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Abstract

The Kalman filter is a recursive algorithm that estimates the state of a linear dynamical system

from a sequence of noisy sensor measurements. Due to its relative simplicity, numerical efficiency

and optimality, the Kalman filter and its variants have been applied to a wide range of prob-

lems in technology, notably in the areas of guidance, navigation, and control. The traditional

definition of the Kalman filter is based on the assumption that at any given time, the errors

associated with the predicted state estimate and the observation are statistically independent.

However, in many practical problems, this assumption is not satisfied, and as such the Kalman

filter may provide overconfident state estimates and diverge. This can have serious consequences

in the context of safety-critical systems.

Although there are modifications of the Kalman filter that accommodate various types of

correlation in the process and observation noises, these are not suitable in the situation where

the correlation between the errors associated with the predicted state estimate and the obser-

vation is caused by the presence of common past information between the state estimate and

the observation, which is characteristic of distributed sensor networks. On the contrary, existing

methods that deal with the common past information problem either provide overly conser-

vative estimates, or have too strict assumptions on the structure of the problem, such as the

communication topology of the sensor network.

This thesis presents two new filters to address various correlated estimation problems that

are based on the Ensemble Kalman filter, a Monte Carlo variant of the Kalman filter, which

represents the state estimates and observations using sets of random samples instead of the

conventional mean vectors and covariance matrices. Specifically, both of these filters provide a

new generalised update rule that computes consistent state estimates even in the presence of

correlation between the errors associated with the state estimate and the observation. This is

only possible due to the fact that in the context of the Ensemble Kalman filter, the magnitude

of such a correlation can be estimated from the random samples.
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The new filters retain all of the important features of the Ensemble Kalman filter, such as

scaling linearly with the number of state-space dimensions, and supporting non-linear process

and observation models. An analysis of the numerical properties of the filters is provided, includ-

ing a comparison with state-of-the-art methods in several benchmark scenarios. Furthermore, in

order to demonstrate their practical utility, the new filters have been applied to three different

real-world problems in the larger field of robot localisation: cooperative vehicle localisation,

simultaneous localisation and mapping, and global satellite-based positioning.
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Chapter 1

Introduction

Observations of any physical phenomenon are inherently uncertain. Whenever a physical quan-

tity is measured by a sensor, the observed value will be affected by two types of error: systematic

error and random error. The systematic error describes the situation where the mean of a series

of observations differs significantly from the observed quantity, and typically can be eliminated

by suitable sensor calibration. The random error, on the other hand, is caused by effects that

cannot easily be predicted and eliminated, such as sensor vibrations, electric fluctuations in the

measurement instrument, atmospheric effects, environmental radiation, or at a very low level,

the quantum nature of our universe with Copenhagen interpretation (Wimmel, 1992), hoping

the universe is not superdeterministic.

Even though the random error, also known as the noise, cannot be fully eliminated from

the measurements, it is possible to reason about the physical quantity being observed in a

probabilistic fashion. Assuming a certain knowledge of the sensor properties, the measured

value effectively provides an estimate of the true value of the physical quantity, with an asso-

ciated probability distribution. A fundamental insight is that by combining a number of noisy

measurements from one or more sensors, the uncertainty of the estimate can be significantly

reduced.

Over the past half century, sophisticated probabilistic algorithms have been developed to

estimate the true values of physical quantities, the so-called system state, from a sequence of

noisy sensor measurements. These algorithms vary in their assumptions on the properties of

the measurement noise, its probability distribution, and the model of the underlying physical

system dynamics. Most notably, the Kalman filter, originally proposed in Rudolf Emil Kálmán’s

landmark paper (Kalman, 1960), deals with a particular case where the physical system can be

1



modelled as a discrete-time linear dynamical system perturbed by a Gaussian noise, the observa-

tions represent linear combinations of the system state variables, and the physical measurements

are affected by a Gaussian noise. It happens that these assumptions are not overly restrictive,

and many real-world physical systems can be modelled and estimated using the Kalman filter,

or one of its variants, with sufficient accuracy.

From the computational perspective, the Kalman filter is a recursive algorithm that repeats

two steps: the prediction and the update. The prediction step propagates the current state

estimate to the next discrete time step using a process model, while potentially increasing the

uncertainty of the estimate to compensate for the effects of the process noise. The update

step assimilates a measurement, affected by the observation noise, in order to refine the state

estimate, potentially reducing its uncertainty. The relation between the state estimate and

the measurement is given by the observation model, a function that computes an expected

measurement given the current state estimate. In fact, in the Kalman filter the updated state

estimate is computed simply as a weighted average of the observation and the previous state

estimate, with weights corresponding to the covariance of their errors. This weight factor is

commonly referred to as the Kalman gain. The simplicity and efficiency of the algorithm, and

the fact that it converges even if the system parameters are not precise, were the key factors why

the Kalman filter has gained wide popularity and has been applied in all areas of technology,

ranging from navigation of spacecraft to analysis of financial time series (Simon, 2006).

The traditional definition of the Kalman filter assumes that both the process noise and the

observation noise are white and independent, implying that, at any time, the errors associated

with the predicted state estimate and the observation are statistically independent, and there-

fore, uncorrelated. However, various types of correlation in the noises occur in many practical

applications. For example, in radar tracking, an effect known as target scintillation causes the

measurement error to have a finite bandwidth, and hence appear as a time-correlated sequence

(Skolnik, 2008). Consequently, the error in the current state estimate then becomes correlated

with the current measurement error. If such correlation is ignored, the filter may provide over-

confident state estimates and diverge, which can lead to serious consequences in the context of

safety-critical systems.

This thesis deals with the general problem of Kalman filtering in the presence of a correlation

between the errors associated with the state estimate and the observation. Such a correlation

can be caused by various factors, for example, by a time-correlated observation noise as de-

scribed above, or simply by a correlation between the process noise and the observation noise.
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Furthermore, the solution to the problem depends on the interpretation of the correlation. In

particular, the situation, where the correlation is caused by the presence of common past infor-

mation shared between the state estimate and the observation, requires a different treatment

than the situation where it is caused by correlation in the noises. This common past information

problem is often encountered in distributed sensor networks, where the nodes estimate the state

of some local or global physical system, while communicating the estimates with each other. For

example, consider node A that sent its state estimate to node B, which considered this estimate

as an observation and assimilated it into its own local state estimate. Now, if node B sends its

estimate back to node A, this estimate can no longer be considered as an independent obser-

vation, as it depends on A’s local state estimate - their errors are correlated. In the literature,

this problem is also referred to, less poetically, as data incest.

A number of approaches have been proposed to address the problem of linear state estimation

with common past information. In the context of distributed sensor networks, methods such as

the Decentralised Kalman filter (Durrant-Whyte et al., 1990), Channel filters (Grime et al., 1992)

and Kalman Consensus algorithms (Olfati-Saber, 2009) address specific instances of the problem

given various assumptions on the network topology and communication patterns. However, these

methods have either overly restrictive assumptions on the network topology or they provide

no guarantees on the consistency of their estimates. Moreover, these methods are specific to

sensor networks, and they offer no generalisation of the Kalman filter update rule that would

estimate the state in the presence of common past information. One such method, the Covariance

Intersection algorithm (Julier and Uhlmann, 1997a), assumes a correlation between the errors

associated with the state estimate and the observation is present but unknown, and hence

provides only a conservative suboptimal update rule. On the other hand, the existing extensions

of the Kalman filter that enable it to operate with various types of correlation in the process and

observation noises, such as the Generalised Kalman filter, state augmentation, or measurement

differencing (Simon, 2006), are not suitable to the problem of common past information.

1.1 Background

Although there is no formal definition, it is commonly understood that the term Monte Carlo

method refers to any algorithm whose results depend on repeated random sampling. The ori-

gin of the Monte Carlo method dates back to 1946, when Stanis law Ulam considered what is

the probability of winning a game of Canfield solitaire (Eckhardt, 1987). While deterministic
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computation of this probability turned out to be difficult, Ulam speculated that if the game is

played many times with randomly shuffled cards, one could estimate the probability simply by

counting outcomes of particular games. This idea only became practical thanks to the recent

advent of automatic computing machines - computers. Subsequently, Ulam developed the idea

together with John von Neumann, and applied it to the analysis of neutron chain reactions in

fission devices as part of the Manhattan project. A secret project required a code name, so von

Neumann chose one after the Monte Carlo Casino in Monaco. Since that time, the Monte Carlo

method has become an invaluable tool to many practical problems in all areas of science.

Due to its relative computational expense, for several decades since its discovery, the Monte

Carlo method remained in the domain of off-line computations performed on contemporary

super-computers. Nowadays, the situation is different as computers with sufficient performance

are widely available, and Monte Carlo methods are routinely being applied in real-time systems,

such as robots. For example, the particle filter (Doucet and Johansen, 2009), a popular non-

linear non-Gaussian estimator that represents a state estimate using a set of random samples,

is used for global localisation by real-world self-driving cars (Thrun and Urmson, 2011).

The Monte Carlo method also found its use in the context of linear state estimation, because

it was found to resolve two important limitations of the Kalman filter. Firstly, the Kalman

filter assumes that both the underlying system dynamics and the observation model are linear.

Although the Extended Kalman filter (EKF) and especially the Unscented Kalman filter (UKF)

(Julier and Uhlmann, 1997b), can alleviate the problem in many practical applications, both

of these methods have a theoretical limit that prevents them from supporting any general non-

linear models with arbitrary accuracy. Secondly, the computational complexity of the Kalman

filter, as well as the EKF and UKF, scales no better than quadratically with the number of

state-space dimensions (Wan and Van Der Merwe, 2000), which makes these filters inapplicable

to problems with a large number of state-space dimensions, such as weather forecasting.

The limitations of the Kalman filter resulted in the development of the Ensemble Kalman

filter (EnKF) - a Monte Carlo variant of the Kalman filter originally proposed in (Evensen,

1994). In the EnKF, the current state estimate is represented by a set of random Monte Carlo

samples, organised in a structure known as the ensemble. Given a sufficient number of samples

(ensemble members), the probability distribution of the estimate can be represented with an

arbitrary accuracy, and it can be propagated through an arbitrary dynamic model. Similarly,

observations are also represented using a set of random samples, thus enabling an accurate

representation of potentially non-Gaussian probability distributions of the measurement noise.
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Although, from a theoretical perspective, the basic Kalman filter assumption on the Gaussian

nature of all the involved probability distributions has not been lifted, the EnKF is routinely

being applied to highly non-linear non-Gaussian estimation problems, while providing estimates

with potentially a higher accuracy than both the EKF and UKF. Additionally, both the space

and time complexity of the EnKF scale linearly with the number of state-space dimensions.

Due to these properties, the EnKF became a de facto standard tool for data assimilation in the

Earth sciences, where the modelled systems are often non-linear and high dimensional (Evensen,

2009).

1.2 Motivation

The problem of linear state estimation in the presence of a correlation between the errors associ-

ated with the predicted state estimate and the observation is an important one, as it appears in

many practical problems in technology. The known approaches to the problem are based around

two principal interpretations of the origin of the correlation: correlated noises and common past

information. Unfortunately, the existing extensions of the Kalman filter that address correlated

noises are not applicable to the common past information problem, while methods addressing the

common past information problem are either not general enough, or provide overly pessimistic

or inconsistent estate estimates.

In particular, there is no generalisation of the Kalman filter that provides optimal state

estimates in the presence of common past information between the state estimate and the ob-

servation. Clearly, in order to provide such estimates, the exact magnitude of the correlation

between the associated errors needs to be known to the filter, which is, however, difficult to

compute analytically in all but trivial systems. Therefore, no such generalisation of the Kalman

filter has ever been developed, and only methods making special provisions to keep the track

of the correlation in specific scenarios, or conservative methods ignoring the magnitude of the

correlation altogether, are available. Treating the problem of common past information in the

context of a single local filter would have important advantages - the algorithm is likely to be

computationally efficient and simple to implement. These two properties proved over and over

to be an important factor behind a successful adoption of many estimation algorithms, including

the Kalman filter itself.

While attracting very little attention outside of the Earth sciences community, the EnKF

possesses several unique features. From the perspective of this thesis, the most important feature
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is the representation of state estimates and observations using ordered sets of random samples,

instead of the conventional mean vectors and covariance matrices. With such a representation,

it is possible to estimate the cross-covariance between errors associated with a state estimate

and an observation, with an accuracy determined only by the number of samples. This opens

the possibility to create a generalisation of the EnKF, which would operate in the presence of

a correlation between the errors associated with the state estimate and observation. There-

fore, this thesis will derive two new generalisations of the EnKF: the Common Past-Invariant

Ensemble Kalman filter (CPI-EnKF) and the Augmented EnKF. Both of these filters provide

consistent state estimates in the presence of correlation, regardless whether is caused by corre-

lated noises or common past information. These two generalisations of the EnKF represent the

main contribution of the thesis.

Both the CPI-EnKF and the Augmented EnKF filters are general methods that can be

applied to a range of problems, even problems that might not appear to fall into the categories

of estimation with common past information. Both filters retain all the important features of the

EnKF, such as support for non-linear process and observation models, and runtime complexity

linear in the number of state-space dimensions. Moreover, they both can also be applied to

estimation problems with correlated noises; although the state estimates are suboptimal in

this case, the computational benefits, stemming from the Monte Carlo nature of the filters,

might advocate their application in certain scenarios. This thesis demonstrates the application

of the new filters to three very distinct problems in the larger field of robotic localisation:

cooperative vehicle localisation, simultaneous localisation and mapping and global satellite-

based positioning. This work also challenges the status quo and demonstrates that the EnKF

is a practical approach applicable to real-time estimation problems, in robotics and elsewhere.

1.3 Approach

In order to illustrate the correlated estimation problems outlined by this thesis, demonstrate

the limitations of existing methods and thus motivate the development of the new EnKF-based

filters, the thesis provides a detailed review of the state of the art in all related areas. The first

part of the review, presented in Chapter 2, provides a formal definition of the Kalman filter, as

well as all of its important variants: the Extended Kalman filter (EKF), the Information Filter,

the Unscented Kalman filter (UKF) and the Ensemble Kalman filter (EnKF). Additionally, the

chapter reviews the particle filter, a popular non-linear non-Gaussian estimator which is also
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relevant to this thesis. The main focus lies on practical computational properties of the filters,

such as their asymptotic space and time complexity, and support of non-linear models. Also,

this chapter introduces a formalism which will be used in the rest of the thesis.

The second part of the state of the art review, presented in Chapter 3, deals with exist-

ing extensions of the Kalman filter that enable it to provide optimal state estimates even in

the presence of various well-modelled types of correlations in the noises, specifically: a corre-

lation between the process and observation noises, a sequentially correlated process noise, and

a sequentially correlated observation noise. The case of a correlation between the process and

observation noises is addressed by a method known as the Generalised Kalman filter, which de-

fines a generalised Kalman filter update rule to account for the correlation. One the other, the

cases of sequential correlation in the process or observation noise can be treated by an algebraic

reordering of the conventional Kalman filter equations, leading to the approaches known as state

augmentation and, in the case of sequentially correlated observation noise, measurement differ-

encing. This chapter offers the most comprehensive review of all these methods in one place, as

their description is somewhat scattered in the literature.

The third and final part of the state of the art review, presented in Chapter 4, deals with

linear estimation problems affected by common past information, which are characteristic of

distributed sensor networks. The review begins with a description of the most naive applicable

methods - the centralised Kalman filter and the Decentralised Kalman filter, and follows with

a detailed analysis of the origin of the common past information problem. Finally, the more

involved methods addressing this problem are discussed, such as Channel filters, Kalman Con-

sensus algorithms, and the Covariance Intersection, with a focus on their limitations that are to

be addressed by the new generalisations of the EnKF developed in this thesis. Similarly to the

case of correlated noises, the goal of the chapter is to provide the most comprehensive review of

this area to date.

The main contribution of this thesis - the generalisations of the EnKF to address correlated

estimation problems - is developed in Chapter 5. This is done in two steps. First, an extension to

the prediction step of the EnKF is provided, which can accommodate for any type of correlation

in the process noise, while avoiding the increased computational cost associated with state

augmentation. Second, three alternative generalisations of the EnKF update rule are proposed:

the Generalised EnKF, which is based on the Generalised Kalman filter, the Common Past-

Invariant Ensemble Kalman filter (CPI-EnKF), which assumes that the correlation is caused

exclusively by the presence of a shared error term, and the Augmented Ensemble Kalman filter
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(Augmented EnKF), which is derived using a variant of the state augmentation procedure. All

the update rules share a common goal to provide state estimates in the presence of correlation

between the errors associated with the predicted state estimate and the observation, but each

of the rules is based on a different presumptions.

Chapter 6 provides a comprehensive numerical evaluation of all the new methods developed

in the previous chapter using canonical instances of all the correlated estimation problems pre-

sented in the state of the art review. The goal of the evaluation is to assess the applicability

of the new methods to these problems, and to measure the accuracy and consistency of their

estimates, also in comparison with the state-of-the-art methods. One of the results of the eval-

uation is that the Generalised EnKF provides different estimates than the Generalised Kalman

filter, which effectively serves as a counterexample to the Generalised EnKF. On the other hand,

the evaluation shows that both the CPI-EnKF and the Augmented EnKF provide reasonable

and consistent state estimates in most of the estimation problems affected by correlated noises,

while in the case of problems affected by common past information they even provide more

accurate estimates than the only comparable state-of-the-art method - the Covariance Intersec-

tion algorithm. Additionally, this chapter provides an analysis of the accuracy of all the EnKF

variants depending on the number of Monte Carlo samples, which is an important consideration

for practical applications.

The new generalisations of the EnKF for correlated estimation problems, in particular the

CPI-EnKF and the Augmented EnKF filters, were also evaluated in three distinct real-world

applications in the larger field of robotic localisation. The goal of this evaluation, which is

presented in Chapter 7, is to demonstrate a practical utility of the methods developed in this

thesis.

The first practical problem considered is cooperative vehicle localisation, in which a group

of vehicles is driving in an outdoor environment, while each of them is estimating its position

using a global positioning system (GPS) and odometry. Additionally, the vehicles can improve

their estimates by observing positions of other vehicles using a proximity sensor, such as a radar,

and mutual communication, which is especially helpful to those vehicles operating in areas with

no GPS coverage. In such a distributed fusion system, each vehicle needs to account for the

fact that information received from other vehicles might originate in part from the vehicle itself,

resulting in a correlation between the state estimate and observation errors - the common past

information problem.

The second problem addressed in the evaluation is the well-known problem of simultaneous
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localisation and mapping (SLAM), in which a mobile robot navigates in a previously unknown

environment, while simultaneously building a map of that environment using its sensors. Al-

though, after 20 years of intensive research of SLAM, a number of powerful algorithms have been

proposed and, at least from a theoretical perspective, SLAM is considered as a solved problem

(Durrant-Whyte and Bailey, 2006), there are some specific weaknesses of the state-of-the-art

methods, such as computational inefficiency for life-long missions. The CPI-EnKF can be used

in order to maintain an efficient representation of uncertain positions of spatial features in a

robot’s environment. Using the proposed approach, the spatial features can be queried and

removed in constant time, and the representation can be updated in time linear in the number

of spatial features. Therefore, such a representation can serve in life-long missions.

The third evaluation scenario considers a mobile robot that navigates through an outdoor

environment and estimates its global position using observations from visual odometry and a

stand-alone GPS receiver, whose readings are affected by a sequentially correlated noise process.

This section proposes a novel model of the GPS error, which considers both the sequential cor-

relation in the measurements error, as well as the horizontal dilution of precision reported by

the GPS receiver. Although such an error model could not be supported using conventional ap-

proaches because of an unacceptable performance overhead, it can be supported in an estimation

system built using the CPI-EnKF.

1.4 Contribution

This thesis contributes to the state of the art in the areas of state estimation and robotics with

the following results:

• The new CPI-EnKF and Augmented EnKF filters derived in this thesis provide the only

universal update rules applicable in the presence of a correlation in errors associated with

the state estimate and the observation that provide better estimates than the Covariance

Intersection algorithm.

• This thesis presents the only estimation system that leverages the unique Monte Carlo

representation of the EnKF to address the problem of correlation.

• The state of the art review provides the most comprehensive analysis to date of linear state

estimation methods operating in the presence of correlated noises, as well as correlation

caused by common past information.
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• The thesis demonstrates using a counterexample that the update rule of the Generalised

Kalman filter is not applicable in the context of the EnKF, and thus the thesis establishes

that none of the variants of the Kalman filter applicable to the problem of correlated noises

is also applicable to the problem of common past information.

• The cooperative localisation system developed using the new EnKF-based estimation

framework represents one of the most flexible and scalable algorithms in this area published

to date.

• The stand-alone GPS navigation scenario presents a novel model of the GPS signal error,

which correctly models the sequential correlation in the measurements, as well as the

horizontal dilution of precision.

• In general, the practical applications presented in this thesis demonstrate that the EnKF

is an algorithm that has the merit in robotic applications, not only in the Earth sciences.
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Chapter 2

Linear State Estimation

This chapter reviews the state of the art in the area of a linear state estimation, in particular

using the most prominent algorithm, the Kalman filter, and several important variants of the

algorithm: the Information filter, the Extended Kalman filter (EKF), the Unscented Kalman

filter (UKF) and the Ensemble Kalman filter (EnKF). This is a necessary prerequisite for de-

scribing the main contribution of this thesis, the Common Past-Invariant Ensemble Kalman

filter (CPI-EnKF) and the Augmented EnKF, and for discussion of their features, in particu-

lar their computational complexity and treatment of non-linearities. Additionally, the chapter

reviews the particle filter, arguably the most widely used probabilistic filter for non-linear non-

Gaussian estimation problems, in order to illustrate its principal differences from the EnKF. In

this chapter, all the variants of the Kalman filter are defined with the traditional assumption of

white independent process and observation noises. The approaches that relax this assumption

are discussed in Chapters 3 and 4.

2.1 Linear Discrete-Time Dynamical System Model

The Kalman filter is the most widely used algorithm to estimate the state of a physical system

from a sequence of noisy sensor observations. The algorithm is based on a principal assumption

that the underlying physical system can be modelled as a linear discrete-time dynamical system,

perturbed with an additive Gaussian noise. The system is also assumed to satisfy the Markov

property, i.e. the future state of the system depends only upon the present state of the system.

An observation of the system represents a linear combination of the state variables, which is

also perturbed with an additive Gaussian noise.
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The true state of a physical system at a discrete time step t is represented using a column

vector xt ∈ Rn,

”which is the least amount of data one has to know about the past behavior of the

system in order to predict its future behavior.”

as characterised by Rudolf E. Kálmán in his landmark paper (Kalman, 1960). The evolution of

the system from a time step t − 1 to the following time step t is modelled using the following

recursive linear equation:

xt = Ft xt−1 + Bt ut + Gt wt (2.1)

where Ft ∈ Rn×n is a matrix representing the process model (also known as the state transition

model), Bt ∈ Rn×b is a matrix representing the control-input model applied to the control

vector ut ∈ Rb, and Gt ∈ Rn×g is a matrix representing the process noise model applied to the

process noise term wt ∈ Rg, which is a random vector drawn from a zero-mean (multivariate)

Gaussian distribution with a covariance Qt ∈ Rg×g. The function of matrices Ft, Bt and Gt

is best understood if one considers them as linear mappings on input vectors xt−1, ut and wt,

respectively.

The true state of the physical system is hidden and it can only be observed indirectly using

noisy sensor measurements. An observation zt ∈ Rm of the physical system at a time step t is

related to the true hidden system state xt using the following equation:

zt = Ht xt + vt (2.2)

where Ht ∈ Rm×n is a matrix representing the observation model, which is essentially a linear

mapping from the system state space to the observation space showing what an observation

should look like given a specific state vector, and vt ∈ Rm is the observation noise, which is a

random vector drawn from a Gaussian distribution with covariance Rt.

For simplicity of the notation, in the rest of this thesis, it will be assumed that the control

vector ut is always zero, and that the process model Ft, the observation model Ht, the process

noise covariance Qt and the observation noise covariance Rt are all constant over time. Hence

the time index will be dropped from the respective terms. Furthermore, it will be assumed that

the process noise term wt has dimension n and its model Gt is an identity matrix; although

this can cause a minor loss of generality in certain formulae, the reader will be referred to the

literature containing complete formulae wherever appropriate. All these assumptions lead to a

simplified definition of the underlying dynamical system model.
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Definition 2.1 (Linear discrete-time dynamical system model). At any time step t ∈ N, a

linear discrete-time dynamical system can be fully described by the following equations:

xt = F xt−1 + wt (2.3)

zt = H xt + vt (2.4)

where

xt ∈ Rn (true hidden system state at time t)

F ∈ Rn×n (process model)

wt ∼ N (0,Q) ∈ Rn (process noise from time t− 1 to t)

zt ∈ Rm (observation at time t)

H ∈ Rm×n (observation model)

vt ∼ N (0,R) ∈ Rm (observation noise at time t)

and the initial state vector x0 is a random vector drawn from a Gaussian distribution with

known parameters:

x0 ∼ N (x̂0,P0)

Note that N (µ, Σ) denotes a (multivariate) Gaussian distribution with a mean vector µ and

a covariance matrix Σ, of a suitable dimension. Typically, in the literature, the noise term in

the process model in Equation (2.3) is denoted wt−1 instead of wt (i.e. the time index is shifted

by minus one step). However, the notation adopted here better reflects the physical reality -

it is the noise term with index t that mostly affects the state estimate at time t. Also, such a

notation avoids the need for a special term w0, and makes many other definitions in the text

easier to understand and remember.

Both the process noise sequence {wt} and the observation noise sequence {vt} are assumed

to be independent Gaussian random processes, also referred to as white noise. Furthermore,

both the sequences are assumed to be independent of the initial state x0.

Definition 2.2 (White noise process). An n-dimensional random process {wt} is called white

noise if and only if:

(i) For every t ∈ N, the random vector wt ∈ Rn has zero mean and a finite covariance

Qt ∈ Rn×n, i.e.

E[wt] = 0 (2.5)

cov(wt) = Qt (2.6)
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(ii) The sequence {wt} is mutually independent, in the sense that any finite subset of its

vectors is statistically independent of any other finite subset from the sequence.

Note that the E[a] operator denotes the expected value (also called the mean) of a random

vector a, and cov(a,b) denotes a cross-covariance between random vectors a and b, defined as:

cov(a,b) = E
[
(a− E[a])(b− E[b])T

]
(2.7)

Instead of cov(a,a), a simplified syntax cov(a) is used. Definition 2.2 differs from some other

definitions of the white noise in the literature, which either only require the process to be se-

quentially uncorrelated, or assume a constant covariance over time. With the definition adopted

here, every white noise process is implied to be sequentially uncorrelated, while the assumption

of a constant covariance is not necessary in the context of the Kalman filter.

The assumptions on the properties of the process and observation noise are formalised in the

following definition, which is based on (Nieto and Guerrero, 1995).

Definition 2.3 (Independent process and observation noise assumption). Both the process

noise sequence {wt} and the observation noise sequence {vt}, as provided in Definition 2.1, are

assumed to have the following properties:

(i) Each of the sequences is white noise, such as that

cov(wi,wj) =

 Q i = j

0 i 6= j
(2.8)

cov(vi,vj) =

 R i = j

0 i 6= j
(2.9)

where Q ∈ Rn×n and R ∈ Rm×m.

(ii) The sequences are mutually independent, therefore

cov(wi,vj) = 0 (2.10)

(iii) Each of the sequences is independent of the initial state, therefore

cov(wi,x0) = 0 (2.11)

cov(vi,x0) = 0 (2.12)

for any i, j ∈ N.
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From a theoretical perspective, the Kalman filter, which will be defined in the following

section, assumes that the physical system exactly matches the dynamical system model from

Definition 2.1 and that the noises are independent as in Definition 2.3. Although most real-

world physical systems do not fit such a model exactly, it turns out that the state of many such

systems can be estimated with a reasonable accuracy nevertheless. Random noise in physical

processes often appears to have a nearly-Gaussian distribution due to the effects described by

the fuzzy central limit theorem, and the effects of non-linearities in the system can be alleviated

using various extensions of the Kalman filter.

2.2 Kalman Filter

The Kalman filter, originally introduced in (Kalman, 1960), is a recursive algorithm that com-

putes an estimate of the state of a physical system from a sequence of noisy sensor observations.

The goal of the filter is to maintain an estimate of the system state at any time step t, rep-

resented using a vector x̂t ∈ Rn, and an estimate of the associated error, represented using a

covariance matrix Pt ∈ Rn×n, which is consistent with the true estimate’s error xt − x̂t, i.e.

Pt − cov(xt − x̂t) ≥ 0 (2.13)

where xt ∈ Rn denotes the true system state, and A ≥ 0 indicates that a matrix A is positive-

semidefinite. Such a notion of consistency fits the standard definition of consistency (Jazwinski,

2007). An estimate that does not satisfy Equation (2.13) is called an inconsistent or overconfident

estimate. On the other hand, if the estimate is consistent but Pt−cov(xt− x̂t) 6= 0, the estimate

is called overpessimistic, as it assumes a higher uncertainty than necessary.

The Kalman filter operates recursively in two logical steps: the prediction step and the

update step. In the prediction step, the state estimate x̂t−1 and associated error covariance

Pt−1 at a time step t − 1 is used to predict the a priori state estimate x̂−t and the associated

error covariance P−t at the following time step t. The prediction step effectively transforms the

state estimate using the process model, while increasing the associated uncertainty to account

for the effects of the process noise based on the model of the system. Note that x̂t−1 and Pt−1

represent all the information necessary to compute x̂−t and P−t , due to the Markov property of

the dynamical system. In the update step, the a priori state estimate x̂−t and covariance P−t is

refined using a physical observation of the system zt at a time step t, in order to provide the a

posteriori estimate x̂t and covariance Pt, which will generally have a lower uncertainty than the
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Fig. 2.1: Prediction step of the Kalman filter.

a priori estimate. Illustrations of the prediction step and the update step of the Kalman filter

in a dynamical system with n = 2 and m = 1 are provided in Figures 2.1 and 2.2, respectively.

Definition 2.4 (Kalman filter). Suppose a physical system is modelled as a linear discrete-time

dynamical system from Definition 2.1, with an independent process and observation noise as

in Definition 2.3. The estimate x̂t ∈ Rn of the system state at a time t ∈ N, given all the

observations z1, . . . , zt up to time t, and the estimate’s error covariance matrix Pt ∈ Rn×n, can

be computed recursively from the previous state estimate x̂t−1 ∈ Rn and the associated error

covariance Pt−1 ∈ Rn×n using the following equations:

(i) Prediction step

x̂−t = F x̂t−1 (a priori state estimate) (2.14)

P−t = F Pt−1 FT + Q (a priori estimate error covariance) (2.15)

(ii) Update step

x̂t = x̂−t + Kt

(
zt −H x̂−t

)
(a posteriori state estimate) (2.16)

Pt = P−t −Kt H P−t (a posteriori estimate error covariance) (2.17)

Kt = P−t HT
[
H P−t HT + R

]−1
(optimal Kalman gain factor) (2.18)

The initial state estimate x̂0 and the error covariance P0 are assumed to be equal to the param-

eters of the Gaussian probability distribution of the initial state, as described in Definition 2.1.

By convention and without a loss of generality, it is assumed that no observation is available at

time t = 0.

Note that the term H x̂−t computes the expected observation given the current state estimate.

Hence, the term zt −H x̂−t is often referred to as the innovation or the measurement residual,

whose covariance is estimated by the term HP−t HT + R.
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Fig. 2.2: Update step of the Kalman filter.

If all the assumptions of the Kalman filter are satisfied, all the probability distributions

involved are Gaussian and the dynamical system is modelled precisely, then the resulting state

estimate is guaranteed to have a minimum possible mean squared error with respect to the true

system state, and the estimate of the error covariance is exact, i.e.

Pt = cov(xt − x̂t) (2.19)

A formal proof of this statement and additional details can be found in numerous publications

on the Kalman filter, such as the original (Kalman, 1960) paper, or books such as (Gelb, 1974;

Simon, 2006; Grewal and Andrews, 2011; Brown and Hwang, 2012). A variant of the Kalman

filter based on the more general linear dynamical system model as in Equation (2.1) can be

found in (Maybeck, 1979). Note that the update equation is effectively a weighted average of

the state estimate and the observation, with the weight given by the Kalman gain factor Kt,

which depends on the covariances of the a priori estimate and the observation. The higher the

Kalman gain, the more information from the observation makes its way to the a posteriori state

estimate, and vice versa.

Due to the recursive nature of the Kalman filter algorithm, only the current observation,

state estimate and error covariance need to be preserved at any time; no other information is

necessary. This feature stems from the Markov property of the dynamical system, its linearity,

the Gaussian nature of the probability distributions involved, and the fact that a product and a

convolution of two Gaussian distributions is also a Gaussian distribution (Bromiley, 2003). As

such, the computational costs of the algorithm do not change over time, and hence it can be
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Time Space

Prediction step O(n3 ) O(n2 )

Update step O(n2m+ nm2 +m3 ) O(n2 + nm+m2 )

Table 2.1: Asymptotic computational complexity of the Kalman filter

applied in real-time estimation problems. The asymptotic computational complexity of a direct

implementation of the Kalman filter based on Definition 2.4 is provided in Table 2.1, where n

and m denote the number of dimensions of the state space and the observation, respectively.

