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The Organising Committee extends a warm welcome to all speakers and delegates of the 
2014 Irish Machine Vision and Image Processing Conference (IMVIP 2014). This year it is 
hosted at the University of Ulster under the organisation of the School of Computing and 
Intelligent Systems and the Intelligent Systems Research Centre.  

The IMVIP Conference is Ireland’s primary meeting for those researching in the fields of 
machine vision and image processing. The conference has been running since 1997 and 
provides a forum for the exchange of ideas and the presentation of research conducted both 
in Ireland and worldwide.  

IMVIP is a single track conference consisting of high quality previously unpublished 
contributed papers focussing on both theoretical research and practical experiences in all 
areas. After a rigorous review process, 22 papers were selected for oral presentation and a 
further 12 for poster presentation; we wish to sincerely thank the members of the 
Programme Committee for generously giving their time, effort and expertise in reviewing the 
submissions.  

Continuing the tradition of inviting high-profile speakers to IMVIP, we are delighted to have 

three high-profile speakers give keynote talks: Professor Hideo Sato from Keio University, 

Tokyo with a talk entitled “Vision-based 3D sensing and visualization for real world 

applications”, Professor Stephen Marshall from University of Strathclyde with a talk entitled 

“Hyperspectral Image Processing and its applications” and Professor Ingmar Posner from 

University of Oxford with a talk entitled “Driven Learning for Driving: Why Autonomous Cars 

Need Introspection”.  

IMVIP 2014 is run in association with the Irish Pattern Recognition and Classification Society 

(IPRCS), a member organisation of the International Association for Pattern Recognition 

(IAPR) 

Sonya Coleman 
School of Computing and Intelligent Systems 
University of Ulster 
August 2014 
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Hideo Saito - Keio University 

Title: Vision-based 3D sensing and visualization for real world 

applications 

In computer vision area, 3D sensing technologies have extensively been studied.  For making 

such technologies be used in practical applications, there are still a lot of difficulties to adapt 

real world problems.  In this talk, I introduce my recent challenges on real world applications 

that can be solved by vision-based 3D sensing.  One application is on-site information 

visualization using mixed and augmented reality, in which vision-based object/camera pose 

estimation plays a significant role.  Other application is 3D-video/Free viewpoint video using 

multi-view sensing/capturing based on 3D modeling of target scenes. 

Hideo Saito received his Ph.D. degree in Electrical Engineering from Keio University, Japan, 

in 1992.  Since then, he has been on the Faculty of Science and Technology, Keio University. 

 In 1997 to 1999, he had joined into Virtualized Reality Project in the Robotics Institute, 

Carnegie Mellon University as a visiting researcher.  Since 2006, he has been a full Professor 

of Department of Information and Computer Science, Keio University.  He served as 

program co-chair of ISMAR (International Symposium on Mixed and Augmented Reality) 

2008 and 2009. He is now serving as an Program Co-Chair of ACCV (Asian Conference on 

Computer Vision) 2014.  He is a president of MVA Organization, which currently organizes 

the 14th IAPR International Conference on Machine Vision Applications (MVA2015).  His 

research interests include computer vision, mixed reality, virtual reality, and 3D video 

analysis and synthesis. 
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Stephen Marshall - University of Strathclyde 

Title: Hyperspectral Image Processing and its applications 

Prof Stephen Marshall received a first class honours degree in Electrical and Electronic 

Engineering from the University of Nottingham in 1979 and a PhD in Image Processing from 

University of Strathclyde in 1989. His research activities have been focussed in the area of 

Non Linear Image Processing. In this time, he has pioneered new design techniques for 

morphological filters based on a class of iterative search techniques known as genetic 

algorithms. The resulting filters have been applied as four-dimensional operators to 

successfully restore old film archive material. 

