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Abstract

Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical
structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their
evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using
phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein
interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental
mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight
mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between
pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection
within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the
protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective
constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective
constraint, presumably due to their functional roles.
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Introduction

Modeling genetic complexity in a network framework allows

researchers to study the evolution of structures larger than a single

gene [1]. While such efforts are confounded by the fact that the

network is usually only known for a single taxa, integrating

network data with genomic sequences allows one to make some

inferences about the evolution of the network itself. Thus, early

work showed that gene duplication had a vital role in network

evolution [2], with the redundancy created by that duplication

decaying quickly [3]. These results led to the natural question of

the influence of protein interactions on the patterns of gene

duplication. It now appears that proteins residing in the less dense

parts of the protein interaction network are more likely to

duplicate [4]. In yeast in particular these duplication effects also

depend on the type of duplication, with duplicated genes resulting

from genome duplication tending to have more protein interaction

partners than those produced by duplications of one or a few genes

[5,6].

It is also possible to assess how interaction networks change in

time through genome comparisons. These approaches use the

presence of an interacting pair of genes in outgroup genomes to

identify the most ancient point at which a particular protein-

protein interaction (or PPI) could have originated. The range of

comparisons of this type are quite varied, from structural

approaches that encompass the three domains of life [7,8] to

within-eukaryote [9] and within the fungal-animal clade compar-

isons [10]. In particular, Beltrao and Serrano [10] were able to use

these phylogenetic signals in combination with the rate of

divergence between duplicated genes in protein interaction

networks to estimate a rate of link change in the protein

interaction network of approximately 1025 interaction changes

per protein per million years. Interestingly, this number is

reasonably similar to what was found in a more recent analysis

that focused on experimental determination of selected interac-

tions in several species of yeast, e.g., roughly 1024 changes per

million years [11].

Another vein of network research is assessing how protein

interactions influence sequence evolution, especially how they alter

selective constraint (i.e., the degree to which certain interaction-

disrupting polymorphisms are filtered out of a population by

purifying selection). Considerable work has gone into identifying

predictors of these constraints (which, given a fixed outgroup, are

sometimes described in terms of rates of evolution). Fraser and

colleagues [12,13] found that proteins with more protein

interactions tended to evolve more slowly than those with fewer

interactions. The hypothesized mechanism for this constraint is

that proteins with many interaction partners have a larger

proportion of their amino acid sequence in conserved binding

sites. However, even this association is disputed: at best, it is rather

weak [14,15,16]. In keeping with this observation, it is also known

that residues on a proteins surface show lower selective constraint

than do internal ones, probably because the latter contribute more

directly to proper protein-folding [17,18,19,20,21]. In mammals it

appears that many surface residues evolve essentially neutrally. Yet

these proteins do not have fewer protein interactions than do
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proteins with more constrained surfaces [22]. This result, however,

must also be qualified, since there is also evidence that surface

residues involved in permanent protein interactions evolve slowly,

while those involved in transient protein interactions have

increased substitution rates [17]. In mammals [23] and in yeasts

[24], it has also been found that extracellular proteins evolve faster

than intracellular proteins. However, in yeast, it is difficult to tease

apart the importance of cellular localization from gene essentiality

[24]. In the end, though, all of these observations are somewhat

immaterial, as gene expression still appears to be by far the

strongest predictor of selective constraint [25,26,27,28,29].

Drummond and Wilke argue that this slow evolutionary rate of

highly expressed proteins is due to the fitness costs of protein

misfolding being greater for highly expressed genes [30].

One possible reason for a general lack of association of

interaction and constraint is that protein interactions are instead

inducing co-evolution between the two molecules [12]. In fact,

under some models, such co-evolution may be sufficient to result

in misleading phylogenetic signals due to correlated substitutions

between interacting proteins [31]. Here again, however, the fact

that interacting proteins also tend to be co-expressed may drive the

similarities in rates of evolution [32]. Thus, the degree to which

interacting proteins undergo co-evolution between their binding

sites (i.e., compensatory substitutions that maintain the PPI) is still

debated. Hakes and colleagues [33] argue that since interacting

proteins experience the same environment and gene expression

levels, the correlation in their evolutionary rates is sufficiently

explained by these factors without needing to invoke correlated

substitutions. However, known examples of co-evolution include

the reciprocal changes between interacting residues found in the

V3 loop of the human immunodeficiency virus (HIV) type 1

envelope protein gp120 [34,35] and between the V3 loop and co-

receptor binding domain of gp120 and the host cell’s CD4

receptor [36]. From a practical standpoint, using paired phyloge-

netic trees and shared changes to computationally identify PPIs is

agnostic as to the reason for those paired changes and has been

used to predict PPIs in both prokaryotes [37,38] and eukaryotes

[33].

Here, we are interested in two primary questions. First, to what

extent are human protein interactions evolutionarily ancient?

Second, what is the nature of the selection acting on the network

structure of the human protein interaction network? To explore

these questions, we used previously described human PPI data and

inferred orthologous genes from seven other mammals (Figure 1).

