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Abstract

Romantic interest or rejection can be powerful incentives not merely for their emotional impact,

but for their potential to transform, in a single interaction, what we think we know about another

person – or ourselves. Little is known, though, about how the brain computes expectations for, and

learns from, real-world romantic signals. In a novel “speed-dating” paradigm, we had participants

meet potential romantic partners in a series of five-minute “dates,” and decide whether they would

be interested in seeing each partner again. Afterwards, participants were scanned with FMRI while

they were told, for the first time, whether that partner was interested in them or rejected them.

Expressions of interest and rejection activated regions previously associated with “mentalizing,”

including the posterior superior temporal sulcus (pSTS) and rostromedial prefrontal cortex

(RMPFC); while pSTS responded to differences from the participant’s own decision, RMPFC

responded to prediction errors from a reinforcement learning model of personal desirability.

Responses in affective regions were also highly sensitive to participants’ expectations. Far from

being inscrutable, then, responses to romantic expressions seem to involve a quantitative learning

process, rooted in distinct sources of expectations, and encoded in neural networks that process

both affective value and social beliefs.
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Finding out whether another person likes or dislikes you can be one of the most powerful

incentives that humans face, especially when that person is a potential romantic partner

(Buss, 1983; Golightly and Byrne, 1964; Turner et al., 1971). Romantic interest and

rejection do not merely elicit strong emotions, however; they can also transform how we

view other people, befitting the impact that romantic relationships can have on our health

and long-term happiness (Clark and Reis, 1988; Cohen, 2004; Fisher, 1998; Myers and

Diener, 1995). Despite the personal and evolutionary significance of recognizing signals
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from potential romantic partners, however, we know very little about the neural systems that

respond to expressions of romantic interest or rejection.

One challenge in understanding romantic expressions is that individuals vary enormously in

their response to social incentives, in large part because of the important role of expectations

(Chang and Sanfey, in press). For example, a simple theory might suggest that an expression

of romantic interest from an unattached potential partner communicates an unambiguous

message about that person’s beliefs – they feel positively – and that this expression tells us

something primarily about that partner, not ourselves. In the real world, however, what we

learn about the person who expresses romantic interest or rejection – as well as what we

learn about ourselves - varies enormously depending on what we believed about that partner

and our goals with regard to that partner (Aron and Aron, 1991).

One key question, then, is how romantic expressions – especially when unexpected – can

lead us to update our beliefs about another person’s thoughts and motivations. Regions

including the rostromedial prefrontal cortex (RMPFC) and posterior superior temporal

sulcus (pSTS) are thought to support incorporating new social information into beliefs about

others (Behrens et al., 2008; Hampton et al., 2008; Young and Saxe, 2008). Another related

question is how basic neural systems for responding to rewards and punishments might be

modulated by expectations and beliefs. Those modulations might affect responses even in

primary networks for responding to social rewards (such as ventromedial prefrontal cortex

[VMPFC] and ventral striatum; Aharon et al., 2001; Knutson and Cooper, 2005; Montague

et al., 2006; Somerville et al., 2006), or social punishments (such as anterior cingulate;

Eisenberger et al., 2003; Fisher et al., 2010).

A second challenge for studying romantic expressions is how to fit genuine real-world

feelings into the constraints of neuroimaging. Almost all neuroimaging studies of social

incentives rely either on social stimuli without interaction (like photos of strangers), or on

artificial, rule-based monetary transactions (like economic games). The current study thus

used an entirely new paradigm that combined functional magnetic resonance imaging

(FMRI) with face-to-face romantic interactions. Participants attended “speed-dating” events

(Finkel and Eastwick, 2008; Kurzban and Weeden, 2005) where they met potential romantic

partners and chose who they would be interested or not interested in seeing again (Figure

1A). Following these events, participants were scanned while they found out, for the first

time, each partner’s decision about them.

We hypothesized that romantic interest and rejection would elicit responses in core networks

for updating beliefs about others, such as the RMPFC and pSTS, and that these regions

would especially reflect romantic expressions that violated participants’ expectations. We

also hypothesized that neural responses in basic affective systems, like the VMPFC and

ACC, would depend crucially on whether partners were desired or undesired.
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Methods

Participants

151 heterosexual student volunteers from Trinity College Dublin participated after providing

informed consent for a study approved by the Research Ethics Committee of the Trinity

College School of Psychology. Volunteers were ethnically representative of the student

population (over 85% Irish).

Participants were assigned to separate scanning (N = 38; 18 W, 20 M; 19 – 31 years old, M

= 21.47) or behavioral-only (N = 113; 53 M, 60 W; 18 – 32 years old, M = 20.45) pools at

signup. Scanning participants were additionally screened for current psychiatric diagnoses,

right-handedness, and MRI contraindications (e.g., claustrophobia). Scanning participants

were paid €10 at signup, €20 for each speed-date event attended and €30 for the scanning

session. Behavioral-only participants were paid €10 at signup, €20 for attending their speed-

date event, and €5 for their post-task questionnaire.

Materials

Participants attended a signup session where they provided informed consent and had a

digital photo taken in front of a neutral background. Participants were allowed to choose

their expression and could repeat their photo until they approved it. Photos were cropped to

a standard size (307 × 384 pixels) that showed only the face and hair.

Procedures

Speed-date events—We ran six speed-date events in total, each event including 31-40

participants (M = 36.83) with roughly equal numbers of men and women. Events took place

mid-day in a large open classroom on campus.

