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We describe a prototype theorem prover, U-(TP)?, developed to match the style of hand-written proof
work in the Unifying Theories of Programming semantical framework. This is based on alphabetised
predicates in a 2nd-order logic, with a strong emphasis on equational reasoning. We present here
an overview of the user-interface of this prover, which was developed from the outset using a point-
and-click approach. We contrast this with the command-line paradigm that continues to dominate
the mainstream theorem provers, and raises the question: can we have the best of both worlds?

1 Introduction

Unifying Theories of Programming (UTP) [12], is a framework that uses alphabetised predicates to define
language semantics in a relational calculus style, in a way that facilitates the unification of otherwise
disjoint semantic theories, either by merging them, or using special linking predicates that form a Galois
connection. The framework is designed to cover the spectrum from abstract specifications all the way
down to near-machine level descriptions, and as a consequence the notion of refinement plays a key role.

We are doing foundational work in the UTP [12], which requires formal reasoning with not only
predicates, but also predicate transformers: R3(P) = II <\ wait > P and predicates over predicates:
P =R3(P). We also need to use recursion at the predicate level: P = pu Qe F(Q), as well as partially-
defined expressions: s < s —~ (17 —tr) = tr < 1. The logic being used is therefore semi-classical (two-
valued logic, but expressions may be undefined) and of least 2nd-order. In addition, tool support for
foundational work in UTP requires the ability to easily describe new language constructs, which can
themselves be treated just like predicates, in keeping with the “programs are predicates” philosophy [[11]]
of UTP. In [6] we gave an overview of the Unifying Theories of Programming Theorem Prover (U-(TP)?)
that we are developing to support such theory development Workﬂ The prover is an interactive tool, with
a graphical user-interface, designed to make it easy to define a UTP theory and to experiment and perform
the key foundational proofs. The motivation for developing this tool, rather than using an existing one,
has been discussed in some detail in [6]], but key elements will be reprised here. The logical and technical
underpinning was further elaborated upon in [7], which described as being an adapted and generalised
version of the equational reasoning system developed by Tourlakis [[18]], itself inspired by the equational
logic of David Gries and his colleagues [10]].

In this paper, we describe how the user interacts with this theorem prover, that was developed, from
the outset, with the proof and reasoning styles typically used in UTP research and published work.

The key emphasis in development was to use window-based GUI techniques early on as the primary
mode of interaction, in stark contrast to most modern interactive theorem provers that have essentially a
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command-line interface (most HOL flavours, CoQ, PVS, ...) sometimes wrapped with a elaborate in-
terface built on top of a highly configurable text editor (e.g., Proof General on Emacs, new Isabelle/HOL
interface on top of jEdit).

2 Motivation

There are a lot of theorem provers in existence, of which the most prominent feature in [[19]]. Of these, the
most obvious candidates for consideration for UTP prover support are Isabelle/HOL[14]], PVS[15]], and
CoQ [4]. They are powerful, well-supported, with decades of development experience and large active
user communities. They all support higher-order logic of some form, with a command-line interface,
typically based around tactics of some form. All three require functions to be total, but support some kind
of mechanism for handling partial functions (e.g. dependent types in PVS). Their reasoning frameworks
are based on some form of sequent calculus, and do not support equational reasoning in a native fashion.

There has been work done on improving the user interfaces of theorem provers of this kind. An
interesting example was “proof by pointing” [5]] for CoQ which allowed the user to select a subterm,
whereupon it would generate and apply a tactic based on the subterm’s top-level operator. Whilst proof-
by-pointing is not supported in more recent versions of CoQ, it has been incorporated into “Proof Gen-
eral” [1]], a general purpose user interface for theorem provers, built on top of Emacs. It supports Isabelle
and Coq, among others, and is basically a proof-script management system. In essence it supports the
command-line tactics of the provers, allowing the user to edit proof scripts at will, whilst maintain-
ing prover consistency behind the scenes. Other explorations in this area include INKA [13], Lovely
OMEGA [16], Window inference [17], Generalized Rewriting in Type Theory [3]], The CoRe Calculus,
[2] and the Jape Theorem Proving framework (http://japeforall.org.uk/.) Of the above, [2],[3]
seems designed to support equational reasoning, but lack any notion of a GUI. In [13]] and [16] we have
GUIs, but the logic/proof style is tree based. The window inference work [17] has a notion of “focus”
similar to ours, but has no GUI, and while capable of handling equational rewrites seems to be more
general. Jape has a GUI and facilities to encode logics, but again is deduction-biased, and has no easy
way to extend the language.

