PAPER
D. J. Payne et al.
The electronic structure of silver orthophosphate: experiment and theory
Introduction

The search for new materials which can photocatalytically evolve hydrogen and oxygen from water with sunlight remains a global grand challenge for the scientific community. More than four decades after the first publication of photoelectrochemical (PEC) water splitting using TiO₂, we seem to be no nearer to realizing the full potential of this phenomenon.

Research efforts have focused on TiO₂, but the relatively wide band gap (>3 eV) means this material only absorbs in the UV part of the spectrum, which constitutes only ~5% of the sunlight reaching the earth surface. Materials with smaller band gaps such as Fe₂O₃ (~2.1 eV), Cu₂O (2.17 eV) and BiVO₄ (2.45 eV) typically suffer from low photoefficiency. For example, BiVO₄ displays a quantum yield of only 9% at 450 nm incident light wavelength. Non-oxide semiconductors, which can have high quantum yields, unfortunately suffer from photocorrosion; for example, sulphides and nitrides are prone to self-oxidation in a photoelectrochemical setup. Doping with cations (e.g. V, Mn, or Cr) and anions (e.g. N, S, or P) has also been widely explored as a strategy to improve visible light absorption, with the aim of introducing donor or acceptor levels into the bulk band gap of a host oxide that remains chemically inert. This approach suffers from a loss of performance due to the introduction of numerous recombination centres for the photoexcited charge carriers. It is clear that a more fundamental approach to the design, synthesis, and characterization of water splitting materials is required.

In 2010, it was shown that Ag₃PO₄ displays remarkable photooxidative abilities. It was found that Ag₃PO₄ is more than twice as active as BiVO₄ under visible light irradiation, with O₂ production rates of 636 μmol h⁻¹ and 246 μmol h⁻¹ respectively. Remarkable quantum yields of up to 90% have been reported, indicating very low rates of recombination between photoexcited charge carriers. Unfortunately, the conduction band minimum of Ag₃PO₄ is more positive than the H⁺/H₂ reduction potential. As a result Ag₃PO₄ will only evolve O₂ and not H₂. A sacrificial reagent such as silver nitrate is also required to be present to delay the decomposition of the photocatalyst. Therefore, the stability of the photocatalyst remains an issue, which needs to be addressed before commercial application can become viable.

Despite these concerns Ag₃PO₄ has attracted significant research interest following the discovery of its water-splitting properties. Several groups have reported the synthesis and characterization of novel morphologies and composite materials, and many of these exhibit improved photocatalytic activity and stability over bare Ag₃PO₄ powder. In addition, Wang et al. have performed electrochemical measurements in conjunction with surface analysis techniques in order to elucidate the mechanism of passivation of Ag₃PO₄ photoelectrodes during the water-splitting reaction.

On the more fundamental side, several groups have used density function theory (DFT) calculations to study the
electronic structure of this material.9,21–23 As expected, traditional approaches to describing the approximate exchange–correlation potential within DFT, such as the local density approximation (LDA), lead to a vast underestimation of the magnitude of the band gap due to the self-interaction error inherent to these functionals. To correct for this, two distinct approaches have been used for Ag\textsubscript{3}PO\textsubscript{4}. Ma et al. and Umezawa et al. have used variants of DFT that incorporate the Hubbard U parameter for the explicit treatment of on-site Coulomb interactions.21,22 Liu et al. used a “hybrid” DFT formalism, in which a fixed amount of Fock exchange is added to the base DFT functional.21 In order that the validity of these earlier calculations can be tested, and the accuracy of future methods could be assessed, experimental characterization of the electronic properties of the material is urgently required.

Here, we present high-resolution X-ray photoelectron spectra of Ag\textsubscript{3}PO\textsubscript{4}, together with results from theoretical calculations using hybrid DFT. The agreement between the theoretical and experimental results is discussed and it will be shown that hybrid DFT calculations predict the structural, electronic and optical properties of Ag\textsubscript{3}PO\textsubscript{4} with good accuracy. In addition, an interpretation of the detailed electronic structure of Ag\textsubscript{3}PO\textsubscript{4} from the perspective of molecular orbital (MO) theory is presented.