Note that the most tedious operation - the prediction step with O(n3) time complexity - can

be performed more efficiently in problems where only a part of the state vector is altered by

the process model. For example, in simultaneous localisation and mapping (SLAM), the robot

movement only updates a small portion of the map, and hence the prediction step can be

implemented in O(n) time (Smith et al., 1990). Similarly, in certain estimation problems, it is

possible to exploit the structure of the state space in order to reduce the computational cost of

the update step, in particular to eliminate the O(n2) term. For example, in SLAM it is possible

to decompose the state estimate’s vector and covariance matrix (representing a global map) into

several smaller components (local sub-maps) and maintain these separately. The component

estimates only need to be combined sporadically and thus the quadratic computation cost can

be amortised between more steps of the filter (Paz et al., 2007; Huang et al., 2008). However,

these approaches are beyond the scope of this thesis, as it deals with general estimation problems.

The Kalman filter’s favourable computational properties and general simplicity of implemen-

tation, its versatility to various problems and observation schedules, and the fact that it often

provides reasonable state estimates even if the model of the dynamical system is not precise, are

arguably the main reasons why it reached such popularity and widespread adoption in technol-

ogy over the last 50 years. The applications of the Kalman filter span areas such as guidance,

navigation and control, robotics, target tracking, or time series analysis in signal processing and

econometrics. As Harold W. Sorenson famously put it (Sorenson, 1985),

”the Kalman filter represents the most widely applied and demonstrably useful result

to emerge from the state variable approach of modern control theory.”

From the perspective of statistics, the Kalman filter can be viewed as a special case of

a recursive Bayesian inference algorithm. Specifically, the update step of the Kalman filter
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represents an application of Bayes’ rule, in which the probability estimate of a hypothesis is

updated as more evidence becomes available, formally:

P (Hypothesis |Evidence) ∝ P (Evidence |Hypothesis)P (Hypothesis) (2.20)

In the context of the linear discrete-time dynamical system model from Definition 2.1, the

state estimate at a time t given all the observations z1, . . . , zt up to time t can be denoted as

P (xt | z1, . . . , zt) and expressed using Bayes’ rule as:

P (xt | z1, . . . , zt) ∝ P (zt |xt, z1, . . . , zt−1)P (xt | z1, . . . , zt−1) (2.21)

This expression can be rewritten due to Markov assumption to:

P (xt | z1, . . . , zt) ∝ P (zt |xt) P (xt | z1, . . . , zt−1) (2.22)

and the application of the law of total probability then leads to the following expression:

P (xt | z1, . . . , zt) ∝ P (zt |xt)
∫
xt−1

P (xt |xt−1, z1, . . . , zt−1) P (xt−1 | z1, . . . , zt−1) dxt−1 (2.23)

Finally, this expression can be rewritten due to Markov property to the recursive Bayesian

inference formulation:

P (xt | z1, . . . , zt) ∝ P (zt |xt)
∫
xt−1

P (xt |xt−1) P (xt−1 | z1, . . . , zt−1) dxt−1 (2.24)

Note that the Kalman filter is just a special case of this recursive Bayesian inference algorithm,

in which the probability distributions are all Gaussian and the dynamical system models linear.

The prediction step of the Kalman filter effectively facilitates the integration in Equation (2.24)

while the update step facilitates the multiplication of the integral by the term from its left side.

A detailed analysis of the Kalman filter in the context of Bayesian inference can be found in

(Meinhold and Singpurwalla, 1983).

The Kalman filter, in its simple form described in this section, has three key limitations.

First, the process model and the observation model are assumed linear not only from a theoretical

perspective, but also from the perspective of a practical implementation; both the prediction

and update step require the models to be expressed as matrices F and H, respectively. Second,

the Kalman filter does not scale and it cannot be applied to problems with a large number of

state-space or observation dimensions. Both these limitations are addressed by other variants of

the Kalman filter, which will be reviewed in the following sections. Third, the simple Kalman

filter makes some strong assumptions on the process and observation noises, in particular that

they are white and independent. Relaxation of these noise assumptions represents the core

problem addressed in this thesis.
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2.3 Information Filter

The Information filter, originally proposed in (Fraser, 1967), is an algebraic re-formulation of

the Kalman filter, in which the uncertainty associated with a state estimate is not represented

using a covariance matrix, but rather using its inverse - the so-called information matrix. The

Information filter is based on exactly the same system model and assumptions as the Kalman

filter, and they both provide algebraically equivalent estimates. From the perspective of this

thesis, the Information filter is important because it is a building block of several decentralised

data fusion approaches, which will be described in Chapter 4.

Formally, in the Information filter, a state estimate x̂t ∈ Rn and an associated error covari-

ance Pt ∈ Rn×n are represented using an information vector ŷt ∈ Rn and an information matrix

Yt ∈ Rn×n, respectively, defined as:

ŷt = P−1
t x̂t (2.25)

Yt = P−1
t (2.26)

Similarly to the Kalman filter, the Information filter defines recursive equations to compute the

information vector and matrix, and these equations are also logically divided into the prediction

and the update step.

Definition 2.5 (Information filter). Suppose a physical system is modelled as a linear discrete-

time dynamical system from Definition 2.1, with independent zero-mean process and observation

noises as in Definition 2.3. The estimate of the system state at a time t ∈ N, given all the

observations z1, . . . , zt up to time t, represented using an information vector ŷt ∈ Rn and an

information matrix Yt ∈ Rn×n, can be computed recursively from the previous state estimate,

represented by information vector ŷt−1 ∈ Rn and information matrix Yt−1 ∈ Rn×n, using the

following equations:

(i) Prediction step

ŷ−t = (I −Ct) (F−1)T ŷt−1 (a priori information vector) (2.27)

Y−t = (I−Ct) Mt (I−Ct)
T + Ct Q

−1 CT
t (a priori information matrix) (2.28)

Ct = Mt

[
Mt + Q−1

]−1
(2.29)

Mt = (F−1)T Yt−1 F−1 (2.30)
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(ii) Update step

ŷt = ŷ−t + HT R−1 zt (a posteriori information vector) (2.31)

Yt = Y−t + HT R−1 H (a posteriori information matrix) (2.32)

The remarks from Definition 2.4 on the properties of the initial state estimate apply here too.

Note that I above denotes identity matrix of an appropriate dimension.

The equations of the Information filter described above can be derived directly from the

equations of the Kalman filter, using the matrix inversion lemma or by other means, as shown

in (Brown and Hwang, 2012) or (Anderson and Moore, 1979). The most remarkable feature of

the Information filter is the simplicity of the update step, which enables the filter to assimilate

an observation into the state estimate by addition. If there are multiple observations of the

physical system at a time, they all can be added in the same way. Formally, suppose that at

a time step t there are k independent observations zi|t ∈ Rmi for i = 1, . . . , k, each of them

modelled as:

zi|t = Hi xt + vi|t (2.33)

where Hi ∈ Rmi×n denotes an observation model, and vi|t ∈ Rmi denotes an observation noise

term with a covariance Ri = cov(vi|t) ∈ Rmi×mi . The update step of the Information filter then

has the following form:

ŷt = ŷ−t +
k∑
i=1

HT
i R−1

i zi|t (2.34)

Yt = Y−t +
k∑
i=1

HT
i R−1

i Hi (2.35)

Note that with the traditional form of the Kalman filter update equations from Definition 2.4,

such a summation is generally not possible (Durrant-Whyte et al., 2001), i.e.

x̂t 6= x̂−t +
k∑
i=1

Ki|t
(
zi|t − Hi x̂

−
t

)
(2.36)

where Ki|t denotes the Kalman gain for the respective observations.

The simplicity of the update step in the Information filter comes at the cost of higher com-

plexity of the prediction step, which, in fact, is a dual to the update step of the traditional

Kalman filter. Therefore, many practical applications employ the prediction step of the tradi-

tional Kalman filter and the update step of the Information filter, and they convert between
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Time Space

Prediction step O(n3 ) O(n2 )

Update step O(n2m+ nm2 ) O(n2 + nm+m2 )

Table 2.2: Asymptotic computational complexity of the Information filter

(x̂t,Pt) and (ŷt,Yt), and vice versa, as necessary. Such prediction step equations then look as

follows:

ŷ−t = Y−t F Y−1
t−1 ŷt−1 (2.37)

Y−t =
[
F Y−1

t−1 FT + Q
]−1

(2.38)

Another advantage of the Information filter compared to the Kalman filter is the fact that the

information matrix can, unlike the covariance matrix, represent an infinite uncertainty, which

is especially useful for the initial state estimate. Therefore, in some applications, the first step

of the Kalman filter is performed in its information form to guarantee formal correctness of the

estimates (Rogers, 1987).

The asymptotic computational complexity of a direct implementation of the Information

filter equations from Definition 2.5, assuming that F−1, Q−1 and R−1 are time-invariant and

hence pre-computed, is summarised in Table 2.2. Although the Information filter is asymptoticly

faster than the Kalman filter by avoiding the O(m3) computation in the update step, the addi-

tional conversion of an n-dimensional information vector and matrix to a standard vector and

covariance matrix, which is often necessary for a practical interpretation of the filter’s estimates,

has an additional asymptotic time complexity O(n3).

2.4 Extended Kalman Filter

The Extended Kalman filter (EKF) is a straightforward generalisation of the Kalman filter that

allows it to operate with non-linear process and observation models. The models no longer

need to be represented as a matrix, instead they can be represented as a general differentiable

function. The EKF was developed by NASA soon after the introduction of the Kalman filter,

when analysing possibilities of its application in space flight, in particular for navigation of

vehicles during lunar missions (Smith et al., 1962; McElhoe, 1966). A formal definition of the

underlying non-linear dynamical system model, and the EKF, is provided as follows:
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Definition 2.6 (Non-linear discrete-time dynamical system model). At any time step t ∈ N, a

non-linear discrete-time dynamical system is fully described by the following equations:

xt = f( xt−1 ) + wt (2.39)

zt = h( xt ) + vt (2.40)

where f : Rn → Rn is the process model, h : Rn → Rm is the observation model, and the other

terms are as in Definition 2.1.

Definition 2.7 (Extended Kalman filter). Suppose a physical system is modelled as a non-

linear discrete-time dynamical system from Definition 2.6, with independent zero-mean process

and observation noise as in Definition 2.3. The estimate x̂t ∈ Rn of the system state at a time

t ∈ N, given all the observations z1, . . . , zt up to time t, and the covariance matrix Pt ∈ Rn×n

of the estimate’s error, can be computed recursively from the previous state estimate x̂t−1 ∈ Rn

and the associated error covariance Pt−1 ∈ Rn×n using the following equations:

(i) Prediction step

x̂−t = f( x̂t−1) (a priori state estimate) (2.41)

P−t = Ft Pt−1F T
t + Q (a priori estimate error covariance) (2.42)

Ft = Jf ( x̂t−1 ) (Jacobian of f evaluated at x̂t−1) (2.43)

(ii) Update step

x̂t = x̂−t + Kt

(
zt − h( x̂−t )

)
(a posteriori state estimate) (2.44)

Pt = P−t −KtHt P−t (a posteriori estimate error covariance) (2.45)

Kt = P−t HT
t

[
Ht P−t HT

t + R
]−1

(Kalman gain factor) (2.46)

Ht = Jh( x̂−t ) (Jacobian of h evaluated at x̂−t ) (2.47)

The remarks from Definition 2.4 on the properties of the initial state estimate x̂0 and the

covariance P0 apply here too.

Recall that the Jacobian of a function g : Rn → Rm, which is given by m real-valued com-

ponent functions g1(x1, . . . , xn), . . . , gm(x1, . . . , xn), is a function Jg : Rn → Rm×n defined as:

Jg =


∂g1

∂x1
· · · ∂g1

∂xn
...

. . .
...

∂gm
∂x1

· · · ∂gm
∂xn

 (2.48)
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Fig. 2.3: Linearisation of the prediction model in the Extended Kalman filter.

The n × m components of the Jacobian correspond to all n first-order partial derivatives of

all m component functions of g. When the Jacobian function Jg is evaluated at some point

(x1, . . . , xn), the resulting matrix represents the slope of the tangent line in each of the n axes to

each of the m component functions. Such a matrix defines a linear mapping, which effectively

approximates the function g around the point (x1, . . . , xn). An example of such a linearisation of

a non-linear prediction model in a one-dimensional dynamical system is depicted in Figure 2.3.

Note that if both the process model f and the observation model h are linear mappings,

i.e. they have the property that:

f(a1x1 + · · ·+ akxk) = a1f(x1) + · · ·+ akf(xk) (2.49)

h(a1x1 + · · ·+ akxk) = a1h(x1) + · · ·+ akh(xk) (2.50)

for any vectors x1, . . . ,xk ∈ Rn and scalars a1, . . . , ak ∈ R, then the EKF reduces to the simple

Kalman filter because the Jacobians Ft and Ht from Definition 2.7 will be constant over time

and equal to the matrices F and H from Definition 2.4, which furthermore correspond to the

matrices defining the linear mappings f and h, respectively. Therefore, in the case of a linear

process and observation model, the EKF also computes minimum mean squared error state

estimates and consistent covariances, given the same assumptions as the simple Kalman filter.

However, the EKF is not an optimal estimator in general. With non-linear process or ob-

servation models, the Jacobians merely provide a linear approximation of these models, and

therefore the estimates are also only approximate. The errors stemming from such a lineari-

sation may cause the filter to provide overconfident estimates and to diverge. Another issue

with the EKF is the need to evaluate the Jacobians of the process and observation models,

which might be a difficult task per se. Partial derivatives of certain functions do not have a
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closed form, and therefore numerical approximations need to be used, which further increases

the computational cost. The EKF is well characterised in (Julier and Uhlmann, 2004):

”The extended Kalman filter (EKF) is probably the most widely used estimation

algorithm for nonlinear systems. However, more than 35 years of experience in the

estimation community has shown that [it] is difficult to implement, difficult to tune,

and only reliable for systems that are almost linear on the time scale of the updates.”

The problems of the overconfidence and divergence in the EKF can sometimes be allevi-

ated by introducing an additional stabilising noise in the system model, but such a measure is

suboptimal as it effectively discards potentially useful information and slows the convergence

rate. Alternatively, the estimation error can be reduced using iteration, leading to the Iterated

Extended Kalman filter (Jazwinski, 2007), which, however, further increases the computational

cost of the filter. The limitations of the EKF motivated the development of other variants of

the Kalman filter, which are described in the following sections.

Despite all its problems, the EKF has been applied to a wide range of non-linear estimation

problems, for example, in navigation and global positioning systems (Kaplan and Hegarty, 2006).

Assuming the process model f and the observation model h can be evaluated in a constant time,

and their Jacobians are available analytically, the asymptotic computational complexity of the

EKF is equivalent to that of the simple Kalman filter, as described in Table 2.1.

2.5 Unscented Kalman Filter

The Unscented Kalman filter (UKF), introduced in (Julier and Uhlmann, 1996, 1997b), is a

variant of the Kalman filter that can operate with non-linear process and observation models.

However, compared to the EKF, the UKF does not require the Jacobians of the models, and

it provides more accurate state and covariance estimates, in particular in the case of highly

non-linear models (Julier and Uhlmann, 2004).

The UKF is based on the unscented transformation (UT), a general method that can prop-

agate the mean and the covariance of a probability distribution through a non-linear function.

The main idea behind the UT is that it is easier to approximate a probability distribution, than

to approximate a non-linear function. The probability distribution is approximated using a set

of deterministically selected weighted samples, the so-called sigma points. The sigma points are

defined in such a way that their weighted average and weighted sample covariance are equal to
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Fig. 2.4: Unscented transformation.

the mean and the covariance of the original distribution, respectively. If the sigma points are

propagated through a non-linear function, they can be used to recover the mean and the covari-

ance of the propagated probability distribution. An example of an unscented transformation in

two-dimensional spaces is depicted in Figure 2.4.

Definition 2.8 (Unscented transformation). Let x ∈ Rn be a random vector that has a prob-

ability distribution with mean x̂ ∈ Rn and covariance Pxx ∈ Rn×n. If the random vector

x is transformed using a function g : Rn → Rm, then the mean ŷ ∈ Rm and the covariance

Pyy ∈ Rm×m of the probability distribution of the transformed random vector y = g(x) can be

approximated using the following steps:

(i) Compute the sigma points X0, . . . ,X2n ∈ Rn as:

X0 = x̂

Xi = x̂ +
(√

(n+ κ)Pxx

)
i

Xn+i = x̂ −
(√

(n+ κ)Pxx

)
i

(2.51)

and the corresponding weight coefficients W0, . . . ,W2n ∈ R as:

W0 =
κ

n+ κ

Wi =
1

2(n+ κ)

Wn+i =
1

2(n+ κ)

(2.52)

for i = 1, . . . , n, where κ ∈ R is a free parameter, and
(√

A
)
i

denotes the ith row of the

square root of a matrix A ∈ Rn×n, i.e. a matrix B ∈ Rn×n such as BBT = A.
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(ii) Compute the transformed sigma points Y0, . . . ,Y2n ∈ Rm as:

Yi = g(Xi ) (2.53)

for i = 0, . . . , 2n.

(iii) The mean ŷ and the covariance Pyy of the probability distribution of the transformed

random vector y = g(x) is approximated as:

ŷ ≈
2n∑
i=0

Wi Yi (2.54)

Pyy ≈
2n∑
i=0

Wi (Yi − ŷ)(Yi − ŷ)T (2.55)

Note that the sigma points X0, . . . ,X2n and weights W0, . . . ,W2n are defined in such a way that

their weighted average and weighted sample covariance equal the original mean and covariance

of x, respectively, i.e.

x̂ =
2n∑
i=0

WiXi (2.56)

Pxx =

2n∑
i=0

Wi (Xi − x̂)(Xi − x̂)T (2.57)

and the weights have a property that
∑2n

i=0Wi = 1. Additionally, the cross-covariance Pxy =

cov(x,y) ∈ Rn×m between random vectors x and y can be approximated as:

Pxy ≈
2n∑
i=0

Wi (Xi − x̂)(Yi − ŷ)T (2.58)

In the following text, such an unscented transformation will be denoted using the following

notation:

( x̂, Pxx )
g−−→ ( ŷ, Pyy ) (2.59)

The value of the parameter κ in Definition 2.8 affects how well particular types of distri-

butions can be approximated, in particular their third and higher moments (Van Der Merwe

et al., 2000). Note that alternative sigma point weighting schemes have been proposed in the

literature, which might also facilitate more accurate approximations in certain situations. Rec-

ommendations on the parameter and weighting scheme selection, as well as other properties of

the unscented transformation, are discussed in detail in (Wan and Van Der Merwe, 2000; Julier

and Uhlmann, 2004).
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The unscented transformation in Definition 2.8 has a relatively high asymptotic time com-

plexity O(n3+nm2), due to the costly computation of the square root of the covariance matrix in

Equation (2.51), typically performed using the Cholesky decomposition (Press et al., 2007), and

due to the computation of the sample covariance in Equation (2.55). The optional computation

of the cross-covariance in Equation (2.58) has an additional time complexity of O(n2m).

The Kalman filter performs a potentially non-linear transformation of a random vector on

two different occasions: when computing the a priori state estimate using the process model

in the prediction step, and when computing the expected observation from the a priori state

estimate using the observation model in the update step. If both these transformations are

replaced by the unscented transformation, the resulting filter is called the Unscented Kalman

filter (UKF). However, in order to apply the unscented transformation, the filter equations need

to be reformulated in such a way that the transformation functions also perform the addition of

the process and observation noises. This requires the state estimate and its error covariance to

be augmented with the mean and the covariance of the respective noises.

Definition 2.9 (Unscented Kalman filter). Suppose a physical system is modelled as a non-

linear discrete-time dynamical system from Definition 2.6, with independent zero-mean process

and observation noise as in Definition 2.3. The estimate x̂t ∈ Rn of the system state at a time

t ∈ N, given all the observations z1, . . . , zt up to time t, and the covariance matrix Pt ∈ Rn×n

of the estimate’s error, can be computed recursively from the previous state estimate x̂t−1 ∈ Rn

and associated covariance Pt−1 ∈ Rn×n as follows:

(i) Prediction step

Define the augmented state estimate x̂∗t−1 ∈ R2n and the augmented error covariance

P∗t−1 ∈ R2n×2n as:

x̂∗t−1 =

 x̂t−1

0

 P∗t−1 =

 Pt−1 0

0 Q

 (2.60)

and the augmented process model f∗ : R2n → Rn as:

f∗(x,w) = f(x) + w (2.61)

where x,w ∈ Rn are function parameters. Then the application of the unscented trans-

formation

(
x̂∗t−1, P∗t−1

) f∗−−−→
(
x̂−t , P−t

)
(2.62)
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leads to:

x̂−t ≈ E[ f(xt−1) ] (a priori state estimate) (2.63)

P−t ≈ cov( f(xt−1) + wt ) (a priori estimate error covariance) (2.64)

(ii) Update step

Similarly, define the augmented a priori state estimate x̂−∗t ∈ Rn+m and error covariance

P−∗t ∈ R(n+m)×(n+m) as:

x̂−∗t =

 x̂−t

0

 P−∗t =

 P−t 0

0 R

 (2.65)

and the augmented observation model h∗ : Rn+m → Rm as:

h∗(x,v) = h(x) + v (2.66)

where x ∈ Rn and v ∈ Rm are function parameters. Then the application of the unscented

transformation (
x̂−∗t , P−∗t

) h∗−−−→ ( ẑt, Zt ) (2.67)

leads to:

ẑt ≈ E[h(x−t ) ] (expected observation) (2.68)

Zt ≈ cov(h(x−t ) + vt ) (innovation covariance) (2.69)

Yt ≈ cov( x−t , h(x−t ) ) (state and expected observation cross-covariance) (2.70)

where x−t = f(xt−1) + wt. Note that the expression for Yt is given by Equation (2.58)

applied to the sigma points of this unscented transformation. The update equations of

the filter are then as follows:

x̂t = x̂−t + Kt (zt − ẑt) (a posteriori state estimate) (2.71)

Pt = P−t −K Zt K
T
t (a posteriori estimate error covariance) (2.72)

Kt = Yt Z
−1
t (Kalman gain factor) (2.73)

The remarks from Definition 2.4 on the properties of the initial state estimate x̂0 and covariance

P0 apply here too. Note that 0 in the definitions of the augmented states and covariances above

denotes a zero matrix of an appropriate size.

From a theoretical perspective, similar to the EKF, the UKF is only guaranteed to provide

optimal mean squared error estimates if the original Kalman filter assumptions are satisfied and
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Time Space

Prediction step O(n3 ) O(n2 )

Update step O(n3 + n2m+ nm2 +m3 ) O(n2 + nm+m2 )

Table 2.3: Asymptotic computational complexity of the Unscented Kalman filter

the underlying process and observation models are linear. However, it has been demonstrated

that the UKF provides reasonable estimates in many practical applications even with highly

non-linear models with an accuracy that is consistently superior to the EKF, and furthermore,

the UKF does not require the problematic computation of Jacobians. These properties led to

widespread adoption of the UKF by the state estimation community over the past decade.

The main issue with the UKF is the computational complexity of the unscented transfor-

mations performed in both the prediction and the update step. The asymptotic computational

complexity of a straightforward implementation of the UKF algorithm as in Definition 2.9 is

summarised in Table 2.3. Although a more time-efficient variant of the UKF has been developed,

which propagates the square root of the covariance matrix instead of the covariance matrix itself

(Van Der Merwe and Wan, 2001), this variant replaces the O(n3) term in the asymptotic time

complexity to O(n2) only for parameter estimation problems. For state estimation problems,

the O(n3) term effectively prohibits application of the UKF to systems with a large number of

state-space dimensions.

2.6 Ensemble Kalman Filter

The Ensemble Kalman filter (EnKF), originally proposed in (Evensen, 1994), is a Monte Carlo

variant of the Kalman filter, which represents the state estimates and observations using a set

of random samples, instead of the conventional means and covariances. Such a representation

gives the EnKF three fundamental benefits compared to the other variants of the Kalman filter

described in the previous sections (Evensen, 2009; Mandel, 2006). First, the computational time

and space complexity of both the prediction and update operations scale linearly with the number

of the state-space dimensions. Second, the EnKF approximates non-linear transformations of

probability distributions with an accuracy only limited by the number of Monte Carlo samples,

and therefore, potentially more precisely than both the EKF and UKF. Third, similarly to the

UKF, the EnKF does not require Jacobians of the prediction and observation models, which are
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generally difficult to compute, as discussed in Section 2.4.

The features of the EnKF led to its widespread adoption to estimation problems in the Earth

sciences, where state spaces are often high-dimensional and models non-linear, and hence other

variants of the Kalman filter are not applicable. For example, the EnKF became a de facto

standard tool for data assimilation in numerical weather prediction (Evensen, 2009). On the

other hand, the Monte Carlo representation of a probability distribution is always imprecise, even

if the physical system is modelled precisely, which might be problematic in certain applications,

such as life-critical systems. Additionally, although the EnKF has a better asymptotic time

complexity than both the EKF and UKF with respect to the number of state-space dimensions,

in practice the EnKF will be slower than the EKF and UKF in applications where the number

of state-space dimensions is relatively small, which effectively prohibits its use in embedded or

energy-constrained systems.

In the EnKF, the state estimate and the associated error at a time t is represented using an

ordered set of random samples x1
t , . . . ,x

N
t ∈ Rn, called an ensemble, which are organised in a

matrix Xt ∈ Rn×N as:

Xt =
[
x1
t , . . . ,x

N
t

]
(2.74)

where n is the number of state-space dimensions and N > 1 is the number of random samples

(ensemble members). Note that the ensemble Xt effectively approximates the probability dis-

tribution of the possible value of a true system state xt; the approximation of the distribution

is perfect in the limit on an infinite ensemble. In this sense, the mean of the ensemble mod-

els the mean state estimate, and the spread of ensemble members models the error statistics

associated with the estimate, which was previously characterised by the state estimate error

covariance. The ensemble Xt can be easily transformed using any function g : Rn → Rm, to

obtain a transformed ensemble g(Xt) ∈ Rm×N as:

g(Xt) =
[
g(x1

t ), . . . , g(xNt )
]

(2.75)

Such an ensemble g(Xt) approximates the probability distribution of the random vector g(xt).

Similarly to the state estimate, an observation of the physical system and the associated

error at time t is represented using an ordered set of random samples z1
t , . . . , z

N
t ∈ Rm organised

in a matrix Zt ∈ Rm×N :

Zt =
[
z1
t , . . . , z

N
t

]
(2.76)

where m denotes the number of observation dimensions. Such an observation ensemble Zt can

be computed from a base observation vector zt ∈ Rm by adding randomly generated vectors
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with statistical properties of the observation noise from Definition 2.1 of the linear discrete-time

dynamical system model, i.e. a random sampling scheme which can be symbolically denoted as:

zit ← N (zt,R) (2.77)

for every i = 1, . . . , N . The observation ensemble Zt then has the following property:

cov(Zt) ' R (2.78)

Various methods have been proposed in the literature to improve the quality of the outcome of

the sampling procedure, in particular so that its statistical properties better reflect the desired

probability distribution parameters. For example, it is possible to shift each of the observation

ensemble members to ensure that their mean is equivalent to the observation zt. Formally, such

a refined observation ensemble Z∗t ∈ Rm×N can be computed as follows:

Z∗t =
[
z1
t − E[Zt] + zt, . . . , z

N
t − E[Zt] + zt

]
(2.79)

This and other similar methods are analysed in detail in (Evensen, 2009).

Note that cov(A,B) in this context denotes a sample covariance between two ensembles

A = [a1, . . . ,aN ] and B = [b1, . . . ,bN ], computed as follows:

cov(A,B) =
1

N − 1

N∑
i=1

(ai − E[A])(bi − E[B])T (2.80)

and cov(A) is just a shorthand for cov(A,A). In fact, the sample covariance represents an

estimate of the true covariance cov(a,b), as defined in Equation (2.7), between the two random

variables a and b whose estimates are represented by the respective ensembles, formally:

cov(a,b) ' cov(A,B) (2.81)

Similarly, E[A] denotes a simple arithmetic mean of an ensemble A computed as:

E[A] =
1

N

N∑
i=1

ai (2.82)

which represents an estimate of the true expected value E[a] of the random variable a, i.e.

E[A] ' E[a] (2.83)

And finally, C ' D denotes an asymptotic equality of terms C and D in the limit of an infinite

ensemble, formally limN→+∞(C−D) = 0.
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Fig. 2.5: Prediction step of the Ensemble Kalman filter.

Definition 2.10 (Ensemble Kalman filter). Suppose a physical system is modelled as a non-

linear discrete-time dynamical system from Definition 2.6, with independent zero-mean process

and observation noise as in Definition 2.3. The estimate Xt ∈ Rn×N of the system state at

a time t ∈ N, given all the observations z1, . . . , zt up to time t, can be computed recursively

from the previous state estimate ensemble Xt−1 ∈ Rn×N and the current observation ensemble

Zt ∈ Rm×N using the following equations:

(i) Prediction step

X−t = f( Xt−1 ) + Wt (a priori state estimate) (2.84)

Wt = [ w1
t , . . . ,w

N
t ] (process noise compensation) (2.85)

where wi
t ∈ Rn are randomly and independently generated vectors wi

t ← N (0,Q) for

every i = 1, . . . , N , that compensate for the process noise wt.

(ii) Update step

Xt = X−t + Kt( Zt − h(X−t ) ) (a posteriori state estimate) (2.86)

Kt = cov(X−t , h(X−t )) [ cov(h(X−t )) + R ]−1 (Kalman gain factor) (2.87)

As similarly noted in Definition 2.4 of the Kalman filter, the initial ensemble X0 is assumed to

be sampled randomly from the Gaussian probability distribution of the initial state described

in Definition 2.1.

The EnKF, in particular its update step, is based on the same assumptions as the traditional

Kalman filter, such as that all the involved probability distributions are Gaussian, the observa-

tion model h : Rn → Rm is linear, and that the a priori state estimate X−t and the observation

Zt are statistically independent. Additionally, due to its Monte Carlo nature, the EnKF is only

guaranteed to provide optimal mean squared error estimates in the limit of an infinite ensemble.
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Fig. 2.6: Update step of the Ensemble Kalman filter.

Time Space

Prediction step O(n2N + nN ) O(n2 + nN )

Update step O(nmN + nm2 +m2N +m3 ) O(nN + nm+mN +m2 )

Table 2.4: Asymptotic computational complexity of the Ensemble Kalman filter

Although these assumptions might seem quite restrictive, like other Kalman filter variants, the

EnKF with a moderate number of ensemble members provides reasonable state estimates even

in situations where the assumptions are not exactly satisfied, that is, in most practical appli-

cations. Illustrations of the prediction step and the update step of the EnKF in a dynamical

system with n = 2 and m = 1 are provided in Figures 2.5 and 2.6, respectively.

The asymptotic computational complexity of a straightforward implementation of the EnKF

algorithm from Definition 2.10 is summarised in Table 2.4. Although the time and space com-

plexity of the prediction step involves O(n2N) and O(n2) terms, respectively, these terms only

describe the complexity of generation of the process noise compensation samples Wt in case

of a general process noise covariance matrix Q. In most practical applications, Q is a diago-

nal matrix, and therefore both these quadratic complexity terms will not be present. In any

case, the covariance matrix Q here is assumed constant over time, and therefore, its Cholesky

decomposition necessary for the generation of random samples Wt can be precomputed. Also,

it is assumed that the functions f and h can be evaluated in O(n) and O(n + m) time and

space, respectively. Note that various algebraic formulations of the update step with various
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asymptotic complexities have been proposed in the literature, which might be more efficient for

particular applications (Evensen, 2003; Mandel, 2006); here the order of matrix multiplications

is optimised for n� m and n� N .

Aside from the computational advantages of the EnKF described in the beginning of this

section, the ensemble representation of the state estimates and observations brings another

fundamental advantage - if the ensemble members have a fixed order, one can estimate the cross-

covariance between two seemingly unrelated ensembles, simply by applying Equation (2.80).

This is the principal insight provided in this thesis, leading to the development of a new CPI-

EnKF and Augmented EnKF filters that support correlations between errors associated with

the state estimates and observations. Additionally, the literature mentions virtually no practical

applications of the EnKF in many areas of engineering, such as in robotics, most likely due

to the availability of algorithms that are faster in lower-dimensional problems, such as the

UKF. This thesis aims to challenge this status quo, by demonstrating that the EnKF offers

some unprecedented features that fully justify its use in engineering, while arguing that the

performance penalty in lower-dimensional problems is practically negligible on modern hardware.

2.7 Particle Filter

The particle filter, also known as the sequential Monte Carlo method, is a popular recursive

non-linear Bayesian inference algorithm (Doucet and Johansen, 2009). Although traces of the

method date back to 1950s (Hammersley and Morton, 1954), the current formulation of the

filter was first introduced in a seminal paper by (Gordon et al., 1993). Similarly to the EnKF,

the particle filter represents the current state estimate and its uncertainty using a set of random

samples drawn from the state space, which is referred to as particles. As such, the particle filter

is an approximate Monte Carlo algorithm that provides optimal solutions only in the limit of

an infinite number of particles. The particle filter is reviewed in this chapter purely to illustrate

its differences from the EnKF.

Similarly to the Kalman filter, the operation of the particle filter can also be divided into

two logical steps: the prediction step and the update step. In the prediction step, the particles

are propagated to the next time step to model a so-called proposal distribution (effectively an

a priori state estimate), very much the same way the EnKF performs the prediction step.