Each participant was given a packet of blank date records and nametag (with a first name

and unique identification number) on arrival. Date records included several Likert-type

ratings of a partner’s personality traits (not analyzed here), a 9-point rating of date success

(“I was interested in getting to know this partner better,” anchored by “strongly disagree”

and “strongly agree”), and a 9-point rating about expected partner decision (“This partner is

likely to say ‘Yes’ to me,” anchored by “strongly disagree” and “strongly agree”). Each date

record ended with a single “yes” or “no” question: “Would you be interested in seeing this

partner again?”

During each date, participants had an unconstrained conversation with the partner across

from them. Every 5 min., at an experimenter’s signal, all of the men or all of the women

(counterbalanced across events; Finkel and Eastwick, 2009) would rotate one partner to their

right; before beginning the new date, participants filled out a record for the date just

completed, including their “yes” or “no” decision. To provide a minimum number of “yes”

choices and matches, participants were asked to say “yes” to at least 50% of their partners at

each event. (Every participant except one obeyed this instruction; that participant fell short

in his responses to only two partners and so was left in the analyses). After all participants
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had met each opposite-sex partner, the event concluded; participants returned their date

records to the experiment and were paid in cash.

To ensure that we had enough data for an event-related FMRI design, scanning participants

each attended three speed-date events on three successive days (as a single event would

allow for fewer than 20 trials and far fewer matches). Behavioral-only participants attended

only a single event. All male scanning participants attended the first three events and met a

new group of behavioral-only partners at each event, while all female scanning participants

attended the second three events and met a new group of behavioral-only partners at each

event. (Six scanning participants (5 W, 1 M) missed one event and attended two events

instead; results were qualitatively identical excluding these participants. One scanning

participant, a woman, missed two events and is included in the behavioral-only results but

not the scanning results.)

Because participants were asked to say “yes” to at least half of their partners, a rate above

the average for students in similar published studies (about 40%; Finkel and Eastwick,

2009), one potential concern is that some partners were chosen to pursue simply to follow

instructions. To address this concern, we performed additional analyses using the nine-point

rating of romantic desirability from the date, which was unconstrained by experimenter

instruction, in place of the “yes” or “no” decision. These ratings were highly correlated with

“yes” or “no” decisions; a hierarchical logistic regression using only this rating correctly

classified 84.86% of decisions. Both the behavioral and neuroimaging results were

qualitatively identical using the ratings instead of the decisions; thus the relationship

between brain activation and learning about romantic outcomes is unlikely to be

significantly influenced by this experimental instruction.

Post-sessions—Between 1-4 days following his or her final event (M = 2.50), each

scanning participant attended a post-session in the lab, where they were scanned with event-

related FMRI while they were shown the outcome of each date: each partner’s “yes” or “no”

decision about the participant. Stimuli were presented with Cogent 2000 (Wellcome Trust

Centre for Neuroimaging; London).

Each trial had two phases (Figure 1A). First, participants saw the face of a partner, with their

own “yes” or “no” decision about that partner displayed below as a reminder. Faces

remained onscreen for a short, jittered delay (4 – 11 s, randomly drawn from a truncated

Poisson distribution, M = 6 s).

Next, the partner’s “yes” or “no” decision about the participant was displayed below the

face. At the same time, a 4-point rating scale was displayed with the question “How happy

are you about this outcome?” (Scale points were “very unhappy,” “somewhat unhappy,”

“somewhat happy,” and “very happy;” left and right sides were counterbalanced across

participants.) Participants had 4 s to make their response with a button box. Trials were

separated by an intertrial interval displaying a fixation cross (1 – 8 s, randomly drawn from a

truncated Poisson distribution, M = 3 s; (see Henson, 2007 for details on randomized

intertrial intervals).
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Experimental trials were randomly intermixed with control trials, which showed other faces

from the study that the participant had not met. On these trials, both the participant’s

decision and the partner’s were displayed as “Did Not Meet.” Control trials were otherwise

identical, including the required happiness rating. Participants faced 33-56 experimental

trials (the exact number varied depending on the number of partners at their events, and was

lower for the small number of participants who missed one event; M = 51.42, SD = 7.15)

and 25-51 control trials (the total was higher for participants who missed one event; M =

32.21, SD = 7.49), for a total of 63-88 trials (all but one > 80; M = 83.63, SD = 3.86). One

possible concern is that the slight variation in the number of trials per participant violates the

assumption of identical distribution in the variance across participants required for the

random effects analysis. To address this, we reanalyzed all imaging models using only 80

trials for each participant by randomly selecting 80 trials for each participant with >80 trials,

and excluding the one participant with < 80 trials. This version of the analysis yielded

essentially identical results to the one where all trials were included; in particular every

cluster discussed in the results remains significant and of nearly identical size. For this

reason we report the analyses with all trials included in the results section.

Participants were scanned with a Phillips 3 T MRI scanner using the standard head coil,

padded to minimize head motion. Functional images covered the whole brain with 38

contiguous 3.2-mm thick axial slices with gradient echo T2*-weighted echoplanar imaging

(TR = 2 s, TE = 28 ms, 3 × 3-mm in-plane voxel size, 80 × 80 matrix). The acquisition plane

was tilted about 30° to the anterior-posterior commissure plane to optimize sensitivity in the

ventral prefrontal cortex (Deichmann et al., 2003). Each participant’s scan consisted of a

single functional run whose length varied depending on the number of trials (324 – 473

images, M = 443.5); the first 4 were discarded to account for magnetic equilibration. Almost

all participants had a high-resolution structural image taken 1-2 weeks before the events as

part of a separate study; for those that did not, a high-resolution structural image was

acquired at this scan before the task (all structural scans: 3-D acquisition; T1-weighted

SPGR sequence; 0.9 × 0.9 × 0.9-mm voxel size; 256 × 256 × 180 matrix).

