (Cole et al., 2010; lannetti and Wise, 2007; Kelly
et al, 2012). For example, it is well established that age-related
differences in vasculature lead to differences in the hemodynamic
response function that can produce false positive results in fMRI
studies (D'Esposito et al., 1999; Kannurpatti et al., 2010). It has also
been demonstrated that variation in breathing can produce signal
variations in regions with high blood volume such as GM (Birn et al.,
2006; Wise et al., 2004). Although it has been repeatedly shown
that connectivity in the DMN decreases with age, Birn et al. (2006)
have also shown that the topography of voxels correlated with
respiration variation-induced signal strongly resembles the DMN.
Therefore age-related differences in respiration variation, and
vasculature, could produce nonneural differences in RSNs. A third
confounding variable is head movement. Two recent studies have
suggested that differences in resting connectivity, particularly
within the DMN and FPN, are partially because of head movement
(Power et al.,, 2012; Van Dijk et al., 2012). Considering that head
movement has been shown to differ in studies of aging (Allen et al.,
2011; D’Esposito et al., 1999) it is important to ascertain whether
differences in head movement are driving differences in RSNs.

All of these potential confounds can be addressed to some extent
using multi-modal imaging, specifically the fusion of simulta-
neously recorded EEG and fMRI data. EEG provides a direct measure
of postsynaptic neural activity and its combination with fMRI will
further support the suggestion that differences in RSNs are neural
in origin and not a by-product of vascular or breathing differences
in populations. Unfortunately, EEG-informed fMRI is not immune to
head movement contamination (Jansen et al., 2012; Moosmann
et al., 2009) but steps can be taken to reduce the effect of this
confound during the analysis (these procedures are discussed in
detail in section 2. Methods).

For the first time we use simultaneous EEG and fMRI (EEG/fMRI)
to investigate differences in RSNs that occur with healthy aging. We
begin by analyzing EEG and fMRI data separately to replicate
previous findings from the literature such as reduced alpha power
with age (Babiloni et al., 2006a; Klimesch, 1999) and reduced DMN
activity (Allen et al., 2011; Andrews-Hanna et al., 2007; Damoiseaux
et al., 2008; Lustig et al., 2003 ). We then use EEG-informed fMRI to
determine whether resting state differences are common to both

modalities and thus likely to be neural in origin. Finally we correlate
changes in RSNs validated using EEG-informed fMRI with changes
in neuropsychological variables to better understand how aging
effects specific cognitive domains through reduced functional
connectivity within and between RSNs.

2. Methods
2.1. Participants

Fifteen young (18—28 years old; mean age, 23.4 + 3.3 years) and
27 elderly (65—78 years old; mean age, 71 + 4.49 years) right
handed, sex-matched participants were included in this study (see
Table 1 for demographic details). Participants gave written
informed consent before the study which was approved by the
Trinity College Dublin School of Psychology Ethics Committee. On
a day separate from the EEG/fMRI testing (elderly group: 163.43 +
118 days; young group: 161 =81 days), participants also underwent
a neuropsychological battery consisting of the Mini Mental State
Examination (MMSE; Folstein et al., 1975), the National Adult
Reading Test (NART; estimate of intelligence; Nelson, 1982), the
Stroop test, category fluency (animal), the Logical Memory subtest
of the Wechsler Memory Scale 1l (WMS; Weschler, 1998), and the
Hospital Anxiety and Depression Scale (Zigmond and Sims, 1983).
Participants who scored more than 8 on either the anxiety or
depression subscales of the Hospital Anxiety and Depression Scale
were excluded from the study.

Participants were not taking any psychiatric or neurological
medications at the time of testing.

2.2. EEG/fMRI acquisition

Participants lay supine in a magnetic resonance imaging (MRI)
scanner (Philips 3T Achieva MRI Scanner, Trinity College Dublin)
viewing visual stimuli in a mirror positioned above their face.
Stimuli were presented using Presentation software v14.2 (Neuro-
behavioral Systems, Inc). EEG recordings were acquired with
a 32-channel magnetic resonance-compatible BrainAmp system
(Brainproducts, Munich, Germany). Thirty-three EEG electrodes
were placed on the scalp, including the reference electrode posi-
tioned at FCz and the ground electrode placed at position AFz. One

Table 1
Participant demographic characteristics

Characteristic Old (n = 27) Young (n = 15) t p

Age (y) 71(0.86) 23.40(0.86) ~3586 <0.001

Sex 15/27 female 4/15 female -1.83 0.075

Neuropsychology
Nart (Z score) 1.32(0.7) 095(0.12) 276 0,009
Logical memory 0.66 (0.18] 042(0.3) -0.7 0.49
(Z score)
MMSE 28.3(0.21) 29.18 (0.26) 243 002
Animal fluency 45.70 (1.55) 5945 (1.81) 509 <0.001
Stroop (T score) 21.33 (0.94) 25.73 (2.69) 196 0.058

Structural
Gray matter (mL)  576.96 (9.09) 664.84 (10.19) 6.1  <0.001
White matter (mL) 519.95 (10.09) 53952 (10.31) 125 0217
Cerebrospinal 20519 (7.54) 26567 (8.48) ~247 0018
fluid (mL)
Total intracranial ~ 1392.1 (20.67) 147004 (20.87) 236 0023
volume (mL)

Head movement
Translation (mm) 0.087 (0.0074) 0.049 (0.0043) ~3.61 0001
Rotation (radians)  0.0005 (0.00003) 00004 (0.00003} -357 0.001

Mean values reported, standard error in parentheses. Negative t value indicates old
= young. Significant p values are shown in bold.
Key: MMSE, Mini Mental State Examination.



external electrode was applied to the subjects back to acquire the
electrocardiogram (ECG). Electrode impedances were maintained
at less than 10 k(). The resolution and dynamic range of the EEG
acquisition system were 100 nV and +3.2 mV, respectively. Data
were recorded on a laptop computer using Brain Recorder v1.04
software (BrainProducts, Munich, Germany) at a sampling rate of 5
kHz with a band-pass filter of 0.016—250 Hz. Event timings and
transistor-transistor logic (TTL) pulses from the MRI scanner at the
onset of each volume acquisition were marked within the EEG
trace. TTL pulses were also used to drive the visual stimuli in
Presentation. The EEC clock was synchronized to the MRI scanner
clock using the Brain Products Sync-box (Mullinger et al., 2008).