Experimental section

The Ag\textsubscript{3}PO\textsubscript{4} samples were synthesized \textit{via} a simple precipitation method. 3.0 g AgNO\textsubscript{3} and 0.9651 g Na\textsubscript{3}PO\textsubscript{4} were dissolved in 100 cm3 of distilled water. These two solutions were mixed together to form a vibrant yellow precipitate. This was washed through with distilled water, and the resultant powder was dried at 70 °C overnight. With the intent of improving crystallinity, the precipitate was soaked in 1 cm3 of distilled water, and the remaining half was refluxed at 60 °C for 24 hours, both in the dark. The solution left to reflux developed far superior crystallinity. This method was used for the synthesis of further samples.

High-resolution X-ray photoemission spectra of Ag\textsubscript{3}PO\textsubscript{4} were measured in a Scienta ESCA 300 spectrometer. This incorporates a rotating anode Al Ka (hν = 1486.6 eV) X-ray source, a 7-crystal X-ray monochromator and a 300 mm mean radius spherical sector electron energy analyser with parallel electron detection system. The X-ray source was run with 200 mA emission current and 14 kV anode bias, whilst the analyser operated at 150 eV pass energy with 0.8 mm slits. Gaussian convolution of the analyser resolution with a linewidth of 260 meV for the X-ray source gives an effective instrument resolution of 400 meV. To negate sample charging the surface charge was stabilised with an electron flood gun delivering 7 eV electrons. Binding energies were referenced to the residual C 1s peak, which was assigned to a binding energy of 284.8 eV.24 We note that this procedure places the Fermi level ∼2.1 eV above the top of the valence band, indicating n-type doping in our sample, in agreement with the electrochemical behaviour of Ag\textsubscript{3}PO\textsubscript{4} photoelectrodes observed by Yi et al.2

Calculation methodology

Calculations were performed using the VASP code,25 with the projector augmented wave approach26 used to describe the interaction between the core (Ag:[Kr], P:[Ne], and O:[He]) and the valence electrons. The calculations were performed using the screened hybrid functional proposed by Heyd, Scuseria and Ernzerhof (HSE)27,28 in which a percentage (in this case 30%) of exact nonlocal Fock exchange is added to the Perdew, Purke and Ernzerhof functional,29 with a screening of ω = 0.11 bohr−1 applied to partition the Coulomb potential into long range and short range terms. The HSE approach consistently produces structural and band gap data that are more accurate than standard density functional approaches, such as the LDA or GGA.30–37 A cutoff of 400 eV and a \textit{k}-point mesh of 3 × 3 × 3 centred on the \textit{Γ} point were found to be sufficient, and all calculations were deemed to be converged when the forces on all atoms were less than 0.01 eV Å−1.

Results and discussion

A diffraction pattern of the as-synthesized Ag\textsubscript{3}PO\textsubscript{4} is shown in Fig. 1. Highly crystalline Ag\textsubscript{3}PO\textsubscript{4} with the cubic structure (space group \textit{Pm}3\textsubscript{m}), shown in Fig. 2, has been synthesized. The diffraction pattern was indexed using all reflections from 20 to 70°, and the value of the lattice parameter was determined to be 6.004 Å. The calculated lattice parameter of Ag\textsubscript{3}PO\textsubscript{4} obtained from our hybrid DFT calculations is 6.072 Å. For comparison, experimental and calculated lattice parameters from previous studies are listed in Table 1.

The Ag 3d core levels shown in Fig. 3 are easily fitted with one symmetric Gaussian–Lorentzian lineshape per peak, indicating that no measurable reduction of the sample due to exposure to the X-ray beam has occurred. In Fig. 4 (top), the theoretical density of states weighted by the photoionization cross-sections...
and broadened using a Gaussian convolution function is displayed. Good agreement between the experimental and theoretical valence band densities of states is observed, although the binding energy of the feature of highest intensity is underestimated by \(\approx 0.5 \) eV in the calculations. This peak is mainly of Ag 4d character, and therefore this slight discrepancy can be attributed to an incorrect cancellation of the self-interaction error in the hybrid DFT approach used. Unusually, this problem cannot be solved by going to higher levels of theory such as the GW approximation, and to date the only possible correction has been the application of an empirical non-local external potential for the d-states, which is fitted to reproduce experimental d-band positions. In this work, we do not artificially augment our calculations with any external potentials, as it will not have a bearing on the generality of our results.

