Amino acid identity at one position within the $\alpha 1$ helix of both the histidine kinase and the response regulator of the WalRK and PhoPR two-component systems plays a crucial role in the specificity of phosphotransfer

Inga Jende,1 Kottayil I. Varughese2 and Kevin M. Devine1

1Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
2University of Arkansas for Medical Sciences, Department of Physiology and Biophysics, 4301 West Markham, Little Rock, AR 72205, USA

INTRODUCTION

Two-component systems (TCSs) are widely used by bacteria to adapt to the prevailing environmental conditions. The prototypical TCS is composed of a sensor histidine kinase and its cognate response regulator (RR), which is often a transcription factor. Three activities have been ascribed to histidine kinases: (i) autophosphorylation of an invariant His residue, (ii) phosphorylation of the RR and (iii) phosphorylated RR (RR~P) phosphatase activity, which is found in many sensor kinases (for reviews see Hoch & Silhavy, 1995; Stock et al., 2000; Gao & Stock, 2009). Thus, TCSs function by the sensor kinase autophosphorylating in response to a specific signal(s) and then transferring the phosphoryl group to a conserved Asp on its cognate RR; the latter reaction involves interaction between conserved protein domains. The RR~P has an altered activity, usually increased DNA-binding affinity, to effect changes in gene expression. In the absence of the signal, RR~P phosphatase activity of the sensor kinase often predominates, ensuring that the regulon is not activated inappropriately by non-cognate kinases or by acetyl phosphate.

There are 34 TCSs in Bacillus subtilis, and each responds to a specific environmental or nutritional signal(s) (Kunst et al., 1997; Fabret et al., 1999; Hoch, 2000). The majority of TCSs function as cognate pairs, ensuring that the cellular response is appropriate to the detected signal. The observed specificity among TCSs implies a high level of discrimination among members of the histidine kinase and RR families: each sensor kinase and RR can recognize their partners from among 34 candidates present in the cell. Since the interacting transmitter and receiver domains of histidine kinases and RRs, respectively, show a high degree of conservation, discerning how this specificity is achieved presents an interesting challenge (Hoch & Varughese, 2001). Insight into the nature of histidine kinase and RR
interacting surfaces, and of how phosphotransfer is
effected, has been established by crystallographic and
mutational analysis of many TCSs (Madhusudan et al.,
1996; Tzeng & Hoch, 1997; Varughese et al., 1998; Jiang
et al., 1999; Zapf et al., 2000; Skerker et al., 2008; Casino
et al., 2009; Yamada et al., 2009; Schug et al., 2009; for
reviews see Varughese, 2002; Mukhopadhyay & Varughese,
2005; Gao & Stock, 2009). For illustrative purposes,
discussion here is confined to the Spo0B:Spo0F complex of
B. subtilis that serves as a prototype for such interactions.
In this system, Spo0F is a truncated RR composed of a
receiver domain only, while Spo0B is a phosphotransferase
that contains the transmitter domain typical of histidine
kinases (Hoch & Varughese, 2001). The interacting surface
of the RR (Spo0F) comprises the z1 helix and the five β–α
loops (the connecting regions between the β strands and α
helices) within which three amino acid subunits are
recognized: (i) a globally conserved set of amino acids
that form a hydrophobic patch; (ii) a set of amino acids
that is conserved within each RR family and is proposed to
mediate discrimination at this level; and (iii) a set of amino
acids that vary among members of a family and is
proposed to confer specificity on its RRs. The five β–α
loops surround the active-site pocket (Asp10, Asp11,
Asp54, Thr82 and Lys104), where the Asp54 residue is
phosphorylated. The interacting surface of the transmitter
domain of histidine kinases (Spo0B) comprises a four-helix
bundle formed from two protomers. Nearly half of the
24 aa that comprise this surface are located on the
z1 helix, which is C-terminal to the active site His (Zapf et al.,
2000). Bioinformatic and covariance analysis approaches have
also identified amino acids that might contribute to
the specificity of interaction between cognate TCSs (Zapf
et al., 2000; Skerker et al., 2008; Szurmant et al., 2008; Wéigit
et al., 2008). Reassuringly, many of the covariant positions
have mapped to the interacting surfaces determined from the
Spo0F:Spo0B co-crystal structure. The importance of
these positions in histidine kinases has been experimentally
verified by Skerker et al. (2008), who succeeded in rewiring
the specificity of EnvZ. By changing EnvZ domains,
subdomains and clusters of specific amino acids to those
found in other histidine kinases, Skerker et al. (2008)
showed that the hybrid EnvZ* could phosphorylate the
partner RR of the histidine kinase from which the swapped
domains were derived. In some cases, this was achieved by
changing as few as three specific amino acids within the
z1 helix (e.g. EnvZ*–RstA), while other cases showed more
complexity (e.g. EnvZ*–CpxA, PhoR, AtoS), and required
additional changes within the loop region located between the
z1 and z2 helices to change specificity (Skerker et al.,
2008). Together, these studies have provided insight into the
features of TCSs that contribute to the specificity of cognate
pair interaction.