In recent years he has established the Hyperspectral Imaging Centre at the University of 

Strathclyde. The aims to provide solutions to industrial problems through applied research 

and Knowledge Exchange. He has published over 200 conference and journal papers on these 

topics including IET, IEEE, SPIE, SIAM, ICASSP, VIE and EUSIPCO. He has also been a 

reviewer for these and other journals and conferences. He is a Fellow of the Institution of 

Engineering and Technology (IET). He has also been successful in obtaining research 

funding from National, International and Industrial sources. These sources include EPSRC, 

EU, Rolls Royce, BT, DERA, the BBC and Scottish Enterprise, TSB, NERC and EDF 

Energy. 
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Ingmar Posner - University of Oxford 

Title: Driven Learning for Driving: Why Autonomous Cars Need 

Introspection 

Classification precision and recall have been widely adopted by roboticists as canonical 

metrics to quantify the performance of learning algorithms. This talk advocates that for 

robotics applications, which often involve mission critical decision making, good 

performance according to these standard metrics is desirable but insufficient to appropriately 

characterise system performance.  Against the backdrop of an autonomous driving 

application - the Oxford RobotCar Project (http://mrg.robots.ox.ac.uk/robotcar/) - we will 

introduce and motivate the importance of a classifier’s introspective capacity: the ability to 

mitigate potentially overconfident classifications by an appropriate assessment of how 

qualified the system is to make a judgement on the current test datum. The talk will provide 

an intuition as to how this introspective capacity can be achieved and systematically 

investigates it in a selection of classification frameworks commonly used in robotics.  

Ingmar Posner is an Associate Professor in Engineering Science at the University of Oxford 

and one of the two PIs leading the Mobile Robotics Group (MRG). His expertise lies in the 

design and implementation of information engineering techniques that enable an autonomous 

agent to interpret complex, dynamic environments in a way which permits robust decision-

making, planning and exploration online and in real-time. His research tackles questions such 

as what semantic information can be inferred about the environment the robot has traversed 

(e.g. what type of structures, what objects can be found? What type of terrain is it travelling 

on?) and how this knowledge can feed into the decision-making process of an autonomous 

agent such as a self-driving car? His research track record includes award winning work on 

semantic mapping, active perception and 3D reconstruction. Building on his successes to 

date, Ingmar's current research focus lies on closing the action-perception loop in semantic 

mapping to enable robust robot decision-making and online planning and exploration in the 

context of, amongst others, autonomous transport. 

5

https://sites.google.com/site/imvip2014/key-note-speakers/Ingmar.jpg?attredirects=0




IMVIP 2014 
3 Dimensional Data Processing 





Specular 3D Object Tracking by View Generative Learning

Yukiko Shinozuka, Francois de Sorbier and Hideo Saito
Keio University

3-14-1 Hiyoshi, Kohoku-ku
223-8522 Yokohama, Japan

shinozuka@hvrl.ics.keio.ac.jp

Abstract

This paper proposes a novel specular 3D object tracking method. Our method works
with texture-less specular objects and objects with background reflections on the surface.
It is a keypoint-based tracking using a view generative learning. Conventional local fea-
tures are robust to scale and rotation, but keypoint matching fails when the viewpoint
significantly changes. We apply a view generative learning to improve the robustness to
viewpoint changes. To be robust to large appearance changes, our method does view-
dependent rendering for generating views and stores all the descriptors of the keypoints
on the generated images and its 3D-position in the reference database called ”feature ta-
ble”. We conducted quantitative evaluation on the object pose and showed our method
outperforms compared with the other view generative learning methods in terms of track-
ing accuracy and learning process.

Keywords: View Generative Learning, 3D Object Tracking, Local Feature, Feature Table,
Specular Object

1 Introduction

Object pose estimation is necessary to augment a virtual object on a real environment for aug-
mented reality. To estimate the object pose, it is required to find correspondences between a
reference dataset and an input image for vision-based methods. There are two types of meth-
ods based on the target objects; planar model-based methods [Lepetit and Fua, 2006] and 3D
model-based methods [Drummond et al., 2002]. Our proposed algorithm takes the latter solu-
tion to track a 3D object.