A high-resolution TI-weighted anatomic magnetization-
prepared rapid gradient-echo image (field of view = 230 mm,
thickness = 0.9 mm, voxel size = 0.9 mm x 0.9 mm x 0.9 mm), and
phase and magnitude maps were acquired first (echo time 1 [TE,] =
1.46 ms, TE; = 7 ms). Each participant then underwent an echo
planar imaging (EPI) session containing 210 volumes (7 minutes).
The field of view covered the whole brain, 224 mm x 224 mm (64 x
64 voxels), 34 axial slices were acquired (0.05-mm slice gap) with
a voxel size of 3.5 mm x 3.5 mm x 4 mm; repetition time |TR] = 2
seconds, TE = 32 ms, and flip angle — 78°. This was a sparse-
sampling sequence with the slices compressed to the first 1700
ms of the TR, leaving 300 ms uncontaminated by the magnetic
resonance gradient artifact. This approach allowed us to visually
inspect the relationship between TR markers recorded in the EEG
trace and the onset of each EPI acquisition.

In the resting state task, participants kept their eyes open for 30
seconds (during this time the screen displayed "OPEN" in large
font). After 30 seconds, the screen displayed "CLOSED” and partic-
ipants closed their eyes. Participants then received a tap on the leg
30 seconds later to open their eyes again (again the screen dis-
played “OPEN"). This cycle was repeated 7 times, giving seven 30-
second blocks of eyes open and seven 30-second blocks of eyes
closed resting data lasting for 7 minutes in total. Visual instructions
were used because in pilot studies it was determined that older
participants could not hear an auditory tone because of the noise of
the MRI scanner. This approach ensured that participants opened
and closed their eyes as instructed. This resting state paradigm has
the additional advantage of investigating 2 types of alpha activity;
alpha reactivity (referred to as induced alpha in this report) and
tonic alpha, which have been shown to correspond to separate
neural networks (Ben-Simon et al., 2008).

2.3. EEG preprocessing and analysis

EEG data were preprocessed using a combination of in-house
Matlab code, EEGLAB (Delorme and Makeig, 2004), and EEGLAB
plugins (fmrib plugin [Niazy et al., 2005] and FASTER plugin [Nolan
et al.,, 2010]). The optimal basis set approach developed by Niazy
et al. (2005) was used to remove gradient artifacts. Data were
then downsampled to 500 Hz and filtered between 1-30 Hz with
an additional 50 Hz notch filter. QRS complexes were automatically
detected in the ECG trace and 4 optimal basis functions of the
balistocardiogram (BCG) template removed. ICA was run using the
Infomax algorithm (Bell and Sejnowski, 1995) using the FASTER
plugin (Nolan et al.,, 2010) which also automatically detected and
removed artifactual independent components (ICs). Remaining bad
channels were detected and interpolated. ICs were inspected
visually and remaining eye movement artifacts were removed
manually. Debener et al. (2008) suggest that template-based
methods, including the optimal basis set approach, are not
adequate for removing BCG artifacts and should be supplemented
by removing additional BCG-ICs. However, it is also quite likely that
with fewer than 64 channels, and noisy EEG data acquired during

fMRI, ICs are not completely unmixed and might contain elements
of signal and artifact. This is more likely to be the case when
running ICA over whole time courses as in resting state compared
with event-related designs in which it is possible to run ICA around
events of interest. To make sure that signal of interest was not
removed we used a statistical rescaling function to rescale the
remaining IC time courses at areas of high amplitude which are
most likely noise (details in Supplementary data). Resting data were
then epoched around TR markers (0—2000 ms), baseline-corrected
(0—100 ms), average referenced (returning the reference electrode
FCz; TP9 and TP10 were not included when calculating the average
reference because the signal quality of these electrodes was unre-
liable), and artifactual epochs were removed. Artifactual epochs
were defined using the joint probability function in EEGlab
(pop_jointprob.m) which assesses whether a single channel within
an epoch deviates from the norm of that epoch, or whether the
epoch as a whole deviates from the norm of all epochs. For single-
channel and whole epoch joint probability, deviations of greater
than 3 standard deviations were rejected.

Eyes-closed and eyes-open resting EEG band power was calcu-
lated using the discrete Fourier transform. Absolute power values
are sensitive to confounds of head volume conduction and so to
counteract this problem we used relative power measures (Clarke
et al., 2011; Klimesch, 1999; Moretti et al., 2004; Nuwer, 1988).
Relative power measures were calculated by dividing the absolute
power within the specific frequency band by absolute power for the
range of interest ( 1.5—-30 Hz). Relative power values were calculated
separately for each frequency band (delta: 1.5—3.5 Hz; theta: 4-7.5
Hz; alpha 1: 8—115 Hz; alpha 2: 12—-13.5 Hz; beta: 14—-30 Hz)
across each region of interest (frontal [F3, F4, Fz), central [C3, (4,
Cz|, parietal [P3, P4, Pz], occipital [01, 02, Oz]). Two-way analyses of
variance (ANOVAs) were run using factors of group (2 levels; young
and old), and region (4 levels; frontal, central, parietal, occipital)
across all 5 frequency bands (delta, theta, alpha 1, alpha 2, beta).

2.4. fMRI preprocessing and analysis

Scans were preprocessed using SPM8 (www.filion.uclac.uk/
spm). Before preprocessing, EPI data quality tests were conducted
using the criterion defined in lannetti et al. (2005). These include
assessing the mean and standard deviation of the signal time
course, image signal to noise, standard deviation of the single-voxel
signal time course, and visual inspection for ghost artifact and signal
dropout. All EPI data collected passed these tests. Images were then
realigned and unwarped using field maps to correct for motion
artifacts, susceptibility artifacts and motion by susceptibility inter-
actions (Andersson et al., 2001; Hutton et al., 2002). This approach is
superior to standard realignment procedures because it accounts
for some of the nonlinear effects of head movement. Images were
subsequently normalized to the International Consortium for Brain
Mapping (ICBM) EPI template using the unified segmentation
approach (Ashburner and Friston, 2005). Lastly, a Gaussian kernel of
8 mm Full Width Half Maximum (FWHM) was applied to spatially
smooth the image. Slice—time correction was not performed as part
of the preprocessing, because the relatively short TR (2 seconds),
and the interleaved slice acquisition would sufficiently reduce the
slice—time problem. GM, WM, cerebrospinal fluid (CSF), and total
intracranial volume were calculated from structural images after
segmentation using the VBMS toolbox (r435).