On the other hand, the update step of the particle filter is very different compared to the

EnKF. Each particle representing the proposal distribution is assigned a weight that depends

35



on the probability distribution of the observation and then the particles are resampled based

on these weights in order to obtain the target distribution (an a posteriori state estimate),

using an algorithm such as the sequential importance resampling (SIR). Formally, the proposal

distribution at a time t is represented using a set of N particles:

{
x̄

(i)
t | i = 1, . . . , N

}
(2.88)

In the update step, each particle x̄
(i)
t ∈ Rn is assigned a weight coefficient w̄

(i)
t ∈ R that

corresponds to the probability of the observation zt ∈ Rm given the true state x̄
(i)
t , i.e.

w̄
(i)
t =

1

N
P
(

zt | x̄(i)
t

)
(2.89)

The weights are then normalised using the following rule:

w
(i)
t =

w̄
(i)
t∑N

i=1 w̄
(i)
t

(2.90)

so that
∑N

i=1 w
(i)
t = 1. Finally, N particles are randomly drawn from the set

{
x̄

(i)
t | i = 1, . . . , N

}
with probabilities proportional to the corresponding weights

{
w

(i)
t | i = 1, . . . , N

}
, leading to

the final set of particles: {
x

(i)
t | i = 1, . . . , N

}
(2.91)

that represents the target probability distribution.

Note that in the update step of the particle filter, no particles are being altered, only par-

ticles with higher weights are kept or even duplicated while particles with lower weights are

discarded. Particle filters can operate with arbitrary (non-Gaussian) probability distributions

and non-linear dynamical system models with an arbitrary precision, given a sufficient number

of particles. Unfortunately, the number of necessary particles grows with the complexity of

the probability distributions involved (e.g. number of dimensions, non-zero higher moments or

multimodality), which is also known as the particle depletion or degeneracy problem.

The update step of the particle filter is in a direct contrast with the update step of the

EnKF, where each of the ensemble members is linearly transformed using the corresponding

observation ensemble member and the Kalman gain factor, instead of resampling. Regardless

of the a priori state estimate and observation probability distributions, the distribution of the

resulting a posteriori state estimate tends to be Gaussian due to the fuzzy central limit theorem,

and consequently, it can be represented using a constant number of ensemble members without
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degeneracy. Additionally, resampling would make it impossible to maintain a pairwise cross-

correlation between two ensembles, which is the core feature of the EnKF around which the

contribution of this thesis is built. This is explained in detail in Chapter 5.

2.8 Chapter Summary

This chapter formally defined the Kalman filter and its arguably four most important variants:

the Information filter, the Extended Kalman filter (EKF), the Unscented Kalman filter (UKF)

and the Ensemble Kalman filer (EnKF), and discussed in detail the most important features

of the filters relevant to this thesis - their ability to operate with non-linear models and their

computational complexity. The chapter also introduced the formalism and notation that will be

used throughout the rest of this thesis, and reviewed the particle filter, in order to illustrate its

differences from the EnKF.
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Chapter 3

Correlated Noises

All the variants of the Kalman filter described in Chapter 2 are based on the same formal

model, which assumes that both the process and observation noises are white and independent.

This implies that both the noises are sequentially uncorrelated and uncorrelated to each other

and that state estimate errors are not correlated to observation errors during the update step.

Unfortunately, in many practical applications, the physical system does not fit such a model,

which can lead to poor performance of the conventional Kalman filter, in particular that it

might provide overconfident state estimates. If such estimates were to affect the decisions of a

safety-critical system, for example, autonomous control of a vehicle, the consequences could be

severe.

This chapter reviews the common types of correlation in or between the state and observa-

tion noises, provides practical examples where they appear, and describes the state-of-the-art

approaches that enable consistent state estimation in their presence. Although the approaches

are described in the context of the conventional Kalman filter, most of them can be applied

equally with all the variants of the Kalman filter described in Chapter 2; exceptions to this rule

are pointed out explicitly.

3.1 Correlated Process and Observation Noise

The conventional Kalman filter is based on a model of the underlying dynamical system that

assumes that both the process noise and the observation noise are mutually independent, and

therefore, mutually uncorrelated - see Definition 2.3-(ii). This section will relax this assump-

tion, and describe generalised Kalman filter equations that provide optimal and consistent state
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estimates even if the process noise and the observation noise are correlated. For example, such

a generalisation is useful in the following scenario (Simon, 2006, p. 184): Assume one has to

estimate a position of an aircraft by modelling its flight dynamics and measuring the wind speed

using an anometer. An occasional wind gust will affect both the error in the aircraft dynamics

model (process noise) and the error in the measurements of the anometer (observation noise)

in a similar, correlated, way. As such, the traditional Kalman filter might provide inconsistent

state estimates but the generalised Kalman filter equations described in this section will provide

consistent estimates. Moreover, these equations serve as a building block for several other meth-

ods to accommodate different types of correlation in the noises, such as sequential correlation

in the observation noise described in Section 3.3.2.

The literature distinguishes two main types of a correlation between the process noise and

the observation noise, depending on at which time steps are the noise terms correlated. Recall

Definition 2.1 of the linear discrete-time dynamical system model:

xt = F xt−1 + wt (3.1)

zt = H xt + vt (3.2)

where the terms wt and vt represent the process and the observation noise, respectively. In

the type I of correlation, the process noise term wt is assumed correlated with the subsequent

observation noise term vt, which requires a redefinition of the update step. In the type II,

the process noise term wt is assumed correlated with the previous observation noise term vt−1,

which requires a redefinition of the prediction step.

Definition 3.1 (Kalman filter for correlated process and observation noise - type I). Suppose

a physical system is modelled as a linear discrete-time dynamical system from Definition 2.1,

with a process and observation noise as before in Definition 2.3, except that the assumption (ii)

is replaced by the following assumption: the process noise sequence {wt} and the observation

noise sequence {vt} are mutually correlated as:

cov(wi,vj) =

 C i = j

0 i 6= j
(3.3)

where C ∈ Rn×m. The update step of the Kalman filter from Definition 2.4 then needs to be
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replaced with the following equations:

x̂t = x̂−t + Kt

(
zt −H x̂−t

)
(3.4)

Pt = P−t −Kt

(
H P−t + CT

)
(3.5)

Kt =
(
P−t HT + C

) [
H P−t HT + HC + CTHT + R

]−1
(3.6)

The prediction step equations of the filter, as well as all the other remarks and the notation of

variables, are as before in Definition 2.4. The Kalman filter with this set of update equations is

also referred to as the Generalised Kalman filter.

Definition 3.2 (Kalman filter for correlated process and observation noise - type II). Suppose

a physical system is modelled as a linear discrete-time dynamical system from Definition 2.1,

with a process and observation noise as before in Definition 2.3, except that the assumption (ii)

is replaced by the following assumption: the process noise sequence {wt} and the observation

noise sequence {vt} are mutually correlated as:

cov(wi,vj−1) =

 C i = j

0 i 6= j
(3.7)

where C ∈ Rn×m. The prediction step of the Kalman filter from Definition 2.4 then needs to be

replaced with the following equations:

x̂−t = F x̂t−1 + C
[
HP−t−1H

T + R
]−1 (

zt−1 −H x̂−t−1

)
(3.8)

P−t = F Pt−1 FT + Q−C
[
HP−t−1H

T + R
]−1

CT − FKt−1C
T −CKT

t−1F
T (3.9)

The update step equations of the filter, as well as all the other remarks and the notation of

variables, are as before in Definition 2.4.

For brevity, both Definitions 3.1 and 3.2 assume that the correlation term C is time-invariant,

but in practice, it can change over time, similarly to the noise covariance terms Q and R. Note

that both the filters are in fact generalisations of the Kalman filter - if the correlation term

C is zero, they both reduce to the traditional Kalman filter described in Definition 2.4. Both

these generalisations were originally derived in (Kalman, 1963) and they are both guaranteed

to provide optimal and consistent state estimates if all the assumptions are satisfied. A detailed

derivation of the equations in Definition 3.1 can also be found in (Simon, 2006, p. 184), as

well as in (Brown and Hwang, 2012; Nieto and Guerrero, 1995). Variants of all the equations
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based on the more general linear dynamical system model as in Equation (2.1) can be found in

(Maybeck, 1979)[p. 246].

Although both the generalisations from Definitions 3.1 and 3.2 are described in the context

of the basic Kalman filter, they can also be easily applied in the context of the Extended Kalman

filter (EKF), where the process model F and the observation model H need to replaced with

the Jacobians Ft and Ht, respectively, similarly to Definition 2.7 of the EKF. With respect to

the Information filter and the Unscented Kalman filter (UKF), corresponding variants of these

filters that support equivalent forms of correlation between the process and observation noise

could theoretically be developed, but the author of this thesis is not aware of any literature

describing such variants, and their derivation is beyond the scope of the thesis. However, both

the generalisations of the Kalman filter cannot be directly applied in the context of the En-

semble Kalman filter (EnKF). In the case of the type I correlation, it will be demonstrated in

Section 6.3.2 that the update rule provided in Definition 3.1 cannot be applied in the EnKF,

i.e. such a Generalised EnKF is not a valid filter. On the other hand, the prediction rule for

the type II correlation provided in Definition 3.2 is not necessary at all in the EnKF, as it can

be replaced by a method described in Section 5.1. Note that both these findings constitute

contributions provided by this thesis.

3.2 Sequentially Correlated Process Noise

In theory, the Kalman filter assumes that the model of the underlying dynamical system is

perfect. In practice, a designer of virtually every application of the Kalman filter needs to make

a choice of the level of detail with which a dynamical system is modelled, primarily to choose

the state variables and the time step length, while the effects of any unmodelled dynamics are

considered a part of the process noise. Typically, this choice is done in such a way that the

effects of unmodelled dynamics appear sequentially uncorrelated at the process time steps, and

hence the process noise can be modelled as white. However, in certain situations, this approach

is rather impractical as it requires development of complex process models, while it is easier and

sufficiently accurate to just assume the process noise is sequentially correlated. For example,

when estimating a position and attitude of an aircraft, it is probably easier to model random

wind gusts that affect the motion of the aircraft as a sequentially correlated process noise, rather

than to model the wind parameters as part of the state space and predict their effects on the

aircraft motion (Crassidis and Junkins, 2011, p. 226). A sequentially correlated noise is often
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referred to in the literature as coloured noise, as well as correlated noise, time-correlated noise,

auto-correlated noise, or noise with serial correlation. This section will describe variants of the

Kalman filter that provide optimal state estimates in the presence of such a coloured process

noise.

For simplicity, this section only considers the most elementary form of a sequential correlation

in the noise sequence, modelled as a wide-sense-stationary zero-mean first-order autoregressive

process (an AR(1) process), and the term coloured noise is used for this type of a random process

only.

Definition 3.3 (Coloured noise process). An n-dimensional random process {wt} is called a

coloured noise if and only if:

(i) For every t ∈ N, the random vector wt ∈ Rn has zero mean and a finite covariance

Q ∈ Rn×n, i.e.

E[wt] = 0 (3.10)

cov(wt) = Q (3.11)

(ii) For every t ∈ N:

wt+1 = Ψ wt + εt (3.12)

where Ψ ∈ Rn×n is an auto-correlation coefficient matrix, wt and εt ∈ Rn are mutually

independent random vectors, and the sequence {εt} is a white noise process with zero

mean and a constant finite covariance Σ ∈ Rn×n, i.e.

cov( wt, εt ) = 0 (3.13)

cov( εt ) = Σ (3.14)

Note that if Ψ = 0, then the coloured noise process {wt} reduces to a white noise process. Also,

be aware that the terms process noise and noise process, although similar, have two different

meanings. Although both the auto-correlation coefficient matrix Ψ and the covariance matrix

Σ are assumed constant over time, all the methods described in this and the following sections

can be directly extended to support time-varying matrices Ψt and Σt instead, similarly to other

parameter matrices (F, H, Q, R, etc.) used throughout this thesis, as noted in Section 2.1.

In order to accommodate a coloured process noise in the Kalman filter, the filter equations

do not need to be redefined, it only suffices to augment the dynamical system model. This
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procedure was introduced in (Bucy and Joseph, 1968) and is also described in (Simon, 2006, p.

188). The equations of the linear discrete-time dynamical system model from Definition 2.1:

xt = F xt−1 + wt (3.15)

zt = H xt + vt (3.16)

and the equation characterising an n-dimensional coloured process noise sequence {wt}:

wt+1 = Ψ wt + εt (3.17)

can be combined into a single system of equations: xt

wt+1

 =

 F I

0 Ψ

 xt−1

wt

+

 0

εt

 (3.18)

zt = [ H 0 ]

 xt

wt+1

+ vt (3.19)

which corresponds to a system of equations describing an augmented dynamical system model:

x∗t = F∗ x∗t−1 + w∗t (3.20)

zt = H∗ x∗t + vt (3.21)

where x∗t ∈ R2n represents the augmented state vector, F∗ ∈ R2n×2n the augmented process

model, H∗ ∈ Rm×2n the augmented observation model, and w∗t ∈ R2n represents the augmented

process noise term with a covariance Q∗ = cov(w∗t ) ∈ R2n×2n defined as:

Q∗ =

 0 0

0 Σ

 (3.22)

where Σ = cov(εt) ∈ Rn×n for all t ∈ N. Note that I and 0 above denote the identity and

zero matrices of an appropriate dimension, respectively. The augmented process noise sequence

{w∗t } is indeed a white noise, the augmented system meets all the necessary assumptions, and

therefore, the Kalman filter can estimate its state. However, this comes at a price of an increased

computational complexity, as the number of state-space dimensions of the problem has doubled.

The state of such an augmented system can be estimated using any variant of the Kalman

filter described in Section 2.2. In the context of the EKF, the UKF and the EnKF, the non-linear

functions f∗ : R2n → R2n and h∗ : R2n → Rm corresponding to the augmented process model F∗
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and the augmented observation model H∗, respectively, can be defined as:

f∗(x,w) =

 f(x) + w

Ψw

 (3.23)

h∗(x,w) = h(x) (3.24)

where x,w ∈ Rn are function parameters, and f : Rn → Rn and h : R2n → Rm are the origi-

nal process and observation model functions, respectively, as in Definition 2.6 of the non-linear

discrete-time dynamical system model. This augmentation procedure of the process model func-

tion is not to be confused with a similar augmentation performed by the UKF (see Definition 2.9);

both the augmentations need to be performed independently.

The concept of augmentation of the system model in order to accommodate for a coloured

process noise can be easily extended to the more general time-evolution model of the dynamic

system from Equation (2.1), as shown in (Crassidis and Junkins, 2011, p. 224), and also to a

higher-order sequential correlation in the process noise. Furthermore, alternative methods have

been proposed that do not increase the number of dimensions of the system model, while still

supporting such a higher-order sequential correlation in the process noise (Jiang et al., 2010).

Note that in the context of the EnKF it is possible to compute consistent state estimates in

the presence of sequentially correlated process noise even without state augmentation, using a

method described in Section 5.1. This is especially useful in applications with a high number of

state-space dimensions n, where the performance penalty associated with the state augmentation

procedure would have a significant impact. This new method represents one of the contributions

provided by this thesis.

3.3 Sequentially Correlated Observation Noise

One of the important assumptions of the Kalman filter and its variants described in Chapter 2

is the assumption that the observation noise is white, and therefore, sequentially uncorrelated.

However, in reality, measurements of physical phenomena performed in succession often exhibit

similar errors, in particular if the period between the measurements is short compared to a

period with which the underlying sources of the error change. (Bryson and Johansen, 1965)

characterised this problem as:

”Many practical systems exist in which the correlation times of the random measure-

ment errors are not short compared to times of interest in the system; for brevity
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such errors are called ’colored’ noise.”

This section will describe variants of the Kalman filter that provide optimal state estimates in

the presence of such measurement errors.

The problem of a sequential correlation in the observation noise occurs in many practical

applications, for example, in radar-based target tracking an effect known as the target scin-

tillation (or glint) causes the measurement errors to have a finite bandwidth (Skolnik, 2008;

Wu and Chang, 1996), in navigation using the global positioning system (GPS) because the

sources of the GPS error change relatively slowly over time (Petovello et al., 2005; Kaplan and

Hegarty, 2006; Geier et al., 1995), in spacecraft position/attitude estimation using sensors af-

fected by vibrations (Kumar and Crassidis, 2007) or even in specialised applications such as

the analysis of records of ion channel operation in cell membranes (De Gunst et al., 2001). On

the other hand, if the period between measurements is sufficiently long, the measurement error

typically has enough time to decorrelate and hence it can be modelled as a white noise. Due

to this premise, the majority of practical applications of the Kalman filter can safely ignore the

sequential correlation in the observation noise.

From a technical standpoint, the presence of a sequential correlation in the observation noise

will express itself as a correlation between the error in the a priori state estimate and the

observation error in the update step of the Kalman filter. Therefore, one could theoretically

apply the Generalised Kalman filter equations from Definition 3.1 to perform the update step

in a consistent and optimal way. Unfortunately, there is no simple way to compute the neces-

sary cross-covariance between the a priori state estimate error and the observation error, and

therefore, more involved variants of the Kalman filter are required.

The literature recognises two main approaches to accommodate a sequentially correlated

observation noise in the Kalman filter, state augmentation and measurement differencing, both

of whom will be described in this section. As in Section 3.2, only the most elementary first-

order sequential correlation in the noise process from Definition 3.3 will be considered, and such

a process will be called again coloured noise. The parameters of such a first-order model can be

estimated from the measurements using a method described in (Wu and Chang, 1996). If the

first-order model cannot approximate the real measurement noise well enough, it is also possible

to split the noise into sub-bands, model each of them separately using a first-order model, and

apply any of the filtering approaches for the first-order correlated noise, as shown in (Chang and

Wu, 2001).
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3.3.1 State Augmentation

The state augmentation procedure to accommodate for a coloured observation noise in the

Kalman filter was originally suggested in (Kalman, 1960) in an example, and further developed

in (Kalman, 1963). The procedure is principally similar to the approach described in the case

of a coloured process noise in Section 3.1. The system model equations from Definition 2.1:

xt = F xt−1 + wt (3.25)

zt = H xt + vt (3.26)

and the equation characterising the coloured observation noise sequence {vt} from Definition 3.3:

vt = Ψ vt−1 + εt−1 (3.27)

can be combined into a single system of equations: xt

vt

 =

 F 0

0 Ψ

 xt−1

vt−1

+

 wt

εt−1

 (3.28)

zt = [ H I ]

 xt

vt

+ 0 (3.29)

which corresponds to an augmented system model:

x∗t = F∗ x∗t−1 + w∗t (3.30)

zt = H∗ x∗t + v∗t (3.31)

where x∗t ∈ Rn+m represents the augmented state, F∗ ∈ R(n+m)×(n+m) the augmented process

model, w∗t ∈ Rn+m is the augmented process noise term with a covariance Q∗ = cov(w∗t ) ∈

R(n+m)×(n+m), H∗ ∈ Rm×(n+m) denotes the augmented observation model and v∗t ∈ Rm is the

augmented process noise with a covariance R∗ = cov(w∗t ) ∈ Rm×m. The noise covariances are

as follows:

Q∗ =

 Q 0

0 Σ

 (3.32)

R∗ = 0 (3.33)

where Q = cov(wt) and Σ = cov(εt) for every t ∈ N. As such, the state of the augmented

system can be estimated using the standard Kalman filter, or any of its variants described in
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Chapter 2, except the Information filter from Definition 2.5 because the necessary term (R∗)−1

cannot be evaluated.

In the context of the EKF, the UKF and the EnKF, the non-linear functions f∗ : Rn+m →

Rn+m and h∗ : Rn+m → Rm corresponding to the augmented process model F∗ and the aug-

mented observation model H∗, respectively, can be defined as:

f∗(x,v) =

 f(x)

Ψv

 (3.34)

h∗(x,v) = h(x) + v (3.35)

where x ∈ Rn and v ∈ Rm are function parameters, and f : Rn → Rn and h : Rn → Rm are the

original process model and observation model functions, respectively, as in Definition 2.6 of the

non-linear discrete-time dynamical system model. The above augmentation procedure is not to

be confused with the similar augmentation procedure performed by the UKF (see Definition 2.9);

both of them need to be performed independently.

Although the augmentation of the system state vector represents a very straightforward

method to support a coloured observation noise, it has two important drawbacks. First, the

number of state-space dimensions of the system increases to n+m, and therefore, the augmen-

tation increases the computational complexity of the filter. Second, the measurements in the

augmented system are perfect, i.e. contain no noise, which can lead to a numerical instability in

the update step. The Kalman gain in the augmented system contains a matrix inversion term[
H∗P∗t H∗T + R∗

]−1
, where P∗t denotes the a priori augmented state estimate covariance (see

Definition 2.4). Because R∗ = 0, the matrix H∗P∗t H∗T is required to be invertible, and if it

is too ”close” to a singular matrix, the inversion will become ill-conditioned and numerically

unstable on computers with a limited floating-point arithmetic precision. For example, this will

happen if one of the variables of the a priori state estimate is known too precisely compared

to the other variables, and thus the corresponding diagonal term in the covariance matrix P∗t is

too close to zero, compared to the others.

A detailed analysis of the problem of the potentially ill-conditioned inversion in the Kalman

gain, as well as a discussion of possible algebraic remedies, can be found in (Maybeck, 1979,

p. 249). As a workaround to the problem, (Wang et al., 2012) proposes two methods that

modify the H∗P∗t H∗T matrix to ensure it is invertible in a numerically stable fashion: either

using the Tikhonov regularisation, leading to the so called Tikhonov KF algorithm, or simply

by adding a small coefficient to the diagonal elements of the matrix P∗t , leading to the so called
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perturbed-P algorithm. Unfortunately, the first method is time consuming and might lead to a

large regularisation error, while the second method is sensitive to the selection of the additive

coefficient - if the coefficient is too large, the filter might become over-pessimistic and/or diverge.

Overall, the problems of state augmentation led to the development of an alternative approach

to accommodate the coloured observation noise, which is described in the next section.

3.3.2 Measurement Differencing

The measurement differencing approach, originally proposed in (Bryson and Henrikson, 1967)

and sometimes referred to as pre-whitening or time-differencing, is another approach that en-

ables the Kalman filter to accommodate a coloured observation noise. However, unlike state

augmentation, it does not increase the number of state-space dimensions and it is numerically

stable. In principle, measurement differencing rearranges the Kalman filter equations in a way

that transforms the sequential correlation in the observation noise to a cross-correlation between

the process and observation noises, allowing the estimation to be performed using one of the

Kalman filter generalisations described in Section 3.1. Assume a system modelled as a linear

discrete-time system from Definition 2.1:

xt = F xt−1 + wt (3.36)

zt = H xt + vt (3.37)

with a coloured observation noise sequence {vt} as in Definition 3.3:

vt = Ψ vt−1 + εt−1 (3.38)

where Ψ ∈ Rm×m and εt−1 ∈ Rm. The key idea of measurement differencing is to define a

pseudo-measurement z∗t−1 ∈ Rm as:

z∗t−1 = zt −Ψ zt−1 (3.39)

which can be rewritten (Simon, 2006, p. 190) using Equations (3.36)-(3.38) to:

z∗t−1 = (H F−Ψ H) xt−1 + (H wt + εt−1) (3.40)

= H∗ xt−1 + v∗t−1 (3.41)
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Note that the pseudo-measurement noise sequence {v∗t } is actually actually a white noise. This

leads to a modified system model:

xt = F xt−1 + wt (3.42)

z∗t = H∗ xt + v∗t (3.43)

where H∗ ∈ Rm×n represents a modified observation model and v∗t ∈ Rm a modified observation

noise. The noise sequences {wt}, {εt} and {v∗t } are all white and have the following covariances:

cov( wt ) = Q (3.44)

cov( εt ) = Σ (3.45)

cov( v∗t ) = H Q HT + Σ (3.46)

cov( wt+1,v
∗
t ) = Q HT (3.47)

Due to the non-zero cross-covariance cov(wt+1,v
∗
t ), the state of the system must be esti-

mated using the Kalman filter generalisation for the type II correlation between the process and

observation noise, which is described in Definition 3.2. Additionally, special care needs to be

taken to correctly initialise the filter, as described (Bryson and Henrikson, 1967). Note that

measurement differencing can be easily applied in the context of the EKF, the UKF and the

EnKF; the observation model function h∗ : Rn → Rm corresponding to the modified observation

model H∗ is defined as:

h∗(x) = h(f(x)) + Ψh(x) (3.48)

where x ∈ Rn is a function parameter and f : Rn → Rn is the original process model function

as in Definition 2.6 of the non-linear discrete-time dynamical system model.

One of the limitations of the original Bryson and Henrikson’s measurement differencing

approach described above is that the observations {zt}, the coloured observation noise model

parameter Ψ and the sequence {εt} are all assumed to have the same number of dimensions m.

(Gazit, 1997) provides an extended measurement differencing approach that eliminates such a

restriction.

Another problem of the approach is that the pseudo-measurement z∗t is computed from a

future observation zt+1 (see Equation (3.39)), therefore the estimate produced by the update step

at a time t represents a best estimate of the system state given all the measurements z1, . . . , zt+1

up to time t + 1. As such, the filter is effectively a lag-one smoother providing estimates with

a latency of one time step. This latency can be problematic in certain applications, such as
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in real-time control systems, and therefore, several modifications of the original measurement

differencing approach have been proposed to eliminate it. For example, (Minkler and Minkler,

1993) provides a reinterpretation of the meaning of some of the filter parameters to alleviate

the problem. (Rogers, 1987) developed an entirely different measurement differencing approach

in the context of the alpha-beta filter (a simplified Kalman filter), which was later extended to

the Kalman filter in (Guu and Wei, 1991) and also independently proposed in (Petovello et al.,

2009). The main idea of this alternative approach is to define the pseudo-measurement z∗t using

only the past measurements as:

z∗t = zt −Ψ zt−1 (3.49)

which leads to a new system model:

xt = F xt−1 + wt (3.50)

z∗t =
(
H − Ψ H F−1

)
xt +

(
Ψ H F−1 wt + εt−1

)
(3.51)

= H∗ xt + v∗t (3.52)

where the noise sequences {wt}, {εt} and {v∗t } are all white and have the following covariances:

cov( wt ) = Q (3.53)

cov( εt ) = Σ (3.54)

cov( v∗t ) = Ψ H F−1 Q
(
F−1

)T
HT ΨT + Σ (3.55)

cov( wt,v
∗
t ) = Q

(
F−1

)T
HT ΨT (3.56)

Due to presence of a non-zero cross-covariance cov(wt,v
∗
t ), the system state must be estimated

using the Kalman filter generalisation, this time for the type I correlation between the process

and observation noise, as described in Definition 3.1.

The main drawback of the alternative measurement differencing approach described here

is the requirement to compute the inverse process model F−1. Although such an inverse is

guaranteed to exist (Gelb, 1974), it might also be ill-conditioned (Wang et al., 2012), and

moreover, if the process model is time-varying, such as in the EKF where it is computed from a

Jacobian of a non-linear function f (see Section 2.4), the inversion will significantly increase the

computational cost of the update step. Also, the whole approach is practically unusable in the

context of the UKF and the EnKF, firstly, because both these filters were built on the premise

to avoid the computation of Jacobians (assuming an inverse process model function f−1 is not

easily available), and secondly, because there are no equivalent generalisations of these filters for

the type I correlation between the process and observation noise, as discussed in Section 3.1.
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3.4 Combined and Higher-Order Correlations

The previous sections describe the most important variants of a first-order correlation in and

between the process and observation noises encountered in Kalman filter applications, and review

approaches that provide optimal state estimates in the presence of such correlations. In fact,

the methods described cover the absolute majority of practical estimation problems involving

correlated noises. Nevertheless, several other methods have been proposed to address certain

more special cases of correlation.

(Jiang et al., 2010) describe a set of methods that support any finite-step sequential correla-

tion in the process and observation noise sequences, as well as any finite-step correlation between

the process and observation noise sequences. These methods are further extended in (Li et al.,

2011) to allow for an arbitrary combination of such finite-step correlations. The main insight

provided by these papers is that in order to support such higher-order correlations in a recursive

fashion, the Kalman gain needs to be decomposed into two multiplicative components and each

of them maintained independently. A similar method was developed earlier in (Li et al., 2000),

but it provides optimal state estimates in a batch-mode only, i.e. not in a recursive filter. It

should be noted that practical applicability of these approaches is somewhat limited, because

higher-order models of correlations of real-world physical noise processes are rarely available.

3.5 Chapter Summary

This chapter reviewed modifications of the Kalman filter and its variants that enable them to

operate in the presence of correlations between the state estimate error and the observation error,

caused by the presence of a sequential correlation or mutual cross-correlations in the process

and observation noises. The number of recent publications indicates that this is still an active

area of research, even more than 50 years since the development of the Kalman filter. In general,

all the methods discussed expect well-defined Gauss-Markov models of the underlying physical

noise processes. Unfortunately, in certain applications, such models might be to prohibitive,

characterise the true noise process inaccurately, and therefore affect the quality of the state

estimates computed by the filter.

With the new EnKF-based estimation methods proposed in Chapter 5 of this thesis, there

is no restriction on the mathematical model of the noise processes and correlations, the only

requirement is the ability to emulate the effects of the noise process on the random samples
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(ensembles) representing the state estimates and the observations. Additionally, these new

methods are useful in situations where the conventional approaches presented in this chapter,

such as state augmentation, would incur an unacceptable performance penalty, as discussed in

Section 3.2.
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Chapter 4

The Common Past

This thesis deals with the general problem of a linear state estimation in the presence of a

correlation between the state estimate error and the observation error. Chapter 3 reviews

extensions of the Kalman filter applicable in situations where such a correlation is caused by

a sequential correlation in the observation noise sequence or by a cross-correlation between the

process and observation noise sequences. However, this correlation can also be caused by the

presence of common past information shared between the state estimate and the observation,

which results from a situation where information derived from a single sensor measurement has

a chance to affect the state estimate at multiple times. In the literature, this problem is also

referred to, less poetically, as data incest, as well as double-counting, common information or, in

particular in the context of information theory, as mutual information. The principal difference

from the case of the correlated noises is that in the presence of common past information it is

generally difficult to algebraically express the relation (i.e. the correlation) between the state

estimate and the observation errors, which is a necessary prerequisite to perform the estimation

in a consistent and optimal fashion. This chapter reviews approaches that attempt to do exactly

that.

As briefly discussed in Chapter 1, the common past information problem is characteristic

of sensor networks - systems in which observations of physical phenomena are performed by

a number of communicating agents (Akyildiz et al., 2002). For example, sensor networks are

practical in military applications, such as tracking of moving targets using sensors deployed in

multiple geographical locations. Formally, a sensor network is defined as follows:

Definition 4.1 (Sensor network). Assume a set of agents (aka nodes) A = {A1, . . . ,Ak}, each of

them equipped with one or more sensors that observe some (possibly different) physical system.
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Fig. 4.1: Sensor network with a random topology.

At a time t, sensors of an agent Ai produce an observation vector zi(t) ∈ Rmi , which is affected

by an observation noise term vi(t) ∈ Rmi with a covariance Ri = cov(vi(t)) ∈ Rmi×mi , for every

i = 1, . . . , k and t ∈ N. The observation noise is assumed white, Gaussian, and independent.

Additionally, the agents can exchange information with each other. Denote the communi-

cation network available to the agents at a time t as a set E(t) ⊆ {{a, b} | a, b ∈ A}: if there

is a direct communication link between agents Ai and Aj , then {Ai,Aj} ∈ E(t). Note that

the communication links are assumed bi-directional. Let the symbol Ni(t) denote the set of

indices of agents (neighbours) that can send a message to the agent Ai at a time t, formally

Ni(t) = { j | {Ai,Aj} ∈ E(t) & i 6= j }.

The sets A and E(t) effectively represent a set of vertices and edges, respectively, of an

undirected graph G(t) = (A, E(t)). A sequence {G(t)} of such graphs with time-varying edges

will be called a sensor network (or switching network). If the edges of the sensor network are not

changing over time (non-switching network), the time parameter can be dropped and the sensor

network will be denoted simply as G = (A, E), and similarly, the set of neighbours denoted as

Ni. An example of a sensor network is depicted in Figure 4.1.

This chapter reviews state-of-the-art approaches to linear state estimation based on observa-

tions obtained by a sensor network, which is an instance of a more general data fusion problem.

The approaches will be presented in order from centralised to distributed ones, which best illus-

trates the nature of the common past information problem, and its treatment. For clarity, this

chapter assumes a slightly different notation of variables than the previous chapters: the time

index is written as a parameter (e.g. x(t)) instead of a subscript (xt), and the vacant subscript

is designated to an index of a node in the sensor network to which the variable is related (xi(t)),

wherever necessary. Note that such notation is a de facto standard in sensor network literature.
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4.1 Centralised Kalman Filter

The most straightforward approach to estimate the state of a physical system from measurements

obtained by a sensor network is to collect all the measurements in a single fusion centre, and

perform the estimation there using an algorithm such as the Kalman filter. Assume a non-

switching sensor network G = (A, E) as in Definition 4.1, and assume the agent A1 represents a

fusion centre such that all the other agents can directly communicate with it, i.e.

∀ i = 2, . . . , k : {A1,Ai} ∈ E (4.1)

At every time step t ∈ N, all agents sends all the measurements to the fusion centre, where they

are combined into a single measurements vector z(t) ∈ Rm, affected by a combined observation

noise v(t) ∈ Rm with a covariance R = cov(v(t)) ∈ Rm×m, all defined as:

z(t) =


z1(t)

...

zk(t)

 v(t) =


v1(t)

...

vk(t)

 R =


R1 0 0

0
. . . 0

0 0 Rk

 (4.2)

where m =
∑k

i=1mi. The physical system is modelled using the standard linear discrete-time

system model from Definition 2.1:

x(t) = F x(t− 1) + w(t) (4.3)

z(t) = H x(t) + v(t) (4.4)

with a suitable F ∈ Rn×n and H ∈ Rm×n. Because all the necessary assumptions are satisfied,

the state of such a system can be estimated using the traditional Kalman filter, or any of its

variants, as described in Chapter 2. An example of a sensor network with a topology required

by the centralised Kalman filter is provided in Figure 4.2.