Keypoint matching is one of the solutions to find correspondences. Local features such as
scale-invariant feature transform (SIFT) [Lowe, 2004] is well-known as a keypoint extractor
and descriptor. It is robust to rotation, translation and illumination changes, but there is a limit
for affine transformation. There are plenty of studies of local features to improve this limita-
tion. Harris-affine [Baumberg, 2000] and Maximally-stable extremal region detector (MSER)
[Matas et al., 2002] are known for the invariance to affine transformation. However there is no
descriptor for each of them. That means even if the keypoints are extracted, the feature descrip-
tion will be different from the ones extracted on the image before transformation. Affine-SIFT
(ASIFT) [Morel and Yu, 2009] is also known as affine invariant. This method applies several
possible transformation before matching.

A generative learning method is proposed as another solution for keypoint matching. It is
a learning method which uses local features which is not invariant to affine transformation. It
virtually generates the possible views and extracts keypoints from them. If the same keypoint is
extracted from different views, this point is considered as ”stable keypoint”. Stable keypoints
are robust under strong perspective view changes. For creating a reference database, machine
learning process is often conducted. Lepetit et al.’s method [Lepetit and Fua, 2006] uses ran-
domized trees with huge amount of training dataset, whereas Thachasongtham et al.’s method
[Thachasongtham et al., 2013] uses k-means clustering with much less dataset. However, in
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both methods, they consider a target object is covered with Lambartian surface, so they do not
take highlight and specular areas into consideration.
Our motivation is to estimate 3D object pose by vision-based 3D object tracking using view
generative learning. Our contributions are to propose a novel view generative learning method
”feature table” to track a specular object. In the experiments, we compare with other generative
learning methods (randomized trees [Lepetit and Fua, 2006]  and k-means  [Thachasongtham et 
al., 2013]). We evaluate the rotation matrix and translation vector of the target object and 
computational time. Our experimental results show that our proposed method outperforms in 
tracking specular 3D objects with less training datasets.

2 Related Works

This section refers to other generative learning tracking methods and the recent trials on spec-
ular object tracking.

As already mentioned in section 1, local features such as SIFT [Lowe, 2004] is not invariant
to perspective transformation. A generative learning is proposed to improve this weakness for
keypoint matching. It is the learning method which generates the possible views by affine or
perspective transformation and selects robust stable keypoint.

Randomized trees method [Lepetit and Fua, 2006] is a generative learning method which
considers a keypoint matching problem as a patch classification problem. It applies affine
transformations to the image patches around the extracted keypoints and trains with them by
randomized trees. It requires large amount of training dataset for learning. Learning process
computational costs time due to the size of the dataset and the recursive algorithm of random-
ized trees, but tracking runs quite fast.

Thachasongtham et al. propose a generative learning method with k-means clustering for
3D object tracking [Thachasongtham et al., 2013]. His method is similar to randomized trees,
but there are three main differences. In randomized trees method, keypoints are extracted once
before affine transformation whereas Thachasongtham et al.’s method extracta the keypoints
from every generated patterns. For learning, they apply k-means to determine the centroid of
the stable keypoint. For the datasize of the learning data, k-means method requires much less
than randomized trees method.

However, both methods assume that a surface of a target object is covered with Lambartian
surface. Therefore when the specular reflection occurs, it is hard to extract the keypoints from
the same area from different views.

Torki et al. propose that a regression was a key to estimate a 3D object pose with spec-
ular highlight [Torki and Elgammal, 2011]. The regression is calculated from the 2D-position
of each keypoints and its descriptors from the video sequences. They succeed in estimating
rotation of cars. Netz et al. consider high light is one of the features of the image, then use
the specular as features [Netz and Osadchy, 2011]. Our method uses the same concept that the
highlight area can be characteristics in the images.