Following the scan, participants performed a separate self-paced multi-rating task outside

the scanner at a computer. For each matched partner only, participants rated their agreement

with two statements: “I am very likely to initiate contact with this partner,” and “I hope that

this partner initiates contact with me.” Ratings were made on 9-point Likert-type scales,

anchored by “strongly disagree,” “neither,” and “strongly agree.”

Decision emails—Immediately following the first set of post-sessions (for male scanning

participants, after the third speed-date event) and again following the second set (for female

scanning participants, after the sixth event), both behavioral-only and scanning participants

in that set of speed-date events were emailed a document containing photos of all of their

partners, their first names and numbers from the events, and both the participant’s and

partner’s decision for each date. For each match partner, an email address was also provided.

To protect participants’ privacy, every participant was assigned a unique email address for

the study that forwarded to their personal address.
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Statistical analysis—Behavioral data were analyzed with MATLAB (The Mathworks,

Inc.; Natick, MA). Ratings and reaction times were analyzed with hierarchical models using

nlmefit, nesting behavioral-only partners within scanning participants (Gelman and Hill,

2006). Models included both fixed and random effects for each predictor, and were

estimated with maximum likelihood and diagonal covariance for random effects. All

predictors were centered on the group mean.

Imaging data were analyzed with SPM8 (Wellcome Department of Imaging Neuroscience;

London). Functional images were preprocessed with standard parameters, including slice

timing correction (to the center slice), realignment (to each participant’s first image),

coregistration of the high-resolution structural image, segmentation of the structural image

into tissue types (using the “New Segment” routine with the default templates), spatial

normalization of the functional images (into MNI space, using parameters from

segmentation and SPM8 defaults), and spatial smoothing (with a 4-mm FWHM Gaussian

kernel).

A general linear model was created for each participant to estimate effects in response to

partner decisions. This model included separate delta-function regressors (0 s duration) for

the appearance of partners to whom the participant had said “yes” or “no”, as well as one for

the appearance of control faces. It also included four delta-function regressors (0 s duration)

for the appearance of partner decisions, one for each combination of partner and participant

decision (“yes” from a “yes” partner, “no” from a “no” partner, etc.), as well as one for the

decision phase of control trials. (Reaction time was not included in this model.)

To investigate responses to learned expectations about partner decisions, a separate general

linear model was estimated using parameters from a behavioral reinforcement learning (RL)

model. This model assumed that participants learned during the scan how likely partners

were to say “yes” to them, and included regressors to quantify how those expectations were

violated (i.e., prediction errors). Learning was modeled with a simple Rescorla-Wagner rule

(Rescorla and Wagner, 1972): the estimate of a “yes” on each trial was updated according to

the rule ProbYes
t+1 = ProbYes

t + (α * (PartnerDect - ProbYes
t), where PartnerDect is the

current partner’s actual decision (set to 1 for “yes” and 0 for “no”), α is a learning-rate

parameter, and ProbYes
t is the current estimate (from 0 to 1) of receiving a “yes”. ProbYes

was initialized as 0.5 for all participants. To estimate α, we assumed that large absolute

prediction errors (i.e., large violations in expectations, either positive or negative) would

require greater cognitive processing and slow reaction times, and thus fit the absolute output

of the model to participants’ trial-to-trial reaction times (square-root-transformed to account

for skew). The behavioral RL model was specified as:

PartnerDect and ParticipantDect were dummy variables set to 1 for “yes” and 0 for “no” for

partner and participant decisions on that trial (grand-mean centered); Matcht was an
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interaction variable set to (grand-mean-centered versions of ) PartnerDect *ParticipantDect,

while Trialt was set to the trial number (1, 2, etc.). δt represented the prediction error (and

abs(δt) the absolute value of that error) on each trial (calculated by the Rescorla-Wagner

update rule specified above. This model therefore estimated the learning constant α while

controlling for the effects of participant and partner decisions, as well as expected speeding

of reactions over time. All six β parameters and α were estimated in a mixed-effects

(hierarchical) model by optimizing the likelihood function via a full parameter search (using

Matlab nlmefit, based on fminsearch), including both fixed and random effects in all

parameters.

To estimate whether including this learning term improved the behavioral RL model, the full

behavioral RL model above was compared with a reduced behavioral model that was

identical except it did not include α, β6 or any prediction-error term (δt).

The imaging RL model included four delta-function regressors (0 s duration) for the

appearance of partner faces, control faces, partner decision phases, and control decision

phases. The partner decision regressor was modulated (in order) by contrast-coded

regressors (1 for “yes”, −1 for “no”) for partner decision, participant decision, and their

interaction. It was next modulated by the absolute value of the trial-by-trial estimated

prediction errors (abs(δt) above), then by the actual (i.e., signed) value of the prediction

errors (δt above), and lastly by reaction time. (SPM orthogonalizes each parameter against

each parameter already entered in the model; for example, reaction time was orthogonalized

against all other parameters, as it was the last entered.) Control decision regressors were

modulated only by reaction time. Partner face regressors were modulated by the contrast-

coded participant decision, the actual (i.e., signed) prediction, and the absolute value of the

prediction (i.e., unsigned); control face regressors were not modulated.