We reconstruct part of the history of this network, as well as

looking for evidence of correlated evolution between interaction

partners. In addition to finding strong conservation among the

PPIs, we find signals of weak but statistically significant co-

evolution among the interacting proteins as well as confirming

previous work that showed a tendency of interacting proteins to be

under similar selective constraint [29].

Results

Inferring the Origins of the Human Protein Interaction
Network

Given a set of previously described human protein-protein

interactions, or PPIs [39], we identified the orthologs of the genes

involved in each PPI from seven other mammals (Methods). We

then inferred the earliest potential origin of each PPI (i.e., the

earliest point at which orthologs of both genes involved were

inferred to be present; Methods) using the phylogeny in Figure 1

and assuming that an orthologous gene could only appear once on

that tree. Because our analysis started with a set of human PPIs, all

such PPIs are present along the human branch in Figure 1.

Strikingly, however, even at the base of the tree, we infer that 95%

of the gene pairs involved in the current interactions were present.

Of course, the presence of orthologous genes is not direct evidence

for the existence of a PPI, especially given that most human genes

have orthologs in these seven species [22]. We thus performed five

analyses aimed at assessing to what degree this ortholog

conservation might also indicate PPI presence at the various

nodes in Figure 1a.

First, we examined the differences in age between pairs of

interactors. It is possible that these ages are biased in such a way

that the PPIs must be more recent than the average age of the

genes encoding them (in other words, if a substantial excess of PPIs

involve the product of one ancient gene and one gene shared only

by the primates, that would imply that many PPIs are actually

more recent than the ages of their component genes would

suggest). We thus compared the set of real PPIs to a set of random

‘‘pseudo-PPIs’’ consisting of gene pairs drawn from the same set of

genes (Methods). There was no statistical difference between the

inferred ages of the real pairs and the random ones (P.0.05). This

result might seem trivial, but it demonstrates that the PPIs have

maximal ages that are at least congruent with the set of genes they

are drawn from.

Second, given this similarity in age, we could ask a more subtle

question: does the existence of a PPI between a pair genes give rise

to concerted patterns of gene presence or absence for those genes?

To find out, we counted the number of instances where the two

genes encoding a PPI pair were both present or both absent in

a given species. Strikingly, among the real set of PPIs, there were

significantly more of both cases than in the randomized datasets,

which correspondingly had more cases where only one member of

the pair was present (P#0.01). The implication is that PPI pairings

are (at least in some cases), real, ancient and selectively meaning-

ful: if they were not, we would not expect to find an excess of cases

where both are present or both are absent.

Third, we hypothesized that if ortholog ages were actually

a useful proxy for interaction age, there should be a trend for older

interacting ortholog pairs to involve proteins with higher numbers

of total interactions. The intuition here is that if many of the

interactions considered here are truly ancient, they will involve

older proteins that have had a longer period of time to gain

interactions, as is generally seen for interacting proteins [8].

Indeed, we found that the average interaction degree of a protein

is inversely correlated with the age of the branch where it appears

(Figure 1b). Random networks (created as above) do not generally

show this correlation (Methods; P = 0.019).

Fourth, we used a sequence evolution-based correction to our

estimates of PPI origin points. It is obvious that new PPI could

easily evolve between two existing orthologs, but it is difficult to

assess the magnitude of this error, given that existing PPI networks

in other species are likely sparsely sampled as well. Instead, we

used a steady state approximation to see if the rate of inferred PPI

loss (through loss of orthologs) differed greatly from the inferred

rate of gain (Figure 1a; Methods). After correcting for the length of

each branch in Figure 1a using synonymous divergence, we found

that the rate of PPI loss per PPI per unit Ks was 0.133 on the

shared mouse/rat branch and the rate of gain per PPI per unit Ks

(on the shared primate branch) was also 0.133. This similarity in

value is obviously coincidental, but even if the lowest gain rate on

the tree (shared primate branch; 0.133) is compared to the highest

loss rate (0.84 on the shared horse/dog branch), our estimate of

the number of human PPIs present at the root of Figure 1a only

drops to 74%. Thus, it appears that our estimate of PPI ages may

be relatively robust to the use of orthology data.

Evolution of the Human Protein Interaction Network
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Finally, we examined patterns of co-evolution to see if they

supported an ancient origin for most human PPIs. If a PPI is

selectively important, one might expect there to be correlated

substitutions between the interacting proteins in order to maintain

that interaction. For our set of PPIs, we thus calculated the

correlation coefficient between the paired, branch-specific, selec-

tive constraints for each pair of genes corresponding to a PPI. We

compared the mean Spearman’s r from this set of true PPIs (t-PPI)

set against the distribution of means seen for 1000 random datasets

of the same size (pseudo-random or pr-PPIs; Methods). None of the

mean Spearman’s rs from the pr-PPI datasets were as large as that

observed in t-PPI (Table 1). Omitting branches with v$5.0 from

the analysis did not alter our conclusions. Thus, there is evidence

for correlated evolution among the interacting proteins. We

therefore sought to use this correlation to assess whether the PPIs

considered were ancient. We asked whether the correlation in

selective constraint between interacting genes tended to be weaker

in parts of the tree most evolutionarily distant from humans, as one

would predict if there were a significant number of recently

evolved PPIs in these data. We thus sequentially removed several

clades from the phylogeny of Figure 1a and repeated our co-

evolution analysis. In general, our results were in accord with

expectations: the difference between the mean correlation from t-

PPI and the mean of means in the pr-PPI datasets increased when

more distant taxa were omitted from the analysis (Table 1).