3 View Generative Learning – Feature Table

This section refers to the algorithm of a generative learning method. A generative learning
is proposed to be robust to viewpoint changes. It is a keypoint-based method which virtually
generates the possible images of different viewpoints and extracts keypoints from them for
the creation of the reference database. If the keypoint is extracted at the same position in 3D
world coordinate from different views, this point is considered as a ”stable keypoint”. Dataset
consists of the descriptors of these stable keypoints and their position in 3D world coordinate.

The algorithm is shown in Figure 1. The method can be divided into learning and tracking
phase. The learning phase has to be done off-line phase before tracking.

There are main two differences between our method and other view generative learning
methods [Lepetit and Fua, 2006] [Thachasongtham et al., 2013]. Both points contribute to im-
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Figure 1: Overview Figure 2: Feature Table

prove the robustness to appearance changes such as highlight. First of all, we conduct view-
dependent rendering to create the possible views whereas the conventional methods only do
affine-transformation. This process enables to include the highlight area in the database. Sec-
ond point is to create ”feature table”. Feature table is a table with descriptors of the stable
keypoints. Its vertical axis is for viewpoint ID, and the horizontal for stable keypoint ID as
shown in Figure 2. We store all the descriptors extracted from the possible views in the table.
This process enables to absorb the difference of the descriptors on the same stable keypoint.

4 Learning
4.1 Generate Views
We require a 3D model as an input data for learning. The images from various viewpoints
are generated virtually from it. There are two important concerns in this phase. First point
is the background of the learning phase. If the object is static in a scene and the background
texture is available, the 3D model of the background is reconstructed and we also learn the
background. If the texture of the background is not available, we generate the virtual views with
a random colored background to be robust to the noisy background. Second point is lighting
condition. We generate the views by view-dependent rendering to extract the keypoints around
the highlight areas.

The camera pose setting is important to generate the virtual views. Since local feature such
as SIFT is scale invariant, there is no need to take the distance from the object into consider-
ation. It means the distance between the virtual viewpoint and the object scene does not have
to be changed for learning different views. The different rotation angles of the camera also
do not have to be learned, because SIFT is rotation invariant. Thus, we change only two an-
gles, the longitude ϕ and the latitude θ for generating different viewpoint images for generative
viewpoint learning.

4.2 Keypoints Extraction and Stable Keypoints
We extract the keypoints from the generated patterns by local feature. Each keypoint p on the
image is reprojected to p′ in the 3D world coordinate by perspective matrix P . The perspective
matrix is already given in section 4.1. The equation of the reprojection is shown in equation
(1).

p′i ∼ Ppi (1)

We compare the Euclidean distance of the reprojected points from different views. If their
Euclidean distance is under the threshold, these points are considered as the same point in 3D
world coordinate. The keypoints with high repeatability are called ”stable keypoints” because
they can be extracted from other viewpoint images. We store the stable keypoints with high
repeatability. We sort the stable keypoints in order of repeatability and store the top N stable
keypoints. If the target object has less-texture, the number of the stable kepoints can be lower
than threshold N . If it happens, we store all the stable keypoints in the database.

11



4.3 Creating Feature Table

Feature table is a table with descriptors of the stable keypoints. Its vertical axis is for view-
point ID, and the horizontal for stable keypoint ID as Figure 2 shows. The descriptor at the
same keypoint can be described differently depending on highlights and viewpoint changes.
Therefore, all the descriptors from the generated images are stored in our method, whereas the
conventional methods did not consider the differences.

Each stable keypoint has multiple descriptors and one position in the 3D world coordinate.
The position is calculated by getting the centorid of the keypoints in each stable keypoint group.