The WalRK and PhoPR TCSs control cell wall metabolism
and the response to phosphate limitation, respectively, in
B. subtilis (Hulett, 1996; Sun et al., 1996; Bisicchia et al.,
2007, 2010). Although closely related phylogenetically,
significant differences in amino acid composition occur
within the interacting surfaces of the TCSs, and these might
be expected to contribute to the specificity of cognate
partner recognition. For example, amino acids Arg, Thr,
Arg and Tyr are located at positions +3, +8, +10 and
+12, respectively, within the z1 helix of WalK (numbered
relative to the active site His, 0), whereas PhoR has Lys, Ser,
Lys and Phe, respectively, at these positions. Thus, while
the nature of the amino acid at each position is similar, the
sizes of the side chains in WalK are larger than those in
PhoR, suggesting that steric hindrance may play a role in
specificity in these TCSs (Howell et al., 2006). Unusually,
some cross-talk between WalRK and PhoPR has been
shown in vivo and in vitro. PhoR can phosphorylate both
PhoP and the non-cognate WalR (but at a lower level than
it phosphorylates PhoP), while WalK can phosphorylate its
cognate WalR RR only (Howell et al., 2003, 2006). The fact
that hybrid RRs WalR[*]–PhoP and PhoP[*]–WalR
are functional suggests that these systems are sufficiently
robust to test the specificity of cognate protein interactions
by changing amino acids between the histidine kinases and
RRs. We focused our analysis on five positions within the
z1 helices of WalK and PhoR histidine kinases, and on four
positions in the WalR and PhoPR RRs, at which significant
amino acid differences have been seen. The amino acids of
WalK and PhoP at these positions were changed compared
with those found at the same positions of PhoR and WalR,
respectively, and the extent to which phosphorylation of the
non-cognate and cognate proteins was gained and lost
was then determined. We show here that the specificity of
phosphorylation in the WalRK and PhoPR TCSs can be
altered by changing the identity of amino acids at some of
these positions in WalK and PhoP, with the identity of the
amino acid at two positions (one within the histidine
kinase and the second within the RR) being especially
important. However, the rewired proteins phosphorylated
the non-cognate partner at a low rate, indicating that
additional features to those examined in this study are
required for specific protein recognition and phospho-
transfer in these systems.

METHODS

Bacterial strains and growth conditions. The bacterial strains and
plasmids used in this study are listed in Supplementary Table S1,
available with the online version of this paper. All strains were grown
aerobically in Luria–Bertani (LB) medium (Miller, 1972) at 37 °C.
Strain TG1 was used for general cloning in *Escherichia coli*. Antibiotics
were added, as appropriate, at the following concentrations:
ampicillin, 100 μg ml^{−1}; chloramphenicol, 3 μg ml^{−1}
; neomycin, 7 μg ml^{−1} ; spectinomycin, 100 μg ml^{−1} ;
erthyromycin, 3 or 150 μg ml^{−1}. Xylose was added to the medium at
centers specified in the text, and X-Gal was added to LB agar plates at
100 μg ml^{−1}.

Plasmid and strain construction. Oligonucleotides used in strain
construction are listed in Supplementary Table S2. To construct strains
in which mutated WalK kinases were placed under the control of the
inducible P_{thrC} promoter at the thrC locus, a 1140 bp DNA
fragment, containing an optimized ribosome-binding site and the 5′
end of walK, was amplified using primers P_J110F and P_J110R, and cloned into a filled-in EcoRI site of pXT (Derre et al., 2000) to generate plasmid pIJ100. DNA fragments encoding the remainder of the walK gene with the desired mutations were generated using eight primer pairs: primers P_J1101F–P_J1108F were each paired with P_J1101R. The fragments were then individually cloned into EcoRI/ Smal-digested pBluescript KS− (Stratagene), excised by digestion with EcoRI/SphI, and individually cloned into the EcoRI/SphI-digested pIJ100, resulting in plasmids pIJ101–pIJ110. To generate plasmids pIJ112 and pIJ114, two 310 bp fragments were generated using primer pairs P_IJ112F/P_IJ112R and P_IJ114F/P_IJ112R. The fragments were subcloned into Smal-digested pBluescript KS−, excised by digestion with EcoRI/BglII, and cloned into EcoRI/BglII-digested pIJ100, thereby generating plasmids pIJ112 and pIJ114. A gene encoding a hybrid WalK−PhoR kinase (containing the WalK sensing domain, transmembrane helices and PAS domain fused to the intracellular domain of each mutated WalK kinase were generated by digestion of pKS140–pKS155 with NdeI and XhoI, and individually cloned into the dIII site of pBluescript KS±. Plasmids pKS140–pKS155 were digested with NdeI and SmaI sites and excised at the appropriate sites to generate plasmids pKS141. The series of strains IJW101–IJW115 and IJR101–IJR115, and individually cloned into the RI site of pXT (Derre et al., 2000) to generate plasmid pKS141. The PCR-generated plasmids pKS141–pKS155 were digested with DpnI, and sequenced. Plasmids pKS140–pKS155 were digested with BamHI and HindIII to excise the mutated phoP genes which were cloned into the respective sites of pXT, resulting in plasmids pIJ140–pIJ155. To construct a transcriptional phoA–lacZ fusion, the phoA promoter region was amplified using primers P_J99F and P_J99R, digested with EcoRI and BamHI, and cloned into a similarly digested plasmid pDG268, to generate plasmid pJ99. All plasmid constructions were verified by sequencing. Strains IJW99 (tripC ΔphoR amyE::P_phoA–lacZ 34Cm®), IJ99 (tripC ΔphoR amyE::P_phoA–lacZ 20Cm® and IJ99R (tripC ΔphoPR amyE::P_phoA–lacZ 20Cm®) were constructed by transforming strains IJW99 (tripC ΔphoR amyE::P_phoA–lacZ 34Cm®) and IJ99 (tripC ΔphoPR amyE::P_phoA–lacZ 20Cm®) were constructed by transforming strains 168 (tripC2), AH057 (tripC2 ΔphoR) and IJ99 (tripC2 ΔphoPR), respectively, with linearized pJ99. The series of strains IJW101–IJW115 and IJW140–IJW155 were generated by transforming strain IJW99 with each of the pIJ101–pIJ115 and pIJ140–pIJ155 plasmids linearized with SmaI. Transforming strain IJW99 with plasmids pIJ101–pIJ115 and pIJ140–pIJ155 linearized with SmaI generated the strain series IJIR101–IJIR115 and IJR101–IJR115. The IJPR101– IJPR107 series of strains was generated by transforming the corresponding IJW strain with chromosomal DNA from strain AH024, and selecting for erythromycin resistance.

