Interventions for improving medication reconciliation across transitions of care (Protocol)

Redmond P, Grimes TC, McDonnell R, Boland F, Hughes C, Fahey T

This is a reprint of a Cochrane protocol, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 10

http://www.thecochranelibrary.com

WILEY
Interventions for improving medication reconciliation across transitions of care

Patrick Redmond¹, Tamasine C Grimes², Ronan McDonnell¹, Fiona Boland¹, Carmel Hughes³, Tom Fahey⁴

¹HRB Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
²School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland.
³School of Pharmacy, Queen’s University Belfast, Belfast, UK.
⁴Department of Family Medicine and General Practice, Royal College of Surgeons in Ireland Medical School, Dublin, Ireland

Contact address: Patrick Redmond, HRB Centre for Primary Care Research, Royal College of Surgeons, Beaux Lane House, Mercer Street Lower, Dublin 2, D2, Ireland. PREDMOND@rcsi.ie.

Editorial group: Cochrane Effective Practice and Organisation of Care Group.

ABSTRACT

This is the protocol for a review and there is no abstract. The objectives are as follows:

To assess the effect of medication reconciliation on medication discrepancies, patient related outcomes and healthcare utilisation in patients receiving this intervention during transitions of care compared to patients not receiving medication reconciliation.

BACKGROUND

Errors in the prescribing and administration of medication are frequent, costly and harmful (Bates 2007). More than 40% of medication errors take place as a result of inadequate reconciliation of medications at transitions of care (Hughes 2008). Transitional care provides for the continuity of care as patients move between different stages and settings of care (Coleman 2004). The prevalence of medication discrepancies arising at transitions of care have been reported in many different settings (hospital, community and long-term care facilities) and stages of care (admission, transfer and discharge); in particular transitioning from an inpatient to an outpatient setting is associated with an increase in medication errors relative to other stages of care (Boockvar 2006; Coleman 2004; Moore 2003; Tam 2005). Prevalence of adverse events post-hospitalisation as high as 19% have been reported with the majority of these related to adverse drug events, which may be the result of medication error. (Forster 2003). Medication discrepancies as patients transition to home from hospital have also been linked with increased re-hospitalisation rates (Coleman 2005).

“Medication reconciliation is a conscientious, patient centred, inter-professional process that supports optimal medicines management” (Greenwald 2010). It is an attempt to prevent medication errors at patient transition points. It is intended to be the process of creating the most accurate list of medications at all transition points, with the goal of providing the correct medications to the patient (Karapinar-Carkit 2011). Different patient groups and locations have been subject to study. A variety of intervention types have been investigated for the reconciliation of medicines including information technology (Kramer 2007; Schnipper 2009), pharmacist-led (Gillespie 2009), and more complex multi-faceted...
interventions (Koehler 2009). The benefits of medication reconciliation interventions are often assessed by comparing medication regimens across transitions and reporting discrepancy reduction as the primary outcome. A previous systematic review reported that although unintended medication discrepancies are common, clinically significant discrepancies may affect only a few patients (Kwan 2013). Challenges arise in identifying those discrepancies that are considered clinically significant and which may give rise to patient harm... The recognised difficulty in undertaking appropriate comparisons and selection of relevant outcome measures is seen by the fact that while reported interventions have a positive effect on reducing the prevalence of medication discrepancies, the evidence for the presumed subsequent reduction in patient harm or healthcare utilisation is equivocal (Mueller 2012).

Therefore despite reconciliation being recognised as a key aspect of patient safety there remains a lack of consensus and evidence as to the most effective methods of implementing reconciliation and calls have been made to strengthen the evidence base prior to widespread adoption (Greenwald 2010).

How the intervention might work
Failure to reconcile medications can result in medication error and subsequent adverse drug events (IHI 2011). Interventions to improve medication reconciliation may work by improving the communication between all those involved in the medication use process (dispensing, administration, monitoring across settings and stages of care), including the patient. Additionally these interventions may well help in reducing transcribing errors, improved monitoring of prescriptions, information technology systems and reorganisation of care delivery.