5 Tracking

To estimate the object pose for tracking, the projection matrix is calculated by referring to the
feature table. After extracting local feature on an input image, we find the nearest descriptor by
fast approximate nearest neighbor matching in the feature table. To decrease false matching,
we apply nearest-neighbor distance ratio between the first (DA) and second closest (DB) as
Mikolajczyk et al. mentioned in [Mikolajczyk et al., 2005]. If the keypoint fulfills equation (2),
it is considered as a correct correspondence. We set τ = 0.6 in our experiments. After finding
the correspondences, we use a robust estimator RANSAC and calculate projection matrix with
the 2D and 3D positions of the keypoints.

|DA|
|DB|

< τ (2)

6 Experimental Results

6.1 Parameters and System Configuration

We conducted two experiments and compared our method with randomized trees [Lepetit and 
Fua, 2006] and k-means method [Thachasongtham et al., 2013].

In the first experiments, we set a texture-less specular object Box as a target object. We
conducted the learning in a random color background. We rotated the object from -15 degrees
to 85 degrees in longitude ϕ and 0 to 360 degrees in latitude θ for every 10 degrees.The distance
between the camera and the object was set as 40 cm.In the second experiment, we tracked a
object with background reflection Teapot. We used the texture and 3D structure of the back-
ground in the learning. We rotated the object every one degree in latitude where its longitude
equals to zero degree. The distance between the camera and the object was set as 30 cm.

In both experiments, the video sequences are created by computer graphic to get the ground
truth. We used the same video for learning and testing. We set the number of the stable keypoint
N equals to 2000. All the experiments were implemented on Windows 7, 64 bits, Intel Core i7-
3930K 3.20GHz CPU, 16.00GB RAM and GeForce 310 589MHz GPU. We chose SIFT-GPU
[of North Carolina, ] for local feature.

6.2 Texture-less Specular Object

This section shows the tracking result of object Box. Figure 3 shows our proposed ”feature
table” worked the best of all. Randomized trees method did not track the object in any frame
because randomized trees is designed for large amount of database, but the number of the stable
keypoints was only a few due to less-texture for object Box. (The number of the stable keypoint
was 807.) This result shows our method works with much less training data.

Figure 4 shows the L-2 norm error of rotation matrix and the error of translation vector in
each axis. They show the huge translation error occurred often in k-means method compared
with feature table.

12



Table 1: Computational Time
Learning method Box Teapot Tracking method Box Teapot
Randomized Trees [sec] 11304 3115 Randomized Trees [msec] 541 108
K-means [sec] 340 106 K-means [msec] 415 762
Feature Table [sec] 379 114 Feature Table [msec] 26612 22050

6.3 Object with Background Reflection
This section shows the result of object Teapot. Figure 3 shows k-means and feature table
method tracked 3D object whereas randomized trees did not did not track the object in any
frame. It shows our method outperformed in tracking. It is because the descriptors on the same
stable keypoints are too different from each other so that the other methods did not absorb these
differences.

We evaluated the results on 3D object pose (rotation matrix and translation vector) in Figure
5. The translation errors are better in our proposed method and there is not much difference in
rotation.

6.4 Computational Time
Table 1 shows the computational time for learning and tracking. The computational time of
randomized trees method for learning cost more than that of the others. It is because the
algorithm of randomized tees is recursive. The tracking time of feature table was the slowest
of all because the database is not compressed and the size is the largest.

7 Conclusion
This paper proposed a novel specular 3D object tracking method ”feature table”. It worked with
the texture-less specular objects and objects with background reflections. Our contributions are
following two points. We used the idea that highlight or non-feature area should be included in
database to be robust to large appearance changes. Second point is that our method applied a
generative learning with less training dataset to improve the robustness to viewpoint changes.

Our experimental results showed our method outperformed in terms of tracking accuracy
compared with other methods [Lepetit and Fua, 2006] [Thachasongtham et al., 2013]. Speed
in tracking should be improved, but our method required less training computational time with
less training data.
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Abstract

This paper proposes an algorithm for inferring a 3D mesh using the robust cost func-
tion proposed by Ruttle et al. [12]. Our contribution is in proposing a new algorithm for
inference that is very suitable for parallel architecture. The cost function also provides
a goodness of fit for each element of the mesh which is correlated to the distance to the
ground truth, hence providing informative feedback to users.

