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Ophiolite complexes preserved along the Yarlung Tsangpo suture zone (YTSZ) and obducted onto the northern
continental margin of India in southern Tibet represent the remnants of the once extensive Permian–Mesozoic
Neo-Tethyan Ocean that separated India from Asia. Complete ophiolite successions are preserved near Xigaze,
whereas the rest of the belt is essentially represented by mantle rocks with subordinate disrupted lower crustal
rocks. U–Pb zircon LA-MC-ICP-MS geochronology on two gabbro samples from the Luobusa ophiolite yielded
concordant data with mean 206Pb/238U ages of 149.9 ± 1.4 (2σ) Ma and 150.0 ± 5.0 Ma. These ages are in con-
trast to a younger age of 131.8 ± 1.0 Ma obtained from a pegmatitic gabbro in Xigaze. Five U–Pb zircon TIMS
ages from gabbroic samples in the western portion of the ophiolite belt reveal that the Dangxiong ophiolite
formed between 126.7 ± 0.4 Ma and 123.4 ± 0.8 Ma. Zircons from the Jungbwa ophiolite have similar ages
of 123.4 ± 0.8 Ma and 123.9 ± 0.9 Ma. A single zircon analysed from a gabbro in Kiogar has an age of
159.7 ± 0.5 Ma. Geochronological data reported here show YTSZ ophiolites formed in association with intra-
oceanic subduction zone systems and are related a significant tectonic episode within the Tethyan Ocean during
Late Jurassic to Early to mid Cretaceous times.

© 2013 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

The India–Asia collision is marked by the Yarlung Tsangpo suture
zone (YTSZ) in southern Tibet and beyond into northern India along
the correlative Indus suture. For at least 2500 km this suture forms
the boundary between the Tethyan Himalaya of the Indian plate to
the south and the collage of plates that make up Asia to the north.
Ophiolite complexes, preserved both along the suture and obducted
onto the northern margin of India, provide our only evidence of the
age and composition of the once extensive Neo-Tethyan Ocean that
separated India from the Lhasa Block on southern margin of Eurasia.
Early interpretations indicated that the YTSZ ophiolites were formed
in a mid-ocean ridge (MOR) environment and consumed along a single
zone of convergence along the southern margin of Eurasia (Nicolas
et al., 1981; Allegre et al., 1984; Girardeau et al., 1985b; Wang et al.,
1987). In contrast, recent work (summarized in Hébert et al., 2012)
has shown that most ophiolites possess supra-subduction zone (SSZ)
geochemical signatures, except for portions of the Luobusa ophiolite in
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SE Tibet, parts of the Jungbwa massif in SW Tibet and the lower part
of the Spontang ophiolite in northern India (Corfield et al., 2001),
where evidence for MOR-type magmatism is preserved. Moreover,
rocks associated with at least phases of two intra-oceanic island arc de-
velopment have been recognized along the suture (Aitchison et al.,
2000; Corfield et al., 2001; Malpas et al., 2003; Miller et al., 2003;
Mahéo et al., 2004; Hébert et al., 2012). Most Himalayan–Tibetan
ophiolites are thought to have been emplaced onto the northern passive
margin of the Indian plate during Late Cretaceous–Paleocene times
(Searle, 1983; Allegre et al., 1984; Searle, 1986; Searle et al., 1997;
Aitchison et al., 2000; Davis et al., 2002; Malpas et al., 2003; Aitchison
and Davis, 2004; Ding et al., 2005; Aitchison et al., 2007a; Guilmette
et al., 2009, 2012; Hébert et al., 2012).

One of the keys to advancing the understanding YTSZ zone ophiolites
is to constrain the time at which magmatic rocks crystallised and during
formation of the ophiolites. The published age data from these ophiolites
are (summarized in Hébert et al., 2012) and shown in Fig. 1. Biostrati-
graphic dating suggests that the Xigaze ophiolite was formed in the
Early Cretaceous (Ziabrev et al., 2003), which is in accordance with
the U–Pb zircon ages (Göpel et al., 1984; Malpas et al., 2003; Wang
et al., 2006). Other U–Pb zircon ages ranging from Jurassic to Late Creta-
ceous have been published for published from the Zedong, Dangxiong,
lished by Elsevier B.V. All rights reserved.
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Fig. 1. Ophiolites and ophiolitic suture zones (black) and their ages. All dates are radiometric U–Pb zircon or 40Ar–39Ar amphibole ages. Igneous crystallization ages are shown in normal
font (bold font are results of current study); metamorphic sole ages are italicized. Locations from which radiolarian faunas have been extracted from intercalated or overlying cherts are
indicated by (rads). Sources of data: Semail (Hacker, 1994; Hacker andGnos, 1997;Warren et al., 2003), Band-e-Zeyerat (Ghazi et al., 2004), Bela (Ahmed, 1993),Muslim Bagh (Mahmood
et al., 1995; Kakar et al., 2012), Waziristan (Khan et al., 2007), Kohistan (Schaltegger et al., 2002). Spontang1–MORB-type sequence, 2–island arc sequence (Pedersen et al., 2001), Nidar
(Zyabrev et al., 2008), Kiogar (Xiong et al., 2011), Jungbwa (Li et al., 2008; Xia et al., 2011), Dangxiong (Wei et al., 2006), Jiding (Wang et al., 2006), Xigaze (Malpas et al., 2003; Ziabrev et al.,
2003; Wang et al., 2006; Guilmette et al., 2009; Li et al., 2009), Zedong (McDermid et al., 2002) and Luobusa (Malpas et al., 2003; Zhong et al., 2006b).
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Spontang and Muslim Bagh ophiolites (Pedersen et al., 2001;
McDermid et al., 2002; Wei et al., 2006; Kakar et al., 2012). Ages
determined using other isotopic systems such as Sm–Nd have large
errors and do not constrain formation of the ophiolite crustal sequence.
High-grade metamorphic rocks have been commonly found within the
sub-ophiolitic melanges (Guilmette et al., 2007, 2009, 2012). These
metamorphic sole rocks are traditionally interpreted as derived from
metamorphic soles formed beneath the ophiolites during their initial
intra-oceanic displacement (e.g. Williams and Smythe, 1973; Malpas,
1979; Searle and Malpas, 1982; Wakabayashi and Dilek, 2000; Searle
and Cox, 2002). Although their ages potentially provide important con-
straints on obduction processes some recent work suggests that such
metamorphic rocks may be associated with ophiolite generation rather
than emplacement (Dewey and Casey, 2011). In this paper we present
new U–Pb zircon ages for five different massifs of the YTSZ ophiolites
from southeastern to southwestern Tibet (Luobusa, Xigaze, Dangxiong,
Jungbwa and Kiogar). We use these data to determine the timing of
ophiolite genesis and elucidate how these ages might be related to the
inferred timing of intra-oceanic displacement, emplacement onto Indian
continental margin and ultimate incorporation into the Himalayan oro-
genic belt.