Both models also included six regressors of no interest for estimated head motion and a

constant term. Models were estimated using restricted maximum likelihood and an AR(1)

model for temporal autocorrelation. A high-pass filter (cutoff 128 s) removed low-frequency

noise. Beta-weight images for each regressor for combined to form appropriate contrasts

within participants, and contrast images were carried forward to group-level analyses.

Significant effects were tested with one-sample t-tests across the group. Activations were

thresholded with a per-voxel significance of p < 0.001 and an extent threshold based on

Gaussian random fields set to control the family-wise error rate (FWE) at p < 0.05 (Worsley

et al., 1996). Peaks are reported in ICBM/MNI coordinates.

For region-of-interest analysis (Figure 3B), BOLD signal in an 8-mm-diameter sphere

surrounding the peak of the VMPFC region for the “Match > Unrequited” contrast was

extracted, averaged across the sphere, converted to percent signal change, high-pass filtered

(cutoff 128 s), centered for the experiment mean, and window-averaged to create a measure

of the average percent signal change between 4 – 6 s following the partner decision on each

trial. Signal was then used as a fixed and random predictor in a hierarchical model for the

desire for contact ratings for matched partners only made after the scan. Importantly,

because these desire for contact ratings were made only for matched partners (i.e., only

within one cell of the contrast), this analysis was run only within the matched-partners trials;
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it was therefore orthogonal to the contrast used to select the functional region (which

compared the average for all matched-partner trials to other trials), avoiding circularity in

the model (Kriegeskorte et al., 2009).

Results

Note

Dates had four possible outcomes: each participant’s “yes” or “no” decision crossed with

each partner’s “yes” or “no” decision. For clarity, we describe all outcomes below with

labels from the participant’s perspective. Match indicates dates where both participant and

partner said “yes.” Rejection indicates dates where the participant said “yes,” but the partner

said “no.” Unrequited indicates dates where the participant said “no,” but the partner said

“yes.” Disinterest indicates dates where both participant and partner said “no.”

Behavioral

“Yes” rates—Scanned participants said “yes” to 59.1% of their partners on average (SEM

= 1.5%), with “yes” rates ranging from 47.2 – 96.2%. “Yes” rates for women and men did

not differ significantly (Mann-Whitney U = 318, Z = 0.95, ns; women’s M = 59.1%, SEM =

2.8%; men’s M = 59.1%, SEM = 1.5%). Behavioral-only participants’ “yes” rates (i.e., the

“yes” rates of scanned participants’ partners) did not significantly vary from scanned

participants (behavioral-only M = 57.8%, SEM = 0.9%; Mann-Whitney U = 3097, Z = 0.89,

ns).

Violations of expectations and learning—We first examined whether participants’

expectations about partner decisions related to their own decisions about each partner, by

examining the expectation rating made at the end of each date. Participants’ expectations

about their partners’ decision were significantly correlated with their own decision (mean

rating of expectation that the partner would say “yes” when the participant said “yes” =

5.69; mean rating when the participant said “no” = 4.76; paired SEM = 0.08, t(37) = 12.09;

Figure 1B), suggesting participants formed strong expectations that, in general, partners’

decisions would match their own.

We also used reaction times for happiness ratings at the post-session as an index of how

much cognitive processing was required to respond to each partner’s decision. Reaction

times (square-root transformed to account for skew) were modeled with a hierarchical

model, including partner’s decision, participant’s own decision, their interaction, and the

linear effect of time as predictors. Participants were significantly slower to respond both for

receiving a “no” (Receiving “no” M = 1842.1 ms, SD = 678.5 ms; receiving “yes” M =

1723.1 ms, SD = 762.2 ms; model predictor t(1917) = 2.73, p = 0.006) and when they

themselves had said “no” (Own “no” M = 1851.5 ms, SD = 765.5 ms; own “yes” M = 1721.4

ms, SD = 699.3 ms; model predictor t(1917) = 2.60, p = 0.009); this pattern matches the

happiness ratings (Figure 1B; see also results below), suggesting that partners were slower

to respond when they were less happy about the decision. Participants were also

significantly slower when their decision did not match their partner’s decision (Mismatch

trials M = 1928.4 ms, SD = 746.2; match trials M =1633.1 ms, SD = 684.5 ms; model
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predictor t(1917) = 6.40, p < 0.001); these increased reaction times suggest mismatched

decisions required additional cognitive processing, providing additional evidence that

mismatched decisions violated participants’ expectations.

Another potential source for participant expectations, however, was each participant

learning, during the scan, how desirable he or she tended to be. Receiving a “yes” after the

tenth “no” in a row, for example, might be more surprising than after the tenth “yes” in a

row. To investigate how participants learned about their own desirability, we modeled

reaction times with a simple reinforcement learning algorithm that provided a trial-by-trial

predicted partner decision and prediction error (see Methods). The absolute value of these

prediction errors gives an estimate of the degree to which each partner’s decision violated

expectations based on the previous partners’ decisions. When we added these unsigned

prediction errors (i.e., the absolute value of the prediction error) to a reduced behavioral

model of reaction time that did not include any learning over time, the prediction error term

significantly improved the model fit and correlated with significantly slower reaction time

(likelihood-ratio compared to the reduced model: χ2(4) = 17.18, p = 0.002; predictor t(1913)

= 5.93, p < 0.001; learning rate = 0.22). All other predictors remained significant. This

model suggests that participants’ expectations of partner decisions come both from their

own decisions and from learning what partners tend to decide about them.