Nonetheless, these branches are contributing to the co-evolution

signal, as omitting several of them together reduces that signal

considerably (Table 1). Thus, there is evidence that co-evolution

indicative of conserved PPIs is present even at deep nodes of the

phylogeny.

Figure 1. PPI presence and absence at the different nodes in the rooted eutherian phylogenetic tree. A) At each node, we have shown
the predicted percentage of human PPIs present at that node (necessarily 100% at the human tip). The percentages at the other seven tip nodes
were inferred by the presence or absence of the orthologs of the two human proteins making up the PPI (Methods). We then inferred the states of the
internal nodes under the assumption that a given PPI ortholog pair could appear only once in the phylogeny (Methods). The topology was visualized
using FigTree [61]. Branch lengths are the mean Ks value (e.g., number of synonymous substitutions per synonymous site) found across the genes
surveyed for that branch of the tree (See Methods). The five colored branches indicate potential origin points for a PPI under our limited parsimony
model (Methods), while the two gray branches were used to estimate the rate of PPI loss. The dashed branches indicate the fact the Ks values could
not be distinguished for these two branches because the models used produce unrooted trees. B) There is an association between the age of the
branch along which a PPI appears (x-axis; estimated via Ks above) and the average interaction degree of the proteins that make up that interaction (y-
axis). Note that the blue distance was estimated as one-half the Ks distance between the rodent-primate and horse-dog-cow clade in the unrooted
topology of (A). See Methods for details.
doi:10.1371/journal.pone.0052581.g001

Evolution of the Human Protein Interaction Network
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Functional Annotation of Primate-specific PPI Genes
We next sought to explore the functional roles of some of the

putatively recently evolved PPIs. Thus, we performed GO analyses

to explore the role of the primate-specific PPIs (Methods). We first

compared 1675 genes that were present in at least one primate-

specific PPI (and potentially also in nonprimate PPIs; e.g.,

PrimPresI) to the 7201 genes that were not involved in

a primate-specific PPIs (Table 2, Figure 2a). We found that the

genes from PrimPresI were over-represented for biological process

GO terms including ‘‘cell death,’’ ‘‘cell communication’’, ‘‘re-

sponse to stimulus,’’ and ‘‘macromolecule metabolic processes’’,

while no biological process GO terms were under-represented.

Over-represented molecular functions included ‘‘protein binding,’’

‘‘signal transduction activity,’’ ‘‘transferase activity,’’ and ‘‘kinase

activity’’ while ‘‘oxidoreductase activity’’ was under-represented

(Table 2). Using the same PPIs we also compared 154 genes

involve only in primate-specific PPIs (i.e., these genes are not part

of any nonprimate PPI; PrimUniqI) against the remaining 8722

genes. No GO terms were over- or under-represented in this

dataset.

Protein Degree of Primate-specific PPI Genes
We also asked if the proteins involved in (recently-evolved)

primate-specific interactions differed in their degree (number of

interactions, k) from the remainder of the network. Proteins

participating in a primate-specific PPI (i.e., the PrimPresI dataset;

Methods) have a significantly higher mean interaction degree than

other proteins (Table 3). The obvious interpretation is that genes

of high degree are also more likely to have a primate-specific

interaction by chance. To explore this possibility, we compared

the connectivity of genes with only primate-specific PPIs

(PrimUniqI) to all other genes. Again, there is a significant

difference: but in this case, the PrimUniqI genes had fewer

interactions (Table 3), again because the restricted set of genes

with only primate specific interactions would tend to have low

degree. We also examined the most highly connected protein in

each set: Amongst the primate genes, the YWHAG gene

(ENSG00000170027) has the product with the highest degree

(k = 240 including one self-interaction) and encodes a tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein

[28]. The product of Ensembl gene ENSG00000170312 has the

highest degree amongst the nonprimate set with k = 110 (no self-

interaction). It is annotated as a CDK1 cyclin-dependent kinase 1.

Finally, amongst the genes that exclusively participate in primate-

specific PPIs, the protein of highest degree is encoded by

ENSG00000198400 (a TRK1 neurotrophic tyrosine kinase re-

ceptor type 1; k= 31, including one self-interaction).

Proteins in general tend to interact with proteins of a different

degree. We therefore investigated if this trend was consistent

between the primate-specific PPIs (‘primPPIs’), and the nonpri-

mate PPIs (‘nonprimPPIs’). For this purpose we calculated the

absolute degree difference for the two constituent proteins across

all interactions in the two sets:

Dk~ Dk1{k2D ð1Þ

where k1 and k2 are the degrees of the proteins in question. The

average degree difference for primate-specific PPIs, DkprimPPIs, is

Table 1. Coevolution between PPI partners detected using correlated changes in selective constraint.