2. Background

2.1. Regional geology

The southern margin of the Tibetan plateau is characterized by a
number of east–west trending terranes. From the north to the south, it
is marked by the Lhasa terrane, which incorporates the Jurassic to
Eocene Gangdese batholith and associated Linzizong extrusives. The
Gangdese granites have U–Pb zircon ages as old as 205 Ma and as
young at 34 Ma (Ji et al., 2012) with the majority of rocks dated thus
far between 65 and 41 Ma (Ji et al., 2009). The calc-alkaline Linzizong
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
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volcanics (andesites, dacites, rhyolites) are the extrusive component
to the Gangdese granites and have 40Ar/39Ar ages ranging from Creta-
ceous to Eocenewith themajority of data suggesting themost extensive
component erupted around 50 Ma (Lee et al., 2009). South of the
granitic Gangdese batholith lie a series of Mid-Late Cretaceous forearc
volcaniclastic turbidites (Xigaze terrane) thatwere derived from a source
region to the north (Dürr, 1996; Aitchison et al., 2011;Wang et al., 2012).
The suture zone between India andEurasia itself consists of a series of dis-
membered ophiolites and associated rocks of the Cretaceous Dazhuqu
terrane (Aitchison et al., 2000). Other structural domains include exam-
ples of a series of Mid-Jurassic intra-oceanic arc rocks (Zedong terrane)
and a Cretaceous subduction-related accretionary complex (Bainang
terrane), occurring elsewhere along the suture zone (Aitchison et al.,
2000 and references therein).

2.2. Luobusa massif and associated Zedong terrane ophiolitic rocks

The Luobusa massif is c. 1 km thick and extends for c. 40 km in an
east–west direction, occurring to the immediate north of Luobusa
Village in southeast Tibet (Fig. 2a). Although elsewhere ophiolitic mas-
sifs are generally thrust southward onto the northernmargin of India as
Luobusa post collisional back-thrusting along the Great Counter thrust
(Gansser, 1964) has resulted in northward emplacement of the massif
above anophioliticmelange,which in turn is thrust over LowerMiocene
Gangrinboche conglomerates (Aitchison et al., 2002b, 2009). To the
south, the ophiolite is overthrust by rocks of Indian affinity (Zhou et al.,
1996; Yamamoto et al., 2007). The bulk of the ophiolite is essentially
represented by a mantle sequence, which comprises harzburgite, dunite
and chromitite. The chromitites host a variety of rare ultrahigh-pressure
minerals such as diamond, moissanite, native metal and PGE alloys (Bai
et al., 1993, 2000; Robinson et al., 2004). Elsewhere, these mantle rocks
are further cut by diabase and gabbro dykes. Thedetails of petrographical
and geochemical relationships of the Luobusa ophiolite have been
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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samples are also shown.
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described by Zhou et al. (1996, 2005) who argued that these rocks
formed in a two-stage process. The peridotites are interpreted to repre-
sent residues of melting at a mid-ocean ridge that were subsequently
modified by supra-subduction zone magmatism (Griselin et al., 1999;
Zhou et al., 2005). An intra-oceanic arc was possibly created by the latter
magmatic event and is likely represented by the rocks of the Zedong
terrane (Aitchison et al., 2000; McDermid et al., 2002; Aitchison et al.,
2007b).

The Zedong terrane is best seen near the township of Zedong,
c. 40 km west of Luobusa where the whole sequence is overturned
and overthrust by the Dazhuqu terrane ophiolite. In places, island arc
tholeiitic pillow basalts are overlain by red ribbon cherts. This sequence
is further covered by a succession of autoclastic breccias of shoshonitic
affinity, which is cut locally by basaltic to dacitic dykes (McDermid
et al., 2002; Aitchison et al., 2007b). It is possible that rocks assigned to
Dazhuqu and Zedong terranes shared, at least in part, a common history.
However, they are in faulted contact and as noted by (Hébert et al., 2012)
resolution of their original relationships awaits further investigation.

A Sm–Nd age of 177 ± 31 Ma has been reported for a gabbroic dyke
of the Luobusa ophiolite (Zhou et al., 2002). Ophiolitic rocks of the
Zedong terrane have been more extensively dated by U–Pb ion micro-
probe, Ar–Ar geochronology and radiolarian biostratigraphy. The radio-
metric dates of the volcanic rocks and associated plutonic rocks have a
wide range of 152–163 Ma whereas the chert, which overlies island
arc tholeiitic pillow basalts at the base of the sequence, contains radiolar-
ians indicative of a possible Bathonian through lower Callovian (circa
168–162 Ma; Gradstein et al., 2012) age range (McDermid et al., 2002;
Aitchison et al., 2007b). Amphibolites from themelange zone structural-
ly beneath the Luobusa ophiolite that are inferred to represent fragments
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
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of ametamorphic sole (Malpas et al., 2003) have anAr–Ar amphibole age
of 85.7 ± 0.9 Ma and a biotite age of 80.6 ± 0.6 Ma. A further report of a
162.9 ± 2.8 Ma U/Pb zircon SHRIMP age from a diabase in the Luobusa
ophiolite exists in Chinese literature (Zhong et al., 2006b).

2.3. Ophiolitic massifs in the Xigaze area

Several massifs form a near continuous ophiolite belt, stretching
east–west over a distance of c. 150 km near Xigaze, SW of Lhasa
(Fig. 2b). Individual massifs are up to c. 2 km thickness and collec-
tively the belt resembles a classical complete ophiolite succession
in that mantle peridotite (mainly harzburgite with minor dunite,
lherzolite and wehrlite) is overlain by layered and intrusive gabbro
(Nicolas et al., 1981; Girardeau et al., 1985c; Wang et al., 1987;
Hébert et al., 2012; Bao et al., 2013; Dai et al., 2013). This sequence
in turn passes upward to a sheeted dyke complex, which feeds pillow
lavas interbedded with radiolarian chert. The ophiolite is everywhere
separated from Upper Cretaceous siliciclastic turbidites of the Xigaze
terrane by a late stage south-dipping, north-vergent backthrust (part of
Gansser's (1964) Great Counter thrust system; Aitchison et al., 2000,
2002a; Aitchison and Davis, 2004; Aitchison et al., 2007a; cf. Wang
et al., 2012). The volcaniclastic sedimentary cover of the ophiolite differs
from that of the Xigaze terrane over which the ophiolite has been back-
thrust. It is dominated by basaltic detritus and has appreciable quantities
of detrital magnetite. Where present, felsic material is concentrated in
tuffaceous horizons (Ziabrev et al., 2003; Aitchison and Davis, 2004). In
contrast volcaniclastic detritus in the Xigaze turbidites is dominated by
material of rhyolitic to dacitic compositions (Dürr, 1996). To the south,
the ophiolite lies in the footwall of a fault contact with the Tethyan
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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Himalayan turbidites along another strand of the north-directed Great
Counter thrust system (Gansser, 1964). Although it has previously
been postulated that the ophiolite formed at a MOR (Nicolas et al.,
1981; Girardeau et al., 1985a), recent petrological and geochemical stud-
ies have confirmed the interpretation of Aitchison et al. (2000) that these
rocks originated in a SSZ setting with both forearc and backarc affinities
having been suggested (Hébert et al., 2003; Malpas et al., 2003; Dubois-
Cote et al., 2005; Hébert et al., 2012; Bao et al., 2013; Dai et al., 2013).

The ophiolite has a poorly constrained U–Pb whole rock age of
120 ± 10 Ma (Göpel et al., 1984). The first published sensitive high-
resolution ionmicroprobe (SHRIMP) U–Pb zircon age of a quartz diorite
from amassif at Dazhuqu (Malpas et al., 2003) is 126 ± 2 Ma, which is
consistent with another (SHRIMP) age of 128 ± 2 Ma from a gabbro
another massif at Jiding (Wang et al., 2006) and 125 ± 0.88 Ma for
gabbro at Qunrang (Li et al., 2009).