Emotional response to decisions—Scanning participants rated their happiness in the

scanner with each partner’s decision. We used a hierarchical linear model to predict

happiness from whether the partner said “yes”, whether the participant said “yes” about that

partner, and whether those decisions were the same as each other (Figure 1B). Receiving a

“yes” made participants significantly happier on average (t(1922) = 5.05, p < 0.001), while

participants were less happy on average when they themselves said “yes” than when they

said “no” (t(1922) = −3.88, p < 0.001), but these main effects were both driven by a

significant interaction: participants were much happier when their decision was the same as

their partner’s than when the decisions were mismatched (t(1922) = 10.85, p < 0.001). More

specifically, participants were significantly happier about Match outcomes (M = 3.19, SEM

= 0.05) than Unrequited outcomes (M = 2.88, SEM = 0.09; t(36) = 2.88, p = 0.007). By

contrast, participants were less happy about Rejection outcomes (M = 2.21, SEM = 0.07)

than about Disinterest outcomes (M = 3.24, SEM = 0.07; t(37) = 14.06, p < 0.001). This

interaction also highlighted the potential ambivalence of social incentives: Unrequited

outcomes made participants significantly less happy than Disinterest outcomes (t(36) = 3.45,

p = 0.001), even though Unrequited outcomes involved (theoretically) more positive social

feedback.

Together, the results confirmed that participants’ expectations were crucial drivers both of

the cognitive processing involved in responding to partners’ decisions and their emotional

reactions to those decisions. Those expectations emerged both from participants’ beliefs

about that individual partner’s likely choice, and from their expectations about their own

desirability based on other partners’ choices.
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FMRI

Main effect of partner decision—To investigate the neural response to potential

romantic partner interest vs. rejection, we examined the simple contrast of receiving a “yes”

compared to a “no” (Match + Unrequited vs. Rejection + Disinterest outcomes). For

receiving a “yes,” activation was greater across a large network of medial and lateral

regions, prominently including VMPFC, medial parietal cortex, left parietal cortex and

temporoparietal junction, nucleus accumbens, left dorsolateral prefrontal cortex and frontal

pole, and left middle temporal gyrus (Table 1; Supplemental Figure S1). By contrast, for

receiving a “no,” no significant regions were more active.

Violations of expectations—Participants expected that partners’ decisions would tend to

match their own, as indicated both by explicit expectations and implicit reaction times.

Violations of expected partner decisions were also reflected in neural activation;

mismatched decisions (Rejection + Unrequited outcomes), as compared to matched

decisions (Match + Disinterest outcomes), elicited activation in significant clusters in left

ventrolateral prefrontal cortex (VLPFC) and in left pSTS (Figure 2A, Table 2).

Next, to investigate violations of expectations based on participants’ own learned

desirability, we examined which regions were correlated with absolute prediction errors

from an RL model that learned an expected partner decision based on observing other

partners’ decisions during the scan (see Methods). Activation in response to a partner’s

decision was positively correlated with absolute prediction errors about that decision in a

single cluster in the rostromedial prefrontal cortex (RMPFC; Figure 2B, Table 2). No

significant clusters were negatively correlated; as well, no significant clusters were

correlated positively or negatively with the signed prediction error.

Matches and reward value—Both happiness and excitement ratings suggested that

participants found Match outcomes to be more rewarding than Unrequited outcomes. To

investigate regions that might be specifically involved in encoding social reward value, we

examined the contrast of Match vs. Unrequited outcomes (this contrast controlled for the

partner’s decision – “yes” in both cases). Activation was greater for Match outcomes in a

network of brain regions largely overlapping those for the main effect, especially those

linked to value like VMPFC and medial parietal cortex, as well as left posterior parietal

cortex and medial temporal cortex (Figure 3A; Table 3; also see Supplemental Figure S1 for

comparison to main effect.).

Even within Match partners, though, participants’ preferences varied; some partners were

highly desired while some were merely unobjectionable. A Match with a highly-desired

partner should have greater reward value than a Match with a less-desired partner, providing

a finer-grained index of social reward value beyond decision category. Partner desirability

was quantified with participants’ self-reported desire for contact ratings, made after the scan

about each Match partner (these two ratings were averaged together; α = 0.91). In the brain,

we focused on the VMPFC as an a priori region of interest (ROI) due to its specific role in

encoding reward value.
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VMPFC activation for Match outcomes was significantly positively correlated with desire

for partner contact in a hierarchical model (t(648) = 4.97, p < 0.001), suggesting that this

region encoded not just the categorical partner decision, but a quantitative measure of that

decision’s reward value (Figure 3B). An important question is whether VMPFC activation

might encode reward value even accounting for the other self-report ratings. After including

both happiness and excitement in the model, both were significant (happiness: t(644) = 5.87,

p < 0.001; excitement: t(644) = 15.97, p < 0.001). VMPFC activation, however, remained

significantly positively correlated even controlling for these ratings (t(644) = 2.12, p = 0.02),

indicating that this region’s response to a partner’s decision captured variance in the desire

for contact over and above what participants were able to provide in their other ratings.