Dataset/v cutoffa Clade removedb #PPIsc Pd

Mean Spearman’s
correlation (Real
data)

Mean of means
(Spearman’s
correlation,
1000
simulations)e Difference

Full data set: 0#v,‘ None 7730 ,0.001 0.131 0.122 0.009

0#v,5 None 7727 ,0.001 0.132 0.122 0.009

0#v,5 Human 7705 ,0.001 0.123 0.110 0.013

0#v,5 Chimpanzee 7668 ,0.001 0.102 0.099 0.003

0#v,5 Macaque 7303 ,0.001 0.126 0.108 0.018

0#v,5 Mouse 7173 0.007 0.132 0.128 0.004

0#v,5 Rat 7132 0.003 0.137 0.132 0.005

0#v,5 Horse 6937 0.001 0.139 0.131 0.008

0#v,5 Dog 6930 0.005 0.135 0.128 0.007

0#v,5 Cow 6785 0.011 0.133 0.127 0.006

0#v,5 Human/Chimp 7563 ,0.001 0.095 0.084 0.011

0#v,5 Primates 6113 ,0.001 0.070 0.054 0.016

0#v,5 Rodents 5123 0.091 0.106 0.111 20.005

0#v,5 Horse/Dog 5893 0.061 0.141 0.138 0.003

0#v,5 Horse/Dog/Cow 3456 0.421 0.165 0.169 20.004

aValues of branch-wise selective constraint (v) allowed in the computation of Spearman’s correlation between these v values between paired branches for two proteins
with a known PPI in humans (Methods).
bValues of v from the indicated clades were removed before the calculation of the Spearman’s correlation.
cWe required at least 6 common branches between the two orthologous genes trees for the two interacting proteins: the column indicates the number of PPIs meeting
this requirement.
dP-value of the hypothesis test that the real PPI pairs had a higher mean Spearman’s correlation than would be expected, given the distribution of correlations seen
from 1000 simulations of the same number of pseudo-PPI pairs drawn from non-interacting proteins (Methods).
eMean of the mean correlation seen from 1000 simulations, each consisting of the same number of pseudo-PPIs from c.
doi:10.1371/journal.pone.0052581.t001

Evolution of the Human Protein Interaction Network
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Figure 2. Differences between primate-specific and phylogenetically-distributed interactions. A) Gene sets used in the GO analyses of
primate-specific protein interactions. There are 8876 human genes having at least one interaction (for a total of 32,916 PPIs). Among those genes,
1502 interactions (encoded by 1675 genes) are found only in primates. Of those 1675 genes, 1,521 are also involved in other, nonprimate-specific
interactions, and 154 are only involved in primate specific interactions. B) Genes involved in primate-specific interactions have, on average, more
total interactions (i.e., the genes involved in these interactions tend to have a higher degree k). The distribution of the difference in degree (k) for
each gene in a pair of interaction proteins was compared (here referred to as ‘absolute degree difference’, Dk; x-axis). In black are the primate-specific
interactions (primatePPIs) while red (dashed-line) shows the remainder of the interactions.
doi:10.1371/journal.pone.0052581.g002

Table 2. Over- and under-represented GO terms of genes present at least once in a primate-specific PPI.

Class ID GO term #Obsa #Expb Pc Fold excess

Biological process 0006139 nucleobase-containing compound metabolic
process

518 467.7 4.061022 1.21

Biological process 0007154 cell communication 692 528.8 9.6610221 1.51

Biological process 0007275 multicellular organismal development 403 353.5 1.661022 1.26

Biological process 0008219 cell death 230 149.4 4.1610212 1.89

Biological process 0009987 cellular process 989 916.3 3.561024 1.17

Biological process 0030154 cell differentiation 256 193.7 4.461026 1.53

Biological process 0032501 multicellular organismal process 246 207.9 3.361022 1.32

Biological process 0043170 macromolecule metabolic process 893 781.6 4.261029 1.26

Biological process 0050789 regulation of biological process 1011 865.8 8.4610216 1.30

Biological process 0050896 response to stimulus 385 314.3 1.461025 1.39

Biological process 0051704 multi-organism process 119 79.6 2.761025 1.81

Molecular function 0004871 signal transduction activity 137 74.1 4.9610213 2.39

Molecular function 0005515 protein binding 1264 1065.8 1.6610233 1.28

Molecular function 0016301 kinase activity 183 116.3 3.0610210 1.90

Molecular function 0016491 oxidoreductase activityd 27 54.6 1.361024 0.45

Molecular function 0016740 transferase activity 199 163.9 3.961022 1.33

aObserved instances of the GO term. 1675 genes present in primate PPIs vs 7201 genes never observed in primate PPIs.
bExpected number of occurrences among an randomly-selected set of genes of the same size.
cP-values for the test of the hypothesis of no difference between the observed and expected number of occurrences of the term after a Bonferonni multiple-test
correction.
dTerm was under-represented among the primate-specific PPIs.
doi:10.1371/journal.pone.0052581.t002

Evolution of the Human Protein Interaction Network
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34.8, as compared to 38.9 for nonprimate PPIs, a significant

difference (P= 661024, Wilcoxon two-sample test; Figure 2b).