The inferred age range of associated basaltic volcanism is consistent
with radiolarian biostratigraphy from the overlying cherts. The oldest
sediments are upper Barremian (c. 127.5–125 Ma; Gradstein et al.,
2012) and range through to the upper Aptian. (N112 Ma) (Ziabrev
et al., 2003). Amphibolite blocks included in the sub-ophiolitic tec-
tonic melanges, interpreted as disrupted metamorphic sole rocks,
have been dated by the Ar–Ar method. Malpas et al. (2003) reported
an amphibole age of 87.9 ± 0.4 Ma whereas Guilmette et al. (2009)
described an older age range of 127.7 ± 2.3–123 ± 3.1 Ma. Paleomag-
netic studies indicate that the ophiolite formed at equatorial latitudes,
1000–1500 km south of Eurasia's margin during the mid-Cretaceous
(Abrajevitch et al., 2005).

2.4. Dangxiong, Jungbwa and Kiogar massifs

The southwestern Tibetan ophiolites form a 300-km-long discontin-
uous belt, dominated by three major massifs (from east to west): the
Dangxiong, Jungbwa (Yungbwa) and Kiogar massifs (Fig. 3). These mas-
sifs occur c. 20 km to the south of the suture zone and are tectonically
underlain by ophioliticmelanges. Thewhole package has been emplaced
onto the deformed Mesozoic continental margin sequence of the north
Indian plate. Late normal faulting along the southern margin of the
Jungbwa massif has juxtaposed the mantle sequence rocks directly
above the North Himalayan Gurla Mandata gneisses. The ophiolite has
an estimated thickness of 6 km and is essentially represented by a
mantle sequence, composedmainly of harzburgitewithminor amounts
of dunite, lherzolite and orthopyroxenite (Dai et al., 2011). Chromitite
bands enveloped by dunite are also found in the Kiogar massif. Despite
occasional pegmatitic gabbronorite dykes cutting the Jungbwa massif
(Liu et al., 2010),most gabbroic rocks are found in theDangxiongmassif
as layered troctolitic gabbros and isotropic gabbros (Chan, 2008).
Harzburgite dominates the eastern end of the Dangxiong massif at
Xiugugabuwith aminor occurrence of diabase and overlying sediments
(Bédard et al., 2009). Themantle and lower crustal sequences at Jungbwa
are cut by basaltic, diabase and gabbroic dykes (Miller et al., 2003). A
2-km-wide shear zone occurs near the town of Laro, inwhich ultramafics
and gabbros are mylonitized and variably metamorphosed. The gabbroic
intrusions have steep foliations, which commonly parallel the fabrics
observed in themylonitic peridotites. The Jungbwamassif was the sub-
ject of a reconnaissance study by Miller et al. (2003), who suggested
that the peridotites of the this massif appear to be residues of melting
in a MOR, later cut by some basaltic and gabbronorite dykes. Miller
et al. (2003) reported an Sm–Nd age of 147 ± 25 Ma and an Ar–Ar
amphibole age of 152 ± 33 Ma of the basaltic dykes. A SHRIMP zircon
age of 122.3 ± 2.4 Ma from the Dangxiong massif has been recently
reported for diabase dikes by Wei et al. (2006). In the Jungbwa dis-
trict near lakes Mapan Yum Co and La'nga Co SHRIMP zircon U/Pb
ages of 118.8 ± 1.8 Ma and 120.5 ± 1.9 Ma have been reported for
diabase dikes (Xia et al., 2011). Whereas (Li et al., 2008) report an
age of 120.2 ± 2.3 Ma for diabase dikes south of Mapan Yum Co.
LA-ICP-MS U/Pb zircon ages of 130 ± 0.5 Ma and 128 ± 1.1 Ma
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
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have been reported from the Kiogar ophiolitic massif by Xiong et al.
(2011) for pyroxenite and gabbro respectively. Ultramafic rocks in
this region are generally regarded as having initial MOR origins in
the Jurassic with ophiolitic rocks of Cretaceous age having formed in
a SSZ intra = oceanic arc system (Miller et al., 2003; Liu et al., 2010;
Dai et al., 2011).

3. Sample descriptions

Eight samples were collected from various YTSZ locations extending
fromeast towest at: the Luobusa (GCT-405, GCT-406), Xigaze (GCT-152),
Dangxiong (GCT-163, GCT-185), Jungbwa (GCT-61, GCT-134) and Kiogar
(GCT-329).

3.1. Luobusa

Sample GCT-405 is a fine-grained gabbro, consisting of plagioclase,
clinopyroxene with trace amounts of titanite and ilmenite. The sample
was collected from a 1 m width dyke intruding serpentinized dunite.
Zircons in this sample are prismatic and colourlesswith some inclusions
and range in size from 100 × 55 × 30 to 50 × 50 × 20 μm. Sample
GCT-406 is afine-grained gabbro, consisting of plagioclase, clinopyroxene
with trace amount of titanite and ilmenite. The sample was collected
from a gabbroic dyke that cuts serpentinized harzburgite. The zircons
are colourless or pale brown, euhedral long or stubby prisms, without
any inclusions. The size of these zircons ranges from 120 × 50 × 30 to
65 × 50 × 30 μm.

3.2. Xigaze

Sample GCT-152 is a coarse-grained gabbro with mainly plagioclase
and clinopyroxene and trace titanite, apatite and ilmenite. The sample
was collected from a km-wide gabbroic stock, which is further cut by
diabase dykes, to the immediate east of Yelong village. Zircons in this
sample are colourless, prismatic and without any visible inclusions.
The grains vary in size from 100 × 50 × 30 to 70 × 50 × 30 μm.

3.3. Dangxiong

SampleGCT-185 from is a coarse-grained gabbro, comprisingplagio-
clase, clinopyroxene and trace amount of quartz, apatite, magnetite and
ilmenite. The samplewas collected from a 500 mwidth gabbro stock, to
the southwest of Laro village. Zircons in this sample are colourless, pale
brown, euhedral or fragmentary and range in size from 90 × 50 × 40
to 40 × 35 × 20 μm. Sample GCT-163 is a coarse-grained gabbro com-
posed of plagioclase, clinopyroxene with trace titanite, apatite and
ilmenite. The sample was collected from a 20 cm thick dyke that cuts
fine-grained gabbro to the immediate west of Laro village. Zircons of
similar colour and morphology to those in GCT-185 were found, but
they range in size from 160 × 35 × 20 to 50 × 50 × 20 μm.