The preprocessed fMRI data were input into a single group
spatial ICA as implemented in GIFT v2.0e (http://mialab.mrn.org/
software/gift/index.html). In this approach, principal component
analysis was used to compress the data sets so that all subjects
could be analyzed as a single group. Spatial ICA was then performed
using the Infomax algorithm (Bell and Sejnowski, 1995), with



subsequent back reconstruction into single subjects (Calhoun et al.,
2001). The resulting output is an IC map and associated time course
for every component and subject. Minimum descriptive length
criteria (Li et al, 2007) determined that the optimal number of
independent components was 40 and ICASSO was run with 100
reruns and random initial conditions to ensure a robust decom-
position (Himberg et al., 2004). Components with a quality <0.9
were excluded from further analysis. Components were also visu-
ally inspected for artifacts. This includes movement artifacts which
present with a stereotypical 'ringing’ around the edge of the cortex
and activation maps which heavily overlapped with WM and CSF.
Artifacts were inspected by 2 of the authors (JHB and ROC) and an
additional colleague who was not an author on this report. All
artifact inspectors reached consensus about which components to
remove. Component labels were chosen using anatomical infor-
mation and spatial multiple regression (comparing fMRI spatial
maps to resting state networks found in Allen et al., 2011).

The Mancovan toolbox (Allen et al., 2011) was used to investi-
gate the relationships between RSN measures (spatial map inten-
sities [SMs|; BOLD spectral power; and FNC) and independent
variables (age, GM, sex, neuropsychological measures, and head
movement). Unfortunately, data entered into the Mancovan model
must have a meaningful singular value per subject. This means it is
not possible to include WM, CSF, and ECG information in the
Mancovan model. However, these time courses were used in the
EEG-informed fMRI analyses. Similar to standard fMRI analyses in
which voxel beta weights specify the extent to which a voxel time
course corresponds to a task time course, voxel intensity in a SM
dictates the correspondence between a voxel time course and an IC
time course (the greater the voxel intensity the greater the corre-
spondence with the IC time course). Therefore, group differences in
SMs reflect differences in the participation of a voxel, or cluster of
voxels, in 1 of the RSNs. Spectral analyses are a common approach
in EEG analyses, but a number of recent studies have shown that
anatomical regions, and RSNs, have different BOLD spectral prop-
erties (Baria et al,, 2011; Niazy et al., 2011; Salvador et al., 2008).
FNC analysis allows one to investigate connectivity between RSNs
rather than connectivity between voxel-based time courses.
Though the ICs generated using this group ICA approach are
spatially independent, it is still possible that significant temporal
correlations exist between them. For example, Fox et al. (2005)
previously demonstrated the strong anticorrelation between the
DMN and FPN, and Kelly et al. (2008) showed that the degree of
anticorrelation between these networks correlated with task
performance. Previous studies have also shown that connectivity
between RSNs differ with age (Allen et al., 2011) and schizophrenia
(Jafri et al, 2008). FNC investigates the extent to which ICs
temporally interact with each other and whether this connectivity
between ICs differs across subjects. The details of this method are
described in Jafri et al. (2008).

Multivariate analyses were first performed to assess the extent
to which each of the independent variables explained variance in
the data (Supplementary Figs. 1A and 2A). At this stage redundant
variables that do not explain significant variance in the data (p >
0.05) are removed from the model. This procedure determines how
well the independent variables explain variance within the
dependent variables when other independent variables are taken
into account. For example, Supplementary Fig. 1A (top panel) shows
that activity within IC 11 is significantly modulated by age, however
this activity modulation is better explained by head movement
(specifically translation). Components will only be described as
showing a significant age effect if age is the strongest predictor
variable based on these multivariate analyses.

To determine which voxels, spectral bins, or connections
between RSNs were correlated with age we additionally performed

univariate analyses. Partial correlation was used to measure the
strength of the linear relationship between 2 variables (e.g., log
|power] and age) after adjusting for all other independent variables
(head movement, sex, neuropsychological measures, etc.). Univar-
iate tests were corrected for multiple comparisons at p < 0.05 using
false discovery rate (FDR; Genovese et al., 2002).

Considering the strong correlation between age and CM
(r = ~068; p = 441 ‘7). separate models were run with age
orthogonalized with respect to GM, and GM orthogonalized with
respect to age. Two linear regressions were used to calculate these
residual values. Principal component analysis dimension reduction
was performed on each model with the number of dimensions for
spectra and FNC matrices specified using minimum descriptive
length criteria. For the first 2 models (age and GM orthogonalized
with respect to age or GM and age orthogonalized with respect to
GM, sex, and head movement) spectra with 129 frequency bins
were reduced to a range of 9 to 21 dimensions, and the FNC matrix
with 325 pairwise correlations was reduced to 10 dimensions.
Though spectra and FNC matrices have a Gaussian distribution,
spatial maps often do not. This can make it difficult to reliably
estimate the appropriate number of dimensions. Therefore all
spatial maps (1699—12,766 voxels) were reduced to 13 dimensions.
This value was chosen because it produced the lowest rate of false
positive results and highest rate of true positive results in simula-
tions run in Allen et al. (2011).

2.5. EEG-informed fMRI

EEG-informed fMRI refers to analyses that assess whether EEG
fluctuations over time covary with fluctuations seen in the fMRI
signal during the course of an experiment (see Huster et al., 2012,
for a description of this and other EEG/fMRI analysis methods). In
this study we assess whether the EEG power time courses are
significant predictors of fMRI time courses after accounting for
other regressors of no interest (head movement, ECG, CSF, and WM
time courses). EEG power time courses were extracted using the
same frequency boundaries described in section 2.3., on EEG pre-
processing and analysis. Typically in EEG-informed fMRI studies,
power time courses are generated by summing together all EEG
electrodes (Balsters et al., 2011; Mantini et al., 2007). In addition to
this, we also generated power time courses from specific electrode
regions (frontal, central, parietal, and occipital EEG power time
courses). In each case, EEG power time courses were downsampled
to the TR sampling rate (0.5 Hz) and convolved with the informed
basis set (Balsters et al., 2011; Friston et al., 1998). Epochs previously
marked as bad (joint probability greater than 3 SDs) were replaced
by the average of the one preceding and the one proceeding non-
artifact data point as in other studies (Balsters et al., 2011; Eichele
et al., 2005). Five general linear models (GLMs) were constructed
for each EEC power time course region (i.e., frontal, central, parietal,
occipital, and total). Each GLM consisted of the power time course
of each frequency band (delta—beta), convolved with 3 functions of
the informed basis set (canonical haemodynamic response function
(HRF), temporal derivative, and dispersion derivative), and
a number of regressors of no interest; individual head movement
parameters generated during the realignment procedure, the
principle eigenvariates from WM and CSF masks (masks were
calculated from SPM WM and CSF templates in which the proba-
bility of being WM or CSF was greater than 50%), and retrospective
image correction (RETROICOR) using ECG time courses. RETROICOR
regressors were generated using default settings within the PhLEM
toolbox (https://sites.google.com/site/phlemtoolbox/) (Verstynen
and Deshpande, 2011). An additional 5 GLMs were also generated
in order to assess oscillatory changes unrelated to the transition
between eyes-open or eyes-closed conditions (tonic EEG). These