Protein production and purification. DNA fragments encoding the intracellular domain of each mutated WalK kinase were generated by PCR using primers P_WalK’ and P_WalK3’, and the appropriate plJ plasmids as templates digested with Ndel and BamHI. The fragments were inserted into similarly digested pET21b (Novagen), and transformed into E. coli strain BL21(DE3), to generate the pET plasmid series shown in Supplementary Table S1. The members of the pET plasmid series encoding the mutated PhoP proteins were generated by digestion of pKS140–pKS155 with Ndel and XhoI, and the resulting DNA fragments were cloned into the respective restriction sites of pET21b (Novagen), and transformed into E. coli strain BL21(DE3), as shown in Supplementary Table S1. All plasmid constructs were verified by sequencing. The E. coli strains were grown in LB medium containing 75 μg ampicillin ml−1, at 37 °C, with shaking at 200 r.p.m. Proteins were purified essentially according to the manufacturer’s instructions: briefly, protein production was induced by addition of 1 mM IPTG to a culture at OD600 0.6–0.8, and growth was continued at 28 °C. Cells were harvested by centrifugation at 10 000 g 3 h post-induction, resuspended in ice-cold lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, 0.1 %, v/v, Tween) and lysed by addition of lysozyme (1 mg ml−1, containing 1 %, v/v, protease inhibitor) with sonication. Cell debris and unbroken cells were removed by centrifugation at 22 000 g for 30 min at 4 °C, and the supernatant was bound to Ni2+-NTA His.Bind resins (Novagen) for 2 h, and then washed four times in wash buffer (50 mM NaH2PO4, 300 mM NaCl, and 250 mM imidazole containing 1 %, v/v, protease inhibitor). Eluates were dialysed overnight against 50 % storage buffer (20 mM Tris/HCl, pH 8.0, 300 mM NaCl, 50 %, v/v, glycerol), and stored at −20 °C.

Protein phosphorylation assays. Phosphorylation reactions were carried out at room temperature in a final volume of 30 μl in phosphorylation buffer (100 mM Tris/HCl, pH 8.0, 200 mM KCl, 4 mM MgCl2, 0.5 mM DTT, 0.1 mM EDTA, 3.5 %, v/v, glycerol). For a qualitative assessment of the ability of WalK to phosphorylate WalR and PhoP, reactions contained 14 μM of each RR, and 9 μM of each kinase. The reaction was started by addition of 3 μl ATP mixture [1.0 μM ATP plus 5 μCi (185 kBq) γ-32P]ATP. This radioisotope to cold ATP increases the phosphorylation signal. Aliquots (5 μl) were extracted at the indicated times and added to an equal volume of 2 × SDS loading buffer, and heated to 37 °C to stop the reaction. The samples were analysed by SDS-PAGE on 10 % acrylamide gels (Laemmli, 1970), and the transfer reactions were detected by autoradiography.

To estimate initial rates of phosphorylation, reactions were carried out as described above, with the following modifications: (i) the final concentration of cold ATP was increased to 200 μM to be non-limiting in the reaction; (ii) the ‘WalK’ and ‘PhoR kinases were added to a final concentration of 2.5 μM, and (iii) for ‘WalK/WalR’, ‘WalK’/ WalR and ‘WalK/PhoP’ reactions, RRs were added to a final concentration of 25 μM, while for ‘PhoR/PhoP’ and ‘PhoR/PhoP’, RRs were added to a final concentration of 2.5 μM. Aliquots (5 μl) were extracted at the indicated times and added to an equal volume of 2 × SDS loading buffer, and heated to 37 °C to stop the reaction. Samples were separated on a 10 % acrylamide gel, which was exposed to a phosphoscreen. Phosphotransfer reactions were detected and quantified using a FujiFilm phosphoimager with Multi Gauge Version 2.0.

Determination of β-galactosidase activity. β-Galactosidase activity was determined by using the method described by Msadek et al. (1990). Values presented are the means of three determinations.

RESULTS

Significant amino acid differences within the interacting surfaces of the WalR kinase and PhoP

Because the WalR kinase and PhoP are closely related phylogenetically, we reasoned that amino acid differences...
at positions located within their interacting surfaces would be important for the specificity of cognate protein interaction. The α1 helix of histidine kinases contains the active site His residue, and plays a major role in interactions with the RR. In RRs, the α1 helix plus the loops connecting helices and β strands make up the interaction surface. A comparison of the amino acid composition of the α1 helices of the WalK and PhoR histidine kinases, and of the anchor (positions 11, 14, 17, 55, 82, 83, 104 and 105), catalytic (positions 9, 10, 53, 81 and 103) and putative specificity (positions 13, 20, 84, 106 and 107) regions of the WalR and PhoP RRs, is shown in Table 1 (Hoch & Varughese, 2001; Mukhopadhyay & Varughese, 2005). There are five positions within the α1 helices of WalK and PhoR histidine kinases at which significant differences occur (Table 1, marked in bold type). Of the five positions in RRs termed specificity residues, only three (positions 13, 20 and 107) differ between WalR and PhoP (Table 1, marked in bold type). There is a further interesting difference among the proposed anchor amino acids (a term denoting an involvement in initial protein binding) at position 17 (Ile in WalR, Leu in PhoP) of the RRs. The amino acids at these nine positions, five in WalK and four in PhoP, were changed to those at the same positions of PhoR and WalR, respectively. The amino acid or combination of amino acids changed in each version of the mutated WalK* and PhoP* proteins are shown in Table 1, with the changed amino acids in bold type.