3.4. Jungbwa

Sample GCT-134 is a medium-grained gabbro, consisting of pla-
gioclase, clinopyroxene, and hornblende, with minor apatite and
ilmenite. The sample was collected from a stock several hundredme-
ters wide that intrudes serpentinized harzburgite of the Jungbwa
massif. Zircon grains from the gabbro are colourless to pale brown and
typically subhedral prismatic with sizes ranging from 90 × 45 × 40 to
50 × 30 × 20 μm. Sample GCT-61 from Jungbwa is a coarse-grained
gabbronorite, composed of plagioclase, clinopyroxene, orthopyroxene
and trace amount of apatite. The sample was collected from a 30 cm
wide dyke that crosscuts serpentinized harzburgite in the southern
part of the Jungbwa massif. Very few zircons were separated from this
sample. They are colourless, anhedral prismatic grains 80 × 40 × 40 μm.
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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Fig. 4. (a) MORB- and (b) chondrite-normalized diagrams of the dated samples.
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3.5. Kiogar

Sample GCT-329 is an extremely coarse-grained gabbronorite
(grain size up to 5 cm), comprising plagioclase, orthopyroxene and
clinopyroxene. The sample was collected from a ~5 mwide intrusive
body that cuts harzburgite, ~2 km west of Gadi village (Fig. 4). Almost
10 kg of sample was crushed, sieved and separated, but only one zircon
was found. The zircon is fragmentary (50 × 45 × 20 μm), colourless,
without any visible inclusions.

4. Sample geochemistry

Geochemical analyses of all the dated samples were performed at
the University of Hong Kong. Major element abundances were deter-
mined using X-ray fluorescence (XRF) on fused glass. The trace elements
Sc, V, Cr, Ni, Cu, and Znwere also determined by XRF on pressed powder
pellets. The remaining trace elements and the rare earth elements (REE)
presented in Table 1 were determined on a VG Elemental Plasma-mass
spectrometer (ICP-MS). The protocol of Jenner et al. (1991), with stan-
dard additions, pure elemental standards for external calibration, and
international standard BHVO-1 taken as reference sample was used.
Accuracies of the XRF analyses are estimated as±2% formajor elements
present in concentrations greater than 0.5-wt.% and ±5% for trace
elements. The ICP-MS results were obtained with accuracy better than
±5%.

Similar geochemical features characterize all gabbros from the vari-
ous ophiolite localities. On the N-MORB normalized diagram (Fig. 4),
they all display relative low contents of Nb, Zr and variable alkalis, Rb,
Ba, Th, U and Sr relative to MORB. In contrast, the gabbronorites from
the Kiogar and Jungbwa massifs are much depleted (0.003–0.1 times
N-MORB values) and display pronounced negative anomalies in Nb
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
implications, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2
and Zr and positive anomalies in Sr and Eu. The chondrite-normalized
REE patterns of the gabbros show light REE (LREE) depletion, spanning
the range of typicalMORB. Patterns of the gabbronorites from theKiogar
and Jungbwa massif are lower than the typical MORB composition and
show enrichment in LREE.

The gabbros show enrichment in large ion lithophile elements
relative to MORB, clear Nb depletion and similar high field strength
element to MORB. All these lines of evidence suggest that they
were generated in a SSZ environment. The spoon-shaped REE ele-
ment patterns of the gabbronorites are comparable with boninitic
gabbros elsewhere (e.g. the Trinity ophiolite in California; Metcalf
et al., 2000), although these rocks are probably cumulate and their
whole-rock compositions might not approximate to the primary
magma. However, it is important to note that the occurrence of
orthopyroxene and crystallization of plagioclase after pyroxenes in
these rocks differs from those formed at MOR. We favour an inter-
pretation that the gabbronorites crystallized from boninitic magmas
in a SSZ setting.

Further details and detailed discussion of the petrogenesis and geo-
chemistry of ophiolitic rocks along the YTSZ are presented in numerous
recent works (Hébert et al., 2003; Zhou et al., 2005; Zhong et al., 2006a;
Guilmette et al., 2009; Dai et al., 2011; Hébert et al., 2012; Bao et al.,
2013; Dai et al., 2013).

5. U/Pb dating

5.1. Methodology

Ages were determined by either isotope dilution thermal ionization
mass spectrometry (ID-TIMS) or laser ablation multi-collector in-
ductively coupled plasma mass spectrometry (LA-MC-ICP-MS) at
the NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. Data
and errors were calculated using the Isoplot 3 macro of Ludwig (2003).
The final data (2σ error ellipses) are plotted in Fig. 5. Detailed analytical
data coupled with the coordinates of sample localities are presented in
Tables 2A and 2B.

Zircons were separated from the rock samples using standard sepa-
ration techniques (Rogers water table, Frantz magnetic separation, and
MI heavy-liquid separation). For U–Pb ID-TIMS, selected grains were
chemically abraded to minimize possible Pb-loss using a modified
chemical abrasion technique of Mattinson (2005). This involved
annealing bulk zircon fractions at 800 °C in quartz glass beakers for
48 hours. The zircon crystals were subsequently cleaned ultrasonically
in 4 N HNO3, rinsed in ultra-pure water, then further washed in warm
4 NHNO3 prior to rinsing with distilled water to remove surface con-
tamination. The annealed, cleaned bulk zircon fractions were then
chemically leached in 200 μl 29 N HF and 20 μl 8 N HNO3 at 120 ° C
for 12 hours. Chemically abraded zircons were washed several
times in ultra-pure water, cleaned in warm 4 N HNO3 for several
hours on a hot-plate, rinsed again in ultra-pure water and 8 N
HNO3 and split into single grain fractions ready for dissolution.
Three samples were analysed by LA-MC-ICP-MS. These samples were
embedded into epoxymounts and surface polished to expose an equato-
rial section through the crystals.

For U–Pb chemistry prior to TIMS analysis, the recently calibrated
EARTHTIME mixed 205Pb/235U tracer was used to spike all fractions.
Dissolved, spike equilibrated samples were not subjected to ion-
exchange procedures but were converted to chloride and loaded
onto degassed rhenium filaments in silica gel following a procedure
modified after Mundil et al. (2004) Analyses were performed using
a Thermo Electron Triton equipped with a new generation of
MassCom Secondary Electron Multiplier (Noble et al., 2006). A min-
imum of 100 ratios were collected for Pb and 60 for U. Pb ratios were
scrutinised for any evidence of organic interferences which were de-
termined to be negligible. Total procedural blanks for three separate
batches of chemistry between October 2004 and April 2006 were 2.0
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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Table 1
Major and trace element compositions of the dated samples.

Location Kiogar Jungbwa Jungbwa Dangxiong Dangxiong Luobusa Luobusa Xigaze

Sample no. GCT-329 gabbronorite GCT-61 gabbronorite GCT-134 gabbro GCT-163 gabbro GCT-185 gabbro GCT-405 diabase GCT-406 diabase GCT-152 gabbro

Major oxides (wt.%)
SiO2 49.69 47.59 46.24 48.69 48.91 46.81 49.12 48.95
TiO2 0.06 0.06 1.35 0.28 0.55 0.87 1.23 0.90
Al2O3 12.29 19.23 15.55 17.94 18.92 15.20 15.38 15.87
Fe2O3 5.31 3.22 11.35 3.95 6.09 8.79 9.97 8.31
MnO 0.11 0.06 0.19 0.09 0.11 0.15 0.15 0.15
MgO 15.90 11.83 6.51 8.05 6.31 7.70 6.86 7.62
CaO 12.59 15.26 11.88 14.64 13.44 12.98 10.51 11.48
Na2O 0.35 0.44 2.25 2.42 2.17 2.75 2.82 2.64
K2O 0.03 0.04 0.22 0.07 0.11 0.01 0.77 0.59
P2O5 0.00 0.01 0.12 0.00 0.08 0.05 0.08 0.05
LOI 2.26 1.53 3.97 3.07 2.43 3.53 2.37 2.70
TOTAL 98.60 99.28 99.62 99.22 99.11 98.83 99.26 99.24