Keywords: 3D reconstruction, Depth images, Generalised Relaxed Radon Transform.

1 Introduction

To capture the 3D shape of an object using low cost hardware opens interesting perspectives
for non-specialist users for archiving, reproducing or displaying objects. Several solutions
have already been proposed. For instance Autodesk [1] reconstructs a 3D object from multiple
colour images with offline processing on the cloud. Using depth images recorded by the Kinect
sensor, Microsoft has proposed a real-time algorithm called Kinect Fusion for computing a 3D
mesh of an environment [9] on desktop computers. Project Tango [7] pushes this further by
reconstructing a 3D scene in real-time on a mobile device using an integrated depth sensor.
However the success of all algorithms depends on the recorded data available for inferring the
3D scene. It is therefore important to give feedback about the estimated mesh to help the user
improve the results by, for instance, recording more data of under-exposed areas of the scene.
In this paper, we propose to use the cost function recently proposed by Ruttle et al. [12] for
3D reconstruction from depth images. This cost function corresponds to a probability density
function over the 3D space allowing us to directly give a measure of confidence for each vertex
and edge on the inferred mesh, giving feedback about the local quality of the mesh. This cost
function is also designed to be robust [5] to noise, and any new recorded data point contributes
to the overall cost function in an additive and localised fashion. After a brief review (section
2), we propose a new algorithm in section 3 that is highly parallelizable. Section 4 presents
quantitative and qualitative 3D reconstructions obtained using our approach with comparison
to ground truth and Ruttle et al.’s reconstructions. Conclusions and future work are discussed
in section 5.

2 State of the Art

Reconstructing a 3D mesh from RGB-D cameras is an area of intense research in computer vi-
sion. In the past, algorithms have mostly consisted of three steps - denoising the depth images
from several camera views, converting them to 3D point clouds and aligning the point clouds
to recreate the surface [3, 9]. Izadi et al. proposed a real time 3D reconstruction algorithm
(KinectFusion) using depth information [9]. An iterative pipeline is implemented which pro-
cesses each depth image consecutively and uses a volumetric surface representation to generate
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a mesh of the scene. As a preprocessing step, a bilateral filter is applied to the raw depth data
in order to reduce noise. This step ignores the uncertainty associated with the depth informa-
tion and pixel positions as well as resulting in a loss of important information. A vertex and
normal map of the scene from the first depth map are then computed using the connectivity of
the pixels in the depth image.

For each consecutive depth map the pose of the camera is estimated and the depth informa-
tion is fused with a volumetric truncated signed distance function (TSDF) [4] representing the
scene. This representation gives a signed value to each voxel in the scene, depending on how
far it is from the surface of the object. There is no measure of confidence associated with the
vertices on the object’s surface and the distances given to each voxel are not calculated using a
robust objective function, but using a weighted distance measure. In order to render the surface
in the scene a per pixel ray cast is performed. Each pixel’s corresponding ray is calculated
and marched starting from it’s minimum depth value until the surface interface is found. This
fully parallel mapping algorithm takes full advantage of GPU processing hardware and scales
naturally with processing and memory resources.