Why it is important to do this review
Medication reconciliation is incorporated into the National Patient Safety Goals of the Joint Commission under the umbrella of improving the safety of using medications (The Joint Commission 2013). The National Institute for Health and Care Excellence (NICE) in collaboration with the National Patient Safety Agency in the UK encouraged the standardisation of reconciliation processes within healthcare organisations (NICE 2007). The Canadian Patient Safety Institute and the Institute for Safe Medication Practices (Canada) have advocated for medication reconciliation and the WHO launched the High 5’s project in 2006, with an emphasis on patient safety with the standard operating procedure - ‘assuring medication accuracy at transitions in care’ focused on reducing medication discrepancies (WHO 2006). Despite the high level of interest in implementing medication reconciliation the most effective process of conducting reconciliation remains unclear. A consensus statement from key stakeholders has called for further efforts to identify the best practices surrounding medicine reconciliation and their wider dissemination (Greenwald 2010).

The seminal Institute of Medicine report titled “To Err is Human: Building a Safer Health System” highlighted medication error as being widely prevalent, costly and contributing to preventable causes of patient injury (IOM 1999). The findings of this proposed review are relevant at both a national and international level. Regulatory bodies, healthcare institutions, patient safety advocates, healthcare practitioners and the wider public would be receptive audiences for the findings from a systematic review of the most effective method of medicines reconciliation.

OBJECTIVES

Description of the condition

Transitional care describes the care provided to patients to ensure the coordination and continuity of healthcare as they transfer between different settings and/or different stages of care within the same settings (Coleman 2003b). Examples of care settings include locations such as hospitals, subacute and long term nursing facilities, patients’ homes, primary care offices, and assisted living facilities (Coleman 2003b). Stages of care within these care settings may include admission, transfer and discharge. Transitions of care are associated with medication errors and patient harm. Greater coordination and attention to care transitions have been brought about by regulatory changes and financial penalties for “hospital-acquired conditions” (Jenq 2012). Furthermore, improved continuity of prescribed medication via medication reconciliation for patients at transitions of care is recommended by national standard setting bodies and internationally led initiatives e.g. World Health Organization (WHO)’s High 5’s project (IHI 2011; NICE 2007; WHO 2006). However, the most effective method of conducting reconciliation remains unclear.

Description of the intervention

Medication reconciliation consists of the following three steps (IHI 2011).

1. **Verification:** A current medication list is developed using one or more sources of information (e.g. general practitioner medical records, patient’s own supply, pharmacy records).

2. **Clarification:** Medication and dosages are checked for appropriateness. Here appropriateness means ensuring that there are no unintentional changes, rather than a medication review leading to optimal changes.

3. **Reconciliation:** Newly prescribed medications are compared to old and any changes made are documented.

INTRODUCTION

Medication reconciliation is incorporated into the National Patient Safety Goals of the Joint Commission under the umbrella of improving the safety of using medications (The Joint Commission 2013). The National Institute for Health and Care Excellence (NICE) in collaboration with the National Patient Safety Agency in the UK encouraged the standardisation of reconciliation processes within healthcare organisations (NICE 2007). The Canadian Patient Safety Institute and the Institute for Safe Medication Practices (Canada) have advocated for medication reconciliation and the WHO launched the High 5’s project in 2006, with an emphasis on patient safety with the standard operating procedure - ‘assuring medication accuracy at transitions in care’ focused on reducing medication discrepancies (WHO 2006). Despite the high level of interest in implementing medication reconciliation the most effective process of conducting reconciliation remains unclear. A consensus statement from key stakeholders has called for further efforts to identify the best practices surrounding medicine reconciliation and their wider dissemination (Greenwald 2010).

The seminal Institute of Medicine report titled “To Err is Human: Building a Safer Health System” highlighted medication error as being widely prevalent, costly and contributing to preventable causes of patient injury (IOM 1999). The findings of this proposed review are relevant at both a national and international level. Regulatory bodies, healthcare institutions, patient safety advocates, healthcare practitioners and the wider public would be receptive audiences for the findings from a systematic review of the most effective method of medicines reconciliation.

OBJECTIVES
To assess the effect of medication reconciliation on medication discrepancies, patient related outcomes and healthcare utilisation in patients receiving this intervention during transitions of care compared to patients not receiving medication reconciliation.