System for detection of PhoP phosphorylation in vivo

An in vivo system to detect activation of PhoP, by monitoring production of β-galactosidase from a P\textsubscript{phoA}–lacZ transcriptional fusion, was established (Fig. 1). This allowed us to detect phosphorylation of wild-type PhoP by mutated versions of WalK (walK* in Fig. 1a), and to detect phosphorylation of mutated PhoP (phoP*) by wild-type WalK (Fig. 1b). The genes encoding the mutated WalK* and PhoP* proteins were located in single copy at the thr locus, and were expressed from a xylose-inducible promoter. The activity of each mutated WalK* protein was tested in strains IJR101–IJR115, which have the WalR gene deleted (Fig. 1a). To investigate activation of mutated PhoP* proteins by wild-type WalK, the mutated alleles of phoP were inserted into the chromosome of a strain with phoPR deleted, to generate the series of strains IJPR140–IJPR155 (Fig. 1b). The P\textsubscript{phoA}–lacZ transcriptional fusion was chosen as a reporter of PhoP phosphorylation because expression of the phoA promoter is totally dependent on the activated phosphorylated PhoP (PhoP–P) RR that is generated under phosphate-limiting conditions only. The medium used in this study (LB) is phosphate replete, and thus the P\textsubscript{phoA}–lacZ fusion is not expressed (Hulet, 1996). We verified that the P\textsubscript{phoA}–lacZ fusion was not expressed during growth in LB in strains lacking a xylose-inducible mutated WalK* or PhoP* protein (data not shown). Thus, any β-galactosidase production in our test strains must have been generated by the introduced mutated WalK* or PhoP* proteins. The absence of detectable β-galactosidase production in strain IJR99 (P\textsubscript{phoA}–lacZ ΔphoR) was especially important for this study: it demonstrated that PhoP was not activated in the absence of its cognate PhoR kinase under the growth conditions used. Because the

<table>
<thead>
<tr>
<th>Protein</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>WalK</td>
<td>ANSHELRTPLTMR SYLEALA</td>
</tr>
<tr>
<td>PhoR</td>
<td>ANSHELKTPITSIKGFETF TEL</td>
</tr>
<tr>
<td>WalK108 (WT)</td>
<td>ANSHELRTPLTTR SYLEALA</td>
</tr>
<tr>
<td>WalK101</td>
<td>ANSAELRTPLTTR SYLEALA</td>
</tr>
<tr>
<td>WalK102</td>
<td>ANSHELKTPLTTR SYLEALA</td>
</tr>
<tr>
<td>WalK103</td>
<td>ANSHELRTPLTRS SYLEALA</td>
</tr>
<tr>
<td>WalK104</td>
<td>ANSHELRTPLTR KSYLEALA</td>
</tr>
<tr>
<td>WalK105</td>
<td>ANSHELRTPLTR TSYLEALA</td>
</tr>
<tr>
<td>WalK106</td>
<td>ANSHELRTPLTR FSYLEALA</td>
</tr>
<tr>
<td>WalK112</td>
<td>ANSHELRTPLTR GMFLEALA</td>
</tr>
<tr>
<td>WalK114</td>
<td>ANSHELKTPLTSMFLEALA</td>
</tr>
<tr>
<td>WalK107</td>
<td>ANSHELKTPLTSMGFLEALA</td>
</tr>
<tr>
<td>WalK*–PhoR</td>
<td>ANSHELKTPITSISKGFETF TEL</td>
</tr>
<tr>
<td>WalR</td>
<td>DDEPIFDYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP</td>
<td>DDISILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP140</td>
<td>DDISILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP141</td>
<td>DDISILYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP142</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP143</td>
<td>DDISIYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP144</td>
<td>DDISILFDYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP145</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP146</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP147</td>
<td>DDISIFDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP148</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP149</td>
<td>DDIPILYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP150</td>
<td>DDISIYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP151</td>
<td>DDISILYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP152</td>
<td>DDIPILYDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP153</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
<tr>
<td>PhoP154</td>
<td>DDISIFDMTAKDFPFS T</td>
</tr>
<tr>
<td>PhoP155</td>
<td>DDIPILYDMTAKDFPFS P</td>
</tr>
</tbody>
</table>

Table 1. Amino acid composition of the interacting surfaces of WalRK and PhoPR, and the changes made in each mutated protein

The amino acid changes made in each protein are given in bold type. Numbers are shown vertically, and indicate the amino acid position within the α1 helix of WalK numbered according to the active site histidine (0) and their actual position within the PhoP protein.
phosphatase activity of sensor kinases often predominates in the absence of an activating signal (LB medium being phosphate replete), deletion of a histidine kinase (here PhoR) can sometimes result in inappropriate activation of its cognate RR (here PhoP); either by cross-talk with non-cognate histidine kinases or by high-energy phosphate intermediates, such as acetyl phosphate (McCleary et al., 1993; McCleary & Stock, 1994). We verified that such inappropriate PhoP activation did not occur in the IJR99 (ΔphoR) strain under our culture conditions. Therefore, detection of β-galactosidase production was a reflection of the generation of PhoP\cdotP in vivo by the introduced WalK* or PhoP* proteins. It is also important to note that, because WalRK is essential, all strains necessarily have a single copy of wild-type walRK at the normal locus (Fig. 1).