Recently, methods have been proposed which generate a density function from 3D depth
images or point clouds [12, 13]. To find points on the surface these density functions are then
explored using either gradient ascent algorithms or marching cubes. Ruttle et al. [12] proposed
to accurately infer the 3D shape of an object captured by a depth camera from multiple view
points. The Generalised Relaxed Radon Transform (GR2T) [5] is used here to merge all depth
images in a robust kernel density estimate that models the surface of an object in the 3D space.
The kernel is tailored to capture the uncertainty associated with each pixel in the depth images
and the resulting cost function is defined for a 3D location Θ as:

lik(Θ) =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

pε(F (x(i)
c ,Θ,Ψc)), (1)

where C is the number of recorded camera views (with known camera parameters Ψc,∀c =

1, · · · , C) and Nc is the number of pixels in the image generated by camera c, x(i)
c is a triplet

of values recorded by camera c corresponding to the 2D location and the depth value of the
pixel i. This function accounts for uncertainties in the observations via the probability density
function pε that is chosen Gaussian. F is a link function associated with the pin-hole camera
model connecting a 3D position to its projection in an image plane [8, 12]. Suitable values
must also be chosen for the parameters h1, h2 and h3, which account for noise in the pixel and
depth values.

To extract a surface mesh using the cost function lik(Θ), Ruttle et al. proposed a two stage
process [12]. First maxima of the cost function are extracted. These are then connected in a
second step by finding vertices and edges that connect them by following the ridge created by
the object’s surface in the cost function lik(Θ). Both algorithms correspond to gradient ascent
algorithms, the first is initialised by several positions in the 3D space to converge to several
local maxima of lik(Θ), while the second algorithm is initialised with the output of the first
algorithm. This approach is simplified further by considering 2D slices in the 3D space, and
performing the optimisation in parallel in these 2D manifolds.

This surface exploration technique is time consuming and inefficient. As an alternative to
this two stage process, we propose an algorithm constraining the solution to a 1D manifold (a
ray in the 3D space) to estimate a vertex on the surface of the object. This process is performed
for each pixel in the depth images independently and the resulting approach is highly paral-
lelizable. Connectivity between vertices is inferred automatically using pixel neighborhood
information from the depth images.

3 Mesh Inference from lik(Θ)

A mesh is a discrete representation of a continuous coloured 3D surface and is made up of a
number of different elements. In our approach, we used the .ply format, which can be used to
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store a variety of mesh properties including vertices, edges, faces, vertex colour, edge colour
and vertex normals. We focus on efficiently inferring the vertices, faces and edges of the mesh
as well as creating informative colour information which indicates the likelihood value of a
particular vertex and edge.

In order to explore the density lik(Θ) and determine which 3D points are most likely to be
on the object’s surface we propose generating a separate mesh for each camera view by casting
a ray from the camera centre through each pixel in the image into 3D space, as shown in Figure
1a. This ray is then marched, starting from the calculated depth value, until the maximum
likelihood value Θ̂ is found.

(a) Ray based optimisation of lik(Θ). (b) Generating the edges of the mesh.

Figure 1: Ray based strategy for Mesh from Depth images.

In order to calculate Θ̂, the point of maximum likelihood on the ray passing through the
camera centre CΨc ∈ R3 and pixel (x1, x2) , we maximize the following:

Θ̂ = arg max
β

lik(Θ) (2)

subject to the constraint that
Θ = CΨc + β~n, β ∈ R, (3)

where ~n is the direction of the ray. As we can express Θ in terms of known parameters CΨc

and ~n , and a one dimensional latent variable β, we have reduced our latent space from three
dimensions to one dimension. This greatly reduces the computational cost of our optimisation
problem. W and H represent the width and height of the image in pixels and fx represent the
focal length in the horizontal axis. We define the horizontal field of view to be

φ = arctan
(
W/2

fx

)
. (4)

The distance between the camera and the projection plane d is given by the formula d = 1
tan(φ) .