METHODS

Criteria for considering studies for this review

Types of studies

We will include the following types of studies:
- randomised controlled trials (RCTs);
- non-RCTs;
- controlled before after studies;
- interrupted time series studies;
- repeated measures studies.

Studies will be eligible for inclusion, irrespective of language or publication status.

Non-RCTs, controlled before after studies, interrupted time series studies and repeated measures studies will be eligible for inclusion, subject to the criteria stated in the *Cochrane Handbook for Systematic Reviews of Interventions* and inclusion criteria developed by the Cochrane Effective Practice and Organisation of Care (EPOC) Group (Higgins 2011). It was felt necessary to include these types of studies due to the potentially small number and difficulty of designing randomised controlled trials in the area of medication safety.

We will exclude case series, cohort studies, studies using historical controls or cross-sectional studies.

We will report results from randomised studies separately.

Types of participants

We will include all studies involving patients experiencing a transition of care. Transitions of care refer to changes in the level, location, or providers of care as patients move within the health care system (Coleman 2003a; Kim 2013). This may include but is not limited to hospital admission/discharge, acute and sub acute facilities/units/wards, primary and speciality care, long term care institutions and patients’ homes. Transition may be in either direction e.g. admission and/or discharge to an intensive care unit from a general ward.

There will be no restriction on age, gender, ethnicity, location or patient population.

Types of interventions

We will select studies where the intervention is broadly compliant with the process of medication reconciliation as outlined by the Institute for Healthcare Improvement (IHI 2011): “the process of creating the most accurate list possible of all medications a patient is taking - including drug name, dosage, frequency, and route - and comparing that list against the physician’s admission, transfer, and/or discharge orders, with the goal of providing correct medications to the patient at all transition points...”. Medication reconciliation involves three steps (IHI 2011):

1. create an accurate and complete list of current medications (verify);
2. check appropriateness of medication regimes (clarify);
3. document the reason for medication changes (reconcile).

The intervention must be applied as patients transition from different levels and/or locations of care.

Medication reconciliation interventions may be aligned to a number of broad interventional categories including professional interventions, financial, organisational and regulatory (EPOC 2013b). These can include pharmacist delivered reconciliation (Kwan 2007; Makowsky 2009; Nazareth 2001; Walker 2009), complex multi-faceted interventions (Scullin 2007), and information technology solutions (Jack 2009; Schnipper 2009). It may be possible within the review to perform subgroup analysis to compare different approaches within these categories of interventions.

We will exclude trials investigating interventions to improve the quality of prescribing during transitions of care, with no medication reconciliation focus.

The comparator group will be those patients receiving no intervention or “usual care” as provided by the relevant healthcare provider.

Types of outcome measures

The outcomes chosen reflect the Cochrane EPOC Group guidance as those being important to the population of interest as well as decision makers in healthcare (EPOC 2013a). We will exclude studies reporting secondary outcomes only. We will include process measures, patient related outcomes and healthcare utilisation.

Primary outcomes

Discrepancies in prescription per:
- patient;
- medication (e.g. drug/dose/name/mode of administration/frequency).

Medication discrepancies have previously been defined as unexplained differences in documented medication regimes across different sites of care (Mueller 2012).
Secondary outcomes

Patient related and process outcomes:
- medication discrepancy with the potential for adverse drug events, which have been previously described as “incidents with potential for injury related to a drug” (Bates 1995);
- adverse drug events;
- mortality.

Health care utilisation:
- primary care visits;
- emergency department visits;
- unplanned re-hospitalisation;
- length of stay.

Additional outcomes:
- adverse effects of interventions (e.g. unanticipated increased workload, health worker attrition);
- resource use (dependent on studies of effectiveness selected for inclusion in the review, a narrative summary of the characteristics of economic analysis undertaken may be possible e.g. comparisons of study design, methodology and outcome, measures of incremental resource use, cost and cost effectiveness etc. These results may be useful in future full economic evaluations).