Finally, if Match outcomes were rewarding, participants may have anticipated that reward

even before knowing their partner’s decision. To investigate signals for anticipated social

reward, we examined the contrast of partners to whom the participant said “yes” vs. “no” –

at the appearance of their face, before their decision was revealed. Activation was greater for

“yes” partners (i.e., potential Match or Rejection outcomes) in a network of regions linked to

both anticipated value (like the ventral striatum and VMPFC) and anticipated risk (like the

anterior insula), as well as regions linked to visual attention and motor preparation, like

visual cortex and supplementary motor area (Table 4; Supplementary Figure S2).

Rejections—Rejections (receiving a “no” from a partner to whom one had said “yes”)

elicited the lowest happiness of all outcomes. To investigate regions that might be involved

in encoding negative social feedback, we examined the contrast between Rejection

outcomes vs. Disinterest outcomes (this contrast controlled for the partner’s decision – “no”

in both cases). Activation was greater for Rejection outcomes in a single cluster in the

rostral anterior cingulate cortex (ACC; Figure 3C, Table 3). This cluster was close to those

activated in two previous studies on social exclusion in both romantic and non-romantic

contexts (Eisenberger et al., 2003; Kross et al., 2011).

Discussion

An expression of romantic interest or rejection from a potential partner can be a powerful

social incentive, but how we respond to that incentive depends importantly on what we

believe and feel about that partner and ourselves. For the first time, we investigated the

neural response to learning about romantic interest and rejection by utilizing a novel speed-

dating design, in which participants met real-world potential romantic partners face-to-face

and made real decisions about whether or not they were interested in seeing them again.

After the speed-dating events, participants were scanned while they viewed photos of each

partner and found out whether each partner expressed an interest in seeing them again

(“yes”) or not (“no”).

The study implicated two distinct sets of brain areas. One set of areas was found to be

involved in responding to unexpected partner decisions. These areas, including the RMPFC

and pSTS, overlap substantively with a network of brain areas previously found to be

involved in “mentalizing”: encoding and updating beliefs about the intentions and feelings

of others (Frith, 2007). A key feature of participants’ expectations was that participants
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expected each partner, on average, to make the same decision that they made. In other

words, participants tended to expect partners they liked to also like them (and partners they

disliked to also dislike them), a strong and well-studied effect in interpersonal liking

(Backman and Secord, 1959; Eastwick et al., 2007; Kenny, 1994; Newcomb, 1956). This

reciprocity in expectations was supported by the activation of reward systems like the

VMPFC and ventral striatum for partners to whom the participant said “yes”, even before

the partner’s decision was shown; these systems are also activated for anticipated rewards

(Knutson and Cooper, 2005; O’Doherty, 2004), and the behavioral data indicates

participants were anticipating these desired partners to express reciprocal interest.

Receiving a mismatched decision from a partner, then, involved a significant violation of

participants’ expectations, and elicited activation in the left pSTS and VLPFC. While

activation in the VLPFC might be involved in resolving ambivalence about the decision (or

about which happiness rating to select; Aron, 2008), activation in the left pSTS is more

likely to relate to participants revising their beliefs about that partner thanks to their

unexpected decision. This pSTS region has been associated in several recent studies with the

process of updating representations of others’ feelings and beliefs (Behrens et al., 2008;

Cooper et al., 2010; Hampton et al., 2008), and may play a similar role in this paradigm.

While these studies have focused primarily on changes to beliefs about partners in artificial

economic game settings over multiple trials, the current study suggests that this region is

engaged even in single-trial learning about real-world social information – at least if that

information is salient enough. Participants’ expectations about their partners’ decisions are

guided by what they thought those partners felt and believed, and discovering those

expectations were wrong likely led to a substantial revision of how they perceived a partner.

Expectations about a partner’s decision, however, did not come only from beliefs about that

partner; they also were due to a participant’s expectations about his or her own desirability

in speed-dating. Activation in the RMPFC provides evidence that these expectations were

shaped in part by on-line learning during the post-session. A simple reinforcement learning

model was fit for each participant that formed expectations based on the average partner

decision – that is, whether most partners tended to say “yes” or “no” to that participant. The

unsigned prediction error from the model – a measure of surprise about a partner’s decision

– correlated both with participant behavior (slowed reaction times in responding) and with

increased activation in the anterior RMPFC. This region has been linked to the process of

considering others’ mental states during mentalizing (Amodio and Frith, 2006), and

specifically as a region that may encode social prediction errors about others’ expected

actions (Behrens et al., 2008; Hampton et al., 2008). The current data suggest that these

prediction errors may be based not only on inferences about a single partner, but about

expectations learned from other members of a social group (i.e., speed-dating partners). As

well, this region has been particularly associated with considering and relating others’

mental states to one’s own self-image (Mitchell et al., 2006). In this case, the RMPFC might

be specifically involved in encoding social prediction errors relevant to the personal self-

image – each participant’s expectation of how desirable others found him or her. Examining

how this region’s activation varies with individual differences in self-esteem could be a

promising starting point for future research.
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The second set of brain regions involved in responding to romantic interest and rejection

were those areas involved in mediating affective responses to rewarding and punishing

feedback. Importantly, activity in these brain areas was highly sensitive to participants’

expectations and beliefs about their partners. Reward systems such as the VMPFC and

ventral striatum were strongly activated by receiving a “yes”, consistent with the idea that

expressions of romantic interest constitute a powerful social reward. These areas were

significantly more activated, however, for Match outcomes (a “yes” from a desired partner)

than for Unrequited outcomes (a “yes” from an undesired partner), consistent with increased

self-reported happiness for Match outcomes. Moreover, activity in the VMPFC was even

greater for Match partners whom participants expressed the greatest interest in contacting.