Trace elements (ppm)
Ti 381 366 8112 1701 3281 – – –

Sc 48.2 29.2 35.2 42.8 34.0 45.16 28.42 38.37
Rb 0.25 0.62 4.62 1.54 0.67 141.30 857.55 244.70
Sr 18.3 46.3 175 207 136 141.30 857.55 244.70
Y 2.95 2.62 60.41 8.83 13.7 21.07 28.77 21.42
Zr 0.78 2.61 45.66 9.42 22.0 51.43 73.86 50.96
Nb 0.01 0.13 1.20 0.08 0.45 0.80 1.02 0.63
Cs 0.65 0.58 0.10 0.05 0.08 6.88 0.24 0.51
Ba 47.5 14.2 56.9 2.56 5.25 28.52 42.97 17.66
Ta – 0.10 0.03 −0.03 0.01 0.04 0.10 0.02
Hf 0.03 0.53 1.98 0.35 0.71 1.43 2.10 1.42
Pb 0.03 1.43 0.54 0.09 0.17 0.18 0.24 0.31
Th 0.01 0.05 0.18 0.06 0.03 0.06 0.08 0.06
U 0.01 0.04 0.19 0.01 0.02 0.03 0.04 0.03
V 185 141 – 143 204 174.10 216.92 459.10
Cr 593 749 – 417 204 47.23 78.94 113.25
Ni 505 340 – 103 204 39.73 69.03 71.14
Cu 14.4 8.29 – 3.34 204 41.42 41.98 52.82
Zn 26.9 26.7 – 16.1 204 217.24 263.89 225.02
La 0.07 0.40 2.90 0.33 1.12 1.76 2.44 1.50
Ce 0.15 0.79 9.53 1.11 3.55 5.68 7.99 4.96
Pr 0.02 0.10 1.68 0.22 0.61 1.00 1.33 0.89
Nd 0.13 0.35 9.08 1.48 3.45 5.88 7.83 5.27
Sm 0.08 0.17 3.24 0.69 1.27 2.12 2.66 1.97
Eu 0.08 0.10 1.22 0.29 0.56 0.84 1.10 0.76
Gd 0.20 0.25 4.18 1.07 1.77 2.86 3.57 2.74
Tb 0.05 0.06 0.84 0.21 0.34 0.54 0.67 0.53
Dy 0.42 0.48 5.57 1.46 2.28 3.53 4.69 3.41
Ho 0.11 0.10 1.22 0.32 0.50 0.77 1.03 0.75
Er 0.35 0.35 3.75 0.91 1.41 2.14 2.96 2.16
Tm 0.06 0.06 0.53 0.13 0.21 0.31 0.43 0.32
Yb 0.42 0.38 3.63 0.85 1.36 2.06 2.91 2.06
Lu 0.07 0.06 0.53 0.13 0.21 0.30 0.43 0.32
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to 0.2 pg for Pb and 0.3 to 0.1 pg for U. Samples were blank corrected
using the 204Pb:206Pb:207Pb:208Pb ratio measured during the analysis
(1: 18.70:15:15:36.82). Correction for common lead in all samples
was carried out using the Stacey and Kramers (1975) common lead
evolutionary model.

Laser ablation geochronology was conducted following the proce-
dures of Simonetti et al. (2005) and Horstwood et al. (2003). This
included the use of the 91500 zircon as a primary standard. For each
analytical session the overall reproducibility of the primary standard
206Pb/238U was in the order of 2–3% (2σ), this has been propagated
into the uncertainties for each analysis. A fast-washout ablation cell
was used to increase the time-resolution of the data. Measurements
used a Nu-Plasma HR MC-ICP-MS coupled with a New Wave Research
LUV266X Nd:YAG laser ablation system. The grains were ablated using
a 20- or 35-μm-diameter spot or 20-μm-wide line raster depending on
the size of the crystal. A 205Tl/235U solution was simultaneously aspirat-
ed during analysis to correct for instrumental mass bias and plasma-
induced inter-element fractionation using a Cetac Technologies Aridus
desolvating nebulizer. Ages and errors were calculated using the Isoplot
3 macro of Ludwig (2003).
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
implications, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2
5.2. Results

5.2.1. Luobusa
Five analyses were conducted on zircons from sample GCT-405

using LA-MC-ICP-MS and the results are plotted in a Tera–Wasserburg
diagram (Fig. 5a). These data form an array with an intercept age of
148.6 ± 4.2 Ma (MSWD = 0.69). The same analyses give a weighted
mean 206Pb/238U age of 148.4 ± 4.5 Ma. The age of sample GCT-406
was also determined by LA-MC-ICP-MS. Six data points form a concor-
dant cluster with a weighted mean 206Pb/238U age of 149.9 ± 2.2 Ma
(MSWD = 0.42) (Fig. 5b).

5.2.2. Xigaze
Sample GCT-152 was dated by LA-MC-ICP-MS. Ten analyses

yielded a concordant cluster with a weighted mean 206Pb/238U age
of 131.8 ± 1.3 Ma (MSWD = 0.60) (Fig. 5c).

5.2.3. Dangxiong
Five single-grain fractions from sample GCT-185 were analysed by

TIMS and yielded a concordia age of 126.69 ± 0.41 Ma and a weighted
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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Fig. 5. U–Pb concordia and Tera–Wasserberg diagrams showing the data points for samples analysed by LA-MC-ICP-MS and TIMS.
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Table 2A
LA-MC-ICPMS U–Pb data.

U (ppm)⁎ Isotopic ratios† Ages (Ma)

207Pb/206Pb 2σ% 206Pb/238U 2σ% 207Pb/235U 2σ% Rho‡ 207Pb/206Pb 2σ abs 206Pb/238U age 2σ abs 207Pb/235Pb age 2σ abs

GCT-405, Luobusa N 29.22807° E 92.17838° diabase
z4 1127.9 0.0548 2.5 0.0225 7.4 0.170 7.8 0.95 402.8 56.8 143.7 10.7 159.7 13.4
z5 425.7 0.0623 9.1 0.0237 5.3 0.204 10.5 0.50 683.7 193.7 151.3 8.0 188.4 21.5
z6 523.9 0.0544 3.4 0.0233 8.2 0.175 8.8 0.92 387.5 76.5 148.4 12.2 163.5 15.6
z7 1515.3 0.0491 1.1 0.0235 3.3 0.159 3.4 0.95 154.6 24.9 150.0 5.0 150.2 5.5
z8 506.1 0.0547 1.6 0.0231 3.4 0.174 3.8 0.90 400.5 36.9 146.9 5.1 162.8 6.7

GCT-406, Luobusa N 29.23117° E 92.18645° diabase
z1 880.8 0.0502 6.5 0.0234 2.4 0.162 6.9 0.35 206.1 150.5 149.1 3.7 152.5 11.3
z3 626.4 0.0496 8.5 0.0231 2.4 0.158 8.8 0.28 174.1 197.7 147.4 3.6 149.0 14.0
z5 550.5 0.0484 9.0 0.0233 3.0 0.155 9.4 0.31 120.3 211.4 148.3 4.4 146.7 14.8
z6 660.1 0.0484 8.3 0.0237 2.5 0.158 8.7 0.29 119.6 196.6 150.8 3.8 148.9 13.9
z14 1050.1 0.0494 2.8 0.0236 2.2 0.161 3.6 0.61 165.4 66.3 150.5 3.3 151.4 5.8
z16 1099.1 0.0495 3.4 0.0239 2.1 0.163 4.0 0.53 172.1 78.5 152.0 3.2 153.3 6.5