Although the centralised Kalman filtering approach described above provides optimal esti-

mates and it is very simple to understand and implement, it has several principal drawbacks

(Durrant-Whyte et al., 2001). First, the fusion centre represents a single point of failure of

the whole sensor network; if the agent A1 fails or loses a communication link from the other

agents, data fusion in the network halts. Second, the centralised approach does not scale to

large sensor networks, due to a limited communication bandwidth and computational resources

available to the fusion centre. Third, such an all-to-one communication pattern requires a cer-

tain global knowledge of the network topology and a complete connectivity in the network at
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Fig. 4.2: Sensor network in the centralised Kalman filter.

all times, which is difficult to achieve in many practical applications. These problems served

as a motivation for a development of several decentralised approaches to data fusion in sensor

networks, which are described in the following sections. The centralised approach serves well as

a benchmark in discussions of the quality of the estimates provided by other approaches.

4.2 Decentralised Kalman Filter

The issues associated with a presence of a single fusion centre in a sensor network can be

eliminated by decentralising the Kalman filter computation among all the nodes. This approach

was first proposed in (Durrant-Whyte et al., 1990), and it is referred to as the Decentralised

Kalman filter (DKF). The basic idea behind the DKF is that each node in the sensor network

maintains its own local estimate of the state of the physical system, not just the fusion centre. At

every time step, each node broadcasts its local observation to all the other nodes in the network,

and upon receiving such information from the other nodes, it is able to construct an optimal

global state estimate, which is numerically equivalent to a would-be estimate of a centralised

filter.

Formally, assume a non-switching sensor network G = (A, E) from Definition 4.1, which is

fully-connected, i.e.

∀ i, j ∈ {1, . . . , k} : {Ai,Aj} ∈ E (4.5)

Each node Ai models the global physical system locally as:

x(t) = F x(t− 1) + w(t) (4.6)

zi(t) = Hi x(t) + vi(t) (4.7)
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Fig. 4.3: Sensor network in the Decentralised Kalman filter.

where x(t) ∈ Rn denotes the system state vector at a time t, F ∈ Rn×n is the process model,

and w(t) ∈ Rn is the process noise with a covariance Q = cov(w(t)) ∈ Rn×n. The local

observation vector zi(t) ∈ Rmi is affected by an observation noise vi(t) ∈ Rmi with a covariance

Ri = cov(vi(t)) ∈ Rmi×mi , and its relation to the system state is given by a local observation

model Hi ∈ Rmi×n. An equivalent global system model would be defined as:

x(t) = F x(t− 1) + w(t) (4.8)

z(t) = H x(t) + v(t) (4.9)

where the observation vector z(t) ∈ Rm, the observation model H ∈ Rm×n, the observation

noise v(t) ∈ Rm, and the observation noise covariance R = cov(v(t)) ∈ Rm×m, respectively, are

composed of the local ones as:

z(t) =


z1(t)

...

zk(t)

 H =


H1

...

Hk

 v(t) =


v1(t)

...

vk(t)

 R =


R1 0 0

0
. . . 0

0 0 Rk

 (4.10)

andm =
∑k

i=1mi. An example of a sensor network with a topology required by the Decentralised

Kalman filter is provided in Figure 4.3.

The DKF estimates the state locally at every node using the Information filter, which enables

the nodes to assimilate observations from the other nodes into the local state estimate simply

by summation, as discussed in Section 2.3. Nevertheless, the use of the Information filter is a

mathematical convenience rather than a necessity; optimal estimates can also be obtained by the

conventional Kalman filter, although with a higher computational cost. Each node Ai represents

its state estimate at a time t using an information vector ŷi(t) ∈ Rn and an information matrix
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Yi(t) ∈ Rn×n, respectively, defined as:

ŷi(t) = P−1
i (t) x̂i(t) (4.11)

Yi(t) = P−1
i (t) (4.12)

where x̂i(t) ∈ Rn denotes a state estimate vector and Pi(t) ∈ Rn×n denotes the associated error

covariance matrix. In order to maintain the local state estimate in such a representation, the

node performs recursively the following steps:

1. Prediction

Given a local state estimate from the previous time step t − 1, represented using an

information vector ŷi(t − 1) and an information matrix Yi(t − 1), compute the a priori

state estimate at a time t, represented using an information vector ŷ−i (t) and information

matrix Y−i (t). This can be done either using the Information filter’s prediction step as

in Equations (2.27)-(2.30), or using the traditional Kalman filter prediction step with an

information form conversion as in Equations (2.37)-(2.38), i.e.

ŷ−i (t) = Y−i (t) F Y−1
i (t− 1) ŷi(t− 1) (4.13)

Y−i (t) =
[
F Y−1

i (t− 1) FT + Q
]−1

(4.14)

2. Observation broadcast

Send local observation information terms [HT
i R−1

i zi(t)] and [HT
i R−1

i Hi] (also called state

error info and variance error info, respectively) to all the nodes in the network.

3. Update

Compute the a posteriori state estimate by assimilating all the local observation infor-

mation terms received from the other nodes in the network, using the Information filter

update rule:

ŷi(t) = ŷ−i (t) +

k∑
j=1

HT
j R−1

j zj(t) (4.15)

Yi(t) = Y−i (t) +
k∑
j=1

HT
j R−1

j Hj (4.16)

The result represents a globally optimal state estimate, given all the observations up to

time t from all the sensor nodes.
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The basic DKF approach described above can be modified in a number of interesting ways.

For example, as suggested in (Durrant-Whyte et al., 1990), the nodes typically do not need to

model the full system state, but only a locally relevant part thereof, which enables the nodes

to only communicate appropriate parts of the observation information terms and thus save

communicational and computational resources. Consequently, the estimates can potentially be

computed faster in the DKF than in the case of the centralised Kalman filter, because each of

the nodes operates in parallel with potentially lower-dimensional matrices and vectors than a

fusion centre would. Furthermore, the DKF can be modified to enable the nodes to operate

asynchronously instead of synchronous time steps, which improves its applicability in real-world

data fusion problems (Rao et al., 1993). Also, as shown in (Grime and Durrant-Whyte, 1994),

the centralised and the decentralised Kalman filter approaches can be combined within a single

sensor network, for example, the sensor network can be organised hierarchically so that local

groups of nodes perform centralised estimation, and the decentralised estimation is only applied

among the local fusion centres.

Although the DKF eliminates the risk of a single-point failure inherent to the centralised

Kalman filter approach, it does not address the issue of scalability to a large number of sensor

nodes; in fact, the all-to-all communication pattern in the DKF is even more demanding on

the communication resources than the all-to-one pattern of the centralised approach. If the

optimality of estimates is not required, the DKF algorithm can be easily modified to limit the

raw measurement exchanges to nearby nodes only, e.g. to the 2-hop neighbourhood of the source

node (some-to-some communication pattern), and thus achieve the scalability. However, in such

a network, the accuracy of the local estimates might degrade to a level that is not acceptable

for practical applications, because sensor measurements will only have a limited spatial effect

(Grime et al., 1992).

4.3 Communication of Local Estimates

In order to increase the spatial reach of the sensor measurements and reduce the amount of data

communicated, the nodes might opt to communicate their local estimates instead of the raw sen-

sor measurements (i.e. transmit ŷ−i (t) and Y−i (t) instead of [HT
i R−1

i zi(t)] and [HT
i R−1

i Hi]).

Such a modification potentially leads to a truly distributed and scalable sensor fusion architec-

ture, which can be characterised as (Spanos and Murray, 2005):

• The network can have an arbitrary and dynamically changing topology.
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Fig. 4.4: Propagation of common past information in a sensor network.

• All the nodes maintain an optimal state estimate, there are no specialised fusion centres.

• The nodes only exchange a bounded number of messages with their local neighbours,

”flooding” of the network is not acceptable.

Unfortunately, a sensor network communicating local estimates instead of raw measurements

will become exposed to the common past information problem, which is best illustrated with

an example. Assume a fully-connected sensor network composed of three nodes, as depicted

in Figure 4.4, where each node estimates the state of a single physical process using its own

sensor measurements and using estimates communicated from the other nodes, which are also

considered as measurements in the update step of a node’s filter. Suppose node A sent its

estimate to node B, which used it to update its own estimate and subsequently sent this estimate

to node C, which also updated its own estimate. Now, if node C sends its estimate back to node

A, the node A cannot simply consider it as an independent measurement, because C’s estimate

is statistically dependent and correlated to A’s estimate - they share common past information.

If the node A ignored this correlation and used a conventional Kalman filter update rule, its

estimate would become overconfident, in the sense that the associated error covariance will be

”smaller” than the covariance of the true error, as formally defined in Section 2.2. Furthermore,

the problem would worsen with every subsequent repetition of such a communication cycle, and

eventually all the local estimates would converge to a wrong value even though potentially no

new observations were made.

The common past information problem is not limited to a situation where the nodes estimate

the state of the same physical process. As discussed in the previous section, for efficiency reasons

each node is motivated to only model as small a part of the system state as possible, typically

using only state variables that directly affect the node’s actions and variables required by the

observation model of the node’s sensors. Unfortunately, in certain applications, this comes at a

price that certain sensor measurements cannot be correctly interpreted given the node’s system
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model. The node then faces two options: either to ignore such measurements altogether and

thus degrade its estimation performance, or to reinterpret the observation using a system model

and an estimate maintained by another node. For example, in cooperative localisation, a vehicle

can only correctly interpret a measurement of its relative distance to a neighbouring vehicle if

it has a model of the neighbouring vehicle’s position. However, the vehicle can reinterpret the

distance measurement using a position estimate maintained by the neighbour vehicle, and thus

compute a virtual measurement indicating its own position. Unfortunately, the neighbouring

vehicle might have done the same thing in the past, and therefore such a virtual observation

might be already correlated to the local state estimate - once again, the nodes share common

past information.

Note that a node cannot easily augment its state estimate vector with new variables corre-

sponding to the previously unmodelled state variables that are communicated by another node,

because the cross-correlation between the ”old” and the ”new” state variables is generally not

known and therefore, the augmented state estimate’s covariance matrix cannot be reconstructed

in general. The reinterpretation of the measurements discussed above is actually equivalent to

assuming that such a cross-correlation is zero, which leads to the same common past information

problem. Generally speaking, there is an inherent trade-off between the scalability/flexibility of

a sensor network and the quality of the estimates computed therein: a sensor network can be

extremely scalable and flexible, but the estimates will either be inconsistent due to the common

past information problem, or they will have a poor accuracy due to the limited spatial reach

of the sensor measurements. The data fusion approaches discussed in the following sections

represent various compromises to such a trade-off.

4.4 Channel Filters

In order to perform a consistent state estimation in a sensor network where the nodes commu-

nicate estimates instead of raw sensor measurements, the nodes need to have some means to

eliminate common past information from the data received from other nodes. In tree-connected

networks, there is just one communication path between any two nodes, and therefore it is pos-

sible to keep track of common past information shared between every pair of neighbouring nodes

simply by monitoring information exchanged through the communication channel between the

two, using a so-called Channel filter, first introduced in (Grime et al., 1992). Whenever a node

receives a state estimate from a neighbouring node, the common past information maintained
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Fig. 4.5: Sensor network in the Channel filters approach.

by the Channel filter corresponding to the communication channel is eliminated from the com-

municated estimate, and thus the estimate can then be regarded as a measurement affected by

a white noise. Using this approach, each node can maintain a globally optimal and consistent

state estimate, equivalent to a would-be centralised estimate, up to an inherent communication

delay. With the information form of the local filter equations, the resulting data fusion system

is surprisingly simple. An example of a sensor network with a topology required by the Channel

filters approach is provided in Figure 4.5.

Formally, assume a non-switching sensor network G = (A, E) as in Definition 4.1, and assume

that the network is tree-connected, i.e. there exists exactly one simple (without repeating nodes)

undirected path between any two nodes. As in the case of the Decentralised Kalman filter

described in Section 4.2, each node Ai models the physical system locally as:

x(t) = F x(t− 1) + w(t) (4.17)

zi(t) = Hi x(t) + vi(t) (4.18)

and it represents an estimate of the system state at a time t using an information vector ŷi(t) ∈

Rn and an information matrix Yi(t) ∈ Rn×n. In the Channel filters approach the node performs

recursively the following steps in order to maintain such an estimate:

1. Prediction

Given a local state estimate from the previous time step t − 1, represented using an

information vector ŷi(t − 1) and an information matrix Yi(t − 1), compute the a priori

state estimate, represented as an information vector ŷ−i (t) ∈ Rn and information matrix
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Y−i (t) ∈ Rn×n, using the standard Kalman filter prediction rule:

ŷ−i (t) = Y−i (t) F Y−1
i (t− 1) ŷi(t− 1) (4.19)

Y−i (t) =
[
F Y−1

i (t− 1) FT + Q
]−1

(4.20)

2. Local update

Update the a priori estimate using a local observation zi(t) ∈ Rmi to obtain a partial

estimate using the Information filter update rule:

ỹi(t) = ŷ−i (t) + HT
i R−1

i zi(t) (4.21)

Ỹi(t) = Y−i (t) + HT
i R−1

i Hi (4.22)

3. Channel data exchange

Suppose there is a neighbouring node Aj , and the Channel filter corresponding to the

communication channel between Ai and Aj has an estimate of the common past informa-

tion shared between the two nodes at the previous time step t − 1, represented using an

information vector ŷij(t − 1) ∈ Rn and an information matrix Yij(t − 1) ∈ Rn×n. The

Channel filter first propagates the common past information estimate to the current time

step, for example, using the standard Kalman filter prediction rule as:

ŷ−ij(t) = Y−ij(t) F Y−1
ij (t− 1) ŷij(t− 1) (4.23)

Y−ij(t) =
[

F Y−1
ij (t− 1) FT + Q

]−1
(4.24)

The nodes Ai and Aj then exchange their local partial estimates, and the Channel filter

uses this data to update the common past information estimates as:

ŷij(t) = ỹi(t) + ỹj(t) − ŷ−ij(t) (4.25)

Yij(t) = Ỹi(t) + Ỹj(t)−Y−ij(t) (4.26)

Note that all the operations performed in this step are symmetric for both the nodes Ai

and Aj , and they need to be repeated for every neighbouring node.

4. Final update

Compute the final a posteriori state estimate using all the partial estimates received from

the neighbouring nodes, and the common past information estimates provided by the
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respective Channel filters as:

ŷi(t) = ỹi(t) +
∑
j∈Ni

(
ỹj(t) − ŷ−ij(t− 1)

)
(4.27)

Yi(t) = Ỹi(t) +
∑
j∈Ni

(
Ỹj(t)−Y−ij(t− 1)

)
(4.28)

where Ni denotes a set of neighbouring nodes’ indices. The result represents a globally

optimal state estimate, given all the observations from all the sensor nodes in the network

that could have been received by the node Ai up to time t, considering the network

topology and the inherent time delay caused by message forwarding.

The simplicity of the Channel filters’ equations stems from the fact that assimilation of

information terms into an estimate is an associative operation (addition). However, Channel

filters are not at all limited to the Information filter or even Gaussian probability distributions,

and the core principle can be applied with other probability distributions representations, for

example, in the context of particle filters (Ong et al., 2006). Although the Channel filters

algorithm described above assumes that all the nodes operate in synchronous time steps, the

algorithm can be easily modified to a fully asynchronous operation (Grime and Durrant-Whyte,

1994).

As discussed in (Durrant-Whyte et al., 2001), Channel filters have two important character-

istics. First, every node only communicates with each of its neighbours once per local sensor

observation cycle and therefore, the number of messages sent by every node is bounded regard-

less of the network topology beyond the single-hop neighbourhood, enabling the network to

scale indefinitely. Second, if a communication link between two nodes is temporarily broken,

the Channel filter can suspend and resume its operation without any loss of data.

The main drawback of the Channel filters approach is the requirement for the time-invariant

tree-connected network topology, which makes the approach unsuitable to dynamic environments

and mobile nodes. Additionally, if a communication link between two nodes or a node itself fails

indefinitely, the recovery of the data fusion operation without discarding the current estimates

is a non-trivial problem. (Dodin and Nimier, 2002) presents a method addressing this problem,

which effectively extends the Channel filters approach to networks where the number of paths

between two nodes is greater than one.
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4.5 Kalman Consensus Algorithms

The problem of reaching a common state estimate by nodes in a sensor network can be viewed

as the well-known problem of reaching a consensus in a distributed system (Lynch, 1996). This

problem can be illustrated using the following example (Ren et al., 2004). Assume a group of

friends trying to schedule a dinner. The venue of the dinner is known in advance but the time

is not, and as usual, every person has their own time preference. A centralised solution of this

meet-for-dinner problem would be to make a conference call between all the people, and agree on

a specific time. Unfortunately, the people only have phones that allow them to talk to a single

person at a time, and also some people do not have each others’ number. In this situation,

the dinner can be scheduled by applying the average consensus strategy, in which each person

repeatedly calls to several other people, and simply averages their time preferences, and uses

that average as her new time preference. If all the people apply this strategy, and there are no

complete strangers in the group, each person’s time preference will eventually converge towards

a single consensual value. Additionally, if some people have a stronger preference on the time

of the dinner than others, the strategy can be modified to consider a weight of the preferences,

leading to the so-called weighted-average consensus algorithm. This very strategy can be applied

in a sensor network, enabling the nodes to reach a consensual state estimate. If the weight factors

are based on the uncertainty (covariance) associated with the communicated estimates, such an

algorithm is called a Kalman Consensus algorithm, or a Distributed Kalman filter. Generally

speaking, it is rather straightforward to design a Kalman Consensus algorithm that guarantees,

under certain assumptions, that all the nodes converge to a single state estimate. However, the

algorithm also needs to guarantee that the local estimates are consistent, not affected by the

common past information, and that they are close enough to the optimal would-be centralised

state estimate, after a short enough time. These are the main concerns addressed by various

Kalman Consensus algorithms that have been described in the literature, several of whom will

be reviewed in the following sections. For clarity of explanation, the algorithms are split into

two principal classes, depending whether or not the underlying dynamical system changes its

state over time.

4.5.1 Static Systems

A static system is a special case of the linear discrete-time dynamical system from Definition 2.1,

in which the system state x ∈ Rn is constant over time. Moreover, the system is only observed
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once by each of the nodes in the sensor network, a node Ai models such an observation as:

zi = Hi x + vi (4.29)

where zi ∈ Rmi denotes the sole observation, Hi ∈ Rmi×n is an observation model, vi ∈ Rmi is an

observation noise with a covariance Ri = cov(vi) ∈ Rmi×mi , and mi denotes the dimension of the

local observation. The static system enables a simpler design of the Kalman Consensus algorithm

than in the case of a general dynamical system. Similarly to other data fusion algorithms

presented in this chapter, the Kalman Consensus algorithms can be conveniently described in

the context of the Information filter. Suppose the state estimate available to a node Ai at a

time t is represented using a so-called composite information vector ŷi(t) ∈ Rn and a composite

information matrix Yi(t) ∈ Rn×n for i = 1, . . . , k. At time t = 0, the node initialises the

estimate using the sole observation as:

ŷi(0) = HT
i R−1

i zi (4.30)

Yi(0) = HT
i R−1

i Hi (4.31)

The Kalman Consensus algorithm performs recursively the following computation:

ŷi(t+ 1) = Wii(t) ŷi(t) +
∑

j∈Ni(t)

Wij(t) ŷj(t) (4.32)

Yi(t+ 1) = Wii(t)Yi(t) +
∑

j∈Ni(t)

Wij(t)Yj(t) (4.33)

where Wij(t) ∈ R are weight coefficients. Various algorithms adopt various strategies to assign

these weight coefficients. For example, (Xiao et al., 2005) suggests to use the so-called Metropolis

weights defined as:

Wij(t) =



1

1 + max{di(t), dj(t)}
if {i, j} ∈ E(t)

1−
∑

l∈Ni(t)

Wil(t) if i = j

0 otherwise

(4.34)

where di(t) = |Ni(t)| denotes the degree (number of neighbours) of a node. The Metropolis

weights have a notable property that they do not depend on any global knowledge of the net-

work, not even the total number of nodes k. Nevertheless, other weighting schemes have been

proposed in the literature with different convergence and topology characteristics, for example,

the maximum-degree weighting scheme also described in (Xiao et al., 2005), or a similar scheme
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developed in the (Alighanbari and How, 2006)’s extension of the Kalman Consensus algorithm

from (Ren et al., 2005).

Note that the composite information vector and matrix do not represent the ”real” state

estimate per se, but their combination Yi(t)
−1 ŷi(t) already does, and an algebraic expression

of the corresponding error covariance also exists. Assuming that the infinitely occurring commu-

nication graphs are jointly connected, it can be proven that the local state estimate converges

to the centralised globally-optimal state estimate over time, i.e.

lim
t→∞

Yi(t)
−1 ŷi(t) =

(
k∑
i=1

HT
i R−1

i Hi

)−1( k∑
i=1

HT
i R−1

i zi

)
(4.35)

The algorithm also provides reasonable intermediate state estimates before the convergence,

which are guaranteed to be unbiased (considering the communication graph as a random vari-

able). Unfortunately, this does not imply that the intermediate estimates are consistent and not

affected by the common past information problem.

4.5.2 Dynamic Systems

A Kalman Consensus algorithm for dynamical systems can be developed from an algorithm for

static systems, such as the one described in the previous section, simply by combining it with the

traditional Kalman filter, as shown in (Spanos and Murray, 2005). In such an algorithm, every

iteration of the Kalman filter is interlaced with l iterations of the consensus algorithm. For l = 0

the algorithm is effectively just a set of local non-communicating Kalman filters, for l→∞ the

algorithm provides globally optimal state estimates, and for any other l > 0, the algorithm only

provides approximate estimates, with no guarantee on their consistency. Although the quality

of the estimates can be partially improved if the Kalman gains and the consensus weights are

computed together and not independently of each other, in particular if l is low, as shown in

(Carli et al., 2008), such a modification still does not guarantee consistency of the intermediate

estimates.

An alternative Kalman Consensus algorithm has been proposed in (Olfati-Saber, 2009), in

which the neighbouring nodes exchange not only their state estimates, but also the raw sensor

observations from the current time step. The communicated estimates are added to the local

estimate with weights derived purely from their covariance. However, although this algorithm

is scalable and, under certain assumptions, it is also stable and eventually reaches a consensus,

the resulting estimates are only approximate and their consistency is also not guaranteed. The
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author of the paper argues that a modification of the algorithm to guarantee the optimality of

the estimates requires an O(k2) computation on every node at every step, making the algorithm

not scalable to larger sensor networks.

Another sub-optimal Kalman Consensus algorithm was proposed in (Alriksson and Rantzer,

2006). However, this algorithm has two key weaknesses that make it inapplicable to many

practical problems. First, the weights need to be precomputed off-line, which means that the

network topology and sensor parameters (covariances) must be constant over time. Second, the

nodes have no means to compute covariances of their current estimates.

4.5.3 Discussion

The Kalman Consensus algorithms represent a robust and scalable approach to data fusion

in distributed sensor networks. Theoretical properties of these algorithms have been studied

extensively in the context of spectral graph theory, with the main result that the speed of

convergence of local estimates is proportional to the algebraic connectivity of the sensor network,

which is characterised by the second smallest eigenvalue of the Laplacian matrix of the network

graph (Olfati-Saber et al., 2007). Also, there is an inherent trade-off between the accuracy of

the estimates and the number of iterations of the consensus algorithm. Unfortunately, Kalman

Consensus algorithms in general only guarantee consistency of the estimates in the limit of an

infinite number of iterations; for intermediate estimates there are typically no such guarantees,

which makes an application of these algorithms problematic in the context of safety-critical

systems. On the other hand, the new CPI-EnKF and Augmented EnKF update rules developed

in this thesis can also be applied in arbitrary sensor networks, while the level of consistency

of its estimates at any time only depends on the configurable number of Monte Carlo samples

used to represent the estimates, and not the topology of the network as in the case of Kalman

Consensus algorithms.

4.6 Covariance Intersection

All of the approaches to the problem of state estimation in the presence of cross-correlations

between the errors associated with the a priori state estimate and the observation that have

been described so far in this thesis operate in the context of the optimal Kalman filtering

framework. In other words, these approaches attempt to provide statistically optimal state

estimates given all the available sensor observations, which often comes at a price of a limited
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applicability due to overly restrictive assumptions, non-scalable computational requirements, or

inconsistent intermediate estimates. The Covariance Intersection (CI) algorithm, first described

in (Uhlmann, 1995) and (Julier and Uhlmann, 1997a), is an elegant approach that addresses

such an estimation problem from an entirely different perspective, as it assumes that the cross-

correlations are present but unknown, and it provides estimates that are nevertheless consistent

and optimal with respect to some other metric, such as the trace or determinant of the estimate’s

covariance matrix.

In the literature, the CI is typically described as an algorithm operating with estimates of

arbitrary random vectors, unrelated to the Kalman filter. However, owing to the topic of this

thesis, the CI will be described as an alternative to the standard Kalman filter update rule

that is applicable in the case of an unknown cross-correlation between the state estimate error

and the observation noise, using the same notation as elsewhere in this chapter. Moreover, the

definition of the CI below is based on the information form of the Kalman filter, which leads to

a simpler and more comprehensible set of equations.

Definition 4.2 (Covariance Intersection). Suppose a physical system is modelled as a linear

discrete-time dynamical system from Definition 2.1. Furthermore, suppose the a priori estimate

of the system state and an associated Gaussian error are represented using an information

vector ŷ(t) ∈ Rn and information matrix Y(t) ∈ Rn×n, respectively. An observation z(t) ∈ Rm

is related to the physical system using an observation model H ∈ Rm×n, and it is affected by an

observation noise with a covariance R ∈ Rm×m. The state estimate error and the observation

noise are assumed correlated, but the exact correlation is unknown. In such a system, an a

posteriori state estimate and an associated error, represented as an information vector ŷ(t) ∈ Rn

and an information matrix Y(t) ∈ Rn×n, respectively, can be computed using the following

equations:

ŷ(t) = ω ŷ−(t) + (1− ω) HT R−1 z(t) (4.36)

Y(t) = ωY−(t) + (1− ω) HT R−1 H (4.37)

where ω ∈ [0, 1] is a free parameter.

The name of the algorithm stems from a geometrical interpretation of the CI equations. As

illustrated in Figure 4.6, a confidence region associated with the output estimate’s covariance al-

ways encompasses the intersection of the confidence regions associated with the input estimate’s

covariances. The weight parameter ω ∈ [0, 1] only affects the shape of the confidence region. If
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Fig. 4.6: Covariance Intersection algorithm. In this example, H is an identity matrix.

ω = 1 then the output a posteriori estimate equals to the input a priori state estimate, and

symmetrically, if ω = 0 then it equals to the input observation. The CI algorithm assumes that

all the probability distributions involved are Gaussian, however, note that a generalisation to

arbitrary probability distributions has been recently proposed in (Bailey et al., 2012).

Although the CI update rule provides a consistent state estimate regardless of the choice of

the parameter ω ∈ [0, 1], naturally one wants to choose a value that provides an optimal a poste-

riori estimate with respect to some metric on the associated covariance matrix Y(t)−1, typically

a value that minimises its trace or determinant. If the cost function is convex with respect to

the parameter ω, there is a single distinct optimal value of the parameter. Unfortunately, for

determinant and trace, there is no closed-form formula that provides the optimal value ω, and

therefore an additional non-linear optimisation step needs to be performed, using an iterative

algorithm such as the Newton-Raphson method or the gradient descent. Note that a poor choice

of ω can lead to an estimate that is ”worse” than any of the input estimates, causing the filter

to diverge. The complexity associated with the computation of the optimal value of parameter

ω led to development of several fast non-iterative approximations. For example, (Niehsen, 2002)

suggests to use the following simple expression for ω:

ω =
tr(R)

tr(Y−(t)−1) + tr(R)
(4.38)

where tr(A) denotes the trace of a matrix A. Alternatively, a slightly more involved formula

for ω based on information matrices rather than the covariances is provided in (Fränken and

Hüpper, 2005).
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Similarly to the update rule of the original Information filter described in Equations (2.34)-

(2.35), the CI update rule can be easily extended to an arbitrary number k of sensor observations

available at a time t as:

ŷ(t) = ω0 ŷ−(t) +

k∑
i=1

ωi H
T
i R−1

i zi(t) (4.39)

Y(t) = ω0 Y−(t) +
k∑
i=1

ωi H
T
i R−1

i Hi (4.40)

where the weight parameters are such as that
∑k

i=0 ωi = 1, and the respective observations

zi(t) ∈ Rmi are characterised by an observation model Hi ∈ Rmi×n and a covariance matrix

Ri = cov(zi(t)) ∈ Rmi×mi .

The CI update rule can be used as a building block for a general and scalable data fusion

algorithm for arbitrary sensor networks, as it has been described in (Julier and Uhlmann, 2001a).

Assume a switching sensor network G(t) = (A, E(t)) as in Definition 4.1. Each node Ai models

the physical system locally as:

x(t) = F x(t− 1) + w(t) (4.41)

zi(t) = Hi x(t) + vi(t) (4.42)

where zi(t) ∈ Rmi is a local observation, whose relation to the global system state is given by an

observation model Hi ∈ Rmi×n, and which is affected by a local observation noise vi(t) ∈ Rmi

with covariance Ri = cov(vi(t)) ∈ Rmi×mi . The node represents an estimate of the system state

at a time t using an information vector ŷi(t) ∈ Rn and an information matrix Yi(t) ∈ Rn×n. In

order to maintain such an estimate, each node recursively performs the following steps:

1. Prediction

Given a local state estimate from the previous time step t − 1, represented using an

information vector ŷi(t − 1) and an information matrix Yi(t − 1), compute the a priori

state estimate, represented as ŷ−i (t) ∈ Rn and Y−i (t) ∈ Rn×n, using the prediction step of

the standard Kalman filter:

ŷ−i (t) = Y−i (t) F Y−1
i (t− 1) ŷi(t− 1) (4.43)

Y−i (t) =
[
F Y−1

i (t− 1) FT + Q
]−1

(4.44)

2. Temporary update

71



Assimilate a local observation zi(t) ∈ Rmi into the a priori estimate to obtain a temporary

estimate, represented as an information vector ỹi(t) ∈ Rn and information matrix Ỹi(t) ∈

Rn×n, using the update step equations of the Information filter:

ỹi(t) = ŷ−i (t) + HT
i R−1

i zi(t) (4.45)

Ỹi(t) = Y−i (t) + HT
i R−1

i Hi (4.46)

3. Communication

Send the temporary estimate (ỹi(t), Ỹi(t)) to all neighbouring nodes, and receive their

temporary estimates {(ỹj(t), Ỹj(t)) | j ∈ Ni(t)} in return. Recall that Ni(t) denotes a set

of indices of neighbours of a node Ai at a time t.

4. Final update

Compute the final a posteriori state estimate by assimilating the neighbours’ temporary

estimates (considered as observations) and the local sensor observation zi(t) into the a

priori state estimate. Since the temporary estimates of the neighbours might be correlated

to the local a priori estimate, they need to be assimilated using the CI update rule, while

the sensor observation is affected by a white Gaussian noise and hence it can be assimilated

using the update rule of the Information filter. Both these operations can be combined

into a single update rule:

ŷi(t) = ω0 ŷ−i (t) +
∑

j∈Ni(t)

ωj ỹj(t) + HT
i R−1

i zi(t) (4.47)

Yi(t) = ω0 Y−i (t) +
∑

j∈Ni(t)

ωj Ỹj(t) + HT
i R−1

i Hi (4.48)

where the weight parameters are such that
∑

j∈{0}∪Ni(t)
ωj = 1 and their value is to be

optimised as discussed previously.

The CI-based data fusion algorithm described above is guaranteed to provide consistent

state estimates at any time. Note that the algorithm is somewhat similar to the Channel filters

algorithm described in Section 4.4. The principal difference between the two is that the CI-based

algorithm does not make any assumptions on the network topology - the communication links

can change over time, the network might contain cycles, and nodes can join and leave it at any

time. The algorithm will also work with unidirectional communication links, and all the nodes

can operate asynchronously. Additionally, the algorithm can be easily modified so that each

node employs a different model of the system.
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The CI update rule represents an optimal strategy to update a state estimate using an

observation, assuming the correlation between their errors is not known. However, if there

is a certain knowledge about the correlation, the CI no longer represents an optimal fusion

strategy. Suppose that both the a priori state estimate error and the observation error can be

split into two components: a known independent error component and a potentially correlated

error component. The CI algorithm has no means to take advantage of such a knowledge and

therefore it would provide sub-optimal state estimates. This deficiency lead to the development

of the so-called Split Covariance Intersection (Split CI) algorithm, first published in (Julier and

Uhlmann, 2001a) and (Julier and Uhlmann, 2001b), which combines and, in fact, generalises

both the CI update rule and the traditional Kalman filter update rule.