Together, the data suggest that the VMPFC in particular encodes a quantitative

representation of how rewarding a particular expression of interest might be. This is

consistent with its role in representing experienced utility in a variety of non-social and

social domains (Davey et al., 2009; McClure et al., 2004; O’Doherty et al., 2003;

O’Doherty, 2004; Plassmann et al., 2007). The current findings argue that romantic rewards,

instead of representing a qualitatively different kind of decision-making, are encoded,

quantified, and compared in the same neural “common currency” that is thought to underlie

other kinds of economic and social decision-making. An intriguing possibility for future

study is how neural decision-making systems might directly trade off romantic rewards

against other kinds of rewards, or particular costs in effort or time (cf. Deaner et al., 2005;

Hayden et al., 2007).

Similarly, the anterior cingulate was activated by romantic rejection, consistent with its role

in processing negative outcomes across many domains, and particularly consistent with

earlier work suggesting it plays a specific role in responding to social rejection (Eisenberger

et al., 2007; Eisenberger et al., 2003; Kross et al., 2011). Anterior cingulate activation was

limited to Rejection outcomes (“no” from a desired partner), and was not involved in

Disinterest outcomes (“no” from an undesired partner); self-reports indicated that Disinterest

outcomes were considered relatively positive, perhaps due to avoidance of embarrassment or

unreciprocated interest from another.

There are several caveats to our interpretation of the potential function of these networks of

regions. We use slower reaction times as an index of greater cognitive processing in several

cases; however, slower reaction times might also indicate avoidance (as opposed to

approach) motivation. Our key behavioral and imaging models control for partner and own

decision to help account for emotional differences between conditions – in other words,

greater activations correspond with both positive and negative surprise – but more focused

study will be needed to tease apart potential confounds between negative emotion and

increased cognitive processing.

This study is the first to combine neuroimaging with real-world round-robin social

interactions, and points towards a new path for further neuroimaging studies of more

complex and unconstrained social decision-making. Social psychology has embraced round-

robin designs for their utility in efficiently generating large numbers of interpersonal

impressions that can be easily divided in smaller units of analysis (Kenny, 1994; Kenny et
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al., 2006), which can help address the significant requirements for numbers of trials and

participants imposed by neuroimaging technologies. Real-world social relationships can

generate powerful and complex incentives that can broaden our understanding of the social

brain beyond what we can learn from simpler games (Güroğlu et al., 2008; Krienen et al.,

2010; Redcay et al., 2010), and neuroimaging studies that utilize true face-to-face

interactions as part of their design will play a major role in pushing our understanding

forward.

Together, these findings reveal that responding to others’ expressions of romantic interest

involves a complex interplay of perceptions and expectations about the other person and

oneself. A partner’s romantic expression – especially when unexpected – resulted in

activation consistent with updating representations of that partner’s feelings and beliefs, but

also involved significant computations involved in updating a participant’s own beliefs

about his or her own desirability. In addition, key systems involved in domain-general

valuation-based decision-making, such as the VMPFC and ACC, were highly sensitive to

the expectations that a participant had for a particular partner’s decision, as well as a

quantitative measure of how desirable the participant found that specific partner.

Responding to real-world romantic expressions, then, elicits both learning and feeling;

understanding this complex mix is crucial to future understanding of real-world social

decisions in general.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design and behavioral results
A) Experimental design. Participants attended speed-dating events (~20 of each gender at

each) where participants met other participants for 5-min. conversations and made “yes” or

“no” decisions about whether they wanted to see each partner again. Diagram shows event

layout (each “date” at separate table, with one gender rotating after each date). Following

the events (1 – 3 days), a subset of participants (N = 38) were scanned with FMRI while

they learned about each partner’s decision about them. On each trial, participants first saw a

partner’s face and their own decision about that partner as a reminder; following a
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randomized delay (4 – 11 s), participants were then shown the partner’s decision, and rated

how happy or unhappy they were about the decision (4 s). Following the post-sessions,

Match partners (mutual “yes” decisions) then received each other’s contact information.

Sample photo courtesy of Center for Vital Longevity Face Database. B) Behavioral results.

Left panel: ratings during the speed-date events, following each date, of how likely that

partner was to say “yes” to the participant (on 9-point Likert-type scale), split by whether

the participant had said “yes” to that partner. Center panel: reaction times to make a

happiness rating during the post-scan for each speed-date outcome (see Methods for

outcome details). Significant differences for reaction times are calculated on square-root-

transformed reaction times to account for skew in distribution. Right panel: happiness

ratings during the post-scan for each speed-date outcome. All error bars are standard error of

the mean within-condition over scanned participants. ***p < 0.001. **p < 0.01. *p < 0.05.
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Figure 2. Activations involved in for violations of expectations
A) Regions activated more for receiving a mismatched decision (Rejection + Unrequited

outcomes) compared to a matched decision (Match + Disinterest outcomes). R indicates

right. B) Region correlated with unsigned prediction errors about partner decisions, based on

reinforcement learning of participant’s own desirability. All images thresholded at p < 0.001

voxelwise with extent threshold set to control whole-brain family-wise error at p < 0.05 (27

– 33 voxels). Colorbars indicate t-statistic. Coordinates in ICBM/MNI space.
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Figure 3. Activations involved in matching and rejection
A) Regions activated more for Match than for Unrequited outcomes. R indicates right. B)

Activation for Match outcomes in the VMPFC (average percent signal change 4 – 6 s

following outcome appearance in an 8-mm-diameter sphere around the peak of the

activation cluster for the Match > Unrequited contrast, x / y / z = 3 / 44 / −15), split by

ratings of desire for contact with each Match partner made after the post-scan. Low =

bottom third; Med = middle third; High = top third (within-participant). Error bars indicate

standard error of the mean across participants; significant differences not shown. C) Regions

activated more for Rejection than for Disinterest outcomes. All images thresholded at p <

0.001 voxelwise with extent threshold set to control whole-brain family-wise error at p <

0.05 (25-30 voxels). Colorbars indicate t-statistic. Coordinates in ICBM/MNI space.
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Table 1

Activations correlated with main effect of partner decision.