Activation of PhoP by mutated WalK* proteins in vivo

Five positions at which notable differences in amino acid identity occurred within the α_1 helices of WalK and PhoR were chosen for investigation (Table 1): there were conservative changes at positions 3 (Arg→Lys), 8 (Thr→Ser) and 10 (Arg→Lys), and two non-conservative changes at positions 11 (Ser→Gly) and 12 (Tyr→Phe). To determine the contribution of these amino acids to the specificity of phosphorylation observed among the PhoP/PhoR and WalR/WalK cognate pairs, we replaced the amino acids at these positions of WalK with the amino acids at the same positions of PhoR, singly and in combination, and analysed whether the mutated WalK* proteins could activate PhoP in vivo, as detected by expression of the P$_{phoA}$–lacZ reporter fusion. The ability of each WalK* kinase to phosphorylate PhoP in the IJR (ΔphoR) series of strains was determined by monitoring P$_{phoA}$–lacZ expression qualitatively by streaking the strains onto LB agar plates containing X-Gal, and quantitatively by measurement of β-galactosidase accumulation [values given are 2 h after the cessation of exponential growth (T$_2$)] in broth cultures (Fig. 2). As controls, we generated strains that produced the wild-type WalK (strain IJR108) and WalK101 (strain IJR101), which has the active site His changed to Ala, rendering it inactive. A background level of P$_{phoA}$–lacZ production was observed in each strain, and this showed that PhoP was not activated by wild-type WalK, nor was it phosphorylated by other sensor kinases or by high-energy intermediates, such as acetyl phosphate, even in the absence of the cognate PhoR (Fig. 2). Of the five strains producing WalK* with a single amino acid change in the α_1 helix, background levels of β-galactosidase production were found in four of the strains (containing amino acid changes Arg3Lys, Thr8Ser, Arg10Lys and Tyr12Phe) when grown on LB agar plates or in liquid medium (Fig. 2). However strain IJR105 (ΔphoR), carrying the Ser11Gly change, was exceptional: this strain was always light blue when grown on agar plates and showed significant accumulation of β-galactosidase activity (215 units) during growth in liquid culture (Fig. 2). Importantly, when WalK105 (Ser11Gly) was expressed in strain IJPR105 (ΔphoR), then β-galactosidase activity was reduced to background levels, showing that activity in strain IJR105 was dependent on PhoP activation (data not shown). A high level of activity was also observed in the strains producing WalK* with 2 (IJR112), 4 (IJR114) and 5 (IJR107) aa changes within the α_1 helix. Activity was also observed in strain IJR115 that produced a WalK$^{--}$PhoR hybrid kinase – in this strain, the interacting surface was contributed entirely by the cognate PhoR kinase. Three observations were noteworthy: (i) while strain IJR106 (Tyr12Phe) was white on agar plates, producing background levels of β-galactosidase, and strain IJR105 (Ser11Gly) was light blue on plates, with significant accumulation of β-galactosidase activity (215 units), changing both amino acids [strain IJR112 (Ser11Gly, Tyr12Phe)] resulted in increased β-galactosidase activity (567 units), indicating a synergistic effect of these two amino acids on PhoP phosphorylation; (ii) activation of PhoP was further increased by making 4 (strain IJR114) and 5 (strain IJR107) aa changes in WalK, with the accumulation of 796 and 1124 units β-galactosidase activity, respectively; and (iii)
unexpectedly, activation of PhoP in strain IJR115, which produced the WalK–PhoR hybrid kinase with a perfect PhoP interacting surface, was lower than that observed in IJR107 (WalK107 with 5 aa changes). This latter result might have been due to strain within the molecule because of its hybrid nature or due to formation of heterodimers within the cell. These results show that the identity of the amino acid at position 11 (Ser in WalK, and Gly in PhoR) is critically important for the specificity of phosphorylation – changing the amino acid at this position alone allowed WalK to activate PhoP, albeit at a low level. Changing the amino acid at position 11 in combination with changes at other positions (that alone had little effect) resulted in an increased ability of WalK* to phosphorylate PhoP, indicating synergistic effects of the amino acids at these positions.

Phosphorylation of WalR and PhoP by mutated WalK* kinases in vitro

Above, we showed that changing the amino acids at five positions within the WalK α1 helix to those found at the same positions of the PhoR α1 helix conferred on WalK* the ability to phosphorylate the non-cognate PhoP RR in vivo. However, due to the essential nature of WalRK, it was not possible to determine in vivo how these amino acid replacements in WalK affected phosphorylation of its cognate partner WalR. Therefore, to establish the effect of the amino acid changes on recognition of WalR by WalK*, and to confirm that the mutated WalK* kinases could indeed phosphorylate PhoP, as shown in vivo, we performed in vitro phosphorylation reactions, selecting those histidine kinases that showed PhoP activation in vivo (i.e. WalK105, WalK112, WalK114 and WalK107) (Fig. 3). Initial experiments were performed with a low level of cold ATP to maximize the detection of radioactive phosphoryl groups in RR proteins (Fig. 3a). The truncated wild-type WalK protein rapidly phosphorylated WalR, as expected, with high levels of phosphorylated WalR (WalR~P) observed within 1 min, but phosphorylation of PhoP was not detected after 30 min of reaction; these results were consistent with previous in vivo and in vitro studies (Howell et al., 2003, 2006). Similarly, PhoR kinase phosphorylated PhoP with high efficiency (high levels of PhoP~P were observed within 1 min), but some phosphorylation of WalR was also observed after 5 min of reaction; again these results were consistent with a previous study (Howell et al., 2006). WalK105 kinase (Ser11Gly) phosphorylated PhoP to a significant level (PhoP~P was first detected at a low level, at 2 min of reaction), and this was accompanied by a concomitant reduction in WalR phosphorylation, supporting the results obtained in vivo (Fig. 2). WalK112 kinase (Ser11Gly, Tyr12Phe) had a slightly increased ability to phosphorylate PhoP when compared with WalK105, but, surprisingly, its ability to phosphorylate the cognate WalR was not as impaired as that observed for WalK105 (Fig. 3a). The ability of WalK114 (4 aa changes) to phosphorylate PhoP was somewhat increased when compared with the WalK112 protein (2 aa changes), but its ability to phosphorylate the cognate WalR was reduced, and the level was similar to that observed with WalK105. The highest level of PhoP phosphorylation was observed with WalK107 that contained 5 aa changes, although, interestingly, WalK107 retained a significant ability to phosphorylate its cognate WalR RR under these conditions. To assess the efficiency of phosphotransfer from WalK107 (with all 5 aa substitutions) to WalR and PhoP, reactions were performed with high non-limiting levels of cold ATP, which allowed an estimation of the initial rates of phosphorylation (Fig. 3b). A high level of RR~P was observed within 10 s of starting the reaction when WalR and PhoP were incubated with their cognate WalK and PhoR kinases, respectively. Changing amino acids at five positions (WalK107) led to a dramatic loss of ability to phosphorylate WalR, while the rate of PhoP phosphorylation was also low, but clearly detectable. These data confirmed the importance of the amino acid at position 11 of the WalK and PhoR kinases, and supported the results observed in vivo (see strain IJR105 in Fig. 2) – changing the amino acid at this position alone conferred on WalK the ability to phosphorylate PhoP, albeit at a low rate. Changing up to 5 aa gradually

![Fig. 2. Detection of PhoP activation in vivo in strains grown on LB agar in liquid broth.](http://mic.sgmjournals.org)
increased the extent to which PhoP phosphorylation by 'WalK*' was achieved, although the rate was still low, suggesting that additional determinants are involved in this process. Also, the loss of the ability of 'WalK*' to phosphorylate its cognate partner WalR was more erratic through successive amino acid changes.