Definition 4.3 (Split Covariance Intersection). Suppose a physical system is modelled as a

linear discrete-time dynamical system from Definition 2.1. Furthermore, suppose the a priori

state estimate x̂−(t) ∈ Rn at a time t has a Gaussian error which can be split into a correlated

and independent Gaussian component, with covariances P−C(t) ∈ Rn×n and P−I (t) ∈ Rn×n,

respectively. Similarly, the Gaussian noise affecting the observation z(t) ∈ Rm can be split

into a correlated and independent Gaussian component with covariances RC ∈ Rm×m and

RI ∈ Rm×m, respectively. The exact correlation between the a priori state estimate error and

the observation noise is not known. In such a system, an a posteriori state estimate x̂(t) ∈ Rn

and an associated error covariance P(t) ∈ Rn×n can be computed using the following equations:

x̂(t) = P(t)
[
A−1 x̂−(t) + HT B−1 z(t)

]
(4.49)

P(t) =
[
A−1 + HT B−1 H

]−1
(4.50)

PC(t) = P(t)−PI(t) (4.51)

PI(t) = P(t)
[
A−1 P−I (t) A−1 + HT B−1 RI B−1 H

]
P(t) (4.52)

A−1 = ω
[
P−C(t) + ωP−I (t)

]−1
(4.53)

B−1 = (1− ω) [ RC + (1− ω) RI ]−1 (4.54)

where ω ∈ [0, 1] is a free parameter. Note that A−1 and B−1 are time-varying matrices, and

hence they should rather be denoted A−1(t) and B−1(t), respectively, but the shorter notation

makes the equations more readable. The resulting estimate’s error is also split into a corre-

lated and independent component, with covariances PC(t) and PI(t), respectively, enabling

application of the Split CI algorithm in a recursive filter.
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Similarly to the case of the basic CI update rule, the optimal value of the parameter ω

needs to be computed using a separate non-linear optimisation algorithm, with respect to some

cost function on the resulting estimate. Also, the Split CI can be easily extended to more

observations, and it can be used as a building block of a general scalable data fusion algorithm

applicable in sensor networks, similar to the one described above. However, the details are

beyond the scope of this thesis.

The versatility of the (Split) CI algorithm comes at a price that the estimates are typically

overpessimistic when compared to the theoretically optimal estimates. From its nature, the

algorithm does not guarantee convergence of the uncertainty associated with the estimates to

zero. Also, the additional non-linear optimisation step required to compute correct weight

parameters represents an additional technical and computational overhead. The new CPI-EnKF

and Augmented EnKF algorithms developed in this thesis aim to provide an equally versatile

update rule as the CI algorithm, but one that provides (asymptotically) optimal estimates and

ensures convergence.

4.7 Graphical Models

The problem of common past information in sensor networks has also been studied in the

context of Bayesian networks (McLaughlin et al., 2004; Brehard and Krishnamurthy, 2007), and

from the perspective of information flow in graphs analysed using so-called graphical models

(Chong and Mori, 2004; McLaughlin et al., 2005; Cetin et al., 2006). Generally speaking, these

approaches employ various means to organise the data flow in the network, including stamping

and monitoring of the messages, in order to keep track of any dependency and common past

information. Some of the approaches also go beyond the Kalman filter as they support non-

Gaussian probability distributions. However, these methods are rather application-specific and

they do not provide a generally applicable update rule operating in the presence of correlations

between state estimate errors and observation errors, which is the primary concern of this thesis,

and therefore the methods will not be described in detail.

4.8 Chapter Summary

This chapter discussed the state-of-the-art approaches to linear state estimation in sensor net-

works. These can be divided into two groups. The first group of approaches, the centralised
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Kalman filter and the Decentralised Kalman filter, avoids the common past information problem

by communicating raw sensor measurements. Although these methods provide globally-optimal

state estimates, they are not scalable to larger sensor networks. On the other hand, the ap-

proaches in the second group communicate local state estimates instead of raw sensor measure-

ments, and thus are affected by the common past information problem, which causes correlation

between the errors associated with state estimates and observations. Although these approaches

can be scaled to arbitrarily large sensor networks, they have other limitations. Channel filters

are limited to a tree-connected topology, Kalman Consensus algorithms provide no guarantees of

consistency of intermediate local estimates, and the CI is overpessimistic. The new CPI-EnKF

and Augmented EnKF update rules developed in this thesis, which will be presented in Chap-

ter 5, facilitate distributed data fusion algorithms that are scalable to arbitrary large sensor

networks, provide consistent state estimates and have better accuracy than the CI algorithm.
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Chapter 5

Correlations and the Ensemble

Kalman Filter

This chapter presents the main contribution of this thesis - generalisation of the Ensemble

Kalman Filter (EnKF) to estimation problems characterised by correlated noises or common

past information. As will be demonstrated, the prediction step of the EnKF requires only a few

modifications in order to support an arbitrary correlation in the process noise, and therefore

the problem of generalisation reduces to providing a generalised EnKF update rule that can

operate in the presence of correlations between the state estimate errors and the observation

errors. In this chapter, three such update rules are derived leading to the following three filters:

the Generalised EnKF, the Common Past-Invariant EnKF (CPI-EnKF) and the Augmented

EnKF. Each of the rules is based on different presumptions, and their practical applicability to

various correlated estimation problems is evaluated in Chapter 6. Note that the new update

rules are not exclusive to the EnKF and in theory they are applicable to any other variant of

the Kalman filter. However, all of these rules require an estimate of the covariance between the

state estimate error and the observation error, which in general cannot be provided analytically

and therefore, they are only applicable in the context of the EnKF where the covariance can be

estimated from Monte Carlo samples. To the best of the author’s knowledge, the work presented

here is the only existing attempt to leverage the properties of Monte Carlo samples in the EnKF

to address the problem of correlation.
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5.1 Correlations in the Prediction Step

Recall Definition 2.6 of the non-linear discrete-time dynamical system model:

xt = f( xt−1 ) + wt (5.1)

zt = h( xt ) + vt (5.2)

where xt ∈ Rn denotes the true system state at a time t, the functions f : Rn → Rn and

h : Rn → Rm represent the process and observation models, respectively, and wt ∈ Rn and

vt ∈ Rm are random vectors representing the process and observation noises, with covariances

Q = cov(wt) ∈ Rn×n and R = cov(vt) ∈ Rm×m, respectively. The prediction step of the EnKF,

as in Definition 2.10, is performed using the following equations:

X−t = f( Xt−1 ) + Wt (5.3)

Wt = [ w1
t , . . . ,w

N
t ] (5.4)

where the ensemble Xt−1 ∈ Rn×N represents the state estimate from the previous time step

t − 1, and the ensemble X−t ∈ Rn×N represents the a priori state estimate at the time step t.

The additive ensemble Wt ∈ Rn×N is composed of random Monte Carlo samples, whose purpose

is to reflect the error, introduced by the process noise term wt in the true state xt, to the a

priori estimate X−t of that state. In the further text, such an ensemble Wt will be called a noise

compensation ensemble. In order to ensure the estimate X−t is correct (i.e. it is consistent and

exact, in the limit of an infinite ensemble), the random samples w1
t , . . . ,w

N
t ∈ Rn composing

the ensemble Wt must be generated using a suitable random number generator in harmony with

the statistical properties of the process noise, in particular ensuring that:

E[Wt] ' 0 (5.5)

cov(Wt) ' Q (5.6)

Assuming that the process noise sequence {wt} is white and independent, as in Definition 2.3,

the random samples w1
t , . . . ,w

N
t must be generated independently of each other and of any

other samples generated previously, which can be expressed as follows:

wi
t ← N (0,Q) (5.7)

for every i = 1, . . . , N .

As will be shown in the following text, such a sampling scheme can be extended in order

to support correlation in the process noise. In principle, the samples need to be generated in a
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way that simulates such a correlation. For example, suppose the process noise sequence {wt} is

sequentiality correlated as discussed in Section 3.2, with the following property:

wt = Ψ wt−1 + εt−1 (5.8)

where Ψ ∈ Rn×n is an auto-correlation coefficient matrix and the sequence {εt} is a white

noise process with a time-invariant covariance Σ = cov(εt) ∈ Rn×n. In order to guarantee the

correctness of the a priori estimate X−t , the random samples w1
t , . . . ,w

N
t need to be generated

from the previous random samples w1
t−1, . . . ,w

N
t−1 using the following rule:

wi
t ← Ψ wi

t−1 + N (0,Σ) (5.9)

for every i = 1, . . . , N .

Similarly, if there is a type II correlation between the process noise sequence {wt} and the

observation noise sequence {vt}, as provided in Definition 3.2, with the following property:

cov(wi,vj−1) =

 C i = j

0 i 6= j
(5.10)

then the random samples w1
t , . . . ,w

N
t need to be generated in such a way that the ensemble

Wt is correlated to the previous observation ensemble Zt−1 = [z1
t−1, . . . , z

N
t−1] ∈ Rm×N (see

Section 2.6) as:

cov( Wt, Zt−1 ) ' C (5.11)

This can be done by generating the samples w1
t , . . . ,w

N
t and z1

t−1, . . . , z
N
t−1 together using a

single random sampling scheme: zit−1

wi
t

 ← N
 zt−1

0

 ,
 R CT

C Q

 (5.12)

for every i = 1, . . . , N .

Note that the prediction step of the EnKF can accommodate virtually any type of correlation

in the process noise, including a higher-order sequential correlation or a higher-order cross-

correlation with the observation noise. This is only limited by the assumption that the random

samples of Wt can be generated in such a way that they reflect the statistical properties of

the process and observation noises. This property stems from the nature of the Monte Carlo

method, the fact that each ensemble member is processed independently of other members, and

the fact that the order of ensemble members is given and fixed. From a theoretical perspective,
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the ensemble prediction is equivalent to solving the Fokker-Planck equation using a Markov

Chain Monte Carlo (MCMC) method, which is used to prove its validity (Evensen, 2009).

The idea to apply the Monte Carlo method in order to simulate an evolution of a (sequentially

correlated) stochastic process is not novel. However, formalisation of this concept in the context

of the EnKF is novel, and it is also a necessary prerequisite for development of other methods

presented later in this chapter. Note that the requirement of a fixed order of ensemble members is

extremely important. For example, consider a situation where the samples of Wt were generated

correctly according to a statistical model of the noises, but then the order of the samples in

the ensemble Wt was randomly reshuffled. As such, the ensemble Wt would effectively lose

information about its correlation to the ensemble Xt−1, and the EnKF prediction step would

produce an inconsistent estimate. In other words,

The correlation information is encoded in the order of ensemble members.

It is important to note that the EnKF prediction step with a correlated process noise com-

pensation ensemble discussed in this section provides optimal a priori estimates only if the

filter performs no update step. In order to achieve optimality in a standard filter, the recursive

noise compensation ensemble needs to be subject to the update operation of the filter. In other

words, if the noise compensation ensemble Wt is generated recursively from the previous en-

semble Wt−1, for example, using the rule from Equation (5.9), then Wt needs to be included in

the system state ensemble, so that it is also updated by the filter, leading to an updated noise

compensation ensemble W+
t . In the subsequent prediction step, the ensemble Wt+1 must be

generated from such an updated ensemble W+
t instead of the original noise compensation en-

semble Wt. Note that this is formally equivalent to the state augmentation procedure described

in Section 3.2. There is, however, an important difference that in the context of the EnKF, the

a priori estimate will be consistent even if the system state was not augmented with the noise

compensation ensemble. This feature is advantageous for applications with high-dimensional

state spaces, which cannot afford the performance penalty associated with the state augmen-

tation procedure. Note that a numerical analysis of the points discussed in this paragraph is

available in Section 6.3.1.

Although the treatment of correlations in the prediction step of the EnKF using the frame-

work outlined in this section is very straightforward, the same treatment of correlations is not

exactly possible in the case of the update step of the EnKF. In the update step, the ensemble

members are not processed independently of each other, because the Kalman gain applied to
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each of the ensemble members depends on the collective property of all the ensemble members -

their covariance. Therefore, the problem of correlation in the update step requires more involved

methods, which will be described in the following sections.

5.2 Correlations in the Update Step

Recall that the update step of the EnKF, as given in Definition 2.10, is performed using the

following equations:

Xt = X−t + Kt

(
Zt − h(X−t )

)
(5.13)

Kt = cov
(
X−t , h(X−t )

)
[ cov(h(X−t )) + R ]−1 (5.14)

For brevity, however, this chapter will adopt a slightly different notation of the update rule.

Firstly, the time indices in the observation ensemble Zt and the Kalman gain Kt will be dropped,

the a priori state estimate ensemble X−t denoted simply as X, and the a posteriori state estimate

ensemble Xt as X+. Secondly, the observation model h will be assumed linear, enabling a

substitution HX = h(X). Note that this is a standard assumption in all the EnKF-related

proofs, as discussed in Section 2.6. And finally, the observation ensemble Zt does not necessarily

need to be generated by a random sampling scheme from a single observation vector zt, leading to

a substitution cov(Z) ' R. The last modification makes the update rule applicable in situations

where the observations are already represented using ensembles, such as in sensor networks in

which the communicated state estimates are treated as observations. All these modifications

combined result in the following simplified EnKF update rule:

X+ = X + K( Z−HX ) (5.15)

K = cov(X,HX) [ cov(HX) + cov(Z) ]−1 (5.16)

where

X ∈ Rn×N (a priori state estimate ensemble)

X+ ∈ Rn×N (a posteriori state estimate ensemble)

Z ∈ Rm×N (observation ensemble)

H ∈ Rm×n (observation model)

K ∈ Rn×m (Kalman gain factor)

From a theoretical perspective, the new update rule is equivalent to the original EnKF update

rule, as it ensures optimality of the a posteriori state estimate, in the limit of an infinite ensemble

80



and given all the standard assumptions, as discussed in Section 2.6. In particular, the assumption

that the process noise sequence {wt} and the observation noise sequence {vt} are both white

and independent, as in Definition 2.3, implies the following assumption:

cov( X, Z ) ' 0 (5.17)

However, if the observation ensemble Z is generated from a single physical observation zt ∈

Rm using a random sampling scheme, as described in Section 2.6, and there is some form of

correlation in the observation noise sequence {vt}, such as a first-order sequential correlation

discussed in Section 3.3, or the type I cross-correlation between the process and observation

noise sequences discussed in Section 3.1, the random samples of Z must be generated in a way

that simulates such correlations, in very much the same way as in the case of correlations in

the process noise as discussed in Section 5.1. Alternatively, the observation ensemble Z might

be derived from a state estimate ensemble maintained by another node in a sensor network,

and therefore the observation ensemble Z and the local state estimate X might share common

past information, as discussed in Chapter 4. In effect, all these factors can potentially lead to a

violation of the assumption in Equation (5.17), formally:

cov( X, Z ) 6' 0 (5.18)

The following sections analyse various modifications of the EnKF update rule with the aim to

provide a consistent estimate even if this eventuality occurs.

5.2.1 Generalised Ensemble Kalman Filter

The most natural candidate for a modification of the EnKF update rule to support a correlation

between the state estimate error and observation error is based on the Generalised Kalman filter,

introduced in Definition 3.1, which supports the type I correlation between the process and ob-

servation noises. In this type of correlation, the process noise sequence {wt} and the observation

noise sequence {vt} are assumed to be mutually correlated with the following property:

cov(wi,vj) =

 C i = j

0 i 6= j
(5.19)

where C ∈ Rn×m represents a cross-covariance matrix. The Generalised Kalman filter defines

an optimal update rule for this eventuality, which extends the standard Kalman filter update

rule with several terms involving the cross-covariance matrix C. In fact, the formula for the a

81



posteriori mean state estimate from Equation (3.4) only differs from the standard formula from

Equation (2.16) in the Kalman gain factor, which is newly defined by Equation (3.6).

In the EnKF, if there is a correlation between the ensembles X and Z, it can be assumed

that it is caused by a correlation between the latest process and observation noise terms, whose

magnitude C can be estimated as:

C ' cov(X,Z) (5.20)

Consequently, by noting that the EnKF update rule performs with each pair of ensemble mem-

bers from the state estimate and the observation practically the same computation as the tra-

ditional Kalman filter update rule performs with the mean state estimate and the observation

vector, one can speculate that a simple replacement of the standard Kalman gain Equation (5.16)

in the EnKF update rule by the generalised Kalman gain Equation (3.6), in this context defined

as:

K = [ cov(X,HX) + cov(X,Z) ] [ cov(HX) + cov(HX,Z) + cov(Z,HX) + cov(Z) ]−1 (5.21)

will lead to a generalised EnKF update rule that would provide optimal state estimates even

in the presence of correlations. Formally, the complete update rule of such a hypothetical

Generalised EnKF is defined as follows:

X+ = X + K( Z−HX ) (5.22)

K = cov(X,HX + Z) cov(HX + Z)−1 (5.23)

Note that the simplification of Equation (5.21) into Equation (5.23) is due to the fact that

covariance is a bilinear operator. However, as it will be demonstrated using numerical simulations

in Section 6.3.2, such an update rule does not provide an optimal a posteriori state estimate.

This finding represents one of the contributions of this thesis.

5.2.2 Common Past-Invariant Ensemble Kalman Filter

This section introduces another variant of the EnKF update rule, which operates in the presence

of correlations between the state estimate and observation errors. This new update rule, however,

is based on a different interpretation of the origin of correlation than the Generalised EnKF

method described in the previous section, as it assumes that the correlation is caused exclusively

by the presence of a zero-mean additive error term shared between the state estimate error and

the observation errors. The goal of the new update rule is to compute an a posteriori state
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estimate equivalent to a situation where the shared error term was not present. The resulting

modification of the EnKF is known as the Common Past-Invariant Ensemble Kalman Filter

(CPI-EnKF), and it has been first published in (Čurn et al., 2012b).

Assume an a priori state estimate ensemble X ∈ Rn×N and an observation ensemble Z ∈

Rm×N . The zero-mean Gaussian errors associated with the state estimate and the observation

are fully represented by ensembles X − E[X] and Z − E[Z], respectively, where A − b denotes

a column-wise subtraction of a vector b from each column of an ensemble A = [a1, . . . ,aN ],

formally A−b = [a1−b, . . . ,aN−b]. Similarly, A+b = [a1 +b, . . . ,aN +b] denotes a column-

wise addition. Suppose that each of the errors is a combination of two zero-mean multivariate

Gaussian error terms: a shared error term and two independent error terms. The shared error

term can be represented by a hypothetical ensemble Σ ∈ Rn×N and the two independent error

terms by hypothetical ensembles ∆X ∈ Rn×N and ∆Z ∈ Rm×N , such as:

X− E[X] = Σ + ∆X (5.24)

Z− E[Z] = HΣ + ∆Z (5.25)

where H ∈ Rm×n is the observation model. The assumptions on the error terms imply the

following properties:

E(Σ) ' E(∆X) ' E(∆Z) ' cov(Σ,∆X) ' cov(∆X,∆Z) ' cov(∆Z,Σ) ' 0 (5.26)

If one could eliminate the shared error from both the state estimate and observation ensem-

bles, i.e. to compute X−Σ and Z−HΣ, respectively, and then perform the traditional EnKF

update on these modified ensembles, the resulting a posteriori estimate would effectively ignore

the shared error between the state and the observation. Such an update would be optimal,

because all the standard EnKF assumptions are satisfied. Unfortunately, it is not possible to

evaluate Σ exactly, but as it will be shown in this section, this is not necessary, because an

equivalent a posteriori estimate can be computed using other means. The goal is to derive a

modified EnKF update rule:

X+ = X + K
(
Z−HΣ − H[X−Σ]

)
(5.27)

K = cov(X−Σ,H[X−Σ])
[

cov(H[X−Σ]) + cov(Z−HΣ)
]−1

(5.28)

which can be rewritten using Equations (5.24) and (5.25) to the following form:

X+ = X + K
(
Z−HX

)
(5.29)

K = cov(∆X,H∆X) [ cov(H∆X) + cov(∆Z) ]−1 (5.30)

83



Note that Equation (5.29) is equivalent to the traditional EnKF update rule as in Equa-

tion (5.15), and therefore the issue discussed in this section reduces to a derivation of the

new Kalman gain in Equation (5.30).

Due to the assumptions that ensembles Σ, ∆X and ∆X represent mutually independent errors,

expressed in Equation (5.26), it directly follows from Equations (5.24) and (5.25) that:

cov(Z−HX) ' cov(H∆X) + cov(∆Z) (5.31)

cov(HX) ' cov(HΣ) + cov(H∆X) (5.32)

cov(Z) ' cov(HΣ) + cov(∆Z) (5.33)

Note that such cov(Z−HX) from Equation (5.31) asymptotically equals the inverse component

of the modified Kalman gain from Equation (5.30), thus only an expression for the component

cov(∆X,H∆X) needs to be derived. Solving the system of asymptotic Equations (5.31)-(5.33)

and decomposing cov(Z−HX) as:

cov(Z−HX) = cov(Z)− cov(Z,HX)− cov(HX,Z) + cov(HX) (5.34)

leads to the following expression:

cov(H∆X) ' cov(HX)− 1
2

[
cov(HX,Z) + cov(Z,HX)

]
(5.35)

Suppose that m = n and H is invertible. A left-multiplication of Equation (5.35) by H−1

yields the desired missing component cov(∆X,H∆X) of the modified Kalman gain from Equa-

tion (5.30) as:

cov(∆X,H∆X) ' cov(X,HX)− 1
2

[
cov(X,Z) + H−1 cov(Z,HX)

]
(5.36)

However, as discussed in Section 2.6, one of the principal advantages of the EnKF is that it does

not require the observation model in a matrix form H. This advantage would be lost if H−1

had to be a priori known. Fortunately, by noting that

cov(X,HX) ' cov(H−1HX,HX) (5.37)

' H−1 cov(HX) (5.38)

it is possible to approximate H−1 as:

H−1 ' cov(X,HX) cov(HX)−1 (5.39)
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under the assumption that cov(HX) is invertible. If it is not invertible, the solution for H−1

still exists but it is not unique; more precisely, the solutions for H−1 form a vector space of

dimension m− r, where r = rank(cov(HX)). In this case, an acceptable solution can be found

if one considers a reduced observation model H∗ ∈ Rr×n, which is a matrix obtained from H by

removing m− r rows, such as that cov(H∗X) is invertible. This leads to the reduced solution:

H−1∗ ' cov(X,H∗X) cov(H∗X)−1 (5.40)

which can be extended to the full solution H−1 by simply inserting r zero columns at the

positions corresponding to the rows removed from H.

Finally, Equations (5.36) and (5.39) and can be combined into a single expression:

cov(∆X,H∆X) ' cov(X,HX)− 1
2 cov(X,HX) cov(HX)−1

[
cov(HX,Z)+cov(Z,HX)

]
(5.41)

Simply speaking, Equation (5.39) says that each row of cov(X,HX) can be expressed as a linear

combination of rows from cov(HX), and Equation (5.41) says that each row of cov(∆X,H∆X)

can be expressed as a linear combination of rows from cov(H∆X), with the same coefficients.

Also note that if Equation (5.41) is left-multiplied by H, it collapses to Equation (5.35), and

also it can be easily rewritten to the form of Equation (5.36), exactly as expected.

The complete formula of the CPI-EnKF update rule is as follows:

X+ = X + K
(
Z−HX

)
(5.42)

K =
(

cov(X,HX)− 1
2 cov(X,HX) cov(HX)−1

[
cov(HX,Z)+cov(Z,HX)

])
cov(Z−HX)−1

(5.43)

It can be easily seen that if X and Z are independent and hence uncorrelated, then the CPI-

EnKF update rule reduces to the traditional EnKF update rule as in Equations (5.15)-(5.16)

in the limit of an infinite ensemble, because then cov(HX,Z) ' 0 and from Equation (5.34) it

follows that:

cov(Z−HX)−1 '
[

cov(HX) + cov(Z)
]−1

(5.44)

As such, the CPI-EnKF is effectively a generalisation of the EnKF. However, note that the term

cov(Z − HX) estimates the true covariance less precisely than the original term cov(HX) +

cov(Z), given the same number of ensemble members; they are equivalent only in the limit

of an infinite ensemble. Another issue is that if Z and HX are too ”close”, the inversion

operation cov(Z−HX)−1 will become ill-conditioned. In order to avoid this problem, a practical

implementation of the algorithm should first compute the effective rank of the matrix cov(Z−
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HX), for example, using the singular value decomposition (SVD) method, and skip the update

altogether if the rank is not equal to m.

As discussed above, the CPI-EnKF update rule provides an optimal state estimate under

the assumption that a correlation between the state estimate and observation errors is caused

exclusively by the presence of a shared additive error term. Such an assumption is stricter than

the assumption of the Split CI algorithm that both the state estimate and observation error

covariances can be split into a known-correlated and independent components, as described in

Section 4.6; here the known-correlated components of both the error covariances are assumed

equal. Although such an assumption is rarely perfectly satisfied in practice, it will be demon-

strated in Chapter 6 that the CPI-EnKF provides reasonable and consistent estimates in many

practical correlated estimation problems, in particular in sensor networks where the correlation

is caused by common past information shared between the nodes. The most significant feature

of the CPI-EnKF, which also gave the filter its name, is the fact that if an observation offers

no new information that is not already available in the state estimate, the resulting a posteriori

estimate is invariant with respect to such an observation. A practical utility of this feature is

demonstrated in Section 7.2 in the context of the simultaneous localisation and mapping problem

(SLAM) in robotics.

5.2.3 Augmented Ensemble Kalman Filter

This section provides a derivation of an alternative generalisation of the EnKF update rule to

support correlation between the state estimate and observation ensembles, using an approach

similar to the state augmentation procedure described in Section 3.3.1. As discussed in Chap-

ter 4, nodes in sensor networks may communicate their local state estimates, which other nodes

consider as observations. Looking at this from the opposite perspective, an observation can be

considered as part of the system state, i.e. a state vector xt ∈ Rn can be augmented with an

observation zt ∈ Rm. Define an augmented state vector x∗t ∈ Rn+m as:

x∗t =

 xt

zt

 (5.45)

and a pseudo-measurement vector z∗t ∈ Rm as:

z∗t = 0 (5.46)
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The pseudo-measurement is related to the augmented state using an augmented observation

model h∗ : Rn+m → Rm defined as:

h∗(x, z) = h(x)− z (5.47)

where x ∈ Rn and z ∈ Rm are function parameters and h : Rn → Rm represents the original

observation model. A full observation equation of such an augmented dynamical system model

is:

z∗t = h∗(x∗t ) + vt (5.48)

Note that a corresponding time-evolution equation of the augmented system could also be de-

fined, but that is not necessary, because this section only deals with the update rule.

In the context of the EnKF, with the simplified notation introduced in the beginning of Sec-

tion 5.2, an a priori estimate of the augmented system state is represented using an augmented

ensemble X∗ ∈ R(n+m)×N defined as:

X∗ =

 X

Z

 (5.49)

where X ∈ Rn×N denotes an ensemble representing the a priori state estimate and Z ∈ Rm×N

is the original observation ensemble. The pseudo-measurement ensemble Z∗ ∈ Rm×N is a zero

matrix, i.e.

Z∗ = 0 (5.50)

If the original observation model h is linear, i.e. h(X) = HX for some H ∈ Rm×n, then the

augmented observation model h∗ is also linear, because h∗(X∗) = H∗X∗ for a matrix H∗ ∈

Rm×(n+m) defined as:

H∗ = [ H −I ] (5.51)

From Equation (5.50) it follows that:

cov(X∗,Z∗) = 0 (5.52)

and therefore one can speculate that an a posteriori estimate of the augmented system state,

represented using an ensemble X∗+ ∈ R(n+m)×N , can be computed using the traditional EnKF

update rule:

X∗+ = X∗ + K∗( Z∗ −H∗X∗ ) (5.53)

K∗ = cov(X∗,H∗X∗) [ cov(H∗X∗) + cov(Z∗) ]−1 (5.54)
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Equation (5.53) can be rewritten as:

X∗+ =

 X

Z

 + K∗

 0− [ H −I ]

 X

Z

 (5.55)

=

 X

Z

 + K∗ ( Z−HX ) (5.56)

and similarly, Equation (5.54) can be rewritten as:

K∗ = cov(X∗,X∗) H∗T
[
H∗ cov(X∗) H∗T + 0

]−1
(5.57)

=

 cov(X) cov(X,Z)

cov(Z,X) cov(Z)

 HT

−I

 [ H −I ]

 cov(X) cov(X,Z)

cov(Z,X) cov(Z)

 HT

−I

−1

(5.58)

=

 cov(X,HX)− cov(X,Z)

cov(Z,HX)− cov(Z)

 [ cov(HX)− cov(HX,Z)− cov(Z,HX) + cov(Z) ]−1

(5.59)

=

 cov(X,HX− Z)

cov(Z,HX− Z)

 cov(HX− Z)−1 (5.60)

Considering that the first n rows of the a posteriori estimate X∗+ represent the a posteriori

estimate of the original (non-augmented) system state, denoted as an ensemble X+ ∈ Rn×N , it

is possible to extract the full Augmented EnKF update rule from Equations (5.56) and (5.60)

as follows:

X+ = X + K( Z−HX ) (5.61)

K = cov(X,HX− Z) cov(HX− Z)−1 (5.62)

Interestingly, the Augmented EnKF update rule differs from the Generalised EnKF update

rule, presented in the previous section, only in the sign of the term Z, and it also constitutes

a generalisation of the original EnKF in the limit of an infinite ensemble: if cov(X,Z) = 0

then Equations (5.61) and (5.62) reduce to the traditional EnKF update rule, as provided

in Equations (5.15) and (5.16), respectively. Note that for one-dimensional state spaces, the

Augmented EnKF update rule is algebraically equivalent to the CPI-EnKF update rule derived

in Section 5.2.2. Nevertheless, as will be demonstrated in Chapter 6 using numerical simulations,

the Augmented EnKF provides de facto equivalent results as the CPI-EnKF even in higher-

dimensional problems, while exhibiting a better numerical stability. Also, similarly to the case
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of the CPI-EnKF, special care needs to be taken to avoid the potentially ill-conditioned inversion

cov(HX− Z)−1, as discussed in Section 5.2.2.

5.2.4 Discussion

All the variants of the EnKF update rule presented in this chapter are based on the traditional

assumptions that all the probability distributions involved are Gaussian, the dynamical system

is linear and that it models the physical system exactly. However, similarly to the case of

any other variant of the Kalman filter, the new update rules might be applied in practical

estimation problems where the formal assumptions are not exactly satisfied, while providing

reasonable state estimates. As per the assumption of linearity of the observation model, all

the newly developed update rules only use the observation model in the form of term HX.

Therefore, if the observation model is non-linear and expressed using a function h : Rn → Rm

instead of a matrix H ∈ Rm×n, the term HX in all the update rules can be substituted by the

term h(X), as argued in (Mandel, 2006). This is one of the principal advantages of the EnKF

compared to the EKF and the Information filter, because it eliminates a potentially problematic

computation of Jacobians and leads to more accurate a posteriori state estimates, as discussed in

Section 2.6. Also, all the EnKF variants presented in this chapter do not change the asymptotic

computational complexity of the EnKF update rule, which was presented in Table 2.4; all the

costs still scale linearly with the number of state-space dimensions n.

The new update rules derived in this chapter, in particular the CPI-EnKF and the Aug-

mented EnKF update rule, are not exclusive to the EnKF, and in principle their equivalents are

applicable with other variants of the Kalman filter, such as the EKF or UKF, assuming that the

cross-covariance between the state estimate error and the observation error is known. However,

in the context of the EnKF, this cross-covariance can be estimated easily from samples, while

with all other variants of the Kalman filter it needs to be maintained analytically, which is

problematic, in particular in sensor networks as discussed in Chapter 4. In order to preserve

the cross-covariance statistic between the state estimate and observation ensembles, the order

of ensemble members must be retained, as discussed in Section 5.2.

In the context of distributed data fusion in sensor networks, the new EnKF update rules

developed in this chapter can be potentially applied in very much the same way as the Covariance

Intersection (CI) update rule is applied in the distributed data fusion algorithm described in

Section 4.6. A practical example of such a data fusion system is presented in Section 7.1.3,
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in which the CPI-EnKF and the Augmented EnKF filters are used to address the problem of

cooperative localisation in a group of communicating vehicles.

5.3 Chapter Summary

This chapter presented the main contribution of this thesis - a generalisation of the EnKF to

correlated estimation problems. Using this generalisation, the prediction step of the filter can

provide consistent state estimates in the presence of any type of correlation, while avoiding the

increase in the computational cost associated with the traditional state augmentation procedure.

For the update step of the filter, this chapter derives three alternative update rules that can

potentially operate in the presence of a correlation between the state estimate error and the

observation error, each of whom is based on different presumptions. A numerical analysis of

applicability of all the methods discussed in this chapter to the various correlated estimation

problems is provided in Chapter 6. Chapter 7 then presents several practical examples of how

such a framework can be applied to real-world correlated estimation problems.
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Chapter 6

Numerical Evaluation

This chapter presents an evaluation of the performance of the EnKF modifications provided in

Chapter 5 applied to various correlated estimation problems. The main goal of the evaluation is

to assess to which types of problems the new filters are applicable, and to compare the quality

of their estimates with the estimates provided by state-of-the-art methods. More specifically,

four variants of the EnKF will be compared: the conventional EnKF, the Generalised EnKF,

the CPI-EnKF and the Augmented EnKF. In the first part of the evaluation, the filters are

used to estimate the state of several simulated one-dimensional physical systems affected by the

types of correlation in the noises described in Chapters 3. In the second part, the filters are

applied in the context of sensor networks in order to assess their applicability to the common

past information problem, presented in Chapter 4.

Every evaluation scenario defines a specific model of a physical system, whose time evolution

and observations are randomly simulated on a computer. In every step of such a simulation,

each of the evaluated filters maintains an estimate of the state of the physical system, and the

quality of the estimates is assessed with respect to the known true state. The main interest

of the evaluation lies in the average performance of the filters, including the assessment of

the consistency of the reported errors with the true errors. Therefore, the simulation of every

evaluation scenario is repeated 10000 times with a different random seed in every run, and

the quality metrics of filter estimates are aggregated over all the simulation runs. Such a high

number of samples has an additional benefit that the confidence intervals around the results do

not need to be shown in the graphs, because they are practically identical with the actual results

and as such they do not provide any interesting information.