The order of the chosen outcomes (with a process measure being identified as the primary outcome) is a reflection of the current efforts in the study of medication reconciliation. The majority of completed and planned interventional studies in this area have chosen medication discrepancy as their primary outcome. Indeed many trials reporting clinical measures such as re-hospitalisations are underpowered to adequately report such findings. In addition, reporting potential for adverse drug events acknowledges previously-raised concerns that some discrepancies may have little or no impact on patient safety (Kwan 2013).

Search methods for identification of studies

The Cochrane EPOC Group will search the Cochrane Database of Systematic Reviews (CDSR) and the Database of Abstracts of Reviews of Effects (DARE) for related systematic reviews and the following databases for primary studies.

Electronic searches

- Cochrane EPOC Group Specialised Register
- Cochrane Central Register of Controlled Trials (CENTRAL), The Cochrane Library
- MEDLINE and MEDLINE In-Process and other non-indexed citations, OvidSP (Appendix 1)
- EMBASE, OvidSP
- PsychINFO, OVIDSP
- CINAHL (Cumulative Index to Nursing and Allied Health Literature), EbscoHost
- Dissertations and Theses Database, ProQuest
- Science Citation Index, ISI Web of Knowledge
- Web of Science, Conference Proceedings Citation Index-Science, ISI Web of Knowledge
- Pharmline, National Electronic Library for Medicines
- International Pharmaceutical Abstracts (IPA), ProQuest

We will translate the MEDLINE search strategy for other databases using appropriate syntax and vocabulary for those databases. The strategy includes medical subject headings and synonyms for medication reconciliation and transitions of care. We will limit results using the “Cochrane Highly Sensitive Search Strategy for identifying randomized trials in MEDLINE: sensitivity- and precision-maximizing version (2008 revision); Ovid format”, to identify RCTs, as well as the Cochrane EPOC Group methodology filter to identify non-RCTs.

Searching other resources

We will conduct a grey literature search to identify studies not indexed in the databases listed above. Sources will include the sites listed below: Additional sources, if any, will be documented in the review.

- Open Grey (http://www.opengrey.eu/).
- Agency for Healthcare Research and Quality (AHRQ) (http://www.ahrq.gov/).
- National Research Register (NRR) Archive (http://www.nihr.ac.uk/Pages/NRRArchive.aspx).
- Joanna Briggs Institute (http://joannabriggs.org/).
- National Institute for Health and Care Excellence (NICE) (http://www.nice.org.uk/).
- NHS Evidence Search (https://www.evidence.nhs.uk/).

We will also:
- screen individual journals and conference proceedings;
- review reference lists of all included studies, relevant systematic reviews-primary studies/other publications;
- contact authors of relevant studies or reviews to clarify reported published information/seek unpublished results/data;
- contact researchers with expertise relevant to the review topic/Cochrane EPOC Group interventions.
Data collection and analysis

Selection of studies
A combination of two authors (PR, TG, RMcD, FB) will independently screen titles and abstracts to decide which studies satisfy the inclusion criteria as well as identification of multiple reports from single studies. Any papers not meeting the inclusion criteria will be excluded at this stage. If there is uncertainty, consensus will be reached by discussion with another co-author. If agreement cannot be reached, we will involve an EPOC Group editor to resolve it. Following this, two authors (PR, TG) will independently assess the full text articles to ensure the studies still fulfill the inclusion criteria.

Data extraction and management
A combination of two authors (PR, TG, RMcD, FB) will independently undertake data abstraction using a modified version of the Cochrane EPOC Group data collection checklist to include: study design, study population, intervention, usual care, outcome measures used and length of follow-up data (EPOC 2013c). Any disagreement will be resolved by discussion between the co-authors. Where necessary, we will contact authors for missing information or clarification. Information from data extraction forms will guide the extraction of numerical data for meta-analysis in the Cochrane Collaboration’s statistical software, Review Manager 2013.