Region Peak Z-score X Y Z Cluster size (vox)

Yes (Match + Unrequited) > No (Rejection + Disinterest)

Dorsolateral PFC 5.80 −21 26 53 260

Lateral parietal /
temporoparietal cortex

5.47 −45 −70 28 309

Ventromedial PFC 5.23 −3 38 15 270

Posterior middle temporal
gyrus

5.05 −54 −49 −7 34

Medial parietal cortex 5.05 −18 −19 57 1021

Rostral medial PFC 4.75 −15 65 17 67

Ventral striatum 4.54 9 14 −4 68

Lateral occipital cortex 4.50 30 −58 −15 32

Occipitotemporal
junction

4.35 42 −61 −4 63

Lateral cerebellum 4.30 −42 −64 −25 114

Rostral anterior cingulate 4.09 6 29 14 36

Medial cerebellum 4.09 6 −58 −18 34

Lateral cerebellum 3.91 36 −76 −32 24

No (Rejection + Disinterest) > Yes (Match + Unrequited)

No regions active at this threshold.

PFC = prefrontal cortex. Activations in table were thresholded voxelwise at p < 0.001 and with a cluster size set to control for multiple
comparisons over whole brain at p < 0.05 (24 voxels). T-statistics were converted to Z-scores for reporting. Coordinates are reported in MNI space,
as in SPM8. Voxel size was 3 × 3 × 3.2 mm.
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Table 2

Activations correlated with violations of expectations.

Region Peak Z-score X Y Z Cluster size (vox)

Mismatched (Rejection + Unrequited) > matched (Match + Disinterest)

Posterior superior
temporal sulcus 4.33 −51 −43 0 30

Ventrolateral PFC 4.15 −36 20 −18 27

Unsigned prediction errors from reinforcement learning model

Rostromedial PFC 4.60 9 53 25 33

PFC = prefrontal cortex. Activations in table were thresholded voxelwise at p < 0.001 and with a cluster size set to control for multiple
comparisons over whole brain at p < 0.05 (27-33 voxels). T-statistics were converted to Z-scores for reporting. Coordinates are reported in MNI
space, as in SPM8. Voxel size was 3 × 3 × 3.2 mm.
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Table 3

Activations correlated with matching and rejection.

Region Peak Z-score X Y Z Cluster size (vox)

Match > Unrequited

Posterior cingulate 5.93 −3 −61 21 494

Posterior cingulate 5.60 −3 −34 39 96

Ventromedial PFC 5.56 −3 44 −15 242

Medial temporal cortex 4.93 −33 −49 0 125

Medial temporal cortex 4.52 33 −34 −4 25

Dorsolateral PFC 4.40 −21 32 42 28

Occipito-parietal junction 4.36 −33 −70 35 60

Dorsal caudate 4.06 18 −4 28 71

Rejection > Disinterest

Anterior cingulate 4.25 12 41 14 31

PFC = prefrontal cortex. Activations in table were thresholded voxelwise at p < 0.001 and with a cluster size set to control for multiple
comparisons over whole brain at p < 0.05 (25-31 voxels). T-statistics were converted to Z-scores for reporting. Coordinates are reported in MNI
space, as in SPM8. Voxel size was 3 × 3 × 3.2 mm.
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Table 4

Activations correlated with anticipation of partner’s decision.

Region Peak Z-score X Y Z Cluster size (vox)

Partners who were given a “yes” > those given a “no”

Lateral occipital cortex 5.76 −36 −82 0 908

Lateral occipital cortex 5.65 39 −79 −14 999

Anterior insula 4.70 33 29 0 74

Medial premotor cortex 4.66 9 11 64 52

Posterior parietal cortex 4.58 24 −46 46 32

Ventral thalamus 4.56 −3 −19 0 166

Ventral striatum 3.92 −6 11 −4 *

Medial cerebellum 4.37 6 −43 −43 30

Medial cerebellum 4.28 −6 −70 −22 135

Ventromedial PFC 4.22 −6 38 −15 46

Medial occipital cortex /
posterior cingulate 4.21 −6 −73 21 96

Dorsolateral PFC 4.18 48 8 18 30

Dorsolateral PFC 3.96 39 −4 46 42

Posterior cingulate 3.83 9 −34 42 37

Partners who were given a “no” > those given a “yes”

Right temporoparietal
junction 4.27 54 −55 28 46

PFC = prefrontal cortex. * = subpeak in above cluster. Activations in table were thresholded voxelwise at p < 0.001 and with a cluster size set to
control for multiple comparisons over whole brain at p < 0.05 (30-46 voxels). T-statistics were converted to Z-scores for reporting. Coordinates are
reported in MNI space, as in SPM8. Voxel size was 3 × 3 × 3.2 mm.
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