Table 1

<table>
<thead>
<tr>
<th>Technique</th>
<th>Lattice parameter</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>6.004 Å</td>
<td>This work</td>
</tr>
<tr>
<td>Experimental</td>
<td>6.004 Å</td>
<td>Ref. 41</td>
</tr>
<tr>
<td>HSE 30</td>
<td>6.072 Å</td>
<td>This work</td>
</tr>
<tr>
<td>GGA-PBE, LDA-CAPZ</td>
<td>6.113 Å, 5.890 Å</td>
<td>Ref. 21</td>
</tr>
<tr>
<td>LDA, LDA+U, (U(Ag) = 4.18)</td>
<td>5.90 Å, 5.88 Å, 5.85 Å</td>
<td>Ref. 22</td>
</tr>
<tr>
<td>LDA, LDA+U, (U(Ag) = 9.75)</td>
<td>6.010 Å</td>
<td>Ref. 23</td>
</tr>
<tr>
<td>PBE0</td>
<td>6.010 Å</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2

The crystal structure of Ag₃PO₄. The local coordination environments of P (tetrahedral) and Ag (distorted tetrahedral) are shown.

Fig. 3

The Ag 3d core level region of the photoelectron spectrum fitted using a single symmetric Gaussian–Lorentzian lineshape per peak.

Fig. 4

A comparison of the valence band region of the photoelectron spectrum (left) and the cross-section weighted calculated density of states with Gaussian broadening applied (right).

Fig. 5

(a) A band dispersion diagram for Ag₃PO₄. (b) The optical absorption edge of Ag₃PO₄ calculated using the transversal approximation and PAW method.
Fig. 5(a) shows a band dispersion diagram for Ag$_3$PO$_4$ calculated with hybrid DFT, plotted along the high symmetry lines taken from Bradley and Cracknell.54 The valence band maximum (VBM) is situated at the M point, and is 0.13 eV higher than the highest occupied band at Γ. The conduction band minimum (CBM) is situated at Γ, yielding an indirect fundamental band gap of 2.13 eV, and a direct VBM–CBM band gap at Γ of 2.26 eV. Experimentally, the indirect and direct band gaps of Ag$_3$PO$_4$ have been reported from diffuse reflectance spectroscopy to be 2.36 eV and 2.43 eV respectively.9

It must be noted, however, that there is a distinct difference between an optical band gap and a fundamental band gap, a point which has been been shown to be extremely important in elucidating the nature of the band gap of In$_2$O$_3$,55 and other important functional oxides.44-49 To elucidate this further, optical transition matrix elements and the optical absorption spectrum were calculated within the transversal approximation and PAW method.58 Within this methodology, the adsorption spectra are summed over all direct valence band to conduction band transitions and therefore indirect and intraband absorptions are ignored.51 In this framework of single particle transitions, the electron–hole correlations are not treated, and thus would need treatment by higher order electronic structure methods.25,51 This method, however, has been previously shown to provide reasonable optical absorption spectra.44,54,56

For Ag$_3$PO$_4$, we find that the onset of the optical band gap is 2.26 eV (Fig. 5[b]). This onset of absorption corresponds with the direct band gap at the Γ point from the band structure, and calculation of the dipole transition matrix elements between the VB and CB states confirms that the direct optical band gap does indeed occur at the Γ point. Using the Tauc relation, and fitting a slope to the curve, this corresponds to an optical band gap of 2.40 eV, in excellent agreement with the experimental results of Yi et al.9