Formally, at every simulation time step each evaluated filter is characterised by two metrics:
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the true error and the reported error. The true error, denoted as σtrue(t) ∈ R, represents the

root mean square (RMS) error of the filter’s estimates at a time step t aggregated over all the

simulation runs, formally:

σtrue(t) =

√√√√ 1

M

M∑
i=1

[
xi(t)− x̂i(t)

]T[
xi(t)− x̂i(t)

]
(6.1)

where xi(t) ∈ Rn denotes the true system state at the time step t in the ith simulation run,

x̂i(t) ∈ Rn denotes the mean of the corresponding state estimate provided by the particular

filter, and M ∈ N represents the total number of simulations performed, herein M = 10000.

The reported error, denoted as σrep(t) ∈ R, represents the RMS standard deviation of the error

reported by the filter, formally:

σrep(t) =

√√√√ 1

M

M∑
i=1

tr(Pi(t)) (6.2)

where Pi(t) denotes the estimated error covariance matrix associated with the filter’s estimate

at the time step t in the ith simulation run, and tr(Pi(t)) denotes the trace of this covariance

matrix. From the definition of consistency provided in Equation (2.13), it follows that if a filter

is consistent, then for every time step t:

lim
M→∞

[
σrep(t)− σtrue(t)

]
≥ 0 (6.3)

For overpessimistic filters, the inequality will be sharp (>), while for optimal filters, the inequal-

ity is actually an equality (=).

With the metrics described in the previous paragraph, the quality of the filters evaluated in

this chapter can be assessed from the presented graphs and tables as follows. The lower the true

error, the more accurate is the filter. If the reported error is significantly lower than the true

error, the filter is not consistent. If it is significantly larger, the filter is overpessimistic. Good

filters will have the reported error value very much the same as the true error.

6.1 No Correlation

As discussed in Section 2.6, the EnKF is a Monte Carlo method, in the sense that its results rely

on repeated random sampling, and as such, the quality of the results depends on the number

of random samplings performed. In other words, the higher the number of ensemble members

used by the EnKF filter, the more accurate estimates the filter provides. On the other hand, the
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memory and time requirements of the filter also grow with the number of ensemble members,

and it is therefore necessary to compromise in the choice of the number of ensemble members

with respect to the specific application. This section has two goals. First, to analyse from a

practical perspective what is the relation between the number of ensemble members and the

accuracy of the estimates provided by the EnKF variants. Second, to demonstrate that all the

modifications of the EnKF presented in Chapter 5 are indeed generalisations of the EnKF, so

that they provide equivalent estimates as the conventional EnKF in problems affected by no

correlation.

For the purposes of this experiment, the following static one-dimensional system is used:

x(t) = 0 (6.4)

z(t) = x(t) + v(t) (6.5)

where x(t) ∈ R represents the true system state at a time step t, and z(t) ∈ R is an obser-

vation of the system that is affected by an independent white Gaussian noise v(t) ∈ R with

a covariance R = 1. The state of the system was estimated using each of the EnKF variants

described in Chapter 5, as well as the conventional EnKF described in Chapter 2. The experi-

ments were repeated with the following ensemble sizes: N ∈ {100, 1000, 10000, 100000, 1000000}.

Ground-truth estimates were computed using the conventional Kalman filter. The simulation

was repeated 10000 times, as discussed in the introduction of this chapter. In every ith simu-

lation run, all the filters were initialised with the same consistent estimate of the true system

state, randomly generated as follows:

x̂i(0) ∼ N ( x(0), Pi(0) ) (6.6)

Pi(0) = 100 (6.7)

The filter statistics were collected after their update steps.

The graphs in Figures 6.1 and 6.2 show the evolution of the filters’ estimates over time

in cases of N = 100 and N = 1000, respectively. In the case of N = 100, the conventional

EnKF is practically equivalent to the ground-truth Kalman filter, while the modifications of

the EnKF have noticeably larger errors, in particular the Generalised EnKF. However, these

errors diminish as the number of ensemble members increases to N = 1000. The Augmented

EnKF provides practically identical results as the CPI-EnKF, which stems from the fact that

for one-dimensional problems the filters are algebraically equivalent. Table 6.1 presents a more

detailed view of the accuracy of the estimates provided by all the filters at a snapshot time step
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Fig. 6.1: Accuracy of EnKF variants with N = 100, no correlation.
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Fig. 6.2: Accuracy of EnKF variants with N = 1000, no correlation.
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N = 102 N = 103 N = 104 N = 105 N = 106

Kalman filter 0.21882

T
ru

e
er

ro
r

Basic EnKF 0.22377 0.21934 0.21893 0.21883 0.21882

Generalised EnKF 0.23176 0.22011 0.21892 0.21889 0.21882

CPI-EnKF 0.23304 0.22027 0.21911 0.21879 0.21882

Augmented EnKF 0.23293 0.22022 0.21910 0.21880 0.21882

Kalman filter 0.21816

R
ep

or
te

d
er

ro
r

Basic EnKF 0.21458 0.21778 0.21814 0.21815 0.21816

Generalised EnKF 0.23953 0.22029 0.21839 0.21818 0.21816

CPI-EnKF 0.20618 0.21694 0.21806 0.21814 0.21816

Augmented EnKF 0.20620 0.21694 0.21806 0.21814 0.21816

Table 6.1: Accuracy of EnKF variants with different ensemble sizes, no correlation. The values in the

table represent a snapshot of all the simulations at time step t = 20. Note that the red digits indicate

where the true error becomes greater than ground truth (Kalman filter), or where the reported error

becomes lower than the corresponding true error.

t = 20. Clearly, the accuracy of all the filters increases with the increasing number of ensemble

members, as the estimates of all the EnKF variants converge towards the ground-truth Kalman

filter estimate. The results indicate that all the filters provide consistent estimates.

In summary, the experiments presented in this section demonstrate that all the variants

of the EnKF described in Chapter 5 approximate the ground-truth estimates provided by the

Kalman filter. The Generalised EnKF, the Augmented EnKF and the CPI-EnKF, however,

require higher number of ensemble members to match the accuracy of the conventional EnKF.

6.2 Non-Linear Non-Gaussian Dynamical System

Although the EnKF depends on a theoretical assumption that the underlying dynamical system

is linear, the filter is routinely being applied to problems where such an assumption is not sat-

isfied, as discussed in Section 2.6, and it can even provide more accurate state estimates in this

situation compared to other variants of the Kalman filter, such as the EKF and UKF. The exper-

iment presented in this section evaluates whether the new generalisations of the EnKF developed

in this thesis retain this property, using a well-known non-linear non-Gaussian dynamical system
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originally proposed in (Kitagawa, 1987):

x(t) = 0.5 x(t− 1) +
25 x(t− 1)

1 + x2(t− 1)
+ 8 cos(1.2(t− 1)) + w(t) (6.8)

z(t) = 0.05 x2(t) + v(t) (6.9)

where x(t) ∈ R represents the true system state at a time step t, w(t) ∈ R denotes a white

process noise with covariance Q = 10, and z(t) ∈ R represents an observation of the system,

affected by a white observation noise with covariance R = 1.

The state of the non-linear dynamical system was estimated using the EKF, conventional

EnKF, the Generalised EnKF, the CPI-EnKF and the Augmented EnKF. All the EnKF variants

used the same number of ensemble members N = 1000. In every ith simulation run, all the

filters were initialised with the same consistent estimate of the true system state, generated

randomly as follows:

x̂i(0) ∼ N ( xi(0), Pi(0) ) (6.10)

Pi(0) = 100 (6.11)

where xi(0) ∈ R denotes the initial true system state in the ith simulation, which is also

generated randomly as:

xi(0) ∼ N ( 0, Q ) (6.12)

In this experiment, the filter statistics were collected after their update steps.

The results of the experiment are presented in Figure 6.3. Clearly, all the variants of the

EnKF provide practically identical estimates with a much higher accuracy than the EKF. More-

over, unlike the EKF, their estimates appear to be consistent with the reported errors.
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Fig. 6.3: Accuracy of EnKF variants, non-linear non-Gaussian dynamical system.

6.3 Correlated Noises

In this section, the three variants of the EnKF described in Chapter 5 are applied to estimation

problems where the process and observation noises are affected by the types of correlation

described in Chapter 3. More specifically, the following types of correlation in the noises are

analysed: a sequentially correlated process noise, a correlated process and observation noise and

a sequentially correlated observation noise.

6.3.1 Sequentially Correlated Process Noise

The goal of this experiment is to evaluate the performance of the EnKF variants in an estimation

problem affected by a sequentially correlated process noise, a problem which has been discussed

in Section 3.2. For the purpose of this experiment, the following dynamical system was used:

x(t) = 0.9 x(t− 1) + w(t) (6.13)

z(t) = x(t) + v(t) (6.14)
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where x(t) ∈ R represents the true system state at a time step t, w(t) ∈ R denotes a coloured

process noise with covariance Q = 1, and z(t) ∈ R represents an observation of the system,

which is affected by a white observation noise v(t) ∈ R with covariance R = 1. The process

noise sequence {w(t)} is a coloured Gaussian noise process, as described in Definition 3.3,

modelled by the following equation:

w(t+ 1) = Ψ w(t) + ε(t) (6.15)

where Ψ ∈ R is an auto-correlation coefficient whose value varies between the experiments, and

ε(t) ∈ R represent an independent white Gaussian noise with covariance Σ = 0.9 (1−Ψ2).

The state of the system is estimated using the EnKF, with the process noise compensation

term in the prediction step generated according to the process noise model from Equation (6.15),

using a method that has been described in Section 5.1. The EnKF has a fixed number of

ensemble members N = 1000. The ground-truth estimates are provided by a Kalman filter

with augmented state, as described in Section 3.2. For a reference, the system state is also

estimated (incorrectly) using a conventional Kalman filter, as well as the conventional EnKF

with an augmented state. In every ith simulation run, all the filters are initalised with the same

consistent estimate of the true system state, generated randomly as follows:

x̂i(0) ∼ N ( xi(0), Pi(0) ) (6.16)

Pi(0) = 100 (6.17)

where xi(0) ∈ R denotes the initial true system state in the ith simulation, which is also

generated randomly as:

xi(0) ∼ N ( 0, Q ) (6.18)

In this experiment, the filter statistics were collected after their prediction steps.

The graphs in Figures 6.4 and 6.5 show the performance of the filters in a scenario with the

auto-correlation coefficient set as Ψ = 0.5 and Ψ = 0.99, respectively. Clearly, the EnKF with

correlated process noise compensation is sub-optimal, although still consistent. As expected,

the EnKF with augmented state is practically equivalent to the ground-truth Kalman filter

with augmented state, and the conventional Kalman filter provides inconsistent estimates. The

conclusion of these experiment is that although the EnKF with correlated process noise compen-

sation provides consistent estimates, in practical applications it is better to use the traditional

state augmentation method described in Section 3.2. With the EnKF, the performance penalty

associated with such state augmentation is typically manageable.

98



 0.6

 1

 1.4

 1.8

 2.2

 2.6

T
ru

e 
er

ro
r

Kalman filter with augmented state [ground truth]
EnKF with augmented state

EnKF with correlated noise compensation
Kalman filter

 0.6

 1

 1.4

 1.8

 2.2

 2.6

 0  20  40  60  80  100

R
ep

o
rt

ed
 e

rr
o

r

Time step

Fig. 6.4: Accuracy of EnKF variants, sequentially correlated process noise with Ψ = 0.5.
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Fig. 6.5: Accuracy of EnKF variants, sequentially correlated process noise with Ψ = 0.99.
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6.3.2 Correlated Process and Observation Noise

The experiments presented in this section aim to evaluate whether any of the variants of the

EnKF presented in Chapter 5 is applicable to estimation problems in which the process and

observation noises are correlated, as discussed in Section 3.1. For the purpose of this experiment,

the same one-dimensional dynamical system as in the previous section was used:

x(t) = 0.9 x(t− 1) + w(t) (6.19)

z(t) = x(t) + v(t) (6.20)

and the process and observation noise covariances are also defined as Q = 1 and R = 1,

respectively. Both the process noise sequence {w(t)} and the observation noise sequence {v(t)}

represent white Gaussian noise processes, which are mutually correlated as follows:

cov( w(i),v(j) ) =

 C i = j

0 i 6= j
(6.21)

where C ∈ R is a variable depending on the scenario.

The state of the system was estimated using the conventional EnKF, the Generalised EnKF,

the CPI-EnKF and the Augmented EnKF. All these filters used the same number of ensemble

members N = 1000, and they all had the noise compensation terms generated according to

the model in Equation (6.21), using a method described in Section 5.2, i.e. the state estimate

and observation ensembles are mutually correlated prior to an update as cov(X,Z) ' C. The

ground-truth estimates are computed by the Generalised Kalman filter from Definition 3.1, and

for a reference, the system is also estimated (incorrectly) using the conventional Kalman filter.

Similarly to the previous section, all the filters are initialised with the same consistent estimate,

which is generated randomly in every ith simulation run as follows:

x̂i(0) ∼ N ( xi(0), Pi(0) ) (6.22)

Pi(0) = 100 (6.23)

where xi(0) ∈ R denotes the initial true system state in the ith simulation, which is also

generated randomly as:

xi(0) ∼ N ( 0, Q ) (6.24)

The filter statistics were collected after the update steps.

The results of the experiment are presented in Figures 6.6 and 6.7, for correlation coefficient

defined as C = 0.5 and C = 0.99, respectively. Note that for one-dimensional dynamical
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Fig. 6.6: Accuracy of EnKF variants, correlated process and observation noise with C = 0.5.
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Fig. 6.7: Accuracy of EnKF variants, correlated process and observation noise with C = 0.99.
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systems, the CPI-EnKF and the Augmented EnKF are algebraically equivalent, so for clarity,

the graphs in this section only include the CPI-EnKF. In summary, although all the EnKF

variants appear to provide consistent estimates, their error is very large. As such, it can be said

that the EnKF is not suitable for estimation problems where the process and observation noises

are correlated and the correlation is known. Also, the fact that the Generalised EnKF provides

very different results compared to the Generalised Kalman filter is effectively a counter-example

to the Generalised EnKF. In other words, this experiment demonstrates that the Generalised

EnKF is not a valid filter, and as such, it should not be used in practical applications.

6.3.3 Sequentially Correlated Observation Noise

This experiment aims to evaluate the performance of the EnKF variants in an estimation problem

affected by a sequentially correlated observation noise, a problem which has been discussed in

Section 3.3. For this purpose, the following static one-dimensional system is used:

x(t) = 0 (6.25)

z(t) = x(t) + v(t) (6.26)

The observation noise v(t) ∈ R has covariance R = 1, and the sequence {v(t)} forms a coloured

Gaussian noise process, modelled by the following equation:

v(t+ 1) = Ψ v(t) + ε(t) (6.27)

where Ψ ∈ R is a variable auto-correlation coefficient depending on the evaluation scenario, and

ε(t) ∈ R is an independent white Gaussian noise with covariance Σ = 1−Ψ2.

The state of the system is estimated using the conventional EnKF, the Generalised EnKF,

the CPI-EnKF and the Augmented EnKF. All of these filters have the same number of ensemble

membersN = 1000, and they all have the observation noise compensation generated according to

the observation noise model from Equation (6.27), using a method discussed in Section 5.2. The

ground-truth estimates are computed using a Kalman filter with augmented state as described in

Section 3.3. As a reference, the system state is also estimated (incorrectly) using a conventional

Kalman filter. In every ith simulation, all the filters were initalised with the same consistent

estimate of the true system state, randomly generated as follows:

x̂i(0) ∼ N ( x(0), Pi(0) ) (6.28)

Pi(0) = 100 (6.29)
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Fig. 6.8: Accuracy of EnKF variants, correlated observation noise with Ψ = 0.5.
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Fig. 6.9: Accuracy of EnKF variants, correlated observation noise with Ψ = 0.99.
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In this experiment, the filter statistics were collected after their update steps.

Figures 6.8 and 6.9 show the performance of the filters in a scenario with the auto-correlation

coefficient set as Ψ = 0.5 and Ψ = 0.99, respectively. As similarly noted in the previous

section, in one-dimensional systems the CPI-EnKF and the Augmented EnKF are algebraically

equivalent, so for clarity, the graphs only include the CPI-EnKF. The results indicate that both

the conventional EnKF and the Generalised EnKF provided estimates with a rather high error,

although still consistent. On the other hand, the CPI-EnKF (and hence the Augmented EnKF)

provides state estimates with a very reasonable error that is only slightly worse than the ground

truth, and importantly, the results indicate that the corresponding error covariance estimates

are consistent. As expected, the conventional Kalman filter provides inconsistent estimates.

In summary, the experiments performed in this section indicate that the CPI-EnKF and Aug-

mented EnKF can be applied to estimation problems with a sequentially correlated observation

noise with good accuracy. Although the conventional state augmentation and measurement dif-

ferencing methods, which are described in Section 3.3, provide potentially more accurate state

estimates, in particular if the sequential correlation is of a high magnitude, the CPI-EnKF (and

Augmented EnKF) avoids certain problems of these methods, such as the increased computa-

tional complexity or a lag-one delay in estimates. This feature represents a significant advantage

of the CPI-EnKF in certain applications, for example, the application presented in Section 7.3.

6.4 The Common Past

This section provides an evaluation of applicability of the EnKF variants, described in Chap-

ter 5, to estimation problems where the correlations between the state estimate errors and the

observation errors are caused by the presence of common past information shared between the

two - a problem that has been discussed in detail in Chapter 4. As will be demonstrated, this

is quite a different problem than the case where such a correlation was caused by a correlation

in the noises, and therefore it requires a different treatment.

6.4.1 Shared Error Term

Consider the following problem. There is an estimate x̂ ∈ Rn of a true state x ∈ Rn of some

physical system, and a direct observation z ∈ Rn of the same system. Both the errors associated

with the state estimate and the observation have a zero-mean Gaussian probability distribution,

and both are composed of two zero-mean Gaussian components: a shared error component with
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a covariance E ∈ Rn×n and two independent error components with covariances A ∈ Rn×n and

B ∈ Rn×n, formally:

cov(x− x̂) = E + A (6.30)

cov(x− z) = E + B (6.31)

As such, the state estimate error and the observation error are mutually correlated as:

cov(x− x̂,x− z) = E (6.32)

The shared error term with covariance E represents common past information shared between

the state estimate and the observation. In an ideal fusion system, such a shared error would

be ignored altogether during assimilation of the observation, and the resulting state estimate

would only be based on covariances A and B. Note that the error model described above

precisely matches the formal assumptions of the CPI-EnKF described in Section 5.2.2. The goal

of the experiment performed in this section is to evaluate the performance of the CPI-EnKF on a

canonical instance of such an estimation problem, as well as the performance of the other variants

of the EnKF and all the applicable state-of-the-art methods, including the Generalised Kalman

filter (Generalised KF), the Covariance Intersection (CI) and the Split Covariance Intersection

(Split CI) algorithms, which have been described in Section 4.6.

The evaluation scenario comprises a two-dimensional system with the following parameters:

x =

 10

−5

 E =

 3 −3

−3 5

 A =

 1 0.5

0.5 3

 B =

 4 0

0 1

 (6.33)

Note that the values were chosen semi-randomly so that different types of covariance matri-

ces are included, such as a covariance matrix with negative cross-correlation (E), a covari-

ance matrix with positive cross-correlation (A) and a diagonal covariance matrix (B). In

every simulation run, both the state estimate x̂ ∈ R2 and the observation z ∈ R2 are gen-

erated randomly according to this model, and then they are fused using each of the filters

evaluated. The EnKF variants are evaluated in versions with the following ensemble sizes:

N ∈ {100, 1000, 10000, 100000, 1000000}, and ground truth is provided by a conventional Kalman

filter using the (hidden) covariances A and B. The Generalised Kalman filter employs the shared

error covariance E in the place of the covariance between the process and observation noise C

(see Definition 3.1). Similarly, the Split CI employs E in the place of the known-correlated

components of the state estimate error P−C(t) and the observation error RC (see Definition 4.3).
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The results of the experiment are presented in Table 6.2. One of the most important ob-

servations is that the estimates provided by the Generalised Kalman filter have not only a

relatively high error, but also that they are inconsistent. Clearly, this implies that the Gener-

alised Kalman filter is not applicable to such a shared error estimation problem, and indicates

that a mere knowledge of the covariance between the state estimate and observa-

tion errors is not sufficient information to perform consistent data fusion, without

a valid interpretation of the origin of correlation. Apparently, both the CI and the Split

CI are conservative enough to be insensitive to such an interpretation, as they both provide

consistent but overpessimistic estimates, although with a relatively high error. As expected,

the conventional Kalman filter is inconsistent, and the conventional EnKF and the Generalised

EnKF have a relatively high error. Finally, both the CPI-EnKF and the Augmented EnKF

compute estimates equivalent to the ground truth, with an accuracy only limited by the number

of ensemble members.
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N = 102 N = 103 N = 104 N = 105 N = 106

Ground truth 1.22894

T
ru

e
er

ro
r

Generalised KF 1.36607

Kalman filter 1.33118

CI 1.40787

Split CI 1.36618

EnKF 1.37308 1.33580 1.33129 1.33122 1.33118

Generalised EnKF 1.40273 1.37023 1.36630 1.36613 1.36607

CPI-EnKF 1.31974 1.23802 1.22917 1.22897 1.22895

Augmented EnKF 1.33416 1.23932 1.22907 1.22892 1.22893

Ground truth 3.08323

R
ep

or
te

d
er

ro
r

Generalised KF 1.41196

Kalman filter 2.43003

CI 3.42741

Split CI 3.16024

EnKF 3.11298 3.12485 3.12623 3.12638 3.12640

Generalised EnKF 3.13954 3.14106 3.14149 3.14155 3.14155

CPI-EnKF 3.06320 3.08106 3.08298 3.08319 3.08321

Augmented EnKF 3.05306 3.08008 3.08289 3.08318 3.08321

Table 6.2: Applicability of various filters to the shared error term problem. Note that the reported

errors are much larger than the true errors, which is due to the fact that they account for covariance of

the shared error. Therefore, they should only be considered with relation to the ground-truth reported

error. The red digits indicate where the true error becomes greater than ground truth, or where the

reported error becomes lower than ground truth.
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Fig. 6.10: Idempotence of EnKF variants with respect to the update operation.

6.4.2 Idempotence of Update

The goal of this section is to evaluate how the EnKF variants handle a situation where the same

observation is repeatedly assimilated into the state estimate. An ideal filter should only alter

the state estimate during the first such assimilation, but not during subsequent ones as they

provide no new information. In order to evaluate such a property of the filter, which can also

be called idempotence with respect to the update operation, the scenario from Section 6.4.1 is

reused, and the same observation is repeatedly supplied to the filter. Figure 6.10 shows a time

evolution of the average estimates provided by several of the filters in such a simulation. For

clarity, the figure only includes the most relevant filters, which also provided consistent estimates

already in Section 6.4.1: the CI, Split CI, CPI-EnKF and Augmented EnKF, the latter two with

N = 1000. In summary, all these filters are idempotent with respect to the update operation.

6.4.3 Tree-Connected Sensor Network

In the final experiment presented in this chapter, the EnKF variants are employed to perform

state estimation in a distributed sensor network. For the purposes of this experiment, the
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following two-dimensional static system is used:

x(t) =

 10

−5

 z(t) =

 1 0

2 −1

x(t) + v(t) R =

 1 0

0 1

 (6.34)

where R denotes the covariance of the observation noise v(t) ∈ R2. Note that the values were

chosen semi-randomly, so that the observation model is an invertible and asymmetric matrix.

Each node in the sensor network maintains its own local estimate of the system state and

neighbouring nodes can exchange messages, as described in Chapter 4. The experiment involves

three different types of network topology with 10 nodes, all of whom are depicted in Figure 6.11,

including the numeric indices of the nodes. Note that all the topologies are tree-connected,

so that objective ground-truth estimates can be computed using the Channel filters approach,

described in Section 4.4. Note that a computation of the ground-truth estimates using the

centralised Kalman filter or Decentralised Kalman filter approaches, described in Sections 4.1

and 4.2, respectively, would be unfair because they both assume instantaneous communication.

For clarity of presentation of the results, only the most relevant filters are included in this

experiment: the Split CI, the Generalised EnKF, the CPI-EnKF and the Augmented EnKF. All

these filters are applied in a similar way as the CI algorithm is applied in the generic data fusion

algorithm described in Section 4.6. For each node k and simulation run i, the local estimate

x̂i|k(0) and the associated error covariance Pi|k(0) of all the filters are initialised to the same

value, which is generated randomly as follows:

x̂i|k(0) ∼ N ( x(0),Pi|k(0) ) (6.35)

Pi|k(0) = 0.1(k + 1) (6.36)

The results of the evaluation for the path, star and balanced tree sensor network topology

scenarios are presented in Figures 6.12, 6.13 and 6.13, respectively. In summary, the graphs

indicate that all algorithms provide consistent state estimates. The Generalised EnKF provides

estimates with a relatively high error in all three scenarios, which yet again indicates that it is not

a consistent filter. In the case of star topology, the Split CI, the CPI-EnKF and the Augmented

EnKF produce practically equivalent state estimates. However, in the case of the path and the

balanced tree topologies, both the CPI-EnKF and the Augmented EnKF outperform the Split

CI algorithm as they produce estimates with a lower error. Another interesting result is the

”ripples” in the average error of the CPI-EnKF estimates. These are caused by a numerical

instability of the CPI-EnKF equations in the situation where no new observations are available
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Fig. 6.11: Topologies of sensor networks evaluated.
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Fig. 6.12: Accuracy of EnKF variants in a sensor network with path topology.

in the system, as discussed in Section 5.2.2. The Augmented EnKF appears to be less sensitive

to this problem, which makes it a better filter for applications where new observations are rare.
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Fig. 6.13: Accuracy of EnKF variants in a sensor network with star topology.
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Fig. 6.14: Accuracy of EnKF variants in a sensor network with balanced-tree topology.
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6.5 Chapter Summary

This chapter provided a comprehensive evaluation of the numerical properties of the new EnKF

variants developed in this thesis in a wide range of correlated estimation problems. The principal

insights obtained from this evaluation can be summarised in the following points:

• The conventional EnKF, even with noise compensation generated according to a correct

model of correlation, is not a suitable filter for correlated estimation problems.

• The Generalised EnKF, which is a Monte Carlo equivalent of the Generalised Kalman

filter, is not a good filter, and it is not suitable for correlated estimation problems.

• The experiments indicate that both the CPI-EnKF and the Augmented EnKF provide

consistent state estimates in all the correlated estimation problems considered, which is a

necessary condition for application of the filters to safety-critical systems.

• In estimation problems affected by correlated noises, neither the CPI-EnKF nor the Aug-

mented EnKF achieve the accuracy of the algebraically-exact modifications of the Kalman

filter. However, their use can be justified in certain types of such applications, for example,

in those where state augmentation would incur an unacceptable performance penalty. One

such application is presented in Section 7.3.

• In estimation problems affected by common past information, both the CPI-EnKF and

the Augmented EnKF outperform the only feature-wise comparable algorithms - the CI

and the Split CI, which makes both the new algorithms highly suitable for distributed

data fusion problems. An example of one such application is provided in Section 7.1.

• The CPI-EnKF and the Augmented EnKF provide practically identical estimates in all

the correlated estimation problems considered; although theoretically they can provide

different estimates in certain circumstances, it is not clear which practical problems these

circumstances map to.

• The Augmented EnKF is numerically more stable than the CPI-EnKF. Considering that

the Augmented EnKF can also be used with non-square observation models H (see Sec-

tion 5.2.3), the Augmented EnKF appears to be the most suitable variant of the EnKF

applicable to correlated estimation problems.
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• In correlated estimation problems, the covariance does not represent a full description of

the situation, and optimal data fusion can only be performed under a valid interpretation

of the origin of the correlation. The results provided by this thesis suggest that an universal

update rule that would be optimal under all such interpretations might not exist at all,

but no formal proof of such a statement is known to the author.

While the estimation problems provided in this chapter are rather theoretical, Chapter 7

presents several applications of the CPI-EnKF and the Augmented EnKF to practical real-world

problems.
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Chapter 7

Practical Evaluation

This chapter describes three applications of the CPI-EnKF and the Augmented EnKF filters to

real-world problems in the larger field of robotic localisation. Each of the problems is introduced

in the context of their respective areas, and a brief review of the appropriate state-of-the-art

methods is provided. The work presented here not only serves as a guiding example of how the

new filters can be applied to practical correlated estimation problems, but it also demonstrates

that the EnKF in general has the merit in robotic applications and its exclusion from this field

is rather unjustified.

7.1 Cooperative Localisation

This section considers the problem of cooperative vehicle localisation, in which a group of vehicles

are driving in an outdoor environment, each estimating its position using a global positioning

system (GPS) and odometry. Additionally, the vehicles can improve their estimates by observing

positions of other vehicles using a proximity sensor, such as a radar, and mutual communication,

which is especially helpful to those vehicles operating in areas with no GPS coverage.

Such a cooperative localisation problem is a prime example of a distributed data fusion

problem in a sensor network. As discussed in Chapter 4, in order to achieve scalable data

fusion in an arbitrary large network, the nodes (vehicles) need to communicate their estimates

(positions) instead of raw sensor measurements, and therefore, the system will be exposed to the

common past information problem, which is amplified by the dynamic and unstructured nature

of the communication topology, inherent to a cooperative localisation scenario.

This section presents a new cooperative localisation system, which is based on the CPI-
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EnKF filter developed in this thesis. It will be demonstrated that the new system is simpler

to apply, provides better estimates, can be scaled to an arbitrary number of vehicles and is

computationally more efficient than state-of-the-art cooperative localisation methods. The main

goal of this section is to demonstrate the practical utility of the new methods developed in this

thesis to address a real-world instance of the common past information problem. Note that the

work presented here has been published in (Čurn et al., 2013).

7.1.1 Introduction

The past two decades witnessed a revolution in the deployment of advanced driver assistance

systems. A significant number of vehicles currently available on public roads are equipped with

GPS receivers and on-board navigation computers, which inform the driver about their current

position on a map and advise them on navigation decisions. The built-in navigation computers

often integrate vehicle odometry information obtained through wheel rotation counters or similar

sensors, which helps the navigation computers to maintain the global position estimates even in

areas with no GPS coverage, such as in urban canyons or tunnels. Although additional sensors,

such as an inertial measurement unit (IMU), magnetic compass or visual odometry, can help the

computer to maintain a more accurate global position estimate, without any global reference,

the accuracy of the estimate always deteriorates as relative errors accumulate over time.

Various approaches to improve the accuracy of the global position estimates in the case of

poor or no GPS signal reception have been proposed. For example, Google’s self-driving cars

employ highly detailed 3D maps of the environment and advanced on-board sensors in order

to fix the global position of a vehicle in the map with a high accuracy (Thrun and Urmson,

2011). Another class of methods proposes extending the road infrastructure with active or

passive beacons that broadcast their global position, so that nearby vehicles equipped with an

appropriate sensor can improve their global position estimate (Lee et al., 2009). Unfortunately,

all these approaches are costly, which impedes their wide-scale deployment to the public road

network.

Cooperative localisation is based on a simple idea that vehicles with more accurate posi-

tion estimates can help nearby vehicles improve their potentially poor position estimates. In

technical terms, a vehicle can detect a relative location of a nearby vehicle using a proximity

sensor such as a radar, a laser range finder (LIDAR) or a video camera. This information can

then be communicated between the vehicles over a wireless network link and fused with their
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current positions estimates, and consequently, improve the accuracy of the estimates. Such

an improvement stems from the fact that the other vehicle might be driving through an area

with better GPS coverage and thus have a better position estimate, and also because the fu-

sion of observations from multiple independent sources generally leads to better estimates. It

is important to note that cooperative localisation does not require any investments in the road

infrastructure, while radars or video cameras are increasingly available in new cars, even in the

mid-range segment, and a wireless communication capability is generally cheap. Furthermore,

cooperative localisation can be seamlessly combined with other positioning systems and sensors.

7.1.2 Related Work

The state-of-the-art approaches to the problem of cooperative localisation can be divided into

two principal classes, based on the type of information the vehicles communicate: either they

only communicate local information obtained exclusively through a vehicle’s own sensors, or

they communicate information potentially obtained from other vehicles’ sensors. Note that

cooperative localisation is just another instance of a sensor network data fusion problem, and

hence the methods described in the following sections are highly related or even based on the

methods reviewed in Chapter 4.

In the first class of cooperative localisation approaches, each vehicle only communicates lo-

cal (pre-processed) sensor measurements obtained exclusively using the vehicle’s own sensors.

Such measurements are typically statistically independent of other vehicles’ measurements, and

therefore the common past information problem is avoided. The measurements can be com-

municated to a single central authority that estimates the position of all the vehicles in the

environment as one large system, using fusion algorithms such as the Extended Kalman filter

(Mourikis and Roumeliotis, 2006; Huang et al., 2009; Roumeliotis and Rekleitis, 2004), particle

filter (Fox et al., 2000) or Maximum Likelihood estimation (Howard et al., 2002). Although the

centralised methods typically provide optimal global position estimates, they are susceptible to

a single point of failure and are not scalable to a larger number of vehicles. In order to eliminate

the single point of failure problem, the central filter can be decomposed into a set of communi-

cating filters distributed among all the vehicles (i.e. decentralised), either in an optimal fashion,

at the expense of a higher computation and communication cost (Roumeliotis and Bekey, 2002;

Nerurkar et al., 2009), or in an approximate fashion, with more efficient communication and

computation (Barooah et al., 2010). Another approach, described in (Leung et al., 2009), as-
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sumes the vehicles only communicate sporadically and it proposes an algorithm that allows the

vehicles to only store and communicate the smallest necessary set of sensor measurements that

still guarantees optimal position estimation. Unfortunately, this is only possible for an a priori

known and fixed number of vehicles. Alternatively, each vehicle can maintain an estimate of the

state of all neighbouring vehicles based solely on the vehicle’s own sensors, and broadcast this

so-called group state to nearby vehicles, thus helping them to improve their own global position

estimates (Karam et al., 2006); although the communication and computation is quite efficient

in such a system, the information does not flow transitively between non-neighbouring vehicles

and therefore, the position estimates might be of mediocre quality.