3 Interaction

We shall illustrate U-(TP)?’s use by walking through a simple proof, from a theory of sets, regarding the
commutativity of set intersection.

We start by launching the theorem prover, and we assume that some theories have been preloaded: Set
Equality, Logic and _ROQT (a base theory always present). All theories have access to definitions and
laws from lower theories.

2The $0 suffix is a version number
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L] U(TP)*2 v0.98a(2014-02-11) - butrfeld
File Help Appearance Build Maintenance

Theories

Workspace 'UITP Theories' @ Z:\Documents\RESEAR!
Global Theories (modified)

Equality$0

Active Proofs

-]

If we double-click on the Sets box, a window opens up showing the “Laws” of the Set theory. Laws
have names, a “provenance” indicator, side-conditioning, and their defining schema (a predicate).

LAWS | o8s. | LANGUAGE | PRECEDENCE | TYPEdef | cONSTdef | ExPRAef | PREDdef | TYPES | cona. | THEOREMS |

Laws (Name -+-> SideCond x Pred)

~-in-{3 Sltrue|~(el in {})

in-singleton Sltrue|(el in {e2}) == (el = e2)

in-union Sltrue|(el in (s1 union s2)) == (el in s1) Y/ (el in s2)
in-intersect Sltrue|(el in (s1 intsct s2)) == (el in s1) /\ (el in 52)
in-setdiff Sltrue|(el in (s1 \ s2)) == (el in s1) /\ ~(el in 52)
set-extensionality|S|true|(sl = s2) == (forall x @ (x in s1) == (xin 52))
DEF-subseteq S|true|(sl subseteq s2) == (forall x @ (xin s1) ==> (xin s2})
DEF-subset S|true|(sl subset s2) == (s1 subseteq s2) [\ ~(s1 = s2)
DEF-card-empty |S|true|card {} =0

DEF-card-single |S|true|card {el} =1

DEF-card-union  |S|true|card (el union e2) = (card el + card e2) - card (el intsct e2)

Clicking on the “CONIJ.” tab shows some conveniently preloaded conjectures, which have yet to be
proven.

Laws | 08S. | LANGUAGE | PRECEDENCE | TYPEdef | coNSTdef | ExPRAef | PREDdef | TYPES CON. |

Conjectures (Name -+> SideCond x Pred)
in-self truelel in {el1}
int-sdiff-distr  [true|el intsct e2 | e3 = (el \ e3) intsct (e2 \ e3)
int-union-distr |[true|el intsct e2 union e3 = (el union e3) intsct (e2 union e3)
intsct-assoc  |true|el intsct (e2 intsct e3) = (el intsct e2) intsct e3
intsct-comm truelel intsct e2 = e2 intsct el
intsct-idem truelel intsct el = el
sdiff-int-distr  |true|el | e2 intsct e3 = (el \ e2) union (el \ e3)
sdiff-self truelel \ el = {}
sdiff-twice true|(el \ e2) \ e3 = el (e2 union e3)
sdiff-union-distr|true|el \ (e2 union e3) = (el \ e2) intsct (el \ e3)
union-assoc  [true|el union (e2 union e3) = (el union e2) union e3
union-comm truelel union e2 = e2 union el
union-idem truejel union el = el
union-int-distr |[true|(el union e2) intsct e3 = el intsct e3 union e2 intsct e3
union-sdiff-distr|true|(el union e2) \ e3 = (el ) e3) union (e2 \ e3)
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Double-clicking on the intsct-comm row (5th) opens up a proof window, and we use its setup menu to
select the “Reduce” strategy, which attempts to transform the goal predicate into TRUE. Other strategies,
depending on the goal structure include: “left-to-right”, for equality/equivalence conjectures, that con-
verts the lefthand side until equal to the righthand side, or “reduce-both” which tries to transform both
sides into some common form.

In the proof window we have the goal and side-conditions displayed, and there is some material
about heuristics we ignore in this paper. The lower half of the proof window displays the “TARGET”,
determined by the goal and the chosen strategy. Some context information is also shown, the most
important being the free variables, and the type, in this case, of each side of the equality. We see the
starting goal at the bottom, in bold and underlinecﬂ:

L] Proof of 'intsct-comm$Sets’ = OB
Setup View Options Heuristics Help
Matches
~
W
< >

Goal and Proof

Goal : el intsct e2 = e2 intsct el

Side-Condition : None

Strategy : Reduce to TRUE [incomplete] Heuristic : Mo Trivial Equiv->Topmost Theory->Mo change
Global Theories : Sets | Equality | Logic | _ROOT

TARGET > TRUE
Polarity = mxd | Binders = none | Free vars = el U e2 | EXPFR : B

el intsct e2 = e2 intsct el

< >

Proof Strategy now Reduce

If we right-click anywhere in the “Goal and Proof” subwindow, then a menu of laws applicable to the
goal pops-up. In effect the goal was matched against all the laws present in the Sets, Equality, Logic
and _ROOT theories, the successful matches were then ranked (by various user-selectable heuristics), the
top twenty chosen, then applied to the goal to show the result, and presented in the menu.