Note however, that the maximum difference in degree for the two

datasets was the same (239) due to the presence of the highly

interacting protein YWHAG in both PPI datasets.

Weak Evidence for Shared Instances of Adaptive
Evolution between PPI Partners

We sought to assess if there were pairs of genes involved in a PPI

that both shared an instance of adaptive evolution (e.g., v.1.0)

along the same branch of the phylogeny. However, the number of

such paired cases of v.1.0 was not significantly greater than what

would be expected given the overall number of cases where v.1.0

(Figure 3a). However, when we lowered the threshold to v.0.5,

we found that, with exception for macaque, all branches we

observed more such cases than we would expect by chance

(Figure 3b). We therefore performed a GO analysis comparing the

524 genes that had paired branches in the mirrortrees with v.0.5

to the remaining set of genes without such signals. These 524 genes

were over-represented for biological process GO terms such as

‘‘cell death’’ and ‘‘response to stimulus’’, and the molecular

function terms ‘‘protein binding’’ and ‘‘receptor activity’’ (Table 4;

‘AdaptI’ dataset, see Methods); no under-represented GO terms

were found.

Proteins Interact with Other Proteins of Similar Constraint
more Often than Expected

To further explore the type of shared similarity in selective

constraint between PPI partners seen above, we developed

a network-based test of whether selective constraints are distrib-

uted at random in the PPI network (see Methods). Briefly, we

compared the selective constraint, v, between pairs of interacting

proteins. The distribution of selective constraint in the network is

highly non-random: the average difference in selective constraint

between two interacting proteins is 0.10, as compared to an

average of 0.12 seen when the v values are distributed at random

(P,0.0001; Methods), confirming the results of Vinogradov [29],

obtained with a different approach.

Discussion

Our analysis suggests the slightly unexpected conclusion that

most human protein-protein interactions are actually evolution-

arily ancient (i.e., shared with most placental mammals). However,

this conclusion is in accord with the work of Qian and colleagues,

who estimated based on preservation rates of PPIs in yeast that

a human protein interaction has a 98% chance of also being

present in mouse [11]. Although their estimation of PPI presence

of 98% is substantially higher than the 87.5% estimated here from

our parsimony analysis, the two analyses are in general agreement

that most PPIs are ancient. Given this conclusion, it is not

surprising that Pellegrini and colleagues were able to use genes’

phylogenetic profiles predict protein interactions in yeast species

[40,41].

Of course, our approach is nevertheless potentially biased by the

fact that we assess orthology and not interaction directly. Thus, we

are in fact setting an upper bound on the number of interactions

present at older nodes in the tree. One might wonder why one

would bother to use orthology data to study this type of network at

all. The basic reason is that all known protein interaction networks

appear to be very sparely sampled [42,43]. Thus, estimating

interaction evolution rates even between human and mouse (the

only other mammal with extensive PPI sampling) will be very

difficult. Worse, the PPIs known from human and mouse are not

independent, potentially introducing a bias. In the future, it may

be possible to computationally predict the possibility of an

interaction across multiple genomes [43], but even such an

approach needs to be validated with evidence for the actions of

selection to maintain those interactions. Likewise, the work of

Qian and coauthors very elegantly estimates interaction evolution

rates, but does not evaluate the network as a whole [11]. Given

these issues, there remains a niche for orthology-based analyses of

interaction. Similarly, one might think that some of the

interactions included might be due to various types of false

positives for interaction presence. However, because our approach

is based on collective statistics regarding the interactions, it is

unlikely that elimination of those false positives from the

interaction dataset would alter our results. We also note that the

HPRD data used appears to show a good balance of comprehen-

siveness and quality [44].

Despite the biases in our parsimony analysis, our overall

conclusion that most human protein interactions are ancient is

supported by a second analysis, which shows that there is a signal

of co-evolution among PPI pairs, even among mammals that are

reasonably distant evolutionarily from humans (e.g., horse, dog

and cow). Our analysis involved comparisons of the selective

constraint along matched branch pairs for interacting proteins

(Figure 1a and Figure S1). Co-evolution has been previously used

to identify sites with interacting residues but many of the methods

used are site-specific and require three-dimensional protein

structures [36,45,46]. Other methods detect co-evolution by

calculating the pairwise distances between sequences of proteins

known to interact, the values of which are then used as references

for predicting other interactions [37]. Interestingly, although the

‘binding neighborhoods’ of interacting proteins give the strongest

co-evolutionary signal, co-evolution can also be detected at other

sites [47]. Co-evolution can also extend beyond direct protein

Table 3. Connectivity statistics of genes involved in primate PPIs vs genes part of nonprimate PPIs.