Assessment of risk of bias in included studies
The criteria against which the risk of bias in a study is judged will depend upon its study design. The domains by which studies with a control group (RCTs, non-RCTs and controlled before and after studies) will be assessed include (EPOC 2011; Higgins 2011):
1. sequence generation;
2. allocation concealment;
3. baseline characteristics;
4. baseline outcome measurement;
5. blinding;
6. incomplete outcome data;
7. protection against contamination;
8. selective outcome reporting;
9. other biases.
We will tabulate the description of the domains for each included study, along with a judgement on the risk of bias (low, high or unclear), using one key domain of a study-level entry (allocation concealment) and one key domain of an outcome-level entry (incomplete outcome data) based on the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). We will undertake a summary assessment of the risk of bias for the primary outcome across the studies (Higgins 2011). For each study, we will provide a summary assessment of risk of bias as shown below:

1. low risk when there is a low risk of bias across all key domains;
2. unclear risk of bias when there is an unclear risk of bias in one or more of the key domains;
3. high risk of bias when there is a high risk of bias in one or more of the key domains.

We will use the following criteria for interrupted time series studies and repeated measures studies (EPOC 2011):
1. the intervention was independent of other changes;
2. the shape of the intervention effect was pre-specified;
3. the intervention was unlikely to affect data collection;
4. incomplete outcome data were adequately addressed;
5. the study was free from selective outcome reporting.

A combination two authors (PR, TG, RMcD, FB, CH, TF) will independently perform the quality assessment. We will resolve disagreements by discussion and, if needed, arbitration by a third author.

Measures of treatment effect
Randomised and non-randomised studies will be reported separately. We will report outcomes for each study in natural units. We will calculate, where possible, absolute change from baseline with 95% confidence intervals. We will report estimates for dichotomous outcomes (e.g., adverse drug events) as risk ratios. We will report estimates for continuous outcomes as mean differences if they are measured on the same scale, if continuous outcomes are measured on multiple scales, we will report the standardised mean difference. We will report pre-intervention and post-intervention means or proportions where baseline results are available for both intervention and control groups from RCTs, quasi-RCTs and controlled before and after studies.

For RCTs, we will combine findings from independent studies using standard meta-analysis techniques provided enough study data is obtained and taking account of heterogeneity between studies. The size of the study will determine the study’s weight and an overall treatment effect will be estimated.

For interrupted time series design studies, we will extract the difference in slope and the difference in pre to post-intervention levels. We will analyse the post- versus pre-intervention difference (adjusted for trends) at specific time points (three months, six months and six-monthly thereafter). If the differences are not available in the primary reports, we will attempt re-analysis using data from graphs or tables.

We will exclude studies ignoring secular changes and performing simple pre-post analyses unless re-analysis is possible. Re-analysis, to estimate the effect of an intervention, will include a segmented time-series regression analysis, taking into account secular time trends and any autocorrelation between any individuals observations. This allows the change in level and change in trend, after the intervention, to be estimated. Meta-analysis will be performed for the changes in level and changes in trend using the generic inverse
variance method in Review Manager 2013. We will tabulate all relevant information of studies included in the review. This will include all pre- and post-intervention results (sample sizes, means, proportions, 95% confidence intervals, etc.) for each group for each outcome of interest. Additionally, we will examine the pre- and post-intervention difference for each group for each outcome of interest as well as the differences across groups. We will conduct a meta-analysis combining the results of the individual studies.

Unit of analysis issues
Cluster-randomised trials selected for inclusion will be assessed in order to ensure that appropriate analysis was carried out to address cluster effects and to avoid overestimating the significance of differences. In cluster randomised studies where the analysis was carried out ignoring the effect of clustering, efforts will be made to obtain the data needed to correct for this. Should the data not be forthcoming we will use the intra cluster correlation coefficient (ICC) or design effect from external sources (other trials included in the review) to inflate the standard error so as to account for clustering as described in the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). As stated above, we will assess all non-RCTs, controlled before and after studies, interrupted time series studies and repeated measures studies selected for inclusion to ensure that the appropriate analysis was carried out and, as for the cluster randomised trials efforts, will be made to obtain the data if necessary.

Dealing with missing data
We will contact lead study investigators or corresponding authors for any missing trial data or data missing from published reports for additional clarification. If there are any missing data from a study, we will explicitly state this. Sensitivity analyses will be undertaken as per the Cochrane Handbook for Systematic Reviews of Interventions to assess how sensitive results are to reasonable changes in the assumptions that are made (Higgins 2011). We will comment on the potential impact of missing data on the review findings in the Discussion section.