With regards to the physical structure, the valence band electronic structure, and the optical properties of Ag$_3$PO$_4$, we further note that our theoretical results are similar to those of the other hybrid calculations,55 but differ noticeably from those obtained by the LDA+U method, even for the “best” choice of the U parameters.21,22 Indeed, it should be emphasized, that the LDA+U correction is a correction that deals with the self-interaction error of the states it is applied to, and should not be used to fit band gaps, except in the case of classical Mott-insulators, where the CBM and VBM are composed of the same orbital.57 Using a $+U$ correction to fit band gaps can often artificially change the bonding in materials, and can lead to problems when dealing with the electronic structure of defects.58 In ref. 21, the authors also calculate the formation energy and the ionization energy of a silver vacancy (V_{Ag}) in Ag$_3$PO$_4$ and suggest that this is the dominant p-type defect and will act as electron recombination centres. Unfortunately, this study predicts that the formation energies of V_{Ag} are in the range -6.5 to -7.5 eV, which would indicate that Ag$_3$PO$_4$ is highly unstable with respect to dissociating into Ag metal and phosphate anions. The study also reports that the ionization energy of V_{Ag} calculated using LDA is at 0.46 eV above the VBM, and that the ionization energy calculated using LDA+U is only at 0.12 eV. This is the reverse of what you would expect to happen, as the LDA+U calculations should solve some of the self-interaction error in the system, making the ionization energies deeper, and not shallower.57,59,60 In light of the above, we believe that the LDA+U approach is not suitable for electronic structure calculations of Ag$_3$PO$_4$ where an accurate estimate of the band gap and optical absorption properties is required, and that it should therefore be avoided in future work on this material.

The electronic structure of Ag$_3$PO$_4$

For transition metal oxides and related materials the electronic structure can often be successfully rationalized in terms of the local coordination environment of the metal atom, using an approach based on molecular orbital (MO) theory. This reflects the highly localized nature of bonding in these materials. For the specific case of Ag$_3$PO$_4$, it has been noted previously that the covalent interactions between the phosphorus and the oxygen atoms are far stronger than those between silver and oxygen.21 With this in mind, it is possible to construct a molecular orbital diagram for Ag$_3$PO$_4$, starting from that of an isolated (PO$_4$)$^{3-}$ unit.

For the (PO$_4$)$^{3-}$ unit, it is sufficient to consider only sigma interactions between the orbitals on P and O. The four oxygen atoms contribute two orbitals of sigma symmetry each: the $2s$, and one of the three $2p$. Under a tetrahedral environment these yield two triply degenerate ligand group orbitals (LGOs) of t_2 symmetry, and two LGOs of a_1 symmetry. These overlap with the P 3s (a_1), and P 3p (t_2) orbitals to form twelve molecular orbitals (MOs) as shown in Fig. 6. The features of the MO diagram of the (PO$_4$)$^{3-}$ unit are clearly identifiable in the partial density of states plots obtained from our hybrid DFT calculations shown in Fig. 7. In particular, the $1a_1$, $1t_2$, $2a_1$, and $2t_2$ orbitals are visible at 25.7 eV, 23.0 eV, 11.3 eV and 9.0 eV respectively.

![A molecular orbital (MO) diagram of Ag$_3$PO$_4$.](image-url)
Notably, the P 3p orbitals only contribute to the states with t_2 symmetry, whilst the P 3s orbitals only contribute to states with a_1 symmetry. We further note that the 2a_1 and 2t_2 orbitals are also clearly visible as distinct states at the bottom of the valence band in the photoelectron spectrum of Ag$_3$PO$_4$ (Fig. 4). In contrast, the 3a_1 and 3t_2 orbitals are not identifiable as distinct states, but are instead strongly hybridized with Ag 5s and 5p orbitals and contribute towards the part of the conduction band more than 5 eV above the Fermi level.

The rest of the O 2p orbitals, with π symmetry with respect to the (PO$_4$)$_3^-$ tetrahedron, and to a lesser extent also the 2a_1 and 2t_2 orbital, mix with the Ag 4d orbitals to form the states in the upper part of the valence band. We note that the band formed by the Ag 4d states extends over \sim6 eV, indicating that hybridization between the O 2p and Ag 4d states is certainly not negligible, unlike what was postulated in ref. 22. Upon taking a closer look at the individual Ag 4d orbitals, shown in Fig. 8, it becomes evident that the d_{xy} orbitals that point towards the ligands exhibit the strongest mixing with O 2p based states, whilst the $d_{x^2-y^2}$ orbitals that point between the ligands remain largely non-bonding. The d_{x^2}, d_{xz} and d_{yz} orbitals are intermediate in character.