Law Matches

SetsS05in-singleton « [elintsct €2} in {e2 intsct e}

SetsS0Sset-extensionality ... forall x @ (¥xin (g1 intsct e2)) == (P in (g2 intsct 1))
Equality$0S=-symm .. e2intsct el = el intsct e2

_ROOTS0S Axc-=-refl .. €lintscted = e intsct el

EqualityS0S=-symm .. e2intsct el = el intsct e2

EqualityS05=-refl .. elintsct e2 = e intsct el

LogicS05/\-=»-meet w (el intsct e2 = e2 intsct €1) W PA N (] intsct e2 = ed intsct e1)

If we pick the second, “set-extensionality”, as it has new variables not present in the goal, (e.g. 7x),
we are asked to supply instances for these, with a reasonable default being offered. This feature is not
obviously useful in this example (except if x was present elsewhere) but comes in handy when matching

3The “Matches” subwindow will not be discussed here
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the rhs of a law like A V (A A B) = A, to get the rhs, in which we are free to instantiate B as we see fit.

User Binding

Current Pred.:-

elintscte? = elintsctel

Predicate bindings: none.

Expression bindings:

51 |-= elintscte2

52 |-> eZintsctel

Quantifier bindings: none.

Replacement Pattern: forall x @ (x in s1) == (xin s2)

Enter QVar (Std) to replace QVar (Std) Variable "x'

I

0K | Cancel |

If we go with the default suggestion, then we obtain the following proof state:

TARGET> TRUE

Polarity = +ve | Binders = none | Free vars = el U e2 | PREDICATE

forall x @ {x in (el intsct e2)) == (xin (e2 intsct e1))

=== "set-extensionality (L-to-R) @"
el intsct e2 = e2 intsct el

We can use arrow-keys to move around the goal, changing the proof “focus”. If we go “down” twice, we
focus in on the first set membership assertion. It is worth noting that the line above records that the focus
is on an expression (EXPR) of type boolean (B). U-(TP)? has a on-the-fly type inference algorithm that
runs every time the focus change and is used by the law matching algorithm to avoid spurious matches.
We avoid lots of explicit type annotations, preferring to deal with such issues behind the scenes. This is
of course in keeping with the general traditional UTP approach to theorem development.

TARGET=> TRUE

Polarity = mxd | Binders =x | Free vars = el Ue2 Ux | EXPR : B

forall x @ (xin (el intsct e2)) == (xin (e2 intsct e1})

=== "set-extensionality (L-to-R} @"
el intsct e2 = e2 intsct el

Right-clicking now leads to laws relevant to the focus:

Law Matches

SetsS08in-intersect w [xin e} N\ (xin e}

_ROOTS0S As-=-refl .. xin (el intsct e2)

EqualityS05=-refl .. xin (el intsct e2)

Logic$05/\-=»-mest w (ein (el intsct e2)) W/ TA N (xin (el intsct e2))
LogicS05,/\-=»-meet o (cin (el intsct e2)) \/ (xin (el intsct e2)) M\ 7B
Logic808=>-Y/-join w [xin (el intsct e2)) A (PAN (xin (el intsct e2)))

If we pick the first option, then we get a conjunction of simpler membership statements.

“4speed has never been a problem with this
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TARGET > TRUE
Polarity = mxd | Binders = x | Free vars = el U e2 U x | PREDICATE

forall x @ (x in e1) /\ (xin e2) == (x in (e2 intsct el))

=== "in-intersect (L-to-R) @1.1"
forall x @ (x in (el intsct e2}) == (xin (e2 intsct e1))
=== "set-extensionality (L-to-R) @"
Moving to the righthand side of the equality, we can apply the same in-intersect law, then apply the
commutativity of conjunction, pull back out and we get instances of the reflexivity of equals. Finally we
get rid of a vacuous quantifier, so resulting in the goal TRUE, and U-(TP)? proclaims!

Success !

OB Proof Complete!
"' Conjecture now a Theorem

Examining the “THEOREMS” tab in the Set theory window shows our new theorem.