In the second class of approaches, the vehicles communicate data that is potentially inferred

from other vehicles’ sensor measurements - typically, the actual global position estimates. In

principle, when a vehicle receives a global position estimate which was broadcast by a nearby

vehicle, it combines it with information about the relative location of that vehicle obtained from

an on-board sensor, and uses this combined information as an observation to improve it’s own

global position estimate, using a fusion algorithm such as the Kalman filter. Unfortunately, such

an approach is susceptible to the common past information problem, because the global position

estimate of the other vehicle might depend on the global position estimate of the local vehicle

that had been broadcast earlier. In effect, this dependence causes a correlation between the

local estimate error and the observation error and it violates the assumption of independence,

inherent to the Kalman filter and many other data fusion algorithms. The state of the art offers

various approaches to the common past information problem, such as to ignore it (Martinelli,

2007), to maintain an (inherently incomplete) dependency tree to limit the extent of so-called

circular updates (Howard et al., 2003), or to use a sub-optimal but consistent algorithm such as

Covariance Intersection (CI) to fuse the data (Li and Nashashibi, 2012).

Intuitively, in order to make a cooperative localisation system applicable to the existing pub-

lic road network, the system must fulfill the following requirements. There can be an arbitrarily

large and a priori unknown number of vehicles, which can join and leave the road network at

any time. The vehicles can have different shapes, move erratically in the environment rather

than in a particular formation, can employ different types of sensors, and they can be equipped

with maps of varying precision, or no maps at all. Furthermore, wireless communication is gen-

erally not reliable and therefore, the cooperative localisation system must not depend on any

well-defined communication pattern; instead, it should operate opportunistically on a best-effort

basis whenever a communication channel between vehicles can be established. The next section
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proposes a cooperative localisation system based on the CPI-EnKF filter, which meets all the

above requirements.

7.1.3 Approach

Assume each vehicle maintains an individual Ensemble Kalman filter (EnKF), as described in

Section 2.6, in order to estimate its own global position using data from on-board sensors, such

as the GPS, odometry, or any other suitable sensor. The design and implementation of such

an estimation system is a standard task, as mathematical models for many vehicle and sensor

types are well understood and generally available. Additionally, the vehicles are equipped with

one or more proximity sensors, such as a radar or video camera, that enable them to detect

relative locations of nearby vehicles. When a vehicle detects another vehicle in its vicinity, it can

establish a vehicle-to-vehicle (V2V) communication channel, enabling the two to exchange their

current global position estimates and measured relative displacement, and use that information

to update their local position estimates. The following paragraph describes how to perform such

an update using the CPI-EnKF.

Formally, at a discrete time step t−1, a vehicle represents the current state estimate using an

ensemble Xt−1 ∈ Rn×N . The state is composed of variables that describe its global position in the

world (e.g. latitude, longitude, direction), as well as other variables potentially needed to model

the vehicle dynamics (e.g. steering angle, speed, acceleration). The cooperative localisation

algorithm repeats the following steps:

1. Given the vehicle’s last state estimate represented as an ensemble Xt−1, predict the state

at the next discrete time step t using Equation (2.84), with a prediction model based either

on ego-motion sensors (e.g. odometry) or a vehicle dynamics model. The resulting state

estimate is represented as a prior ensemble X−t ∈ Rn×N .

2. Update the prior ensemble X−t using Equations (2.86) and (2.87) in order to assimilate

the current positional sensors measurements (e.g. GPS, IMU, compass), and thus obtain

a more accurate state estimate represented as a communication ensemble X∗t ∈ Rn×N .

Such sensor measurements can be assumed to be affected by a white Gaussian noise, and

therefore, the traditional Kalman gain formula can be applied.

3. Measure the relative displacement rt ∈ Rm of a neighbour vehicle using a proximity sensor

(e.g. radar, LIDAR, video camera). Let Rt ∈ Rm×m denote a covariance matrix charac-
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terising the error of the measurement.

4. Send a message to the neighbour vehicle containing the relative displacement rt, covariance

Rt, and the communication ensemble X∗t (or only a subset thereof limited to the global

position-related state variables).

5. Receive a message submitted by the neighbour vehicle containing its own communication

ensemble, herein denoted as Yt ∈ Rn×N .

6. Update the prior ensemble X−t using Equations (5.42) and (5.43) to accommodate the

”observation” indicating the vehicle’s location, which is an ensemble constructed from the

received ensemble Yt, the relative displacement measurement rt and randomly generated

samples with covariance Rt. The CPI-EnKF formula needs to be applied in this step

because X−t and Yt are potentially correlated as they might share common past informa-

tion. The result of such an update leads to a more accurate state estimate represented by

a provisional posterior ensemble X+
t ∈ Rn×N .

7. Update the provisional posterior ensemble X+
t using Equations (2.86) and (2.87) to ac-

commodate the current positional sensors measurements (similarly to Step 2), leading to

the final posterior ensemble Xt that represents the current best state estimate.

In principle, this opportunistic distributed cooperative localisation algorithm is very similar

to the decentralised Covariance Intersection data fusion algorithm introduced in (Julier and

Uhlmann, 2001a), which is reviewed in Section 4.6, the main difference being that the above

algorithm operates with ensembles instead of means and covariances. The efficiency of the

algorithm stems from that fact that it exploits the locality in the communication at the expense

of sub-optimality of the position estimates compared to a theoretical central estimator - the

sensor information is only propagated locally between neighbouring vehicles and therefore, some

vehicles will not receive it and will not update their position estimates.

Note that the algorithm assumes that the ensembles maintained by all the vehicles have

the same number of samples. Although the algorithm is described from the perspective of an

observing vehicle, the steps taken by the vehicle being observed are very similar because it prac-

tically makes no difference which of the two vehicles performs the actual relative displacement

measurement and initiates the communication. The steps of the algorithm are idealised in the

sense they assume a single neighbour vehicle is detected at every time step; in practice, if two

or more vehicle were detected, Steps 3-6 need to be repeated separately for each of the vehicles
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detected, or not performed at all if no vehicle was detected. Furthermore, it is assumed that

all the vehicles have some unspecified means to associate an observed neighbour vehicle to the

vehicle communicated to, and also that all the vehicles operate at synchronous time steps. In

practice, additional provisions need to be made to ensure correct data association and timing.

In order to evaluate the accuracy of the CPI-EnKF cooperative localisation algorithm pro-

posed in this section, its position estimates will be compared with estimates provided by the

following algorithms: the Augmented Ensemble Kalman filter (Augmented EnKF), the Covari-

ance Intersection (CI), the Split Covariance Intersection (Split CI), and the local Kalman filter

(Local KF). These algorithms, all of whom will be described in detail in the following sections,

have been chosen for this evaluation because they all meet the criteria outlined in the beginning

of Section 7.1: they are fully decentralised, cost a constant space and time per update, can be

scaled up to an arbitrary number of vehicles, support diverse vehicle types and sensors, only

assume opportunistic communication and, apart from the Local KF algorithm, they all provide

consistent estimates, given certain assumptions. The Local KF algorithm is only included to

illustrate the problem of overconfidence and divergence should the common past information be

neglected. Additionally, the evaluation also includes a centralised Kalman filter (Central KF)

algorithm to show the optimal position estimates as a reference.

7.1.4 Scenario

The world in the evaluation scenario is best imagined as a two-dimensional city consisting of 16

rectangular city blocks, organised in a 4-by-4 grid, with each block of dimension 150-by-100 m,

as depicted in Figure 7.1. There are in total 16 vehicles driving around the blocks on ”roads”

that are, for simplicity of implementation, assumed to be straight lines of zero width. The

vehicles, which themselves are modelled as simple points, only drive on these straight lines and

collisions between the vehicles are not considered. The speed of the vehicles varies from 1 to 20

m/s, and it changes with an acceleration that evolves randomly over time as a Wiener process

bounded between -4 and 4 m/s2, rescaled to have an absolute standard deviation of 0.632 m/s2

per second. Whenever a vehicle reaches the end of a city block, it randomly decides whether

to take a turn (not a U-turn though) or to continue. This action affects neither the vehicle’s

speed nor its acceleration. The evolution of the world is simulated in discrete time steps of 0.1

s. The vehicles start off with an initial global position estimate that is consistent with their true

position and has an error with a standard deviation of 10 m.
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Fig. 7.1: Road configuration in the cooperative localisation evaluation scenario, including an example

snapshot of the vehicles’ position estimates from a simulation run. The darker segment in the bottom

left section represents the only road with GPS coverage. The points depict the current vehicle position

estimates (ensembles) of the respective CPI-EnKF filters, while the solid ellipses depict the 95% confidence

regions of the (apparently more conservative) Split CI estimates.

Each vehicle is equipped with a (simulated) odometry sensor, that reports a relative two-

dimensional displacement of the vehicle since the previous reading, affected independently in

both axes by a zero-mean white Gaussian noise with a standard deviation of 0.05 m for every

meter of the true distance travelled. The odometry has no angular error, in order to avoid a

bias in the evaluation results caused by non-linear effects. Each vehicle is also equipped with a

GPS receiver, that enables them to detect their global position, affected by a zero-mean white

Gaussian noise with a standard deviation depending on the vehicle’s location in the city. The

odometry sensor provides readings with a period of 0.1 s (i.e. every simulation time step), while

the GPS receiver reports the global position with a period of 1 s (i.e. every 10th simulation time

step).

Additionally, each vehicle is equipped with a proximity sensor that can detect the relative

distance in two dimensions to nearby vehicles driving on the same straight road segment, with a

probability of making an actual observation (at any given simulation time step) that decreases

linearly from 15% to 0% as the distance to the other vehicle increases from 5 m to 100 m.

The proximity sensor readings are affected independently in both axes by a zero-mean white
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Gaussian noise with a standard deviation of 0.05 m for every meter of the true distance between

the vehicles. One vehicle can observe multiple vehicles during a single time step, and it can

always establish a communication channel with all the vehicles observed. The communication is

instant. Note that it would be counterproductive to perform the cooperative localisation data

exchanges too often, because the chance that subsequent information exchanges in a close group

of vehicles bring any new information is quite low, while these exchanges still contribute to

the accumulation of numerical errors, and in real-world applications they congest the wireless

communication medium.

As argued in Section 7.1.1, cooperative localisation has the most significant impact on ve-

hicles that have very inaccurate global position estimates, such as vehicles operating in areas

with a poor GPS coverage. In order to introduce this effect in this evaluation scenario, a GPS

signal is only available on one road segment of the city (see the darker bottom left region in

Figure 7.1). In this area, the GPS signal has such a quality that enables the receiver to compute

the global position with an error equivalent to a zero-mean white Gaussian noise with a standard

deviation of 3 m. All the other areas in the city have no GPS coverage at all, and therefore, for

vehicles driving in these areas the cooperative localisation represents the only available means

to maintain position estimates with a reasonably accuracy.

Although the evaluation scenario involves a simplistic model of the world, it suffices as a tool

to compare the various cooperative localisation algorithms. Importantly, the simulated world

meets all the theoretical assumptions of the algorithms being evaluated, such as that the system

dynamics are linear and all the errors involved are Gaussian, and therefore, all the algorithms

have perfect conditions for their operation. Also, note that all the constants in the presented

scenario are chosen in order to model real-world city traffic as closely as possible, but similar

results can also be achieved with a different constant selection.

7.1.5 Implementation

For the purpose of this evaluation, several variants of the opportunistic distributed cooperative

localisation algorithm described in Section 7.1.3 have been implemented. These variants, which

will be discussed in this section, differ mainly in the way they represent the state estimates and

how they accommodate the potentially correlated observations. All of them model the vehicle’s

system state as a two-dimensional vector that represents the absolute coordinates of the vehicle

in the city grid, measured in meters, with the coordinate origin in the bottom-left corner of the
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map.

All the evaluated variants of the cooperative localisation algorithm facilitate the prediction

in Step 1 simply by altering the state estimate using a two-dimensional odometry reading and

an associated covariance matrix, and the update in Steps 2 and 7 using a two-dimensional GPS

reading and an associated covariance matrix, whenever available. The relative displacement of a

neighbour vehicle measured in Step 3 is represented as a two-dimensional vector, i.e. rt ∈ R2 and

Rt ∈ R2×2. Steps 4 and 5 do not require any implementation, as all the necessary information

is implicitly available to the simulation process. Therefore, the following text will only focus on

the description of the implementation of Step 6 by the particular algorithms, which is arguably

the only non-trivial part.

In the implementation of the base CPI-EnKF variant of the cooperative localisation algo-

rithm, the current state estimate is represented using an ensemble with the number of samples

N = 1000. As described in Step 6, the provisional posterior ensemble X+
t ∈ R2×1000 is computed

using Equations (5.42) and (5.43). The inputs to these equations are defined as follows:

X = X−t (7.1)

Z = Yt −Vt (7.2)

where X ∈ R2×1000 denotes the state estimate, Z ∈ R2×1000 denotes the observation, and

Vt =
[
v1
t , . . . ,v

1000
t

]
∈ R2×1000 is a Gaussian observation noise compensation term whose

columns are randomly generated as:

vit ← N (rt,Rt) (7.3)

for i = 1, . . . , 1000. The observation model h : R2 → R2 is simply an identity function, and

therefore:

h(X) = X−t (7.4)

Recall that N (µ, Σ) denotes a (multivariate) Gaussian distribution with a mean vector µ and

a covariance matrix Σ.

The Augmented EnKF variant of the algorithm equivalent to the CPI-EnKF variant de-

scribed above, the only difference is that the Augmented EnKF update rule, as given in Equa-

tions (5.61) and (5.62), is used instead of the CPI-EnKF update rule.

In the CI variant of the cooperative localisation algorithm, the state estimate is represented

using a two-dimensional mean vector and a covariance matrix. These values are communicated
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between vehicles instead of the ensembles. As such, the whole algorithm is de facto equivalent

to the distributed data fusion algorithm described in (Julier and Uhlmann, 2001a), and also

reviewed in Section 4.6.

Suppose the prior state estimate is denoted x̂ ∈ R2 and the associated error covariance

X ∈ R2×2, and the state estimate received from the other vehicle is denoted ŷ ∈ R2 and the

associated error covariance Y ∈ R2×2. Then in Step 6, the provisional posterior estimate x̂+ ∈ R2

and the associated error covariance X+ ∈ R2×2 is computed using the CI update rule (see also

Definition 4.2) as follows:

X+ =
[
ωX−1 + (1− ω)Y−1

]−1
(7.5)

x̂+ = X+
(
ωX−1x̂ + (1− ω)Y−1ŷ

)
(7.6)

with the coefficient ω ∈ R optimised on the fly so that the trace of the covariance matrix X+

is minimal. Note that the CI update rule is immune to the correlation between x̂ and ŷ, and

therefore, it provides a consistent estimate in this application (Julier and Uhlmann, 1997a).

In the Split CI variant of the cooperative localisation algorithm, the state estimate is also

represented using a two-dimensional mean vector. However, as opposed to the CI, the error

covariance matrix is split into two additive component covariance matrices: the first covariance

matrix represents the potentially correlated error component, and the second covariance matrix

represents the known-independent error component. Such a splitting of the covariance leads to

a higher accuracy of the estimation, compared to the CI (Julier and Uhlmann, 2001a).

Due to the fact that the vehicle’s on-board sensors produce independent observations, the

prediction step using the odometry readings will only affect the known-independent error com-

ponent of the state estimate, and the update using the GPS readings will be optimal because

the correlated component of the GPS error is zero. Note that such an algorithm is similar to

the cooperative localisation algorithm presented in (Li and Nashashibi, 2012).

Again, denote the prior state estimate and the state estimate received from the other vehicle

as x̂ and ŷ, respectively, and the corresponding error covariance matrix components as X1 +

X2 and Y1 + Y2, respectively. Step 6 of the cooperative localisation algorithm computes the

provisional posterior estimate x̂+ and the associated covariance matrix components X+
1 + X+

2
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using the Split CI update rule (see also Definition 4.3) as follows:

X−1 = ω (X1 + ωX2)−1 (7.7)

Y−1 = (1− ω) (Y1 + (1− ω)Y2)−1 (7.8)

X+
1 =

(
X−1 + Y−1

)−1
(7.9)

X+
2 = 0 (7.10)

x̂+ = x̂ + X+
1 Y
−1 (ŷ − x̂) (7.11)

Again, ω ∈ R is optimised on the fly so that the trace of the covariance matrix X+
1 is minimal.

Note that the above equations differ slightly from the standard Split CI update rule provided

in Definition 4.3, because the known-independent covariance component is directly added to

the correlated component. This is necessary to ensure a consistency of the cooperative localisa-

tion algorithm, because the resulting position estimate might be correlated fully to subsequent

position estimates received from other vehicles via the communication.

The Local KF variant of the cooperative localisation algorithm represents, similarly to the

CI, the state estimate using a mean vector and a covariance matrix, and the update in Step 6 is

performed using a simple Kalman filter update rule, as described in Definition 2.4. Assuming the

same notation as in the CI variant above, the provisional posterior state estimate is computed

as follows:

K = X [X + Y]−1 (7.12)

X+ = X −KX (7.13)

x̂+ = x̂ + K(ŷ − x̂) (7.14)

As discussed in Section 2.1, the Kalman filter update rule assumes the prior state estimate x̂

is independent of the observation ŷ, which in this case does not hold. Therefore, the resulting

provisional posterior state estimate x̂+ with the error covariance X+ might be inconsistent with

the true error, the filter might become overconfident over time and diverge. The Local KF

algorithm is included merely to illustrate the consequences of this problem.

Finally, the position estimates of all the vehicles in the system are also computed using the

Central KF algorithm, which has been described in Section 4.1. The system state vector includes

the positions of all the vehicles in the simulation. In such a model, all sensor observations are

independent of the state. Because all the Kalman filter assumptions are satisfied, the resulting

state estimates are guaranteed to be consistent and optimal, given all the available sensor ob-

servations (Simon, 2006). Therefore, the Central KF represents an upper limit of the quality of
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Fig. 7.2: Accuracy of position estimates provided by various cooperative localisation algorithms, aver-

aged over 1000 random simulations. The first graph shows an average root mean square (RMS) position

error of the estimates (lower value means smaller errors). The second graph shows an average variance

of the errors reported by each of the estimation algorithms (for consistent algorithms, this value should

be greater than or equal to the average true position error in the first graph; the closer the better)

the other cooperative localisation algorithms and as such it serves as a useful reference in the

evaluation.

7.1.6 Results

The system simulation has been executed 1000 times with a different random seed for every

run, and the statistics of the position estimates provided by all the filters in every time step

were aggregated over all the simulation runs, in a similar way as the evaluation in Chapter 6

was performed. Figure 7.1 depicts a sample snapshot of one of the simulation runs, and Fig-

ure 7.2 shows the graphs illustrating the quality of position estimates provided by the particular

cooperative localisation algorithms, averaged over all the simulation runs. The most important

results from this evaluation are the following:
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• In every aspect evaluated, the CPI-EnKF algorithm is superior to the CI, the Split CI and

the Local KF algorithms.

• As expected in this particular scenario, the Augmented EnKF and the CPI-EnKF provide

de facto equivalent estimates.

• The evaluation confirms that the Local KF is inconsistent because it neglects the correla-

tions.

• While the Split CI algorithm provides reasonable position estimates, the associated co-

variances are overly pessimistic - see also Figure 7.1.

• After a long enough time, all the algorithms reach an equilibrium where position errors

stemming from the inaccurate odometry are, on average, compensated for by the gains in

the accuracy due to the GPS and the cooperative localisation. The average magnitude of

the position errors in this equilibrium depends on the quality of the cooperative localisation

algorithm.

7.1.7 Conclusion

This section discussed the problem of cooperative localisation in a group of communicating

vehicles, described the state-of-the-art approaches that address it, and then developed an entirely

new approach based on the CPI-EnKF filter introduced in this thesis. It has been argued that

the new approach, unlike the majority of the existing ones, provides consistent estimates given

certain assumptions, it is simple to tune and implement, supports arbitrary vehicle types and

sensors, and it can be scaled to an unlimited number of vehicles. The performance of the new

CPI-EnKF cooperative localisation algorithm has been compared to existing similar algorithms

in a comprehensive evaluation.

In order to apply the new cooperative localisation algorithm in practice, several issues need

to be resolved, such as a correct association between the vehicles observed and the vehicles

communicated with, optimal planning of the information exchanges and an associated efficient

allocation of the communication bandwidth, in particular in areas with a large number of vehi-

cles.
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7.2 Simultaneous Localisation and Mapping

This section deals with simultaneous localisation and mapping (SLAM), a problem in which a

mobile robot operating in a previously unknown environment is building a map of that envi-

ronment, while simultaneously using the map for navigation. As shown in (Smith et al., 1990),

SLAM can be viewed as an estimation problem - the goal of the robot is to estimate its own

position and the position of objects in its environment from a sequence of noisy sensor obser-

vations. Although SLAM is not a correlated estimation problem per se, this section develops

a method which transforms the SLAM problem to a problem of data fusion in the presence

of common past information, discussed in Chapter 4, and applies the new CPI-EnKF filter to

address it. The main goal of this section is to demonstrate the versatility of the EnKF-based

correlated estimation methods developed in this thesis, which makes their application useful

even in estimation problems not affected by correlations, by offering some novel features with

respect to existing state-of-the-art methods in corresponding areas.

More specifically, in the approach presented in this section, the uncertain spatial constraints

between features in a robot’s environment are represented as ordered sets of Monte Carlo samples

drawn from the space of coordinate frame transformations. Such a representation enables fusion

of two or more spatial constraints using the update rule of the CPI-EnKF even if their errors are

correlated. The spatial constraints are organised in a compact data structure, which models the

full posterior over the robot’s pose and landmark locations. The number of Monte Carlo samples

necessary to accurately represent the posterior does not grow exponentially with the number of

state-space dimensions as in conventional particle filters - in fact, it is a constant parameter. This

data structure provides a constant time access to marginal distributions and a newly observed

spatial constraint can be accommodated in time linear to the number of landmarks tracked,

regardless of the number of spatial constraints that have been observed previously. The section

provides an experimental evaluation of the new approach, and a discussion of its strengths and

weaknesses with respect to the well-established SLAM approaches. The work presented here

has been published in (Čurn et al., 2012a).

7.2.1 Related Work

The problem of SLAM has attracted a significant amount of research in the past two decades.

Historically, the most popular approaches are built around three major paradigms: Extended

Kalman filters (EKF), particle filters and graph-based optimisers. The earliest solution to the
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SLAM problem was published in a seminal paper by Smith, Cheeseman and Self (Smith et al.,

1990). In their work, the current best estimate of the pose of a robot and features in its en-

vironment is represented using a high-dimensional vector, and the uncertainty of the estimate

using a covariance matrix of the same dimension. In every step, the state is updated with new

measurements using the EKF. Subsequently, this method became known as EKF-SLAM. A large

number of EKF-SLAM variants have been successfully applied to a wide range of robotic appli-

cations, including ground vehicles, aircraft, and underwater vehicles (Thrun et al., 2005). The

principal limitation of EKF-SLAM is the fact that the state covariance matrix grows quadrat-

ically with the number of spatial features tracked, as does the time complexity per update. A

number of methods, such as (Leonard and Jacob, 1999), (Guivant and Nebot, 2001) or (Paz

et al., 2007), address this issue by decomposing the map into smaller submaps whose covari-

ances are maintained separately. Another important limitation of the EKF-SLAM approaches,

which limits the range of practical applications, are the strong assumptions on the measurement

noise, in particular that it must be Gaussian and white (i.e. uncorrelated). The Monte Carlo

stochastic map presented here only requires a space and time per update linear to the number

of spatial features, without the need to selectively discard cross-correlations between features.

The accuracy of the cross-correlations only depends on the number of Monte Carlo samples used

to represent the uncertain spatial constraints, which is a constant parameter. Furthermore, the

stochastic map preserves spatial constraints with arbitrary (non-Gaussian) distributions, until

a newly observed spatial constraint closes a loop.

The second major paradigm for addressing the SLAM problem is that based on particle

filters (Doucet and Johansen, 2009). Its general idea is to represent the posterior by a set of

particles, where each particle captures one particular sample of the pose of the robot or features

in its environment. The posterior probability distribution is modelled with arbitrary precision in

the limit, as the number of particles grows to infinity. After every observation, the particles are

updated to form a proposal distribution, and sequential importance resampling selects a subset

of the particles to model the target distribution - the new posterior. The main limitation of such

a naive approach is that the number of particles necessary to accurately represent the posterior

probability distribution grows exponentially with the number of dimensions, i.e. with the num-

ber of landmarks in the map. A number of methods, such as (Grisetti et al., 2005), (Eliazar and

Parr, 2003), or more prominently FastSLAM (Montemerlo and Thrun, 2007), address the prob-

lem of exponential growth in the number of particles by a method called Rao-Blackwellisation.

For example, the FastSLAM algorithm builds on an assumption that cross-correlations between
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landmarks are independent given the robot’s path, and each particle stores a robot’s pose and

a list of mean/covariance pairs of the landmark locations. The principal issue of such methods

is the fact that the resampling step discards low-probability particles, and duplicates the high-

probability ones. This means that the correlation information between landmarks is gradually

being lost over time, which can lead to underestimation of the covariance and may cause prob-

lems when closing large loops. Similarly to the particle filtering-based methods, the approach

presented in this section also represents the posterior by a set of Monte Carlo samples of the

location of spatial features. However, the samples retain a certain order, which is necessary to

capture cross-correlations between the features. Moreover, as sequential importance resampling

is not used, the number of samples necessary for an accurate representation is independent of

the number of spatial features tracked, and the cross-correlation information is not lost over

time.

The third major SLAM paradigm, and arguably the most popular one in recent years, is

based on graph-based non-linear optimisation. The basic idea, first formulated by Lu and Milios

(Lu and Milios, 1997), is that all of a robot’s poses and landmarks at a particular time represent

nodes of a graph, and the spatial constraints between the poses represent the edges. The goal of

an optimisation algorithm is to find a spatial configuration of the nodes that is most consistent

with the constraints provided by the edges. Since the original Lu and Milios formulation, a

large number of optimisation methods have been proposed, including iterative methods such as

(Olson et al., 2006; Ranganathan et al., 2007), or direct solvers (Dellaert and Kaess, 2006; Frese,

2006). The state-of-the-art algorithms take advantage of the domain knowledge and sparsity of

the constraint graph to perform the optimisation efficiently, provide efficient access to marginal

covariances of observed features necessary for data association, and their implementations are

readily available in frameworks such as iSAM (Kaess et al., 2008) and g2o (Kummerle et al.,

2011). The Monte Carlo stochastic map also maintains the spatial constraints in a graph struc-

ture. However, this graph only has a star topology; the spatial constraints between leaf nodes of

the star are not represented explicitly in the graph, but implicitly by the ordered Monte Carlo

samples saved in the nodes. Unlike graph-based optimisers, the performance of the stochastic

map does not depend on the number of spatial constraints observed. Moreover, tracked spatial

features can be discarded without affecting the cross-correlations between preserved features, in

order to maintain real-time performance in on-line perception systems.

The SLAM approach presented in this section has certain similarities with all three major

SLAM paradigms. The posterior over a robot’s pose and landmark locations is modelled using a
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set of Monte Carlo samples, however, unlike in particle filter-based methods, with a given order

of samples, which is used to capture cross-correlations between spatial features. The samples

are organised in a star-graph structure, where robot poses and landmarks represent the nodes,

and uncertain spatial constraints between them represent the edges. Finally, the probability

distributions modelled by the ordered Monte Carlo sample sets are merged using the CPI-EnKF

algorithm developed in this thesis.

7.2.2 Representation of Spatial Constraints

The approach presented in this section assumes that a spatial constraint between two features

can be represented as a probability distribution over the space of coordinate transformations be-

tween the two corresponding coordinate frames, i.e. an approximate transformation (AT). Only

three-dimensional space will be considered, and a quaternion parametrisation of orientations

(Altmann, 1986) adopted. However, a similar approach can also be applied to a two-dimensional

space, and other parametrisations of coordinate transformations. The coordinate transforma-

tion vector (x, y, z, q) has seven variables, where q is a quaternion q = a + bi + cj + dk with

components a, b, c, d ∈ R and imaginary units i, j and k.

An AT with a general probability distribution can be represented using a number of random

Monte Carlo samples drawn from the space of all transformation vectors between two coordinate

frames. Let t→ u denote the set of all ATs from a frame t to a frame u. An AT A∈ t→ u is

represented as an ordered set of samples as:

A ∼=
{

(xiA, y
i
A, z

i
A, q

i
A) | i = 1, . . . , N

}
(7.15)

where N is the number of samples, and each (xiA, y
i
A, z

i
A, q

i
A) represents a single coordinate

transformation vector. Many parametric probability distributions can easily be converted to

such a representation by random sampling. For brevity, in the following text the index will be

omitted from the notation of the samples, and also the following simplified syntax will be used

instead of Equation (7.15):

A ∼= (xA, yA, zA, qA) (7.16)

whenever the context will allow. Three elementary operations can be performed on the ATs:

compounding, inversion and merging. All of these operations will be described in detail in the

following sub-sections. Note that compounding and inversion are trivial vector operations, and

are only described for the sake of completeness.
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7.2.2.1 Compounding

If the robot has observed two consecutive ATs A ∈ t → u and B ∈ u → v, such as A ∼=

(xA, yA, zA, qA) and B ∼= (xB, yB, zB, qB), respectively, then the estimate of AT t→ v can be

computed using the compounding operation ⊕ as:

A⊕B ∼= (xA + x, yA + y, zA + z, q) (7.17)

where

q = qA × qB (7.18)

0 + xi + yj + zk = qA × (0 + xBi + yBj + zBk)× q−1
A (7.19)

The × operation denotes quaternion multiplication and −1 quaternion inversion; the quaternions

qA and qB are assumed to be normalised, i.e. have unit length. More details on quaternions and

spatial rotations can be found in (Altmann, 1986).

In other words, each sample of a compound AT can be acquired by combining the two samples

at the same index from the input ATs. A sequence of ATs can be compounded by successively

compounding pairs of neighbouring ATs; the order of ATs is irrelevant, because compounding

is an associative operation:

(A⊕B)⊕C = A⊕ (B⊕C) (7.20)

Note that if two ATs are independent, a random permutation of the samples in one of the

ordered sets would not affect the estimate of the compound AT. However, if the ATs are not

independent, the order of samples needs to be retained, in order to provide an accurate estimate.

7.2.2.2 Inversion

Suppose A ∈ t→u is an AT given as A ∼= (xA, yA, zA, qA). The inversion operation R computes

the estimate of the AT in the opposite direction, AR ∈ u→ t, as follows:

AR ∼= (x, y, z, q−1
A ) (7.21)

where:

0 + xi + yj + zk = q−1
A × (0− xAi− yAj− zAk) (7.22)

Again, qA must be a normalised quaternion. The inversion operation simply reverses a coordinate

transformation of each sample from the input AT. Note that R is a unary operator and an

involution, i.e.
(
AR

)
R = A.
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7.2.2.3 Merging

If the robot observes a spatial constraint between two objects multiple times, it can use all the

observations to refine its knowledge about that relationship. In terms of approximate transfor-

mations, it is possible to combine two parallel ATs in order to produce a single AT with an

uncertainty lower than the uncertainty of both original ATs. This operation corresponds to the

multiplication of the probability distributions of the ATs, and it is derived from the conventional

Ensemble Kalman Filter (EnKF), which has been reviewed in Section 2.6.

Consider two uncorrelated ATs A ∈ t→u and B ∈ t→u. If quaternions are expanded to their

four real components, samples of ATs A and B can be considered as seven-dimensional vectors

a1, . . . ,aN ∈ R7 and b1, . . . ,bN ∈ R7, respectively, which can be organised into ensembles PA

and PB as:

PA
∼=
[
a1, . . . ,aN

]
(7.23)

PB
∼=
[
b1, . . . ,bN

]
(7.24)

These ensembles can be used to estimate the covariance matrices of the ATs as CA = cov(PA)

and CB = cov(PB), using the sample covariance operator defined in Equation (2.80), From the

covariances, it is possible to compute the Kalman gain factor:

K = CA [ CA + CB ]−1 (7.25)

The samples representing the combined AT can then be computed using the merging operation

⊗ defined as follows:

A⊗B ∼=
[
a1 + K(b1 − a1), . . . ,bN + K(bN − aN )

]
(7.26)

The quaternions of the input ATs must be normalised prior to the merge; the resulting quater-

nions will be denormalised, in general.

Note that merging is simply a binary operator applied pairwisely to samples with the same

index from the input ordered sample sets (aka ensembles). The characteristics of this binary

operator are only determined by the global characteristics of both input sample sets, namely,

their covariances. The merging operation is just a special case of the EnKF update rule, de-

scribed in Definition 2.10. As such, it is based on the assumptions that both input sample

sets approximate a Gaussian probability distribution, are independent, and the system is linear.