Measure Primate genes Nonprimate genes Primate-specific genesa All other genesb

kmin 1 1 1 1

kmax 240 110 31 240

kmean 18.6 5.1 1.8 7.7

Pc 2610216 2610216

aSet of genes involved only in primate-specific interactions.
bAll genes not in (a).
cWilcoxon test.
doi:10.1371/journal.pone.0052581.t003

Evolution of the Human Protein Interaction Network

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e52581



Figure 3. Paired cases of relaxed selective constraints for PPI pairs. For each clade in Figure 1, we plot the number of cases where both
members have either r.1.0 (A) or .0.5 (B). P-values are shown for the test of the hypothesis that there are more such shared cases of relaxed
constraint than would be expected by chance (x2 test, Methods). Cases where no P-value is shown had too few observations of r.5 for valid
statistical conclusions to be drawn.
doi:10.1371/journal.pone.0052581.g003

Table 4. Over- and under-represented GO terms of genes present in PPIs where proteins in the protein pair have v.0.5 for both
branches vs remaining 4506 genes.

Class ID GO term #Obsa #Expb Pc Fold excess

Biological process 0008219 cell death 75 45.6 9.961025 1.81

Biological process 0050789 regulation of biological process 289 257.1 3.061022 1.15

Biological process 0050896 response to stimulus 142 86.3 5.3610210 1.81

Biological process 0051704 multi-organism process 39 21.4 3.461023 2.03

Molecular function 0004872 receptor activity 71 49.4 2.761022 1.55

Molecular function 0005515 protein binding 384 336.5 8.061026 1.18

aObserved instances of the GO term. 524 genes with v.0.5 for both branches vs remaining 4506 genes (of 5030 genes in total from 12472 PPIs for which mirrortrees
could be constructed with reliable ML scores).
bExpected number of occurrences among an randomly-selected set of genes of the same size.
cUncorrected P-value for the test of the hypothesis of no difference between the observed and expected number of occurrences of the term.
doi:10.1371/journal.pone.0052581.t004
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interactions: only after the network distance between two proteins

exceeds 3 is the co-evolution signal lost [48].

This co-evolution analysis also sheds light on our second

question, that of the selective forces acting on protein interactions.

These data suggest significant and abiding selection that acts to

maintain interactions. This conclusion is supported by our finding

that the difference in average selective constraint between

interacting proteins is smaller than expected, a result consistent

with the findings of Vinogradov [29], made with a completely

distinct approach. The obvious question raised by these observa-

tions is the exact nature of the selection at work. Fernandez and

Lynch have recently argued that many of the protein interactions

in multicellular eukaryotes originated not through selection for

novel functions but rather as a means for stabilizing existing

functions in the face of the destabilizing forces of genetic drift [49].

No results in the present work contradict this hypothesis as

a general principle, but there are two points that suggest that it is

probably not an exclusive process. First, co-evolution is not a strong

prediction of a model where specific interactions are not under

selection but instead there is generalized selection for enough

interactions to maintain protein function. Second, we have (very

weak) evidence for shared instances of directional selection in

interacting pairs. The variety of conclusions and models for

understanding protein interactions appears to suggest that our

understanding of these processes is still immature and that new,

predictive, models of these networks are needed.

Our analyses of the phylogenetic and selective patterns observed

among mammalian protein-protein interactions supports a model

of interaction conservation through some degree of purifying

selection. There are of course wide error bounds on these

estimates, making it inappropriate to depend on them for a given

interaction. But in general it appears that the evolution of the

protein interaction network may not be as rapid as earlier

believed.

Methods

Estimating the Time of Origin of the Human Protein
Interactions

We employed a set of human PPIs described previously [39],

consisting of 32,916 interactions among 8876 genes. Self-

interactions were excluded. We identified the orthologs of these

8876 genes from seven other mammals (Pan troglodytes, Macaca

mulatta, Mus musculus, Rattus norvegicus, Equus caballus, Canis familiaris

and Bos taurus, Figure 1a) using a previously described approach

[22]. Thus, we first identify homologous genes using our

GenomeHistory program [50]. One-to-one relationships among

the homologs of a pair of genomes are assumed to be orthologs.

Further orthologs are identified by breaking multigene families,

assuming that homologous neighbors of existing orthologs are also

orthologs (e.g., a synteny-based approach).

From these data, we inferred whether each PPI could

potentially exist in the seven other species, given their ortholog

complements (if either ortholog is missing, so necessarily is the

interaction). We coded the status of each PPI in each species as:

N 4 if both orthologs were present

N 2 if the ortholog for the first (human) gene was absent

N 1 if the second ortholog was absent.

N 0 if both were absent.

These data are unusually structured in several respects. First, by

definition, all interactions are present in humans. Second, because

our orthology identification rests on both sequence and gene order

data, independent appearances of the same state are vanishingly

unlikely. Third, we are limited to detecting the presence of the

orthologs of the two interacting genes in the other seven species:

we have no direct way of assessing if the interaction itself is

present. Finally, we may identify an ortholog as missing either due

to true evolutionary loss or due to issues with annotation or

orthology-calling. For all of these reasons, standard parsimony

approaches are inappropriate. Instead, we sought to identify the

latest point on the phylogeny in Figure 1a at which a given

interacting pair of genes could have appeared, given the orthology

data. This problem devolves into placing the origin of the

interacting pair on one of the five colored branches in Figure 1a,

all of which are along the lineage leading to human (because we

started with known human interactions). Using this approach, we

estimated the number of appearances of interacting orthologs

along these branches (circles in Figure 1a).