LANGUAGE | PRECEDENCE | TYPEdef | cONSTCef | ExPRdef | PREDdef | TYPES | cony.  THEOREMS |

Theorems (Mame -+> Proof)
|intsct-c0mm|true|el intsct e2 = e2 intsct el|

Right-clicking on it gives another pop-up menu of interesting things to do with it.

Theorem wintsct-comms (by butrfeld,length:6)

Output to text File

Output to LaTeX File
Show Citations (this proof)
Summarise (this proof)
Replay this proof

Redo this proof

Undeo this proof

We render a simple text version of the resulting proof:

Complete Proof for ’Sets$intsct-comm
Goal : el intsct e2 = e2 intsct el
Strategy: Reduce to TRUE

el intsct e2 = e2 intsct el
=== " get-extensionality (L-to-R) @ "

forall x @ (x in (el intsct e2)) == (x in (e2 intsct el))
=== " in-intersect (L-to-R) @1.1 "
forall x @ (x in el) /\ (x in e2) == (x in (e2 intsct el))

" in-intersect (L-to-R) ©@1.2 "
forall x @ (x in el) /\ (x in e2) == (x in e2) /\ (x in el)
=== " /\-comm (R-to-L) @1.2 "
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forall x @ (x in el) /\ (x in e2) == (x in el) /\ (x in e2)
=== " Ax-==-id (R-to-L) @1 "

forall x @ TRUE
=== " forall-vac (L-to-R) @ "

TRUE

We have only skimmed over the interactive proof features of U-(TP)? here. Others include

e keyboard shortcuts to apply built-in procedures to the focus, e.g., convert to disjunctive normal
form

e a clickable help feature in the proof window
e strategies to support inductive proofs
e all tables in each tab of each theory can be edited, with entries added or deleted — even laws!

e Some of the tabs, (“OBS.”,“LANGUAGE”,“PRECEDENCE”) have tables that support user defi-
nitions of languages. See [7]] for further details.

4 Discussion

Proofs done with U-(TP)? are, in our opinion, more “open”, in that we can easily see the steps and laws
used in a proof, in an equational style. A consequence of this is readily seen when we consider the
students taking the Formal Methods course offered at Trinity College Dublin, that focusses on the UTP,
and uses U-(TP)? for part of the classwork. The feedback obtained from these students shows clearly
that (i) the learning curve to get good at U-(TP)? proofs is fairly shallow—they almost never get “stuck”,
once a few tricks are shown—experimentation is easy; (ii) their concerns are regarding improvement
to the GUI itself, either in terms of how it looks, or having the flexibility to define their own keyboard
shortcuts. A key feature that reduces the learning curve is the ability of the prover to suggest possible
next steps, by doing advance pattern-matching and instantiation.

Proofs in CoQ or Isabelle/HOL are, again in this authors words, more “procedural”, and “opaque”,
but definitely more powerful. The disadvantage is that the learning curve is much steeper, particularly
when early success it obtained by tactics like auto, simp or sledgehammer. When these fail, the best
approach is not so clear to the beginner. However, there is undeniable power once that learning curve has
been climbed.

U-(TP)?* was really developed to assist in the development of new semantic theories within the
UTP framework. Others have also put effort into doing this for UTP using both ProofPowerZ[20] and
Isabelle/HOL[8. |9]. The price they pay is having to recast material in the ProofPower/HL style. The
benefit they tap into is the power of their proof engines.

The key questions raised here are:

e Should point-n-click GUIs be added to existing provers?
e To what extent are front-ends like Proof-General or jEdit are step in this direction?
e Should more attention be paid to developing equational reasoning approaches?

Can the U-(TP)? front-end be fruitfully turned into a wrapper around Isabelle/HOL say?

Should it use Isabelle/HOL as a way to check its proofs (would save trying to develop a small safe
LCF-style kernel for U-(TP)?) ?
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e Can we envisage proofs been done using gestures on a tablet?

Very recent work, presented as Tutorial 2 at FM2014 in Singapore, by Jim Woodcock, Simon Foster
and Frank Zeyda of the University of York, showed an encoding of UTP and some key theories into
Isabelle/HOL. One the negative side, they had to employ further nested quotation schemes, but on the
positive side, they used Isar in such a way that it may be relatively easy to use Isabelle/HOL to check
proof steps made by U-(TP)?. We hope to explore this connection in the near future.

4.1 Obtaining Code

U-(TP)? is written in Haskell using the wxHaskell GUI library, and is available open-source, currently un-
der a GPL v2 license, from https://bitbucket.org/andrewbutterfield/saoithin. The screen-
shots in this paper were produced using version 0.98a.
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