GLMs included all of the previously mentioned regressors, plus an
additional condition describing the changes between eyes open and
eyes closed (30 seconds on-off box car modeled as 3 regressors
because of the convolution with the informed basis set). It is
important to reiterate that all first-level GLMs contain EEC power
time courses from each frequency band of interest (i.e., delta—beta)
and regressors of no interest (head movement (3 translation and 3
rotation time courses), WM, CSF, and RETROICOR ECG time courses
(sine and cosine components for the dominant Fourier series and
their first harmonics). Separate GLMs only change the region from
which the EEG data were extracted (i.e., frontal, central parietal,
occipital or total). Temporal regression was used to compared fMRI
IC time courses (dependent variable) with subject-specific GLMs
(independent variables). Results were corrected for multiple
comparisons (FDR-corrected, p < 0.05).

2.6. Mancovan on EEG-informed fMRI RSNs using
neuropsychological measures

A third Mancovan model was also run investigating the rela-
tionship between IC features and neuropsychological measures.
Only RSNs that showed significant EEG-informed fMRI effects
(group differences and frequency interactions) were included in
this model. This model included age, NART, the Logical Memory
subtest of the WMS, MMSE, animal fluency, and Stroop along with
head movement response variables. In addition we included the
time between neuropsychological testing and scanning as
a regressor of no interest, along with an age by time interaction
term in case the effect of the duration differed between groups.
These regressors were removed from the Mancovan model in the
backward selection process suggesting they did not explain
a significant proportion of the variance. For this model, spectra
were reduced to a range of 8 to 18 dimensions, and the FNC matrix
was reduced to 9 dimensions. All spatial maps were reduced to 13
dimensions. Results were corrected for multiple comparisons (FDR-
corrected, p < 0.05).

2.7. Anatomical localization

Anatomical details of significant signal changes were obtained
by superimposing the RSN images on the Tl canonical single-
subject image from the Montreal Neurological Institute series.
The atlas of Duvernoy and Bourgouin (1999) was used as a general
neuroanatomical reference. The SPM anatomy toolbox (Eickhoff
et al., 2005) was used to establish cytoarchitectonic probabilities
where applicable. The atlases of Diedrichsen et al. (2009) and
Behrens et al. (2003) were employed as specific neuroanatomical
references for cerebellar and thalamic activity, respectively. Terms
such as ‘prefrontal thalamus’ refer to regions of the thalamus
shown by Behrens et al. (2003) to be connected with the prefrontal
cortex.

3. Results
3.1. Neuropsychological differences

Elderly participants performed significantly better on the NART
(t{36) = 2.76; p < 0.01) but significantly worse on the MMSE
(t{36) = 2.43; p < 0.05) and category (animal) fluency (t(36) = 5.09;
p < 0.001). However, it should be noted that all participants had an
MMSE score within the normal range (>26). There were no
significant differences in the Logical Memory subtest of the WMS 11l
(p = 0.49) or Stroop scores (p = 0.058) between groups. Mean and
standard error values are reported in Table 1.

3.2. Age-related EEG oscillatory differences

As in previous studies (Babiloni et al., 2006a, 2006b; Klimesch,
1999), 2-way ANOVAs showed significant decrease in alpha
power with age in eyes-open (group by region interaction: alphal:
F(3,105) = 5; p < 0.005; alpha2: F(3,105) = 13.74; p < 0.001) and
eyes-closed conditions (group by region interaction: alphal:
F(3,105) = 3.03; p < 0.05; alpha2: F(3,105) = 9.51; p < 0.001). These
interactions were driven by a significant decrease in occipital
alpha2 power with age (open: t{41) = 3.51; p < 0.005; closed:
t{41) = 4.19; p < 0.001). Significant group by region interactions
were also found showing an increase in occipital theta with age
(open: F3,105) = 4.86; p < 0.005); closed: F3,105) = 4.28; p <
0.01). However, an analysis of peak alpha frequencies showed
a slowing of oscillations across all regions with age (main effect of
group: open: 135) = 5.3; p < 0.05; closed: F1,35) = 597; p <
0.05) with the greatest differences in occipital regions. We there-
fore suggest that the significant increase in occipital theta in the
elderly group reflects the slowing of alpha frequency with age
(Klimesch, 1999; Richard Clark et al., 2004). Fig. 1 shows EEG resting
spectra and peak alpha frequency plots for each region and group.

3.3. Age-related fMRI ICA differences

After removing artifactual ICs based on decomposition quality
(ICASSO; components with a quality <0.9; Himberg et al., 2004)
and visual inspection, 26 out of 40 RSNs remained (all RSNs are
displayed in Fig. 3). These RSNs were categorized as sensorimotor,
visual, auditory, subcortical, attention, frontal, and DMN based on
spatial overlap with RSNs presented in other studies (Allen et al,,
2011; Cole et al., 2010; Damoiseaux et al., 2008). Details of activa-
tion clusters within each RSN are described in Supplementary
Table 1. The Mancovan toolbox (Allen et al., 2011) was used to
establish whether individual differences in RSN measures (SMs,
spectra, or FNC) covaried with age and/or CM. EEG information was
not used to constrain these initial analyses.

3.4. Mancovan univariate analyses—age response variable

Fig. 2A—C show significant univariate effects of age on RSN
features; blue indicates a decrease in SM intensity/BOLD spectral
power/connectivity with age and red indicates an increase in SM
intensity/BOLD spectral power/connectivity with age. Fig. 2A
shows increased SM intensity with age (red clusters) in the
bilateral thalamus (prefrontal thalamic nuclei; IC 15), left parietal
lobe (IC 26), and right precentral gyrus (area 6; IC 26). Decreased
SM intensity with age (blue clusters) was observed in a separate
portion of prefrontal thalamic nuclei (IC 14), right postcentral
gyrus (areas 2 and 3b; IC 26), left inferior parietal lobule (IC 37),
and the DMN (superior medial gyrus and posterior cingulate; IC
33). Fig. 2B shows age effects on BOLD spectral power in the
inferior frontal gyrus (IFG; IC 32) and prefrontal thalamus (IC 15).
In both cases there was greater BOLD frequency power between
0 and 0.1 Hz for young participants. The prefrontal thalamic
component (IC 15) also showed increased BOLD frequency power
at a higher range (0.15-0.25 Hz) for elderly participants. Fig. 2C
shows where connectivity between RSNs covaried with age.
Elderly participants showed increased connectivity (FNC)
between the prefrontal thalamus (IC 15) and both the posterior
DMN (IC 19) and IFG (IC 34). However, in most cases connectivity
between RSNs decreased with age. Young participants showed
greater connectivity between a different prefrontal thalamic
component (IC 14) and the same IFCG component (IC 34) and right
FPN (IC 40). There was also increased connectivity for young
participants between motor (IC 39) and frontal components
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(IC 36), medial premotor cortex (SMA; IC 30) and anterior DMN
(IC 33) components, and attention (IC 28) and DMN (IC 1)
components.