Activation of mutated PhoP* proteins by the wild-type WalK protein in vivo

A comparison of amino acid identity at the positions of WalR and PhoP that contribute to the surfaces that interact with their respective kinases is shown in Table 1. Our investigation focused on three positions within the α1 helix of these RR's: positions 13 (Pro and Ser), 17 (Ile and Leu) and 20 (Phe and Tyr), and a fourth position that resides within the β5–α5 loop region at position 107 (Thr→Pro). To assess the contribution of these amino acids to the specificity of phosphorylation, we replaced the amino acids at these positions of PhoP with those found at the same positions of WalR, both singly and in combination. The ability of wild-type WalK to phosphorylate these mutated PhoP* proteins was established in vivo in strains with phoPR deleted, using the system developed here (Fig. 1b).

The results are shown in Fig. 4. There was no expression of the P_{phoA}–lacZ fusion in any strain in the absence of xylose, but expression was observed upon addition of 0.005 % xylose, confirming that accumulation of β-galactosidase was dependent on production of the introduced mutated PhoP* proteins (data not shown). The level of P_{phoA}–lacZ expression achieved by each PhoP* protein was determined qualitatively on LB agar plates containing X-Gal, and quantitatively in LB broth, as described in Methods (Fig. 4). Strains IJPR140 (expressing wild-type PhoP) and IJPR155 (expressing PhoP* with all four amino acid changes) were streaked onto each plate for comparison (Fig. 4). Strains IJPR141, IJPR142, IJPR143 and IJPR144, each of which carries a single amino acid change in the introduced PhoP* protein, showed that single amino acid changes at positions 13 (Ser→Pro), 20 (Tyr→Phe) and 107 (Pro→Thr) result in background levels of P_{phoA}–lacZ expression (Fig. 4a). However, at position 17 of PhoP, changing Leu→Ile (the amino acid at position 17 of WalR) resulted in an approximately 12-fold increase (relative to the level observed in IJPR140 carrying wild-type PhoP) in P_{phoA}–lacZ expression. The accumulation of β-galactosidase in strains with two amino acid changes in PhoP is shown in Fig. 4b. There was increased expression of P_{phoA}–lacZ (blue colonies) in three strains only (IJPR145, IJPR147 and IJPR150), and each contains a PhoP* protein with the Leu17Ile amino acid change. Expression of P_{phoA}–lacZ increased approximately 21-fold in strain IJPR145 (Ser13Pro, Leu17Ile), and approximately 8-fold in strain IJPR150 (Pro107ThrLeu17Ile). However, the increase in strain IJPR147 (Tyr20PheLeu17Ile) was more modest. Interestingly, the increased expression in strain IJPR145 (Ser13Pro, Leu17Ile) was approximately 2-fold higher than that observed in the strain IJPR155 carrying all four amino
acid changes (Fig. 4). Importantly, the three strains with two amino acid changes, but not the Leu17Ile change (IJPR146, IJPR149 and IJPR151), showed only background expression levels. Expression of P\textsubscript{phoA}–\textsubscript{lacZ} in strain IJPR155, which harboured PhoP* with all four amino acid changes, increased approximately 11.5-fold. This was a lower level of expression than that observed in strains IJPR145 and IJPR152, which had changes at only two and three positions, respectively. These data showed that the identity of the amino acid at position 17 of the WalR and PhoP RRs plays a crucial role in discrimination by the cognate kinases: changing this amino acid alone from Leu (found in PhoP) to Ile (found in WalR) allows the PhoP (Leu17Ile) protein to be phosphorylated \textit{in vivo}. The identity of the amino acid at the other three positions affected the level of PhoP phosphorylation, but only in the presence of the Leu17Ile change; for example, the Leu17Ile change in combination with Ser13Pro yielded 807 units β-galactosidase, in combination with P107T it yielded 316 units β-galactosidase, while with Tyr20Phe Pro107Tyr, it yielded 174 units β-galactosidase. However, changing the identity of amino acids at positions 13, 20 or 107, in any combination, did not allow PhoP* to be phosphorylated to detectable levels by WalK.

Phosphorylation of mutated PhoP* proteins by wild-type WalK and PhoR kinases \textit{in vitro}

A caveat to the conclusions presented above is that changing the amino acids at positions 13, 17, 20 and 107 of PhoP may relax specificity, and allow phosphorylation by cellular histidine kinases other than WalK. This possibility cannot be excluded \textit{in vivo} because of WalRK essentiality. Therefore, to confirm that PhoP* proteins with these amino acid changes can be phosphorylated by WalK, and to assess the efficiency of phosphotransfer, the PhoP143 (Leu17Ile), PhoP150 (Leu17Ile, Pro107Thr), PhoP152 (Ser13Pro, Leu17Ile, Pro107Thr) and PhoP155 (Ser13Pro, Leu17Ile, Tyr20Phe, Pro107Thr) proteins were purified and tested for their ability to be phosphorylated by the cognate PhoR kinase and the non-cognate WalK kinase (Fig. 5). All four PhoP* proteins displayed reduced or loss of ability to be phosphorylated by the cognate PhoR kinase and the non-cognate WalK kinase (Fig. 5). All four PhoP* proteins displayed reduced or loss of ability to be phosphorylated by the cognate PhoR kinase. However, each PhoP* protein was phosphorylated by the wild-type WalK kinase, albeit to different extents. Importantly, changing the amino acid at position 17 alone (PhoP143) resulted in a gain of ability to be phosphorylated, albeit at a low rate, by WalK, and this was consistent with results obtained \textit{in vivo}. PhoP150 and PhoP155 were also phosphorylated by WalK, but again at a low rate, and PhoP–P levels at 20 min were comparable with those achieved with the cognate WalR regulator between 30 and 60 s (Fig. 5). Phosphorylation of PhoP152 by WalK was the highest level of phosphorylation achieved, and it was consistent with the results obtained \textit{in vivo} for this protein. The level of PhoP–P phosphorylation after 2 min reaction was approximately