Moreover, the covariance of the pairwise differences between an input and the output ordered
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sample set estimates the (Gaussian) cross-correlation between the input distribution and the

product distribution, which signifies the importance of preserving the order of the sample sets.

Even if the input ATs have a non-Gaussian distribution, the merged AT will tend towards a

Gaussian distribution due to the ”fuzzy” central limit theorem. Clearly, in such a situation the

merge is suboptimal since the product of the input distributions is likely to be non-Gaussian.

An alternative approach could, for example, use a density estimator to obtain a parametric

approximation of one input AT’s probability distribution, and perform importance resampling

of the samples from the second AT, as described by (Ong et al., 2006). Although such an

approach would, in the limit, provide a theoretically correct estimate of the combined AT,

it would, however, lose the order of samples and thus lose the information about correlation

between the sample sets, which is crucial for an efficient stochastic map implementation, as will

be shown later. Multiple parallel ATs can be merged by successively merging pairs of ATs; the

order in which the merges are performed is irrelevant, because the merging operation is both

associative and commutative:

(A⊗B)⊗C ≈ A⊗ (B⊗C) (7.27)

A⊗B = B⊗A (7.28)

The approximate equality operator (≈) is used to signify the fact that the equation only holds

in the limit, as the number of samples grows to infinity.

7.2.2.4 Discussion

Unlike the compounding and inversion operations, merging considers AT samples as simple

vectors without any structure. This is a problem because the space of rotations is a manifold,

not an Euclidean space. The statistical properties of the merge operation could be further

improved by application of the � operator that maps a local variation in an Euclidean space to

a manifold, as described in (Hertzberg et al., 2011). However, this is beyond the scope of this

thesis. Although the merging operation as defined in Equation (7.26) is suboptimal, in practice

it behaves well even with moderate angular errors.

The representation of ATs by sample sets and the definition of compounding, inversion and

merging as operations on samples can be seen as a generalisation of the historical Smith &

Cheeseman framework (Smith and Cheeseman, 1986) that operates with ATs represented using

means and covariances. Both sample-based compounding and inversion work precisely with ar-

bitrary probability distributions and angular errors in the limit, as the number of samples grows
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to infinity. Note that all the three operations can be directly implemented to run asymptotically

in O(N) time and space, where N is the number of samples. Furthermore, N does not depend

on the covariance of the input distributions, as argued in (Evensen, 2009).

Equivalent AT operations could easily be defined for sample sets with a different parametri-

sation of coordinate frame rotations, such as Euler angles. The choice of quaternions has,

however, several benefits. Firstly, quaternions have no singularities in the poles as Euler an-

gles have, thus avoiding the infamous gimbal lock problem. Secondly, the quaternions are the

preferred parametrisation of orientations for statistical purposes (Altmann, 1986), such as the

computation of covariance. Thirdly, the AT operations with quaternions do not need to evaluate

trigonometric functions, which are computationally expensive.

7.2.3 Ordered Sample Sets Correlation

As mentioned in Section 7.2.2.3, under given assumptions, the result of the merging operation

is an ordered sample set, whose correlation to an input ordered sample set can be estimated

by pairwisely subtracting the two sample sets and computing the covariance of the difference.

Formally, in this context, two ordered sample sets PA and PB are called uncorrelated if:

cov(PA −PB) ≈ cov(PA) + cov(PB) (7.29)

where PA−PB denotes a pairwise difference between two ordered sample sets, which is actually

another ordered sample set. The approximate equality (≈) changes to full equality (=) in the

limit, as the number of samples grows to infinity. The order of the samples plays a key role.

For example, consider two correlated ordered samples sets. If one of the sets is randomly

permuted, the difference to the other set will suggest the two sets are uncorrelated. Note that

the definition above only considers the second moment of the correlation, i.e. the covariance.

Assuming the two original distributions, and their correlation, is Gaussian, then the covariance

is the theoretically correct estimate of the correlation. However, if these assumptions are not

met, the definition might not provide an accurate description of correlation between underlying

probability distributions.

The compounding operation does not require the input ATs to be uncorrelated. In fact,

compounding of correlated ATs has some desired properties, such as the eliminability property

for the inversion operation:

A⊕AR = Ø (7.30)
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where Ø denotes an invariant, or zero, AT. However, the merging operation, as defined in

Section 7.2.2.3, does require the input ATs to be uncorrelated. Consider three ATs: X ∈ t→u

and A,B ∈ u→ v. With the previously defined merging operation, distributivity of ⊕ over ⊗

cannot be guaranteed, i.e.

X⊕ (A⊗B) 6≈ (X⊕A)⊗ (X⊕B) (7.31)

Given two potentially correlated ATs C,D ∈ t→ v to merge (represented by two ordered

sample sets PC and PD, respectively), suppose the covariances of their errors are composed of

a common error component CX, and independent components CA and CB, respectively:

cov(PC) = CX + CA (7.32)

cov(PD) = CX + CB (7.33)

cov(PC −PD) = CA + CB (7.34)

Solving the system of equations leads to:

CX =
cov(PC)+cov(PD)−cov(PC−PD)

2
(7.35)

CA = cov(PC)−CX (7.36)

CB = cov(PD)−CX (7.37)

Plugging CA and CB into Equations (7.25) and (7.26) leads to a definition of a revised merging

operation that effectively ignores the correlation between the two input sample sets. This oper-

ation is just a special case of the CPI-EnKF update rule provided in Section 5.2.2. In fact, the

work presented here represents historically the first derivation of the CPI-EnKF update rule.

Note that if the original sample sets PC and PD are uncorrelated, then CX converges to the zero

matrix thanks to Equation (7.29) as the number of samples grows to infinity, and the revised

merge operation reduces to the standard merge.

The fact that the revised merge is just a generalisation of the standard merge allows to

apply the term ”merge” and the ⊗ symbol to the revised merge in the later text, without any

confusion. Note that now the merging operation is idempotent, i.e. A⊗B ≈ A⊗B⊗B⊗.... The

idempotence guarantees that ATs can be repetitively re-merged, without under or overestimating

uncertainty of a combined AT. This feature of the CPI-EnKF update rule is analysed in detail

in Section 6.4.2.
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7.2.4 Stochastic Map

A mobile robot employs sensors to observe its environment and uses the observed information

for navigation. Assuming that spatial observations and navigation decisions can be expressed

as operations with ATs, the robot can solve the navigation problem by means of registering

observed ATs and querying potentially unobserved ATs. The stochastic map is a data structure

that implements two basic procedures: update registers a newly observed AT and query finds

the best estimate of an AT between two given coordinate frames.

The sensor readings are assumed to be expressible by an AT, generated by random sampling

from the measurement model. Without loss of generality, assume that the relative positions of

coordinate frames in the stochastic map are fixed; if the robot wants to update the location of

an existing frame (e.g. its own pose), it can do so by relating a new coordinate frame to the

referenced coordinate frame using an AT, and then removing the referenced frame.

In the approach presented in this section, the stochastic map is represented as a forest of star

graphs: nodes corresponds to coordinate frames and edges correspond to ATs modelled using

ordered Monte Carlo sample sets. Each star in the forest represents a single disjoint component

of the map, i.e. a separate sub-map. Although such a distinction is often not necessary, as the

map will typically be built sequentially, it is useful to show how two disjoint components can be

connected, e.g. in multi-robot SLAM. Figure 7.3 shows an example of such a forest comprised

of three star components; the arrows illustrate the direction of the ATs. The root of a star has

the role of a global reference frame, similarly to the EKF-SLAM stochastic map (Smith et al.,

1990), and the edges store the estimate of ATs to all reachable frames.

If an AT between the root and a leaf frame is queried, the result can be provided directly,

possibly utilising a single AT inversion. For example, in Figure 7.3, the a→r AT is found simply

as AR. The crucial property of the stochastic map is that the ordered sample sets of ATs in

a single star component are correlated in such a way that an AT between two arbitrary leaf

frames can be found simply by compounding the two ATs connecting those two frames, utilising

a single AT inversion. For example, a→b AT can be computed as AR⊕B. Two different cases

arise when adding a new AT to the map: in case I, the newly added AT connects two frames

from different components, and in case II, the AT connects two frames in the same component.

These two cases are described in detail in the following sections.
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Fig. 7.3: A stochastic map with three disjoint components


























 
 




Fig. 7.4: Configurations when joining two components with an AT

7.2.4.1 Case I: Adding an AT connecting two components

If the newly added AT connects two different star components, then it means that the corre-

sponding sub-maps are no longer disjoint and in the stochastic map, the two components will

be joined into a single component, using only the compounding and inversion operations. Fig-

ure 7.4 shows all four possible situations that can arise when joining two disjoint components

with a newly added AT X. Note that a component can also be comprised of a single node (see

the frame t in Figure 7.5); such an empty component is created whenever a coordinate frame is

observed the first time, before the corresponding AT is added to the map.

An important observation is that if both components were consistent before the join (i.e. the

edges store the best estimates of the ATs, and their sample sets are well-correlated), the joined

component will also be consistent thanks to the associativity of compounding from Equa-

tion (7.20) and eliminability of the inversion operation from Equation (7.30).

7.2.4.2 Case II: Adding an AT updating a single component

When adding an AT that connects two frames of a single stochastic map component, all ordered

sample sets of ATs in that component need to be updated to reflect the new information.
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Fig. 7.5: Steps when updating a single component by an AT

Figure 7.5 illustrates the steps of the update process when a new AT X is added to a single

component of the map. First, the star component might need to be reorganised using the

compounding and inversion operations so that the newly added AT goes from its root to a main

leaf frame (Figure 7.5-a). In the next step, the existing root-to-main AT is merged with the

added AT, and the result of the merge replaces the existing AT (see G in Figure 7.5-b). Finally,

each other root-to-leaf AT in the component is merged with the previously updated root-to-main

AT compounded with the old estimate of the main-to-leaf AT (Figure 7.5-c). This way the new

information provided by the added AT is propagated to all nodes of the star component, while

keeping the structure consistent. Many of the merged AT pairs will typically be correlated, so

the revised merging operation must be employed. This also implies that even a newly added AT

can be correlated to ATs already present in the stochastic map. In order to generate such an

AT from a sensor whose errors are sequentially correlated, it is necessary to generate samples

in such a way that the correlation between samples of ATs corresponding to consecutive sensor

readings models the sequential correlation characteristics of the sensor error. The details of this

procedure are discussed in Chapter 5.

7.2.4.3 Discussion

As mentioned in Section 7.2.2.4, the compounding, inversion and merging operations all run

asymptotically in O(N) time and space, where N is the number of samples. The query procedure

of the stochastic map processes just one or two edges of a single star component, and only

performs a constant number of operations per edge. Also, only a single sample set needs to

be kept in memory while processing the query, so the query as a whole executes in O(N) time
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and space. On the other hand, the update procedure needs to process each edge a constant

number of times, and the number of edges in a star forest asymptotically equals the number

of nodes (i.e. coordinate frames), thus enabling the update to run in O(M ·N) time where M

denotes the number of coordinate frames. For each edge, the stochastic map keeps a single

sample set in memory, and both reorganisation of the graph and the update of frames only need

a constant number of temporary sample set buffers, so the overall asymptotic space complexity

of the stochastic map is also O(M ·N).

An important observation is that adding an extra node to a star component does not affect

the way in which the queries and updates involving the other nodes are performed. Consequently,

the number of samples necessary to represent the ATs is entirely unrelated to the number of nodes

in the stochastic map. In other words, the number of samples necessary to accurately represent

the map does not grow with the number of spatial features, as in conventional particle filtering

methods. The number of samples used to represent ATs is merely a constant parameter that

determines the accuracy of the representation of probability distributions and their correlations.

Since the N parameter is constant, the asymptotic complexity of a query and update reduces to

O(1) and O(M), respectively. This result enables the application of the Monte Carlo stochastic

map to much larger environments than the traditional EKF-SLAM with its O(M2) update

complexity. Additionally, to maintain a reasonable performance in practical applications, the

robot’s perception system might selectively discard coordinate frames corresponding to spatial

features that are no longer needed. In contrast to graph-based SLAM methods, the spatial

features can be easily removed from the stochastic map, without affecting the estimation of

other features. Note that the presented topology is not the only possible way to organise ATs

in a stochastic map. The presented organisation was chosen to offer fast queries, while other

organisations might favour fast updates by, e.g. building a tree of ATs and delaying updates of

ATs that close loops.

7.2.5 Evaluation

This section presents an experimental evaluation of the proposed SLAM approach, with the

following goals:

• Evaluate the rate of convergence of representations with a different number of Monte Carlo

samples, if all the assumptions are met (i.e. Gaussian distributions and linear errors)

• Evaluate the rate of convergence in a situation where the assumptions are violated, by
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adding an angular error to the observations.

• Compare runtime performance of representations with different numbers of Monte Carlo

samples.

In the simulated scenario, a mobile robot follows a circular trajectory with a radius of

50 meters, and uses a laser scanner to observe 200 randomly generated point features in its

environment. Odometry provides observations of the robot’s motion at regular intervals as

(∆x,∆y,∆θ) vectors indicating the displacement of the robot since the previous observation.

During every odometry reading, the laser scanner provides an observation of a randomly selected

subset of point features available in the front 180-degree field of view, with the maximum range

of 30 meters. These observations are provided as two-dimensional vectors (x, y), in the robot’s

coordinate frame. Both types of observations are subject to white Gaussian noise with standard

deviations as follows: σx = 0.4m, σy = 0.4m, σ∆x = 0.01m, σ∆y = 0.002m, and σ∆θ varying

based on the experiment. Theses values were chosen to emulate errors of a typical laser scanner

and odometry, respectively.

7.2.5.1 Convergence

The accuracy of the map is measured as the root mean square (RMS) of the distances between

the mean of the position estimates and the ground truth, computed only for observed features.

Figure 7.6 shows the accuracy of the map in the situation where odometry has a zero angular

error. Before the robot finishes the first revolution of the circular trajectory (approximately

at iteration 340), a large loop is closed. Shortly after that all the spatial features have been

observed and added to the map, and the accuracy of the maps begins to converge towards zero.

The rate of the convergence is faster for maps represented by more Monte Carlo samples. On

the other hand, Figure 7.7 demonstrates that if odometry has a non-zero angular error, the map

diverges, regardless of the number of samples. This is caused by introduction of non-linear errors

by accumulation of relatively small angular errors over time, which then violate the assumptions

of the merging operation that all the probability distributions are Gaussian. Similar problems

arise with standard EKF-SLAM methods, as they are based on similar assumptions.

7.2.5.2 Runtime Performance

In order to evaluate the runtime performance of the Monte Carlo stochastic map, the map was

gradually grown from 0 to 400 frames, while performing 10 AT updates between existing, ran-
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Fig. 7.6: Accuracy of the stochastic map in a scenario with zero angular error in odometry (σ∆θ = 0).
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domly chosen, frames in every iteration. The test was repeated 10 times, so that the average

update time per number of features is computed from 100 samples. Additionally, for demonstra-

tion purposes, the same experiment was performed with an implementation of the EKF-SLAM

stochastic map, based on (Smith et al., 1990). The results are shown in Figure 7.8. Clearly,

the update time of the Monte Carlo stochastic map scales linearly with the number of frames

in the map, and with the number of samples used. On the other hand, the graph suggests that

EKF-SLAM update times grow quadratically, as expected.

Note that the numbers in Figure 7.8 were obtained with an unoptimised implementation.

Since the elementary operations on ATs are isolated simple algebraic computations, there is a

significant potential for further optimisation using hardware acceleration, parallel execution, or

both.

7.2.6 Conclusion

This section presented a novel algorithm to solve the SLAM problem, based on the CPI-EnKF

filter developed in this thesis. The new approach has been evaluated on a simulated data set

and its properties compared with the major SLAM paradigms. Its most unique feature is that

it scales linearly with the number of spatial features tracked, which enables its application in

life-long missions. Additionally, the presented approach disproves the commonly held belief that

the number of Monte Carlo samples necessary to accurately represent a posterior probability

distribution always grows exponentially with the number of dimensions. Note that the use of the

CPI-EnKF rather than the Augmented EnKF in the application presented in this section is due

to historical reasons, as this was the first application in which (a special case of) the CPI-EnKF

was developed. Nevertheless, the Augmented EnKF would provide equivalent results.

7.3 Global Positioning with a Stand-Alone GPS Receiver

In this section, the CPI-EnKF filter developed in this thesis is applied to a scenario in which

a mobile robot estimates its global position by fusing visual odometry data with measurements

from a stand-alone GPS receiver, which are affected by a sequentially correlated noise. The

main goal of this section is to demonstrate a practical utility of the new EnKF-based correlated

estimation methods in real-world problems. In this case, the CPI-EnKF filter enables use of an

accurate GPS error model that could not be practically supported using conventional approaches

such as state augmentation. The work presented here has been published in (Čurn et al., 2012b).
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7.3.1 Introduction

This section demonstrates an application of the CPI-EnKF in a real-world scenario where a

mobile robot uses dead reckoning and a low-cost GPS receiver to estimate its global position in

real time. The problem of integrating GPS with odometry and other inertial sensors has been

studied in depth since the introduction of GPS, and there are two major approaches (Kaplan

and Hegarty, 2006): tightly coupled and loosely coupled integration.

In tightly coupled integration, both the pseudo-range (i.e. distance to satellite) and inertial

sensor measurements are processed in a single large Kalman filter. The pseudo-range measure-

ments can be considered as white noise sources.

In low-cost loosely-coupled integration, the GPS receiver is a stand-alone unit that processes

pseudo-range measurements using its internal Kalman filter and only reports estimated global

coordinates, which, however, cannot be considered as observations affected by a white noise, as

their error usually exhibits a strong sequential correlation. If the noise was assumed white, the

integration filter might provide overconfident estimates and/or diverge (Julier and Uhlmann,

1997a). The problem lies in the fact that the integration filter cannot model the real underlying

system state including variables such as GPS receiver clock bias and clock drift, and it only

models a high-level projection of these variables - the global coordinates. Even though the

introduction of additional state variables could alleviate the problem, modelling of such non-

physical variables is problematic. Another often applied approach is to artificially increase

the variance of the observation variables or to ignore certain observations altogether, and thus

effectively discard potentially useful information and reduce the convergence rate.

Instead, the approach presented in this section attempts to model the statistical character-

istics of noise produced by a stand-alone GPS receiver, and then it uses the new CPI-EnKF

to take into account the correlation between the observation error and the state estimate error,

which builds up over time. The CPI-EnKF assumes that this correlation is caused by a shared

error term between the observation error and the state estimate error, which is to be ignored.

This approach is somewhat similar to (Geier et al., 1995), in which the Kalman gain is reduced

to take into account the effect of correlations between the state estimate and observation errors.

However, their approach uses parameters determined in an ad hoc way for the particular ap-

plication, and it does not provide any general model of the method. Note that the application

presented in this section serves primarily to demonstrate the use and benefits of the CPI-EnKF,

and is not a complete solution to the problem outlined.
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7.3.2 Stand-Alone GPS Receiver Noise Model

In the long term, a sequence of readings from a stand-alone GPS receiver appears to have a

multivariate Gaussian distribution with standard deviations in both (independent) horizontal

axes computed as (Kaplan and Hegarty, 2006, p. 331):

σxy = HDOP ∗ σUERE (7.38)

where HDOP is a horizontal dilution of precision reported by the receiver at every reading, and

σUERE is the user-equivalent range error (UERE) constant that summarises the contributing

GPS error sources for the specific operation principle of the receiver (the application presented

here uses a value of 7.0 m which is a typical value for C/A code receivers without differential

correction, and 1.5 m with EGNOS correction (Kaplan and Hegarty, 2006)). However, in the

short term, a sequence of GPS readings behaves like a random walk that is stationary around

the true position, with a range determined by HDOP.

Formally, at a given time step t ∈ N, the GPS error in a single horizontal axis can be

modelled as a real stochastic process {W t
σ2
xy
} of parameters t ∈ N and σ2

xy ∈ R, with the

following properties:

W t
0 = 0 (7.39)

W t
r −W t

s ∼ N (0, r − s) (7.40)

where x ∼ N (µ, σ2) denotes that a random vector x ∈ R has a normal distribution with mean

µ ∈ R and variance σ2 ∈ R. If the function r →W t
r is almost surely continuous, then for a fixed

t the sequence {W t
r} is known as a Wiener process. For arbitrary and fixed r ∈ R, the GPS

error at the time step t+ 1 decorrelates from the previous time step t as:

W t+1
r = ϕW t

r + εtr (7.41)

εtr ∼ N (0, r(1− ϕ2)) (7.42)

where ϕ ∈ R is a damping factor determining the rate of the decorrelation. From this perspective,

for a fixed r, the sequence {W t
r} behaves like a wide-sense stationary auto-regressive process

of order 1, which is also known as a coloured noise process from Definition 3.3. Note that if

ϕ = 0, the process decorrelates fully at every time step, and so it becomes a white Gaussian

noise process.

In the CPI-EnKF, each observation is represented as an ordered set of N samples (aka

ensemble). The goal is to develop a scheme that generates samples with statistical properties of
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the stochastic process {W t
r}. Such samples could be used as the observation noise compensation

terms of the filter, as discussed in Section 5.2.

Assume a fixed time step t ∈ N, and assume the samples ofW t
r0 , . . . ,W

t
rk

, where r0 < . . . < rk,

with the desired properties have already been generated, and now the samples of W t
s for some

s ∈ R are to be generated. Without loss of generality, assume r0 = 0 and thus the samples W t
r0

are all zeros. If rk ≤ s, then the samples of W t
s can be generated simply by adding a random

Gaussian noise to the last set of samples W t
rk

, i.e.

W t
s ← W t

rk
+N (0, s− rk) (7.43)

If ri ≤ s < rj for some i = 0, . . . , k and j = i + 1, . . . , k, then samples W t
s can be generated

by interpolating between the previous samples of W t
ri and the following samples of W t

rj , while

adding a random Gaussian noise as:

W t
s ← W t

ri + α(W t
rj −W

t
ri) +N (0, (s− ri)(1− α)) (7.44)

α = (s− ri)/(rj − ri) (7.45)

The samples of W t+1
r0 , . . . ,W t+1

rk
for the next time step t+ 1 can be generated from the current

samples of W t
r0 , . . . ,W

t
rk

sequentially for i = 1, . . . , k by applying the following formula:

W t+1
ri ← W t+1

ri−1
+ ϕ(W t

ri −W
t
ri−1

) +N (0, (ri − ri−1)(1− ϕ2)) (7.46)

Starting at time t = 0 with samples of W 0
0 which are all zeros, it can be shown that the recursive

sampling scheme described above generates samples that at any time retain the statistical prop-

erties defined in Equations (7.39)-(7.42); however, a formal proof of this statement is beyond

the scope of this thesis. The sampling scheme described above can be viewed from another

perspective: for any l = 1, . . . , N , the sequence of samples at index l generated by the sampling

scheme simulates over time the behaviour of a stand-alone GPS receiver, given a true position

and HDOP.

From an implementation perspective, at any time step t the system maintains a linked-list

of sample sets generated for all unique values σxy observed thus far (i.e. the number of unique

HDOP values reported by the GPS receiver). Whenever samples for a new GPS observation error

are required, first the standard deviation σxy of the GPS error is computed using Equation (7.38)

and the HDOP value reported by the GPS receiver, and then the samples of W t
σ2
xy

are generated

using the sampling scheme described above. These samples can be readily used in the CPI-EnKF

update rule as the observation noise compensation term, as described in Section 5.2. In filtering
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Fig. 7.9: The New College Dataset (Smith et al., 2009) - visual odometry is shown in red and GPS

data in blue.

scenarios with unbounded time the requirement to keep sample sets for all unique HDOP values

can cause significant memory and performance overheads, thus sample sets corresponding to the

HDOP values not observed for a long time need to be periodically discarded. In the scenario

discussed below, this issue was not a concern.

Note that in order to implement a similar estimation system with the conventional Kalman

filter, the system state would have to be augmented with terms corresponding to all the unique

HDOP values reported by the received in the past. Considering the quadratic complexity of

the update step of the Kalman filter, such a system would become computationally very ex-

pensive and most likely inapplicable in practice. On the other hand, with the CPI-EnKF the

computationally cost can be kept relatively low.

7.3.3 Scenario

The evaluation of the approach uses data from the New College Dataset (Smith et al., 2009),

where a Segway-based mobile robot equipped with a number of sensors traverses an outdoor

environment of the New College campus at the University of Oxford. The evaluation only

considers the data provided by the CSI Seres 5Hz GPS receiver with a DGPS correction using

WAAS/EGNOS, and visual odometry (VO) data computed from the LadyBug 2 panoramic

camera with a 20 Hz frame rate (see Figure 7.9). The raw odometry integrated from the wheel
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counters was not used due to its high inaccuracy. For clarity, only the last circumnavigation of

the campus is shown in all the figures. The satellite imagery was taken from Google Maps.

The dynamical system is modelled using 3 state variables: latitude and longitude (both

expressed as a distance in meters from a fixed coordinate origin nearby), and the yaw angle.

The ensemble (size N = 1000) is propagated in time using the VO readings with an added

random Gaussian noise (standard deviation ca. 0.55 cm in both the latitude and longitude, and

ca. 0.1◦ in the yaw angle). All the valid GPS readings are used to update the ensemble. The

disparity in time between the GPS and VO readings (of maximum 50 ms) is neglected.

In this evaluation, the performance of two estimators is compared: the conventional EnKF

with GPS errors sampled as a white Gaussian noise with variance given by the HDOP using

Equation (7.38), and the CPI-EnKF with GPS errors sampled using the scheme described in

Section 7.3.2, with a damping factor that decorrelates the GPS readings after 30 seconds (up

to 1%, 5 Hz rate, ϕ = 5×30
√

0.01 ≈ 0.970). The performance is compared against ground truth

that was defined by manually drawing a polyline that follows the true robot’s trajectory, based

on the satellite imagery of the campus and images from the panoramic camera.

7.3.4 Results

The estimates of the robot’s trajectory from both the conventional EnKF and the CPI-EnKF

are shown in Figure 7.10. In areas with good GPS coverage, the estimated trajectory from both

filters closely follows the ground truth, which also indicates that the satellite images are aligned

correctly to the global coordinates. In areas with poor GPS coverage, both trajectories often

deviate from the ground truth.

In the case of the conventional EnKF, often when the estimated trajectory deviates signif-

icantly from the ground truth, it does so overconfidently. In these areas, basically none of the

ensemble members (i.e. samples of the estimated robot’s pose) is anywhere near the ground

truth, indicating that the probability of the robot being in the ground truth position is prac-

tically zero. Clearly, these estimates do not reflect the reality. If such estimates were to affect

some safety-critical decisions of the robot, the consequences could be severe.

In the case of the CPI-EnKF, the estimated trajectory is similar to that of the traditional

EnKF, however, the uncertainty associated with the estimates is far more realistic. The ensemble

members cover the ground truth, giving a non-zero probability to the eventuality that the robot

is actually in the ground truth position. If the models of the system and the noises are correct,
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(a) EnKF

(b) CPI-EnKF

Fig. 7.10: Estimated trajectories of the robot from the New College Dataset. The ground truth is

shown in green, the mean position estimates in red, and the uncertainty associated with the estimates in

violet.

the provided estimates are guaranteed to be consistent, in the limit of an infinite ensemble.

7.3.5 Conclusion

The CPI-EnKF filter proposed in this thesis has been evaluated in a real-world scenario where a

global position of a mobile robot is estimated from visual odometry and a sequence of GPS read-
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ings affected by a sequentially correlated noise process, using a sophisticated sampling scheme

that emulates such a noise process. The evaluation shows that the CPI-EnKF provides much

more realistic probability estimates than the conventional EnKF. As it has been discussed, im-

plementation of such an estimation system using a conventional Kalman filter would make the

estimation computationally very expensive, and thus inapplicable in practice.

It needs to be noted that the application of the CPI-EnKF presented in this section vio-

lates the formal assumption that the observation model is an invertible matrix, as discussed in

Section 5.2.2. Therefore, a more correct solution would be to apply the Augmented CPI-EnKF

instead of the CPI-EnKF. However, in order to keep this section consistent with (Čurn et al.,

2012b), and also because the estimates provided by the CPI-EnKF are accurate enough, the

Augmented EnKF was not used in this section.

7.4 Chapter Summary

This chapter presented three practical applications of the EnKF-based algorithms for correlated

estimation problems developed in this thesis, in particular the CPI-EnKF and the Augmented

EnKF filters, to three distinct problems in the larger field of robotic localisation. In each of the

problems discussed, the new filters facilitate novel solutions that provide some new, qualitatively

better, features compared to the existing state-of-the-art methods. In general, these features

stem from the favourable linear computational complexity associated with the Monte Carlo

representation of probability distributions, and from the novel ability to fuse such distributions

even if they are correlated.
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Chapter 8

Conclusions and Future Work

This chapter summarises the achievements and contributions of this thesis, and discusses possible

paths for future work in the area.

8.1 Achievements

This thesis had an ambitious goal of exploring the applicability of the Monte Carlo method

to linear estimation problems affected by correlations in the errors. The Monte Carlo method

has already proven its merit in linear state estimation, enhancing the most prominent linear

estimation algorithm, the Kalman filter, with several important features such as a linear space

and time complexity and a support of non-linear process and observation models with arbitrary

accuracy. The resulting algorithm, the Ensemble Kalman filter (EnKF), has proven to be an

invaluable tool in the Earth sciences, for example, it became a de facto standard tool for data

assimilation in numerical weather forecasting.

The state of the art review presented in this thesis identified two primary origins of a cor-

relation in linear estimation problems - correlated noises and common past information, and

provided the most comprehensive overview of applicable Kalman filter-based estimation ap-

proaches to date. The most universal of these approaches, the Covariance Intersection (CI)

algorithm, provides an alternative update rule, which can account for an unknown correlation

between the errors associated with the state estimate and the observation. The universality

of the CI update rule enables its application to a wide range of problems, in particular to a

distributed data fusion in sensor networks.

The thesis then developed its main contribution, a generalisation of the EnKF filter, which
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enables it to operate in the presence of correlations in the errors, regardless of whether they are

caused by correlated noises or common past information. In particular, the thesis presents a

derivation of two new universal update rules, referred to as the Common Past-Invariant Ensemble

Kalman filter (CPI-EnKF) and the Augmented EnKF, which both provide consistent state

estimates even in the presence of a correlation between the errors associated with the state

estimate and the observation. This is only possible due to the unique nature of the Monte Carlo

representation of probability distributions inherent to the EnKF, which enables estimation of

the appropriate cross-covariance from random samples.

Numerical properties of all the new methods have been thoroughly evaluated in canonical

instances of all the types of correlated estimation problems discussed in the state of the art

review. The results indicate that the CPI-EnKF and the Augmented EnKF provide consistent

estimates in all of these types of problems. Moreover, in the case of estimation problems affected

by common past information, which is characteristic of sensor networks, the new update rules

provide more accurate state estimates than the only comparable algorithm - the CI. As such,

both the CPI-EnKF and the Augmented EnKF represent valuable tools for distributed data

fusion.

In order to demonstrate the practical utility of the new methods developed in this thesis

to real-world problems, the CPI-EnKF and the Augmented EnKF filters have been applied

to three distinct problems in the larger field of robotic localisation: cooperative localisation,

simultaneous localisation and mapping (SLAM) and global satellite-based positioning. The

filters enable development of new approaches that provide unique features compared to state-

of-the-art approaches in the respective areas. Moreover, this work also practically demonstrates

that the EnKF has the merit in real-time robotics applications, not only in the Earth sciences.

Considering that the Augmented EnKF is more general and numerically stable than the

CPI-EnKF, the main contribution of this thesis can be summarised by Equation (5.62):

K = cov(X,HX− Z) cov(HX− Z)−1

which represents the only part of the update rule that is different from the original EnKF.

8.2 Future Work

One of the principal limitations of the EnKF as well as its variants developed in this thesis is the

theoretical assumption that all the probability distributions involved are Gaussian. Although the
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filters provide reasonable state estimates even if this assumption is not exactly satisfied, typically

even with a higher accuracy than both the EKF and UKF, the filters are not suitable to problems

characterised by a presence of multimodal distributions (i.e. probability distributions with two

or more distinct peaks). A possible solution would be to extend the filters to represent state

estimates using more than one ensemble, effectively creating an EnKF variant of the multivariate

Gaussian mixture model.

Another problem of the methods developed in this thesis, as well as all other variants of

the Kalman filter, is the irreversibility of assimilation of sensor measurements. Once a sen-

sor measurement is used to update the state estimate, it cannot be easily removed, shall the

measurement be found incorrect later. For example, such a feature is useful for implementing

a robust data association in robotics. A naive approach to address this problem would be to

maintain multiple state estimates at the same time, where each estimate is updated by a dif-

ferent set of (alternative) observations. Unfortunately, this approach leads to an exponential

explosion of the number of state estimates maintained. With the EnKF, however, it might be

possible to develop a scheme that would reduce the ensemble sizes with each such division, and

thus manage the complexity of the problem, trading it off for the filter’s accuracy.

Both the new update rules developed in this thesis, the CPI-EnKF and the Augmented

EnKF, are based on different premises and are not algebraically equivalent, except in one-

dimensional systems. However, in all the scenarios evaluated, the filters provide practically

identical state estimates. It remains an open question in which practical problems, if any, will

these filters provide substantially different state estimates.

The thesis presented three different practical applications of the CPI-EnKF and the Aug-

mented EnKF filters, with a focus on the area of robotic localisation. However, the filters can be

applied and potentially provide interesting benefits in many other areas, for example, in financial

analysis. It remains to be seen where the filters will be applied and what benefits will they offer.
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