GCT-152, Xigaze N 29.13193° E 88.38178° coarse grained gabbro
z3 151.0 0.0522 10.0 0.0202 3.1 0.145 10.5 0.30 294.1 228.3 128.7 4.0 137.6 15.3
z7 441.6 0.0501 5.3 0.0210 2.3 0.145 5.7 0.40 200.0 122.1 134.2 3.1 137.8 8.4
z8 356.4 0.0502 6.1 0.0205 2.4 0.142 6.5 0.36 204.1 141.2 130.9 3.1 134.8 9.4
z9 237.2 0.0503 7.6 0.0207 2.5 0.144 8.0 0.31 208.3 176.7 132.2 3.3 136.3 11.6
z10 600.8 0.0503 4.5 0.0207 2.3 0.143 5.1 0.45 207.1 105.3 131.9 3.0 136.0 7.4
z11 192.3 0.0518 8.4 0.0207 2.2 0.148 8.7 0.26 274.9 193.3 132.3 3.0 140.1 13.0
z12 216.8 0.0525 7.9 0.0205 2.5 0.148 8.3 0.30 306.7 180.6 130.9 3.3 140.6 12.5
z15 243.9 0.0528 7.4 0.0206 2.5 0.150 7.8 0.31 320.1 169.0 131.2 3.3 141.6 11.8
z16 215.4 0.0526 8.0 0.0204 2.3 0.148 8.3 0.28 312.6 181.4 130.3 3.1 140.2 12.4
z17 259.5 0.0521 7.0 0.0211 2.4 0.151 7.4 0.32 290.0 159.4 134.4 3.2 143.1 11.3

⁎ Accuracy of U concentration is ~10%.
† All isotopic ratios are non-common-Pb corrected.
‡ Error correlation coefficient calculated using isoplot (Ludwig, 2003).
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mean 206Pb/238U age of 126.69 ± 0.50 Ma (Fig. 5d). Five single-grain
fractions from sample GCT-163 were also analysed by TIMS and pro-
duced a concordia age of 123.43 ± 0.84 Ma and a weighted mean
206Pb/238U age of 123.4 ± 1.0 Ma (Fig. 5e).

5.2.4. Jungbwa
Four single-grain fractions from sample GCT-134 were analysed by

TIMS and yielded a concordia age of 123.87 ± 0.85 Ma and a weighted
mean 206Pb/238U age of 123.8 ± 1.1 Ma (Fig. 5f). Two single-grain frac-
tions from sample GCT-61 were also analysed by TIMS and overlap
within error to give a concordia age of 123.42 ± 0.85 Ma and aweighted
mean 206Pb/238U age of 123.4 ± 1.1 Ma (Fig. 5g).

5.2.5. Kiogar
The age of sample GCT-329 was determined by TIMS. The only

fraction gives a concordant 206Pb/238U age of 159.7 ± 0.5 Ma (Fig. 5h),
which it taken as a tentative magmatic age for the sample.

5.3. Interpretation

The mantle peridotites at Luobusa are essentially residues from
melting at a MOR, subsequently modified by SSZ magmatism (Bai
et al., 1993; Zhou et al., 1996, 2005). The dated gabbros (c. 150 Ma.) dis-
play a SSZ geochemical signature and are therefore likely to have
formed during a later stage of magmatism. This age postdates, or partly
overlaps within error of the age range of volcanic rocks (163–152 Ma)
exposed in the Zedong terrane (McDermid et al., 2002; Aitchison
et al., 2007b). These dated volcanic rocks overlie late Middle Jurassic
island arc tholeiites and overlying cherts and were erupted during
intra-arc rifting (Aitchison et al., 2007b). The relationships between
the Luobusa and Zedong terranes remain conjectural as all contacts
are faulted, but Aitchison et al. (2007b) envisaged that the Zedong
terrane developed during intra-arc rifting, which pre-dates formation
of gabbros dated in this study. Hence this raises a possibility that contin-
ued rifting led to breakup of the arc and formation of a basin in the
backarc region, into which these gabbroic dykes invaded.
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
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The gabbro from the Xigaze ophiolite has an age of 131.8 ± 1.3 Ma,
which is slightly older than those previously reported (126 ± 2 Ma from
a quartz diorite at Dazhuqu;Malpas et al. (2003) and 128 ± 2 Ma froma
gabbro at Jiding; Wang et al. (2006)). Combining available geochro-
nological and biostratigraphic data (Ziabrev et al., 2003) this sug-
gests the SSZ magmatism may have lasted from 132–126 Ma. In
southwest Tibet, the U–Pb ages of the gabbroic rocks from the
Dangxiong ophiolite, range from 127 to 123 Ma, which is consistent
with an age of 122.3 ± 2.4 Ma for a diabase from along strike (Wang
et al., 2006). The crustal rocks of the Jungbwa ophiolite formed in a
similar time frame. The gabbronorite has an age of 123.42 ± 0.85 Ma,
which is indistinguishable from the age of the gabbro from the same
massif (123.87 ± 0.85 Ma). The gabbronorite exhibits a LREE-enriched
boninite-like signature in contrast to SSZ-tholeiitic signature recorded
by the gabbro. The concomitant ages are interpreted to reflect the co-
genetic formation of these two suites of rocks in a SSZ setting.

6. Discussion

By the early Middle Jurassic N4000 km of Neo-Tethyan Ocean sepa-
rated Eurasia from India, which was then still part of Gondwana (Besse
and Courtillot, 1988). A series of northwest-southeast trending spread-
ing ridges are postulated to have developed to the north of the Indian
passivemargin, facilitating formation ofMORB-type oceanic lithosphere
(Besse and Courtillot, 1988). A segment of this oceanic lithosphere may
be represented by a present-day volumetrically dominant tholeiitic
suite of the Spontang ophiolite in Ladakh and perhaps the depleted
MORB-type peridotites preserved at Jungbwa and Luobusa in southern
Tibet.