3.5. Mancovan univariate analyses—GM response variable

Fig. 2D—F show significant univariate effects of GM on RSN
features; blue indicates a decrease in SM intensity/BOLD spectral
power/connectivity with increased GM and red indicates an
increase in SM intensity/BOLD spectral power/connectivity with
increased GM. Fig. 2D shows that only the right postcentral gyrus
(area 3b; IC 26) covaried with GM (increased signal intensity with
increased GM). This region overlaps with a region in Fig. 2A where
activity decreased with age. Fig. 2E shows that only the bilateral
middle frontal gyrus (MFG; IC 36) increased in power (0—0.1 Hz) in
concert with increasing GM. Fig. 2F shows that this same compo-
nent showed a positive relationship between the amount of CM and
connectivity with a DMN component (IC 1).

3.6. Mancovan univariate analyses—head movement and sex
response variables

Head movement and sex were included as regressors of no
interest in the fMRI only analyses. A number of components showed
significant spatial map differences and spectral power differences

related to head movement (Supplementary Figs. 3 and 4). These
included ICs 4, 10, 11, 12, 13, 15, 19, 25, 26, 30, 32, 34, 35, and 37 for
SMs, and ICs 3, 4, 5,10, 13,19, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38,
39, and 40 for spectral power. There was no significant effect of
head movement on FNC. Although most components showed an
effect of head movement it is important to reiterate that the
multivariate analyses run on the data showed that age better
explained the variance in the fMRI data than head movement (see
Supplementary Figs. 1A and 2A). Also age effects presented in Fig. 2
have had all other modeled variables (including head movement)
partialed out of the data thus these results cannot be explained by
differences in head movement or any other of the modeled
regressors. Sex was removed from the Mancovan model as part of
the backward selection process suggesting that it did not explain
any of the variance in the data.

3.7. EEG-informed fMRI

EEG-informed fMRI differences are reported in Table 2, and
visualized in Fig. 3. We initially investigated EEG-informed fMRI
differences using EEG total power time courses incorporating all
electrodes. Using this approach we found frequency interactions in
visual (ICs 4, 5), sensorimotor (ICs 3, 17), frontal (IC 32), subcortical
(IC 14), and DMN (IC 29). Significant frequency interactions refer to
significant differences in the EEG-informed fMRI correlation across
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modeled EEG frequency bands. For example, EEG-informed fMRI
correlations in the visual ICs were significantly greater for the
alphal frequency band compared with all other modeled EEG
frequencies. Group by frequency interactions highlighted differ
ences in visual (ICs 5, 10), SMA (IC 30), hippocampus (IC 35), left FPN
(IC 37), and DMN components (IC 29).

Considering the group by region interactions found within
specific frequency bands during the EEC analyses we also investi
gated EEG-informed fMRI differences using EEG power time cour
ses derived from specific regions of electrodes (frontal, central,
parietal and occipital electrodes). This approach highlighted addi
tional frequency interactions in prefrontal thalamus (IC 15),
posterior attention network (IC 28), and sensorimotor regions (IC
39), along with additional group by frequency interactions within
visual (IC 13), sensorimotor (IC 26), anterior DMN (IC 33), and
frontal RSNs (IC 36). It is clear from these results that though the
spatial resolution of EEG is relatively limited, electrode selection is
an important consideration when integrating EEG with fMRL
Supplementary Table 2 provides a breakdown of age-related EEG
informed fMRI differences for each frequency band. Fig. 3 shows
RSNs that showed group differences in fMRI-only and EEG

informed fMRI analyses (purple activity) and RSNs that showed
only EEG-informed fMRI group differences (blue activity).

3.8. EEG-informed fMRI regressors of no interest

The EEG-informed fMRI analyses included head movement,
along with additional regressors of no interest; ECG, CSF, and WM
time courses. Before correcting for WM, CSF, and ECC we found
EEG-informed fMRI group differences in IC 36 (middle frontal gyri),
IC 14 (thalamus), and IC 11 (basal ganglia), which were no longer
significant when these regressors of no interest were included.
However, adding these regressors of no interest highlighted EEG
informed fMRI group differences in IC 37 (left FPN), IC 13 (ventral
occipital), IC 35 (hippocampus), and IC 26 (sensorimotor).

We also assessed whether group differences existed in our
regressors of no interest which might overlap with our results of
interest reported herein. As with the regressors of interest we ran
ANOVAs on the beta values for the relationship between head
movement and each IC time course. For simplicity we only report
the results from the GLMs using EEG power time courses generated
using all electrodes, however the results were similar across GLMs
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using EEG power time courses generated from other electrode
sources. ICs 2, 9, 18, 20, and 28 all showed significant group differ-
ences related to head movementin a tonic GLM (only ICs 2,18, and 28
showed significant group differences in head movement in the
induced GLM). However, 4/5 of these ICs were rejected as artifacts
and as such not included in the previously reported fMRI-only
model. There were no regions that showed a significant group
difference in the relationship between functional networks and ECGC.

3.9. Neuropsychological correlates of EEG-informed fMRI RSNs

Fig. 4 shows the results of a final Mancovan model run only on
RSNs validated using EEG-informed fMRI. This model included age
and head movement response variables as well as neuro
psychological results (MMSE, NART, Logical Memory (LM), Stroop,
and fluency). As in the previous analyses, age effects on SM inten-
sity were found in the thalamus (IC 15) and postcentral gyrus (IC
26). Age effects on spectral power were found in the IFG (IC 32).
These results were identical to those previously presented in Fig. 2.
Considering the decrease in number of comparisons in the FNC
analysis additional significant differences in connectivity were
found in a number of extra RSNs. These included increased

connectivity with age between the left FPN (IC 37) and thalamus (IC
15), and decreases in connectivity between (1) anterior DMN (IC 33)
and posterior attention network (IC 28); (2) anterior DMN (IC 33)
and SMA (IC 30); (3) hippocampus (IC 35) and visual cortex (IC 13);
and (4) cerebellum (IC 17) and thalamus (IC 14).