These considerations allow us to construct a schematic diagram for bonding in Ag$_3$PO$_4$. At this point it should be noted that construction of an MO diagram for Ag$_3$PO$_4$ has been attempted previously by Ma et al.,21 but the states near the bottom of the valence band were incorrectly described as being P–O p π-bonding, and the lowest energy state corresponding to the (PO$_4$)$_3^-$ 1a_1 orbital has been incorrectly described as having strong O 2p and no O 2s character. Furthermore, the upper part of the valence band has been described as consisting of non-interacting Ag 4d and O 2p $-\pi$ orbitals, at odds with our, and previous calculations for this material. A revised and complete MO diagram for Ag$_3$PO$_4$ is shown in Fig. 6.

Finally, it is worthwhile to consider why Ag$_3$PO$_4$ exhibits higher photocatalytic activity than other Ag(I) materials, such as Ag$_2$O. In ref. 22, it was argued that the difference can be ascribed to intrinsically better carrier mobility in Ag$_3$PO$_4$, arising from the conduction band in Ag$_3$PO$_4$ having less Ag 4d character than the conduction band of Ag$_2$O. This in turn was explained with reference to the claim that hybridization between the Ag 4d and O 2p orbitals in Ag$_3$PO$_4$ is very weak. To elucidate this issue further, we have evaluated the charge distribution in the two materials by performing a Bader analysis. The results are for Ag$_3$PO$_4$: Ag = 0.70, P = 3.82, O = -1.48 and for Ag$_2$O: Ag = 0.52, O = -1.04. It is clear that the partial positive charge on the Ag atoms in Ag$_3$PO$_4$ is greater than in Ag$_2$O leading to a preferential stabilization of the poorly penetrating Ag 4d orbitals and a consequent widening of the Ag 4d–Ag 5s gap. This is likely to be an additional contributor for why the filled Ag 4d orbitals are less strongly hybridized with the empty levels near the bottom of the conduction band in Ag$_3$PO$_4$. It should however be noted, that according to previous electronic structure calculations, the bands contributing to the CBM in Ag$_2$O are nevertheless highly dispersive, and it is not clear, why the presence of Ag 4d character in itself should lead to lower carrier mobility. Instead we tentatively propose that the differences in photocatalytic performance between these two materials may be primarily due to differences in their defect
chemistries. Indeed, recent theoretical work suggests that intrinsic point defects in Ag₃PO₄ are unlikely to behave as recombination centres for excited charge carriers, and that the formation energy of oxygen vacancies in Ag₃PO₄ is high due to the high stability of the (PO₄)³⁻ units. To elucidate this issue further, and improve our general understanding of the catalytic behaviour of Ag₃PO₄, additional experimental studies of the fundamental bulk and surface properties of Ag₃PO₄ are required.

Conclusions

In summary, we have used photoelectron spectroscopy and density functional theory calculations to study the electronic structure of Ag₃PO₄. We have found that calculations within the hybrid DFT framework yield an accurate representation of the electronic, structural, and optical properties of Ag₃PO₄, and should therefore be preferred over LDA+U based approaches for future work. Aligning the photoemission data using a reference value for the carbon 1s peak originating from the surface contamination layer places the Fermi level of our sample near the bottom of the conduction band. This indicates weak n-type doping, in agreement with Yi et al. Additionally, our analysis of the valence band electronic structure of Ag₃PO₄ shows that it is dominated by the strong bonding interactions in the tetrahedral (PO₄)³⁻ units. Narrow bands derived from the 2a₁ and 2t₂ orbitals of an isolated (PO₄)³⁻ unit are easily identifiable in the experimental photoelectron spectrum below the bottom of the valence band. We also find clear evidence for hybridization between the Ag 4d and O 2p states in Ag₃PO₄, and the splitting of the Ag 4d levels can be rationalized in terms of their local coordination environment of D₄d symmetry.

Acknowledgements

We would like to thank Professor Russell Egdell and Professor Louis Piper for very helpful discussions. D. J. P. acknowledges support from the Royal Society (UF100105). J. M. K. acknowledges support from EPSRC for a Doctoral Prize Studentship. D. J. P. and D. O. S. acknowledge the support of the Materials Design Network. The work in TCD was supported by SFI through the PI programme (PI Grant numbers 06/IN.1/I92 and 06/IN.1/I92/EC07). Calculations were performed on the Kelvin and Lonsdale supercomputers as maintained by TCHPC. B. J. M. acknowledges support from EPSRC grant ref. EP/H003819/1. The NCESS XPS Facility was supported by EPSRC Grant no. EP/E025722/1.

Notes and references