Comparing the Age of the Protein Interactions to the
Age of the Orthologs Involved (Validations #1 and 2 in
Results)

As mentioned, dating the appearance of orthologs at best

estimates the maximum age of a PPI: new interactions could easily

evolve between ancient orthologs. We cannot directly compare

interaction presence between different mammals due to a lack of

data. However, we can at least indirectly assess if the age

distribution of the pairs of orthologs that make up PPIs differs from

the underlying distribution of ortholog ages. The logic here is that

if PPIs are predominately of a recent origin, they should fall more

often on later branches of the tree in Figure 1a than would an

equivalent number of gene pairs sampled at random from the set

of orthologs. To assess this possibility, we created sets of pseudo-

PPIs drawn at random from the set of genes having PPIs: the

probability of drawing such a gene was proportional to the

number of interactions it had. No self-interactions or actual

interactions from the PPI dataset were allowed in these datasets.

We then repeated the inference of points of origin on the 100

random datasets. We also tested the similar hypothesis that

whatever their age, pairs of genes involved in a PPI will be more

likely to be either both present or both absent in a given taxa. To

assess this possibility, we counted the number of instances of each

of the four states above in the random datasets and compared

those proportions to those from the real PPI data.

Comparisons of the Average Degree Distributions of
Proteins Involved in PPIs Appearing at Different Points in
the Mammalian tree (Validation #3 in Results)

For each of the five nodes in the direct human lineage in

Figure 1a (colored branches), we computed the average degree

distribution for all proteins involved in interactions first appearing

at that node. (Note that this calculation is not equivalent to

calculating the degree of protein-coding genes appearing at this

node: older genes may be included if they interact with a younger

gene appearing at that node). We then compared the average

degrees for these five nodes, finding that they generally increase as

one descends to progressively more ancient nodes (Figure 1b,

Results). Next, we created random PPI networks as discussed above

and repeated this analysis, comparing the Pearson’s correlation

from Figure 1b to that seen in the randomized networks. The real

network had a higher correlation than expected (P= 0.019).
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Comparison of Rates of Interaction Loss and Gain Based
on Sequence Evolution (Validation #4 in Results)

To assess the degree to which using ortholog presence under-

estimates the rate of PPI acquisition over evolutionary time, we

compared the ratio of PPI gain to loss, calibrating the rate of the

two types of event based on a sequence-based measure of time: the

average number of synonymous substitutions per synonymous site

(Ks). These Ks values were estimated from the 5030 alignments

analyzed with PAML 4.4 [51] as discussed below. We can best

estimate loss rates from shared branches not containing direct

ancestors of humans (thick grey branches in Figure 1a). If we

assume that the protein-interaction network is in steady state (i.e.,

the number of edges is neither increasing nor decreasing in time),

the loss rate per unit Ks should equal the gain rate per unit Ks.

Assessing Co-evolution between Interacting Proteins
(Validation #5 in Results)

We next assessed the degree of co-evolution between pairs of

interacting proteins by looking for shared changes in the selective

constraint of their coding sequences. To do so, we used non-self

PPIs with 1:1 orthology across all 7 other species for both genes.

Using sequence data from Ensembl release 50 [52], we aligned the

orthologous proteins sequences with MUSCLE v3.6 [53],

converted those alignments into nucleotide alignments and

performed a number of alignment quality checks [54]. Alignments

that passed these filters were analyzed with codeml (model M1) in

PAML 4.4 [51], producing maximum likelihood estimates of the

ratio of nonsynonymous to synonymous substitutions per site (e.g.,

Ka/Ks, hereafter referred to as v) for each branch in Figure 1a.

Such tree-based approaches produce better estimates of correlated

evolution than pairwise sequence comparisons [55]. In order to

avoid erroneous v estimates resulting from codeml having become

trapped in a local optima, we started PAML from random initial

conditions until the three analyses with highest likelihood differed

by no more than 5% in their estimates of v. In three cases

(ENSG00000110400, ENSG00000129038 and

ENSG00000154767), the three top runs did not agree even after

100 iterations, and so these three genes were omitted. The result of

this pipeline was estimates of v for 5030 alignments, collectively

involved in 12,472 PPIs.

Estimating Co-evolution Using the Correlation of v
Values

The above estimates of v allowed us to construct mirrortrees for

each PPI, e.g., paired phylogenic trees, one from each protein

[56]. These paired trees consisted of (a maximum of) thirteen

paired estimates of v per PPI (one per branch). To avoid the large

sampling variances for cases where v$5, we also performed our

analyses omitting branches with such high values of v (Table 1).

We computed the Spearman’s correlation coefficient, r, between

those paired v values, requiring a minimum of 6 paired branches

in order to do so. The result was 7727 PPI pairs with associated

correlations. As an aside, we note that because v values have

a highly non-normal distribution (a range from 0 to positive

infinity but with a strong bias toward zero), we found that the

Pearson’s correlation coefficient was subject to strong outlier

effects (Figure S1).