Assessment of heterogeneity
We intend to assess contextual heterogeneity on the basis of information collected on the context in which the intervention was implemented. We will assess for variability in the participants, interventions and outcomes studied to identify clinical heterogeneity, and for variability in study design to describe methodological diversity. Statistical heterogeneity will be identified and measured as recommended by the Cochrane Handbook for Systematic Reviews of Interventions (Higgins 2011). The following will be used as a guide for interpretation:

- 0% to 40%: might not be important;
- 30% to 60%: may represent moderate heterogeneity;
- 50% to 90%: may represent substantial heterogeneity;
- 75% to 100%: considerable heterogeneity.

Assessment of reporting biases
We will examine asymmetry in funnel plots of the primary outcome to assess the potential for study effects such as publication bias, if a sufficient number of trials are available. We will conduct formal statistical tests for funnel plot asymmetry, namely the Begg's and Egger's methods (Higgins 2011), again if a sufficient number of trials are available. Furthermore, we will assess reporting bias by scrutinising the study results using the 'Risk of bias' tables (e.g., selective outcome reporting). Where there is a possibility of publication bias and small-study effects, we will undertake a sensitivity analysis as described below (Sensitivity analysis). In addition to searching trial registries for relevant trials not identified in our main database searches, we will also search for protocols of studies selected for inclusion, to compare planned with actual methods, interventions and outcomes. Furthermore a thorough search of the grey literature and contact with known experts in the field will also reduce the influence of publication bias on our review.

Data synthesis
We will perform statistical analysis using Review Manager 2013. We will conduct the meta-analysis of included randomised controlled trials and observational trials separately. Pooled estimates (risk ratios (RRs) with 95% confidence intervals (CIs)) of the evaluated outcome measures will be calculated by the generic inverse variance method.

Results will not be depicted as 'not statistically significant' or 'non significant', but we will report the CIs together with the exact P value. In the absence of statistical and clinical heterogeneity we will apply a fixed-effects model to pooled data. The I^2 statistic will be examined to describe the proportion of the variability in the results that reflects real differences in effect size. However, variation in studies with respect to populations, interventions, outcomes and settings is likely. Thus, the true effect is likely to be related, but not the same for all studies. We will therefore choose the random-effects model or choose not to perform a meta-analysis.

If it is not possible to synthesise the data from the included studies, we will provide a narrative synthesis of the results, grouping together studies that used similar interventions and provide a comparison of different approaches. The data will eventually be synthesised using a 'Summary of Findings' table that will provide key information concerning the quality of evidence, the magnitude of effect of the interventions examined, and the sum of available data on all primary outcomes for a given comparison. We will conduct quality assessment of the results using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, which specifies four levels of quality (high, moderate,
low and very low) where the highest quality rating is for a body of evidence based on randomised trials. Quality will be assessed separately for each outcome.

Subgroup analysis and investigation of heterogeneity

We will pursue subgroup analyses with sufficient data. Exploratory search results suggest the following subgroup analysis may be possible.

- Patients with polypharmacy (≥4 long-term medications), older (>65), and/or chronic illnesses as these groups are known to suffer more errors in prescribing (Gleason 2010; Grimes 2011).

- Comparison of different approaches to medication reconciliation (e.g., information technology, pharmacist delivered, integrated medicines management) may be undertaken, particularly where the methods are supported by the literature and are of interest in developing and implementing reconciliation interventions.

- Patients admitted to or discharged from acute hospital care (hospital admission and discharge are well studied transitions of care for applying medication reconciliation interventions).

The number of subgroups will be kept to a minimum and priority will be given to subgroups that are of specific interest to the potential implementation of any future intervention.

Sensitivity analysis

We will conduct a sensitivity analysis to calculate the effect of risk of bias (including missing data) within studies on effect size, by calculating the effect of excluding or including studies with a higher risk of bias.

Acknowledgements

We would like to acknowledge the Health Research Board, who funded a Cochrane Fellowship for Patrick Redmond (PR). We would also like to thank the Cochrane EPOC Editorial group, who provided on-going advice and support in writing this protocol and developing the search strategy.