Commencing in the Late Jurassic, themotions of the plates bordering
Neo-Tethys changed considerably. This may have been associated with
rifting of Argo-Burma terrane from NW Australia (Stampfli and Borel,
2002; Gibbons et al., 2012) and the rifting of India from Africa (Coffin
and Rabinowitz, 1987; Ali and Aitchison, 2008). Plate reorganization
possibly induced the formation of a north-dipping intra-oceanic sub-
duction zone, located around the equatorial region (Abrajevitch et al.,
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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Table 2B
TIMS U–Pb data.

weight (μg) U(ppm) Pb(ppm)† Pb (pg)‡ Isotopic ratios Ages (Ma)

206Pb/204Pb§ 207Pb/206Pb¶ 2σ (%) 206Pb/238U¶ 2σ (%) 207Pb/235U¶ 2σ (%) Rho⌐ 207Pb/206Pb 2σ (Ma) 206Pb/238U 2σ (Ma) 207Pb/235U 2σ (Ma)

The Dangxiong massif, GCT-185, N 30.23942° E 82.89673° coarse grained gabbro
z1-1⁎ 4.2 181.7 10.6 17.8 69.2 0.04859 0.7 0.01980 0.4 0.13262 0.8 0.50 128.0 17.1 126.4 0.5 126.4 1.1
z1-3 0.5 516.5 29.6 8.2 54.7 0.04856 1.7 0.01999 1.6 0.13381 2.3 0.67 126.5 39.9 127.6 2.0 127.5 3.1
z1-4 1.6 41.8 5.4 8.5 33.4 0.04862 4.1 0.02002 1.5 0.13419 4.5 0.42 129.6 95.7 127.8 1.9 127.9 6.1
z1-5 1.0 52.8 8.4 8.4 31.7 0.04861 7.4 0.02000 3.0 0.13407 7.9 0.35 129.0 175.3 127.7 3.9 127.8 10.8
z2-1⁎ 4.1 175.7 7.2 12.3 83.5 0.04862 1.0 0.01995 0.7 0.13370 1.2 0.56 129.5 24.2 127.3 0.8 127.4 1.7

The Dangxiong massif, GCT-163, N 30.28087° E 82.92470° coarse grained gabbro
z1-1⁎ 6.1 0.0 0.0 0 51.6 0.04849 1.2 0.01926 0.8 0.12880 1.5 0.57 123.3 28.9 123.0 1.0 123.0 1.9
z1-2⁎ 1.6 0.0 0.0 0 28.1 0.04853 13.3 0.01942 4.4 0.12992 13.4 0.20 125.2 312.3 124.0 5.5 124.0 17.6
z1-4 0.7 0.0 0.0 0 38.6 0.04853 3.6 0.01954 2.6 0.13076 4.5 0.60 125.3 85.6 124.7 3.2 124.8 6.0
z1-5 0.5 0.0 0.0 0 39.8 0.04848 7.0 0.01933 5.4 0.12920 7.8 0.49 122.7 164.8 123.4 6.7 123.4 10.2
z2-1⁎ 3.7 0.0 0.0 0 40.4 0.04853 2.8 0.01950 1.6 0.13047 3.2 0.50 125.2 66.1 124.5 2.0 124.5 4.3

The Jungbwa massif, GCT-134, N 30.56662° E 81.31613° medium grained gabbro
z1-1 1.2 0.0 0.0 0 56.9 0.04855 1.9 0.01973 2.3 0.13208 2.8 0.75 126.4 44.4 125.9 2.9 126.0 3.8
z1-2⁎ 0.8 0.0 0.0 0 24.0 0.04852 16.7 0.01941 2.1 0.12982 16.7 0.51 124.6 393.6 123.9 2.6 123.9 21.8
z1-3 0.6 0.0 0.0 0 70.8 0.04850 1.0 0.01927 0.9 0.12883 1.3 0.67 123.6 23.6 123.0 1.1 123.0 1.8
z2-1 0.8 0.0 0.0 0 62.1 0.04855 1.4 0.01969 1.6 0.13180 2.2 0.76 126.0 33.1 125.7 2.0 125.7 2.9

The Jungbwa massif, GCT-61, N 30.59481° E 81.28422° coarse grained gabbro
z1-1⁎ 1.0 0.0 0.0 0 84.1 0.04849 1.0 0.01931 1.3 0.12909 1.6 0.80 123.1 22.9 123.3 1.7 123.3 2.1
z1-2 1.5 0.0 0.0 0.0 111.0 0.04850 0.6 0.01934 0.8 0.12932 1.0 0.81 124.0 13.6 123.5 1.0 123.5 1.3

The Kiogar massif, GCT-329, N 31.03797° E 80.29572° coarse grained gabbro
z1-1 0.8 0.0 0.0 0 112.4 0.04929 0.4 0.02508 0.3 0.17042 0.5 0.60 161.4 9.8 159.7 0.5 159.8 0.9

⁎ Samples not being subjected to ion-exchange procedures.
† Radiogenic lead corrected for mass fractionation, laboratory Pb, spike and initial common Pb.
‡ Total common Pb.
§ 206Pb/204Pb is a measured ratio corrected for mass fractionation and common lead in the 205Pb/235U spike.
¶ Corrected for mass fractionation, laboratory Pb & U spike and initial common Pb.
⌐ Error correlation coefficient calculated using isoplot (Ludwig, 2003).
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2005). Much of the existing Early Jurassic or early oceanic lithosphere
was subducted along this intra-oceanic island arc system. During
continued subduction, an intra-oceanic island arc, represented by the
Zedong terrane formed in the latest Mid Jurassic. This was locally
followed by intra-arc rifting during which rocks of shoshonitic affinity
were erupted (Aitchison et al., 2007b). Extension induced formation of
a basin, in which SSZ-type gabbroic rocks intruded the Luobusa deplet-
ed, MORB-type, peridotites at c. 150 Ma. The temporal extent of this
intra-oceanic subduction system is uncertain, but a north-dipping sub-
duction zone appears to have developed further to the west between
c. 132–123 Ma. As the dense older oceanic lithosphere was consumed
at the subduction zone, roll back of the subducting slab ensued, with
southward migration of the trench and consequent extension of the
overriding plate. Extensional tectonics induced formation of SSZ-type
ophiolites at spreading centers above the subduction zones. Blocks of
amphibolites occurring in the sub-ophiolitic mélanges may be derived
from the metamorphic soles, suggesting initial displacement of these
ophiolites between c. 128–123 Ma (Guilmette et al., 2009).

Other Mesozoic ophiolitic rocks associated with this belt extend
from Nagaland in NE India across southern Tibet and into NW India at
Nidar and Spontang, thence Pakistan at Waziristan and Muslim Bagh.
Superficially they resemble classical ophiolites in that peridotite, gabbro
and basalt interlayered with radiolarian chert, are all present (Corfield
et al., 2001; Mahéo et al., 2004). In NW India upper Barremian-mid
Aptian radiolarians have been recovered from the sediments intercalated
with the basalts of the Nidar ophiolite, providing an inferred age of
the associated SSZ-type basaltic magmatism (Mahéo et al., 2004;
Zyabrev et al., 2008). The Spontang ophiolite has a U–Pb zircon age
of 177 ± 1 Ma (Pedersen et al., 2001) and is overlain by Lower Creta-
ceous radiolarian chert (Baxter et al., 2010) and a Late Cretaceous an-
desitic arc sequence at 88 ± 5 Ma (Spong arc; Pedersen et al., 2001).
Corfield et al. (2001) interpreted the ophiolite as representing Jurassic
TethyanMORB crust with a Late Cretaceous island arc, built on it during
initiation of the subduction–obduction process.

In the Late Cretaceous, rapid northward movement of the Indian
plate (Besse and Courtillot, 1988) was possibly accommodated by the
formation of other subduction zone systems, one of which was located
in northern regions of the Neo-Tethyan Ocean. This additional intra-
oceanic island arc system formed closer to the Eurasian margin and
included the Kohistan island arc, which initiated during the Jurassic
with an important phase of convergence between 99 and 82 Ma;
(Schaltegger et al., 2002), and was subsequently accreted to the
Eurasian plate (see Burg, 2011 for a detailed discussion). Another
north-dipping subduction zone is also inferred to have developed,
extending from the north of the Arabian passive margin to the Indian
passive margin. The Late Cretaceous Semail ophiolite in Oman/UAE
and the Spong arc sequence perhaps developed in this supra-
subduction zone, with the Semail ophiolite obducted onto the Arabian
continental margin in the latest Cretaceous (e.g. Searle and Cox, 1999;
Corfield et al., 2001; Goodenough et al., 2010). 88–80 Mametamorphic
sole rocks in southern Tibet may be counterparts of those now pre-
served in Oman and the UAE (Searle and Malpas, 1982; Hacker, 1994;
Hacker and Gnos, 1997; Styles et al., 2006), which developed during
the initial displacement of the Semail ophiolite.