Fig. 4. Detection of PhoP* activation \textit{in vivo} in strains grown on LB agar and in liquid broth. Exponential phase cultures were slotted onto a square agar plate containing X-Gal by using the edge of a sterile microscope slide, and the plate was incubated overnight. The amino acid change(s) in the xylose-inducible PhoP* copy are given in Table 1 and Supplementary Table S1. The levels of β-galactosidase accumulation (specific activity units; mean of three replicates) at T2 are shown.
the same as that observed with the cognate WalR after 30 s reaction (note the different times for reactions with cognate and non-cognate protein pairs). These data showed the crucial role played by the amino acid at position 17 of WalR and PhoP in discriminating between WalK and PhoR. The amino acids at the other three positions contributed to specificity, but only when the amino acid at position 17 was changed, and this emphasized the dominant role played by the identity of the amino acid at position 17. However, although changing the amino acids at three positions of PhoP* (PhoP152) resulted in a significant gain of ability to be phosphorylated by WalK, the rate was lower that that observed with phosphorylation of the cognate WalR, and it indicated that additional features remain to be identified. These results also excluded the possibility that PhoP* activation observed in vivo (Fig. 4) was due solely to phosphorylation by cellular kinases due to a general relaxed specificity, although they did not exclude the possibility that cellular kinases may play some more minor role in vivo. However, the in vitro studies showed that phosphorylation of PhoP* in vivo was primarily, if not exclusively, from WalK.

DISCUSSION

In this study, we identified nine positions within the interacting surfaces of the closely related WalRK and PhoPR TCSs that differed in amino acid composition, and tested their contributions, singly and in combination, to the specificity of phosphotransfer. A central finding is that the identity of the amino acid at two of these positions, one within the α1 helix of the WalK and PhoR histidine kinases, and the second within the α1 helix of the WalR and PhoP RRs, plays a critical role in phosphotransfer discrimination between these TCSs. When single amino acid changes were made at each of the nine positions, only the Ser11Gly change at the C-terminal region of the WalK α1 helix (WalK105), and the Leu17Ile change within the PhoP α1 helix (PhoP143), resulted in a significant change in discrimination. Specifically, at position 11 of the WalK α1 helix, changing Ser to Gly (the amino acid found at the same position of PhoR) allowed WalK* (WalK105) to phosphorylate PhoP. Likewise, at position 17 of the PhoP α1 helix, changing Leu—Ile (the amino acid found at the same position in WalR) allowed PhoP (PhoP143) to be phosphorylated by WalK. Both amino acid changes were also accompanied by a loss of ability to phosphorylate (in the case of WalK*) or be phosphorylated by (in the case of PhoP*) their cognate partners, and this emphasized the critical role of amino acid identity at these two positions in phosphotransfer specificity. However, the rate of phosphotransfer achieved by the WalK105 (Ser11Gly) and PhoP143 (Leu17Ile) proteins was low. When amino acids were changed at up to five positions in WalK (WalK107), a successive increase in the ability to phosphorylate PhoP was seen, and this showed their contribution to phosphotransfer specificity. However, the rate of PhoP phosphorylation achieved by WalK107 (with all five amino acid changes) remained relatively low when compared with the rate of PhoP phosphorylation by the cognate PhoR kinase, and this indicated that additional determinants must be required for this process.

The results obtained upon changing amino acid identity at positions within the interacting surfaces of the WalR and PhoP RRs were especially interesting. Significant differences were observed at five positions among those proposed to constitute the RR surface that interacts with their cognate kinases. Four of these positions were examined in this study (7, 13, 20 and 107, Table 1). Three of the positions (13, 20 and 107) have been proposed to contribute to specificity among this family of RRs. The other two positions (11 and 17) have been proposed to contribute to formation of a hydrophobic patch that anchors the kinase and RRs (Hoch & Varughese, 2001; Varughese, 2002). Our study shows that it is the amino acid at the anchor position (position 17 of the WalR/PhoP

![Fig. 5. Time course of phosphorylation of PhoP, PhoP* mutant proteins and WalR by WalK and PhoR. The positions of autophosphorylated WalK and PhoR are indicated by HK~P and the position of PhoP and PhoR mutants are indicated by RR~P. Reaction time is indicated (s).](image-url)
position alone changed discrimination to some extent, finding that changing the identity of the amino acid at this location within the WalRK proteins. This view gives some insight into our understanding of the specificity of phosphotransfer. The two proteins. These positions are represented as spheres on the four-helix bundle. Position 11 was found to be the most crucial position, and it is shown in red. Four positions of PhoP (pink) were mutated, and residue 17, which had the most conspicuous effect, is shown in red. The other three positions are shown as blue–green spheres. These sites of phosphorylation, Asp and His, are shown in dark purple.

The importance of amino acid identity at position 11 of the kinases and position 17 of the RRs, as shown in our study, is supported by the fact that the Ile:Ser (WalRK) and the Leu:Gly (PhoPR) combinations are almost universally conserved at these positions among orthologues of these TCSs. Moreover, the Ile:Ser combination found at these positions of the WalRK proteins is unique, and can be used diagnostically to distinguish it from the closely related PhoPR TCSs. Therefore, to gain insight into the structural significance of amino acid identity at these positions, we modelled their location within the kinase–RR complex, based on the known structure of Spo0F:Spo0B (Zapf et al., 2000). All nine positions examined in this study are depicted in Fig. 6: seven of these positions are shown as blue–green circles, while position 11 of the kinase (Gly) and position 17 of the RR (Leu) (the combination found in PhoPR), are shown as ball and stick models in red. It is apparent that the amino acids at these positions are juxtaposed in the kinase–regulator complex. Thus, the size and shape of the complementary side chains (Ile:Ser of WalRK, and Leu:Gly of PhoPR) at this location within the complex are of critical importance to correct docking of the two proteins. This view gives some insight into our finding that changing the identity of the amino acid at this position alone changed discrimination to some extent, although it was not optimal. It also addresses why the contribution of amino acids at the other positions is dependent on the correct amino acid pair at positions 11 and 17. The nuanced nature of the structure at this location within each kinase–regulator complex is illustrated by the disparity in the effect that these amino acid changes might be expected to have on protein structure. The Ser→Gly difference in the WalK and PhoR kinases is a major structural change: Gly has no side chain, and so generates a ‘hole’ in the protein interacting surface, contrasting with Ser, which has a single carbon side chain of a hydrophilic nature by virtue of the hydroxyl group. Thus, the Ser11Gly change, in terms of the size, shape and hydrophilic/hydrophobic nature of the amino acid side chains, is a major difference within the interacting surfaces of the WalK and PhoR kinases. In contrast, the Leu17Ile change would be viewed as a minimal structural change: both amino acids have a C4 carbon side chain that is hydrophobic and of a similar nature. The amino acids differ only in the positioning of a methyl group, which is located on the β-carbon in Ile, but on the γ-carbon in Leu.