Additional references

Bates 1995

Bates 2007

Boockvar 2006

Coleman 2003a

Coleman 2003b

Coleman 2004

Gillespie 2009

Gleason 2010

Greenwald 2010

Grimes 2011

Higgins 2011

Hughes 2008

IHI 2011

IOM 1999

Jack 2009

Jenq 2012

Karapinar-Carkit 2011

Kim 2013

Koehler 2009

Kramer 2007

Kwan 2007

Kwan 2013

Makowsky 2009

Moore 2003

Mueller 2012
Nazareth 2001

NICE 2007

Review Manager 2013

Schnipper 2009

Scullin 2007

Tam 2005

The Joint Commission 2013

Walker 2009

WHO 2006

* Indicates the major publication for the study

APPENDICES

Appendix 1. MEDLINE search strategy

1 Medication Reconciliation/ (145)
2 ((medication? or medicine? or drug or drugs or pharmacist? or pharmacy or pharmacies or formulary or formularies or prescription? or prescrib$) adj3 (reconcil$ or review or reviewing)).ti,ab. (762 8)
3 ((medication? or medicine? or drug or drugs or pharmacist? or pharmacy or pharmacies or formulary or formularies or prescription? or prescrib$) adj3 (assess$ or audit$)).ti,ab. (12053)
4 (stopp or bre'er's criteria).ti,ab. (248)
5 (medication? adj2 discrepanc$).ti,ab. (131)
6 ((medication? or prescribing) adj2 error$).ti,ab. (3382)
7 stewardship.ti,ab. (1172)
8 or/1-7 [Medication Reconciliation] (23888)
9 Medication Systems, Hospital/ [ML] (3045)
10 Pharmacy service, hospital/ [ML] (9482)
11 ((PHARMACEUTICAL CARE or PHARMACY or PHARMACIES or PHARMACIST? or PRESCRIBING) and (inpatient? or hospital$ or WARD? or UNIT or UNITS)).ti. (2877)
12 ((PHARMACEUTICAL CARE or PHARMACY or PHARMACIES or PHARMACIST? or PRESCRIBING) adj2 (inpatient? or hospital$ or WARD? or UNIT or UNITS)).ab. (2451)
13 ((medication? or prescribing or prescription? or dispensing) adj2 system$).ti,ab. and (hospital$ or WARD or WARDS or (CARE adj2 UNIT?) or INPATIENT$).ti,hw. (500)
14 or/9-13 [Med systems/Pharm service hospitals] (13912)
15 Pharmacists/ or Pharmacists' Aides/ [ML] (10039)
16 Pharmaceutical Services/ or Drug Information Services/ or Clinical Pharmacy Information Systems/ (8273)
17 Drug Monitoring/ or Medication Therapy Management/ or Drug Therapy/ or Drug Therapy, Computer-Assisted/ (46901)
18 Prescriptions/ or Drug Prescriptions/ or Pharmaceutical Preparations/ or Drug Therapy/ or Drug Dosage Calculations/ or Electronic Prescribing/ or Medication Systems/ (97267)
19 medication errors/ or polypharmacy/ or inappropriate prescribing/ (11544)
20 Drug utilization review/ (2759)
21 (pharmacy or pharmacies or pharmacist? or prescription? or prescribing).ti. (39315)
22 (pharmacist-led or pharmacist initiated or ((driven or lead or led) adj2 pharmacist??)).ab. (227)
23 (PRESCRIBING adj2 PATTERN??).ab. (1406)
24 ("physician-pharmacist?" or "doctor-pharmacist?!).ti,ab. (138)
25 ((IMPROV$ or OPTIMI?E$ or OPTIMI?E? or OPTIMAL$) and (DOSEING or DOSAGE or PHARMAC$ or PRESCRIB$ or PRESCRIPT$)).ri. or ((IMPROV$ or OPTIMI?E$ or OPTIMI?E? or OPTIMAL$) adj2 (PHARMACEUTICAL CARE or PHARMACY or PRESCRIB$ or PRESCRIPT$)).ab. (4492)
26 ((pharmaceutical adj (care or consult$)) or (pharmacist? adj2 (care or consult$ or intervention? or managed))).ab. (2182)
27 ((drug therapy or drug regime? or medication? or medicine$ or pharmacy or pharmacist? or pharmaceutical or PRESCRIB$ or prescription?) adj2 (audit$ or monitor$ or RECONCIL$ or review??)).ti,ab. (4569)
28 ((medication? or prescrib$ or pharma$) adj2 (manage? or management or service? or system??)).ti,ab. (12779)
29 ("drug therapy" or dosage? or dose? or medication? or PRESCRIPTION? or prescrib$ or drug??)).ti,ab. [Term added Aug 2011] (1506)