NART, LM, and fluency did not show any relationship with RSN
features. Stroop performance was positively correlated with
increased activity within medial superior parietal lobe (area 5M; IC
30), and increased spectral power within thalamic RSN (0.05-0.1
Hz; IC 14). MMSE scores were negatively correlated with BOLD
frequency power (0.15—0.2 Hz) within the bilateral MFG (IC 36).
There were no differences in FNC related to neuropsychological
measures. Multivariate analyses confirmed that these differences
related to neuropsychological measures were not explained by age
(see Supplementary Fig. S5A).

4, Discussion

Resting state fMRI studies have provided some of the most
robust and well-replicated insights into age-related changes in
brain function. However, an outstanding concern about this work
has been the effect of nonneural differences such as vasculature,



Table 2
EEG-informed fMRI RSN effects

Component  Label Frequency Groupby  Significant sensors and induced/tonic Fvalue pvalue Contributing frequency band
number interaction frequency
interaction
32 Frontal Y LAl 2104 0.01 Alpha 2/beta
36 Frontal Y I_Cen 2.684 0.000783 Alpha 2/beta
34 Frontal
12 Auditory
37 Attention Y ¥ LAIL(G), T_All (G}, |_Occ (F), T_Occ (F) 3353; 2503; 3.155; 3.865 0.000032; 0.00119; 0.000084; 0.000002 Alpha 2 (); alpha 2/beta (G)
40 Attention
25 Attention
28 Attention Y I_Par 3.02 0.000161 Alpha 2/beta
14 Subcortical Y LAIL T_AIL I_Par, T_Par 2423; 2472; 4.972; 3965  0.002576; 0.002069; 0; 0.000001 Alpha 2/beta
1 Subcortical
15 Subcortical Y T_Fron, T Cen 2416; 2.584 0.00265; 0.001245 Alpha 2/beta
35 Subcortical Y LAIL T_All 3.479;3.041 0.000017; 0.000145 Beta
5 Visual Y Y I_AlL (F), T AIL{G), T_Cen (G}, [_Par (F), T_Par (F} 2.350; 4.898; 2.446; 3.97;  0.003427; 0; 0.002325; 0.000607; 0.000269 Alpha 1
291
10 Visual Y LAIL T_All 3.378: 2977 0.000028; 0.000197 Beta
4 Visual Y I_AIL 1_Fron, |_Cen, |_Occ 3723; 6.27;3.668; 2952 0.000005; 0; 0.000007; 0.00011; 0.000222 Alpha1
13 Visual Y T_Cen 2264 0.00519 Alpha 2/beta
33 DMN Y I_Cen, T_Cen, |_Occ, T_Occ 3.063; 3.458; 2.889; 2.881 0.000131: 0.000019; 0.0003; 0.000312 Alpha 2/beta
29 DMN Y Y 1Al (G/F). T_All (£), I_Fron (G/F), T_Fron (G/), 2,608 (G): 4.108 (F); 0.001112 (G); 0.000001 (F); O (F); 36-06 (G):  Alpha 1 (F)/beta (G)
T_Cen (£) 418 (F):; 381 (G: 7(F):  O(F): 0.000004 (G): O (F}; 000339 (¥)
3778 (G): 5.216 (F);
2361 (F)
1 DMN
19 DMN
3 Motor Y Y I_AIL(F), I_Par (F), T_Par (F), |_Occ (G/F), T_Occ (G)  2.138; 3.139; 3.098; 0.0089; 0.00009; 0.00011 ;0005319 (G): Alpha 2, beta (F); alpha 1, delta (G)
2258 (G): 2643 (F); 292 0.000946 (F); 0.000259
30 Motor Y L_AlL I_Par, T_Par 2.123; 3.517; 265 0.009512; 0.000014; 0.000917 Alpha 2
38 Motor
26 Motor Y I_Fron 258 0.00126 Theta/beta
17 Motor Y I_AlL, |_Fron, T_Fron, |_Cen, T_Cen, |_Par, T_Par 2.248; 3.65; 3.886; 3.084;  0.005557; 7E-05; 0.000002; 0.000118; Beta
2.989; 3.285; 3.559 0.000186; 0.000044; 0.000011
39 Motor Y ‘T_Fron 2209 0.006576 Alpha 2/beta

Summary of EEG-informed fMRI results. Significant frequency and group by frequency interactions are marked with 2'Y". The electrode selection used to generate a significant result are reported in the next column (L induced; T,
tonic; All, all electrodes; Fron, frontal electrodes [F3, F4, Fz]; Cen, central electrodes [C3, C4, Cz]; Par, parietal electrodes [P3, P4, Pz]: Occ, occipital electrodes [01, 02, 0z]). (G) or (F) refers to whether it was a significant frequency
interaction or group by frequency interaction. Values shown in beld indicate the largest effects where multiple results were significant. Component numbers correspond to components in Fig. 3.

Key: DMN, default mode network; EEG, electroencephalography; fMRI, functional magnetic resonance imaging: RSN, resting state network; Y, yes.
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Fig. 4. Relationships between EEG-informed fMRI RSNs and neuropsychological vari-
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nent numbers in Fig. 3.

breathing, and head movement (all of which are likely to differ as
a function of age) on resting connectivity (Cole et al., 2010; lannetti
and Wise, 2007; Kelly et al., 2012). In the present study we sought
to investigate this issue by using simultaneously acquired EEGC, head
movement, and ECG to constrain our fMRI analyses. Our EEG-
informed fMRI analyses highlighted a number of RSNs showing
significant age-related changes, including the DMN and left FPN. On
the other hand, our study also highlights a number of RSN age
effects in fMRI that were not supported by the inclusion of EEG data.
It is possible that age effects seen in these RSNs are nonneural in
origin. These results highlight the value of incorporating EEGC data
to improve detection of RSN effects.

The present study implemented a number of novel strategies to
rule out potential nonneural confounds. The use of EEG to inform
the fMRI analysis provided a means of excluding changes in
vasculature and breathing on fMRI signal. Because EEG is suscep-
tible to contamination by head movement artifacts (Jansen et al.,
2012; Moosmann et al., 2009), our analyses included a number of
additional steps: (1) field maps were used to unwarp fMRI data
during realignment thus correcting for some nonlinear movement
artifacts introduced by susceptibility by movement interactions (to
our knowledge this has not been previously used in studies of
resting state); (2) individual subject's movement time courses
generated during the realignment stage were included in all GLMs
as regressors of no interest; (3) all EEG frequency bands were
modeled together in the same GLM removing movement signal
common to all frequency bands and isolating the unigue features of
different frequency bands; (4) fMRI components that showed
activity around the periphery of the cortex (stereotypical topog-
raphy of movement artifacts) were removed; and (5) mean head
movement values were additionally modeled in the Mancovan to
address between-subject movement differences (within-subject
head movement was additionally accounted for by steps 2 and 3).
By combining all these safeguards, we can be confident EEG-
informed fMRI group differences were not because of head move
ment but instead reflect connectivity differences in aging.