Fig. 6. The crucial anchoring site for histidine kinase–RR association. The mode and the geometric locations of sites mutated within WalK and PhoP are shown here on the premise that the Spo0F:Spo0B binding is a prototype for histidine kinase–RR interactions (Skerker et al., 2008). A total of five amino acid residues of WalK (purple) were mutated in order to alter specificity. These positions are represented as spheres on the four-helix bundle. Position 11 was found to be the most crucial position, and it is shown in red. Four positions of PhoP (pink) were mutated, and residue 17, which had the most conspicuous effect, is shown in red. The other three positions are shown as blue–green spheres. The side chain of the residue at position 17 (RR) stacks against position 11 of the histidine kinase, and is indicated by an arrow. The sites of phosphorylation, Asp and His, are shown in dark purple.
Nevertheless, the small structural difference at this position of the RR is sufficient to be a major determinant of discrimination, requiring a particular amino acid to be located on the corresponding face of the cognate histidine kinases. When the amino acids at both positions are correctly paired, they make a crucial contribution to the high level of phosphotransfer discrimination observed in the WalRK and PhoPR TCSs.

The structures of histidine kinase–RR complexes of TCSs from *Thermotoga maritima* have been reported (Casino et al., 2009; Yamada et al., 2009). These studies have shown the importance of interactions between the ϕ1 helices of the histidine kinase and RR in complex formation, and in achieving specificity. Mutational analysis and domain swapping within the ϕ1 helices of TCSs from *E. coli* and *T. maritima* have identified the amino acid positions that are crucial for the specificity of phosphotransfer between cognate proteins (Skerker et al., 2008; Casino et al., 2009; Schug et al., 2009). Casino et al. (2009) showed that changing the amino acids at four positions [two within the ϕ1 helix of HK853 (Thr267Asp and Tyr272Asp) and two within the ϕ1 helix of RR468 (Ile17Asn and Phe20Asn)] attenuates or abolishes the capability of these proteins to form complexes and phosphotransfer. Also, Skerker et al. (2008) have shown that changing three amino acids of EnvZ to those found at the corresponding positions of RstB (Thr250Val Leu254Tyr Ala255Arg) confers on it the ability to phosphorylate RstA at high efficiency. However, in other cases, the specificity set of amino acids (i.e. those required to effect specific and efficient phosphotransfer) appears to be more extensive, and requires amino acid changes both within the ϕ1 helix and in the adjacent loop region between the ϕ1 and ϕ2 helices (Skerker et al., 2008). Our results are in agreement with those studies, demonstrating how specificity can be achieved in two closely related TCSs. There is amino acid variance at only some of the positions within the ϕ1 helices of the WalRK and PhoPR TCSs. For example, of seven covariant positions within the C-terminal regions of histidine kinase ϕ1 helices identified by Skerker et al. (2008), only five vary between WalK and PhoR, and three were included in this study (one of these being position 11 at which the Ser→Gly difference occurs). Interestingly, the WalK112 (Ser11Gly, Tyr12Phe) kinase constructed in this study had amino acids changed at two of the three positions that were changed in RstB (Thr250Val, Leu254Tyr, Ala255Arg) in the study by Skerker et al. (2008), while the amino acid at the third position (250) is the same in WalK and PhoR. Changing these two amino acids of WalK allows phosphorylation of PhoP both in *vivo* and upon extended incubation in *vitro*, consistent with the results obtained by Skerker et al. (2008). However, in contrast with the Skerker et al. (2008) study, a complete change of specificity was not observed in the present study, and the rate of phosphotransfer remained low. However, the clear conclusion from both studies is that the complete specificity set of each TCS will be nuanced and complex.

The juxtaposition of amino acids at position 17 of the ϕ1 helix of RR, and position 11 of the ϕ1 helix of histidine kinases, and its suggested importance as an anchoring point within the co-protein complex (Fig. 6), prompted us to examine the amino acid combinations at these positions in the complement of *B. subtilis* TCSs. GlyρRR occurs at this position in 10 histidine kinases, and is always paired with a hydrophobic amino acid as follows: LeuρRR (5), Ile (1), Val (1), Ala (1) and Met (2). The reverse situation of having GlyρRR at position 17 in RR occurs in eight TCSs, and it is paired with hydrophilic (Ile, Leu, Met or Trp) or small hydrophilic (Ser) amino acids. Thus, pairing Gly with a hydrophobic and/or small hydrophilic amino acid at this critical anchor position occurs in more than half of all *B. subtilis* TCSs, and this supports its importance as a feature in facilitating initial binding of cognate proteins. Ongoing experiments are focused on establishing the hierarchical nature of specificity determination by amino acid combinations at particular sites of the histidine kinase and RR interacting surfaces.

ACKNOWLEDGEMENTS

This work was funded by EU Sixth Framework grant BACELL Health (LSHC-CT-2004-503468), by Science Foundation Ireland Principal Investigator Awards (03/IN3/B409 and 08/IN.1/B1859) to K. M. D., and by an award from the Arkansas Biosciences Institute to K. I. V.

REFERENCES

Howell, A., Dubrac, S., Andersen, K. K., Noone, D., Fert, J., Msadek, T. & Devine, K. (2003). Genes controlled by the essential WalK/YycF two-

Edited by: J. M. van Dijl