30 Drug utilization/ (15915)
31 or/15-32 [Drug use/misuse. Pharmacy services] (176303)
32 ((care or patient?) adj3 transition$).ti,ab. (4365)
33 (hospital adj3 releas$).ti,ab. (455)
34 "hospital to home".ti,ab. (1686)
35 Patient admission/ or Patient discharge/ or Patient readmission/ or Patient transfer? [ML] (42670)
36 (patient? or hospital$ or medical centre or medical centres or medical center?).ti,hw. and (discharg$ or admission? or admitting or readmission? or readmit$ or transfer? or transferred or transferring).ti. (23404)
37 ((patient? or care facility or medical facility or hospital? or medical centre or medical centres or medical center? or emergency or ward or wards or unit or units or (intensive adj2 care) or ICU or acute care or (hospital? adj2 department?)) adj2 (discharg$ or admission? or admitting or readmission? or transfer? or transferring or transferred)).ab. (79034)
38 (exp Academic Medical Centers/ or exp Hospital Units/ or exp Hospitals/ or exp Ambulatory Care Facilities/) and (transfer or discharged or transfer or discharge or admission? or readmission? or re-admission?).ti. (5865)
39 ("earlie$ or early) adj2 discharg$.ab. (2897)
40 (icu or (intensive adj2 care) or acute care or unit or units or ward or wards or department) adj3 transition$.ti,ab. (361)
41 (transfer$ adj3 emergency).ti,ab. (473)
42 (hospital adj8 (transfer? or transferred)).ti,ab. (4063)
43 discharge.ti. (13765)
44 (discharge adj3 (medication? or prescription? or communication? or (information adj2 exchange))).ab. (1020)
45 or/34-46 [Discharge/transition care] (133107)
46 8 and 47 [Medication Reconciliation & Transition of Care] (904)
47 (and/14,47 not 48 [Hospital Med Systems & Transition of Care] (464)
48 (and/33,47 not (or/48-49 [Drug Use/Misuse Pharm services & Transition of Care] (2403)
49 (randomized controlled trial or controlled clinical trial).pt. or randomized.ab. or placebo.ab. or clinical trials as topic.sh. or randomly.ab. or trial.ti. (811019)
50 (exp animals/ not humans.sh. (3744372)
51 not 52 [Cochrane RCT Filter 6.4.d Sens/Precision Maximizing] (749158)
52 intervention?.ti. or (intervention? adj6 (clinician? or collaborat$ or community or complex or DESIGNS or doctor? or educational or family doctor? or family physician? or family practitioner? or financial or GP or general practice? or hospital? or impact? or improv$ or individual$ or individualizing or interdisciplinary$ or multi-component or multi-component or multidisciplin$ or multi-disciplin$ or multifacet$ or multi-facet$ or multimodal$ or multi-modal$ or personali$ or personalizing or pharmacies or pharmacist? or pharmacy or physician? or practitioners? or prescrib$ or prescription? or primary care or professional$ or provider? or regulatory or regulatory or tailor$ or target$ or team$ or usual care??)).ab. (134843)

Interventions for improving medication reconciliation across transitions of care (Protocol)
Copyright © 2013 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
CONTRIBUTIONS OF AUTHORS

All review authors have contributed to the production of the protocol. Patrick Redmond (PR) wrote the protocol, with input and amendments provided by all members of the review team.

DECLARATIONS OF INTEREST

No conflicts of interest are reported.
SOURCES OF SUPPORT

Internal sources

• No sources of support supplied

External sources

• Health Research Board, Ireland.
The lead author was awarded a Cochrane Fellowship 2012 by the Health Research Board (HRB) for the purpose of completing this review.