Our results show EEG-informed fMRI group differences (purple
and blue activity in Fig. 3) in 11 of 26 RSNs, though 5 RSNs showed
fMRI-only group differences (red activity in Fig. 3). [tis possible that
group differences within these RSNs are not neural in origin. Out of
11 RSNs showing EEG-informed fMRI group differences only 4 RSNs
show group differences in fMRI-only and EEG-informed fMRI
analyses; the anterior DMN (IC 33: age reduction in SM intensity),
left FPN (IC 37: age reduction in SM intensity), bilateral postcentral
gyrus (IC 26: age reduction in SM intensity), and MFGC (IC 36: GM
reduction in spectral power, 0—0.1 Hz). Seven RSNs showed EEG-
informed fMRI group differences in the absence of fMRI differ-
ences (hippocampus [IC 35), posterior DMN [IC 29], visual [ICs 5, 10,
and 13), and sensorimotor RSNs [ICs 3, 30]). In most cases group
differences in fMRI activity were present within these RSNs at an
uncorrected threshold (ICs 35, 29, 10, and 13), suggesting that EEG-
informed fMRI may be more sensitive to neural changes that occur
with age.

The DMN has been the most studied RSN, and appears to be
a powerful biomarker for a number of clinical pathologies (Buckner
et al, 2008), and healthy aging (Allen et al., 2011; Andrews-Hanna
et al,, 2007; Biswal et al., 2010; Damoiseaux et al., 2008). The DMN
was also one of the first RSNs to be investigated using simultaneous
EEG/fMRI and has been repeatedly found to correlate with beta
band power time courses (Balsters et al., 2011; Laufs et al., 2003;
Mantini et al.,, 2007). In this study we replicate the link between
beta band power and DMN activity (IC 33), and show that differ-
ences in beta band power in young and old participants are corre
lated with decreases in DMN activity (Table 2). Decreases in DMN
activity with age have been linked to poorer scores on tests of
memory and executive functions (Andrews-Hanna et al, 2007;
Damoiseaux et al., 2008). In addition to decreases in functional
connectivity, Ystad et al. (2011) showed that decreased structural
connectivity between the anterior DMN and subcortical structures
(thalamus and putamen) were correlated with a proxy measure of
executive function. In this study we used FNC to investigate the
differences in connectivity between RSNs and showed age-related
decrease in connectivity between the anterior DMN (IC 33) and
the SMA (IC 30; both RSNs showed EEG-informed fMRI age-related
differences). Connectivity between these 2 RSNs is achieved
through the cingulum bundle (Schmahmann and Pandya, 2006),
the same WM fiber bundle that connects the anterior and posterior



nodes of the DMN (Greicius et al., 2009; Teipel et al, 2010). A
number of diffusion tensor imaging (DTI) studies have shown that
the integrity of the cingulum bundle decreases with age (Andrews-
Hanna et al.,, 2007; Damoiseaux et al., 2009; Michielse et al., 2010),
leading to reduced functional connectivity between nodes of the
DMN, and likely leading to reduced connectivity between the
anterior DMN and SMA in this study. Unfortunately, the integrity of
this WM tract has not been linked to a specific cognitive or neu-
ropsychological metric. There is now a large body of evidence
suggesting that the DMN decreases in functional and structural
connectivity with age, and the present study further supports this.
Future research is now required to elaborate on the cognitive
consequences associated with the decrease in DMN activity which
occurs with healthy aging.

Along with the DMN, hippocampal integrity is thought to be an
important marker of healthy aging and dementia (Teipel et al.,
2007). Considering that studies of rest and task have shown
a strong coupling between the hippocampal formation and DMN
fluctuations (Huijbers et al., 2011; Vincent et al., 2006) it is not
surprising that in this study we found the DMN (IC 33) and
hippocampus (IC 35) show age-related changes in function. For
both the DMN and hippocampus it was the contribution of beta
power (Table 2) that changed with age. However, our results show
a decrease in beta DMN activity compared with an increase in beta
hippocampal activity with age. This partially overlaps with the
results of Andrews-Hanna et al. (2007) who showed a decrease in
BOLD variability within the DMN with age but saw an increase in
BOLD variability within the hippocampus with age. Although the
hippocampus has been shown to decrease in volume with age (Fjell
et al, 2009; Raz et al, 2005) a number of studies have shown
increased hippocampal activity and frontal-hippocampal connec-
tivity with age. For example, Daselaar et al. (2006) showed
a selective age-related decrease in the hippocampus related to
recognition, but an age-related increase within the rhinal cortex
related to familiarity, along with greater frontal-rhinal connec-
tivity in elderly participants. Similar results were found by
O’Connell et al. (2012) using an attention paradigm (3 stimulus
oddball). O'Connell et al. (2012) used EEG-informed fMRI to
investigate age-related changes in the P3a (distractor related event-
related potential [ERP] component) and P3b (target detection ERP
component) and showed increased EEG-informed fMRI activation
for elderly participants in the right hippocampus related to P3a and
P3b components, and increased prefrontal cortical activity.

The EEG-informed fMRI analysis revealed a significant decrease
in the left FPN (IC 37) in the elderly group. Resting state studies have
yielded somewhat inconsistent findings regarding the extent to
which prefrontal cortex activity changes with age. Damoiseaux
et al. (2008) failed to show any differences in the left or right FPN
with age, whereas Allen et al. (2011) showed significant aging
decreases in BOLD spectra within all frontal RSNs and left and right
FPN. Although left and right FPN showed significant decreases in
SM intensity in Allen et al. (2011) and Biswal et al. (2010), significant
decreases in these networks were driven only by decreased parietal
activity and not decreased prefrontal activity. Our results replicate
this finding, showing significant reduction in SM intensity for the
left FPN, but only over the parietal cortex (see Fig. 2A). As in
previous studies (Balsters et al., 2011; Mantini et al, 2007;
Sadaghiani et al., 2010), EEG-informed fMRI analyses showed that
this decreased FPN activity was correlated with the age-related
decrease in alpha2 power (Table 2).