To assess whether the correlations observed from the interacting

genes were statistically significant, we compared the distribution of

r from the true PPIs (t-PPI) to the distribution of r values seen in

a set of similar, non-interacting, gene pairs created by random-

ization. To create these random datasets, we started by generating

pairs of genes from the 5030 genes, requiring that the two genes in

each pair were not an interacting pair. Sets of 7727 unique gene

pairs with no true interactions among them and a minimum of six

branches in common were defined as new datasets (pseudo-

random interactions or pr-PPI). We compared the mean value of

Spearman’s r from t-PPI to the distribution of 1000 means from

the pr-PPI datasets. We also estimated the degree to which each

species or clade contributed to the co-evolution signal by removing

the orthologous genes from that species and repeating the above

analysis (Table 1).

Gene Ontology Analysis
Gene Ontology (GO) analysis was performed on three datasets

(Figure 2a). The first two datasets were created from the PPIs used

to infer the ancestral states of the PPI network (Figure 1a), while

the third dataset was created from PPIs used for detecting signals

of adaptive evolution:

1. Genes that participated in at least one primate-specific PPI,

although not exclusively in primate-specific PPIs (hereafter

primate-present interactions; PrimPresI)

2. Genes involved exclusively in primate-specific PPIs (hereafter

primate-unique interactions; PrimUniqI)

3. Genes from PPIs for which mirrortrees had both branches in

any given species with molecular rates v.0.5 (hereafter

adaptive interactions; AdaptI)

All three datasets genes were matched to GO slim [57] via

conversion of Ensembl IDs to human GO identifiers [58], which

were obtained from the Gene Ontology website (http://www.

geneontology.org) [59]. P-values for GO terms were calculated

under the hypergeometric distribution and adjusted for multiple

tests with a Bonferroni correction. We also asked if the degree

distribution k (the number of interactions) differed between the

above three gene sets and the rest of the network.

Shared Signals of Adaptive and Co-evolution
We hypothesized that there might be cases of shared adaptive

evolution among the PPI pairs. To explore this possibility, we

looked for shared cases of v.1.0 in paired branches from the

mirrortrees using a x2 test. A similar analysis was performed with

a threshold of v.0.5, under the assumption that directional and

purifying selection might have occurred on the same branch,

limiting the divergence signal.

Association of the Degree of Selective Constraint and
Protein Interaction Network Position

We have previously analyzed the selective constraints of 13,928

sets of mammalian orthologs [54]. Briefly, these data consist of

estimates of per-alignment estimates of v, calculated with codeml

(model M0) in PAML 4.2 [51] (i.e., not per branch as above). Each

such alignment includes one human gene and a minimum of six

other mammalian orthologs [22], no of which were allowed to

have any tandem duplications [54]. We used these data to ask if

proteins of similar selective constraint were more likely to interact

with each other. We first reduced the set of human PPIs to only

those interactions where both proteins were found in the above

orthology set. We then created a PPI network where each protein

node was weighted by its value of v: denoted nv. Consider two

interacting nodes n and m. We define the edge weight, eDv, for that

interaction as:
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eDv~Dnv{mvD ð2Þ

We then calculate the average edge weight, w, of the entire

network with:

w~
P
e[E

eDv

,
nE ð3Þ

where E is the edge set of the network and nE is the number of

edges.

Statistical Analysis of the Network Weights
To assess if the average weight was smaller than would be

expected by chance, we randomly reassigned the set of node

weights nv 10,000 times and recalculated the value of the weight

(wR) for each of those random networks. We then asked where w

from the real network fell in the distribution of wR.

One might think that the signal of similarity in selective

constraint is an artifact of a few protein complexes that define

many pairwise PPIs as well as having a similar selective constraint

across the complex. Were this situation the case, we would expect

that interacting nodes would be similar not only in their constraint

but also in their connection degree. To test this possibility, we

applied a modification of the above approach, making the edge

weight for a pair of nodes the difference in their respective degrees

(number of PPIs). We then calculated the overall network weight

as before. We compared this weight to the weight seen for

a distribution of 1,000 randomly rewired PPI networks that have

identical node degrees but where the interaction identities have

been scrambled [60]. Contrary to the above prediction, proteins in

the real network are less likely to interact with nodes of a similar

degree (P= 0.013).

Supporting Information

Figure S1 Distributions of Pearson’s and Spearman’s
Rank Sums correlation coefficients of the true PPIs and
pseudo random PPIs respectively. The true (solid lines) and

pseudo random (dashed lines) PPIs. A) Distribution of the

Pearson’s correlation coefficient r includes a ‘bump’ at approxi-

mately r= 0.7, indicating that the data are non-normally

distributed. This is caused by branches that are outliers compared

to other branches in some of the mirrortrees, which then inflates

Pearson’s r. That these correlations are spurious is suggested by the

fact that no similar bump is seen in B), the Spearman’s rank sums

correlation coefficients r for the same data.
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