Obduction of ophiolitic rocks onto the Indian northern margin
occurred as oceanic lithosphere between the margin and the intra-
oceanic subduction zone was completely consumed. Searle and Treloar
(2010) noted that in Ladakh and Zanskar most of the crustal shortening
and extreme thickening of Mesozoic shelf carbonates occurred prior to
deposition of unconformably overlying Paleocene–Eocene shallow ma-
rine carbonates. Using Oman as an analogy, they suggested that this de-
formation resulted from the Late Cretaceous obduction of the Spontang
ophiolite onto the passive margin of India.

In southern Tibet it is less possible to be certain about the precise
timing of ophiolite obduction as evidence for such an event appears to
be paradoxical. However, it would seem likely that all ophiolites along
Please cite this article as: Chan, G.H.N., et al., U–Pb zircon ages for Yarlung
implications, Gondwana Research (2013), http://dx.doi.org/10.1016/j.gr.2
the Himalaya were emplaced during an event that could have spanned
~20 million years. One thing that appears certain is that if indeed these
rocks were part of an intra-oceanic (intra Tethyan) island arc system
they must have collided with either India or Eurasia before the two
continents collided and the Tethyan Ocean closed once and for all. All
available structural evidence and detrital sedimentology indicate em-
placement was onto the northern margin of India rather than southern
Eurasia.

High-grade amphibolitic rocks found in mélange zones beneath the
base of ophiolitic successions have been widely interpreted as timing of
initial oceanic lithosphere displacement and emplacement. Such rocks
have been found from the mélange zones at Xigaze and Luobusa. In
the former area, most of the metamorphic sole rocks have ages of
128–123 Ma (Guilmette et al., 2009) whereas a much younger block
of (88 Ma) amphibolite was also found (Malpas et al., 2003). Similar
Late Cretaceous amphibolite blocks were also recovered in Luobusa
and have ages of 86–80 Ma (Malpas et al., 2003). It is unclear at themo-
ment whether these ages represent two discrete events or a prolonged
emplacement event. The closeness between U–Pb zircon ages and
40Ar–39Ar amphibole ages suggests the SSZ-type YZSZ oceanic litho-
sphere was young and hot when the metamorphic rocks were formed
and some authors have recently suggested that the ages of metamor-
phic soles might be more closely related to ophiolite generation than
emplacement (Dewey and Casey, 2011). The residual heat of the ocean-
ic lithosphere could therefore have provided heat needed for metamor-
phism. The situation in southern Tibet is similar to the classical example
of the Semail ophiolite, for which the time difference between crystalli-
zation and peak amphibolite metamorphism is less than 2 Ma (Hacker,
1994; Hacker and Gnos, 1997; Searle and Cox, 1999, 2002; Searle et al.,
2004). The significance of the second group of amphibolites is uncer-
tain, but it is possibly worth noting that the Spong arc in Ladakh has
an age of 88 ± 5 Ma (Pedersen et al., 2001) and the Kohistan island
arc in NW Pakistan has a similar age of 99–82 Ma (Schaltegger et al.,
2002). A similar age of 80.2 ± 1.5 Ma has also been reported for the
Muslim Bagh ophiolite (Kakar et al., 2012). These ages overlap with
those for Late Cretaceous amphibolite blocks preserved in themélanges
in Xigaze and Luobusa areas (Malpas et al., 2003; Guilmette et al., 2009).
This raises a possibility that the amphibolite blocks might have formed
by a mechanism similar to that discussed above, but in a younger sub-
duction zone, above which the island arc complex and its eastward
extension formed. Whether the amphibolites in NW India are related to
the Spong arc or Kohistan island arc remains an open question. Other ev-
idence of such an Early Cretaceous SSZ event might have been destroyed
during the India–Asia collision.

In southern central Tibet immediately south of the suture zone, the
first appearance of ophiolitic detritus in sediments deposited on the
margin of Greater India is recorded in the northern Tethyan Himalayan
flysch succession in the late Paleocene (c. 57 Ma) (Ding et al., 2005;
Aitchison et al., 2007a). A slightly younger Early Eocene age has been
reported further to the south (Zhu et al., 2005) possibly indicating pro-
gression of a sedimentary wedge shedding southwards as the ophiolite
was emplaced onto northern India. Moreover, the ophiolite tectonically
overlies mélange containing siliceous sediments with radiolarians as
young as latest Paleocene (Liu and Aitchison, 2002; Liang et al., 2012).
We note that, in Oman, ophiolitic detritus only appears in the foreland
basin succession at the very top of the succession 20 million years
after the obduction process is inferred to have begun and it is clear
that stratigraphic data alone cannot be used to interpret timing of the
entire emplacement event. In southern Tibet the whole SSZ package of
ophiolite, turbidites and mélange was eroded during the accumulation
of syn-orogenic deposits such as the Paleocene–Lower Eocene Liuqu
conglomerate (Davis et al., 2002). In Ladakh the Lamayuru thrust sheets
that underlie the Spontang ophiolite are unconformably overlain by
Late Maastrichtian (Marpo Fm.) and Paleocene–Early Eocene shallow
marine limestones (Stumpata, Singie-la, Kesi formations; (Searle
et al., 1997; Corfield et al., 1999; Green et al., 2008)). The ophiolite
Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic
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is interpreted by some authors to have been emplaced onto the north
Indian margin in the Late Cretaceous when obduction is postulated
to have downflexed the passive margin and increased the sedimen-
tation rate significantly (Searle et al., 1997; Corfield et al., 2005).
Garzanti et al. (1987, 2005) suggested a later (post-Early Eocene)
emplacement of the Spontang ophiolite based on the fact that
along the southwestern margin the Spontang ophiolite has been
thrust above Eocene shallow water limestones. Searle et al. (1988,
1997) showed that this was a later thrust that re-stacked the sequence
and not the original obduction-related thrust. Corfield et al. (1999)
sequentially restored all the structures in the Zanskar shelf and infer
a two stage-thrusting event, the first of which they interpreted as
pre-Paleocene obduction and the second as post-Eocene continental
collision-related. Whatever the precise timing of their obduction, the
ophiolites must have been emplaced prior to the final closing of Tethys
Ocean.

7. Conclusion

A preponderance of dated SSZ ophiolitic rocks from along both the
YTSZ and its lateral correlative the Indus Suture are of Early Cretaceous
(Barremian to early Aptian; 130–120 Ma) age. Locally these rocks are
associated with, and possibly built upon, MOR rocks of Late Jurassic
age. Recently published hypotheses that link widespread rapid genera-
tion of ophiolites to forearc spreading during subduction initiation
events (Dewey and Casey, 2011; Whattam and Stern, 2011) suggest
this has important implications for understanding the evolution of the
Tethyan Ocean and has important implications for regional geodynamic
models.
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