There is still a great deal of debate regarding the interpretation
of prefrontal activity changes with age (see Grady, 2012 for
a comprehensive review). Meta-analyses by Spreng et al. (2010) and
Rajah and D'Esposito (2005) reported reliable prefrontal activity
increases with age during task performance but a large scale

longitudinal study by Nyberg et al. (2010) suggested that increasing
cortical activity with age is an artifact of cross-sectional designs,
and that longitudinal assessments show a significant decrease in
prefrontal activity with age. It is not yet clear if the ability to
upregulate activity within cognitive control regions, such as the
FPN, is beneficial in aging. Davis et al. (2008) suggest that increased
prefrontal activity is associated with improved elderly cognition,
specifically the ability for elderly individuals to perform on par with
young participants. Campbell et al. (2012) also showed that reduced
FPN connectivity in elderly participants was correlated with greater
distractibility during a 1-back task with multiple stimuli, suggest-
ing that increased FPN connectivity has a positive effect on task
performance in aging. However, studies by Grady et al. (2010) and
Salami et al. (2012) found that increased FPN activity during
a variety of tasks correlated with poorer performance. In this study
we did not find that FPN activity correlated with any neuro-
psychological measurements so it is not clear the extent to which
these resting differences in cognitive control regions correlate with
subsequent changes in task performance. However, in a similar
previous study Balsters et al. (2011) demonstrated a decrease in
right FPN 6 hours after healthy elderly participants consumed 5 mg
of donepezil (acetylcholinesterase inhibitor). This decrease in right
FPN activity, in the same resting paradigm used in this study, was
associated with decreasing alpha2 power and positively correlated
with decreases in performance on a paired associates learning task
(similar to the task performed in Salami et al., 2012). It is therefore
likely that a decrease in alpha-driven FPN activity with age is linked
to reduced cognitive control and poorer performance.

Individual differences in resting fluctuations within the medial
sensorimotor RSN (IC 30), thalamic RSN (IC 14), and middle frontal
gyri (IC36)(all RSNs validated using EEG-informed fMRI) correlated
with neuropsychological measurements, specifically the Stroop and
MMSE. Though a number of fMRI studies of the Stroop task have
shown activity within the precuneus (Langenecker et al., 2004;
Milham et al., 2002; Zysset et al., 2007 ), there is mixed evidence for
an age-related difference in this region. Milham et al. (2002) found
this region was more active for young compared with old partici-
pants, and Langenecker et al. (2004) showed this region was more
active in old compared with young participants, and Zysset et al.
(2007) found no aging difference in the precuneus. None of these
studies reported thalamus activity during Stroop performance.
However, these studies focused on aging differences, or sub-
classified age groups into high and low performers, whereas
activity in this study correlated solely with Stroop performance.
Multivariate analyses (Supplementary Fig. 5) suggest that activity
within precuneus SMs and spectral power in the thalamus are
better explained by Stroop performance than age. We therefore
suggest that the precuneus activity and thalamic spectral power are
important for inhibitory control regardless of age. Similarly, spectral
activity within the MFG (0.15—-0.2 Hz) was specifically predicted by
MMSE performance and not by age (although BOLD spectral
differences in this RSN were best explained by GM rather than age;
see Supplementary Figs. 1A and 2A). Multivariate tests also showed
that head movement was a slightly more significant predictor of
spectral activity than MMSE score (MMSE p = 0.013; translationp =
0.0094; this was not the case for either of the Stroop results; see
Supplementary Fig. 5A) so these results must be interpreted with
caution, although previous studies have also shown that resting
activity within the MFG is negatively correlated with MMSE score
(He et al., 2007).

As predicted, some RSNs that showed age-related changes in
fMRI failed to show EEG-informed fMRI group differences. These
included the auditory cortex (IC 12), both thalamic RSNs (ICs 14,15),
sensorimotor RSNs (IC 38), and the IFG (IC 32). Although these RSNs
failed to show an EEG/fMRI group difference it does not necessarily



mean aging differences in these RSNs are nonneural in origin. At an
uncorrected threshold the IFG (IC 32) and the dorsal medial nucleus
of the thalamus (IC 15) show EEG-informed fMRI age effects. None
of these components showed any significant group differences
related to regressors of no interest in the EEG-informed fMRI
analyses. Considering that the Mancovan toolbox is a between
subjects analysis tool we were not able to use WM, CSF, or ECG
information in the fMRI-only analyses because these values could
not be transformed into a meaningful singular value. Unfortunately,
respiration data were not collected in this study but respiration
variation signals could explain age differences in other RSNs. It is
also possible that group differences in these RSNs are not artifact
but driven by oscillations in the gamma band. Gamma band EEG
power has been shown to contribute to the BOLD response in
a unique manner compared with alpha or beta oscillatory power
(Scheeringa et al., 2011). However, the fMRI acquisition parameters
used in our study were not ideal for reliably investigating gamma
band power fluctuations. Future studies might acquire resting state
data using a sparse sampling acquisition with a larger quiet period
(perhaps 2 seconds compared with 300 ms used in this study) in
which gamma band signal could be acquired without the contam-
ination of gradient artifact.

Throughout this report, we have referred to ICs as ‘resting state
networks (RSNs)" to make them comparable with the existing
literature, however this was not a standard resting state study.
Rather than being told to relax, participants were instructed to open
and close their eyes every 30 seconds with the aim of driving
variability in alpha power across the time course (Ben-Simon et al.,
2008; Berger, 1929). Although this introduces a task (participants
were explicitly instructed when to open and close their eyes), there
are several reasons to suggest our results are entirely comparable
with those of standard resting state studies. First, most EEG-
informed fMRI age differences were present for tonic and induced
analyses (see Table 2), suggesting that age-related differences were
not task-related. This was not the case for all RSNs; age differences
within the MFC (IC 36), and postcentral gyrus (IC 26) were only
significant for induced time courses and were not present when the
task time course was removed. Second, it has been repeatedly
shown that RSNs are not only present during rest but can also be
seen during tasks (Crady et al, 2010; Smith et al, 2009). It is
therefore likely that these ‘resting state’ networks reflect func-
tionally linked systems that are not restricted to periods of rest.

In conclusion, we have shown using EEG/fMRI that the age-
related reduction in activity within specific RSNs is likely to be
neural in origin. These networks include frontal, visual, sensori-
motor, hippocampal, the left FPN, and DMN. We also show that
activity within some of these RSNs is better explained by elderly
cognition rather than age. Finally, we show that EEG/fMRI high-
lights group differences that were not present using fMRI alone,
suggesting that combing techniques in this manner might be
a more sensitive approach to developing biomarkers of aging.
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