We let a = W
H and define ~n = (n1, n2, n3) to be:

 n1

n2

n3

 =

 ψ4

R(Ψ) ψ5

ψ6

−1


2a
W 0 −a 0
0 −2

H 1 0
0 0 d 0
0 0 0 1




x1

x2

1
1

 , (5)

where R(Ψ) is the camera rotation matrix and (ψ4, ψ5, ψ6) is the camera translation vector
[14, 6]. Given an observed depth value of x3 at the pixel (x1, x2), the point on the ray which is
a distance x3 from the camera centre is given by β(0) = x3

γ (initial guess) where

γ =
−→n · CΨc

‖ −→n ,CΨc ‖
. (6)
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A Newton Raphson gradient ascent algorithm is implemented to iteratively update the position
on the ray until the point with maximum likelihood is found. This process is repeated for
each pixel in the image, and generates a point cloud of the portion of the surface visible from
camera c. This is repeated for all C cameras, generating C point clouds. Our approach is
highly parallelizable as each ray can be computed and marched independent of the other rays.

Using this method, points are found at regular intervals along the surface and each point
has a corresponding pixel in the image. We use the connectivity of the pixels to create the
edges of the mesh. We consider four pixels i, i + 1, j and j + 1, as seen in Figure 1b,
which make up a 2 × 2 square in the image. We also consider the 3D points xi, xi+1, xj
and xj+1 that were found by tracing the ray through each of these pixels. We create four edges
[xi, xi+1], [xj , xj+1], [xi, xj ], [xi+1, xj+1] between these points since their corresponding pix-
els are connected in a horizontal or vertical direction. Then, in order to ensure that the faces of
the mesh are triangular in shape, we also create an edge between points xi and xj+1. This is a
very simple meshing algorithm which is easy to implement and eliminates the need to cluster
the data or calculate vertex neighbourhoods as in other meshing algorithms [11, 2, 10].

We set the colour value of each vertex Θ in the .ply mesh according to its likelihood value
lik(Θ). For each edge in the mesh, the barycentre B of the edge is calculated. The colour
value of the edge is then set according to the value of lik(B). This can be seen in Figure 2.
This allows the user to see which vertices and edges have a high or low likelihood, and which
regions of the object may have been poorly scanned.

4 Experimental Results

Our approach was first applied to the ground truth Stanford Bunny mesh (size 10 × 13 × 13
in cm). Autodesk 3DS max was used to generate 12 depth images of the bunny, with no noise
added to the depth values (apart for the digitisation process in creating the projected depth
images). The camera parameters were assumed to be known. We set the pixel bandwidths to
h1 = h2 = 2 and depth bandwidth to h3 = .001. For each camera view and corresponding
depth image, a mesh was generated using our method. Figure 2 presents four meshes: the
colour of each vertex in a mesh represents the likelihood that the vertex is on the bunny surface.
Blue vertices have a low likelihood value and many appear at the edge of the mesh as their rays
do not intersect with the bunny. Vertices with a low probability can be easily removed from the
mesh by thresholding the likelihood values (second row of Figure 2). These colour values also
illustrate which regions of the object have been poorly scanned, allowing the user to scan them
in order to ensure that a more reliable mesh is generated.

The average time taken to converge to the point with highest likelihood on a given ray is
.5162 seconds, with a standard deviation of .7080 seconds (non optimised Matlab code on a
single core). The average number of iterations needed per ray is 71.2106. Our algorithm is
highly parallelizable (as each ray can be marched independently) and optimising it to perform
on the GPU would result in considerable speedup.

In Figure 3 we compare our reconstructed results to those obtained by Ruttle et al. in [12].
The colours of each vertex in these meshes represent the distance to the closest point on the
ground truth Stanford Bunny mesh. The algorithm proposed by Ruttle et al. performs well
apart from concave regions such as the neck and between the ears. Their meshing algorithm
creates edges between points on different ears, and between points on the head and back. The
red vertices on the bunny in Figure 3 (f) and (h) represent these meshing errors. Our results
(top row of Figure 3) show that our meshing algorithm has eliminated these errors as it only
considers vertices and edges with a high likelihood value.

We computed the average distance between the reconstructed meshes and the ground truth
bunny mesh. The average distance is 0.000527m for our algorithm. This can be compared to
0.000711m obtained with Ruttle et al.’s algorithm [12]. We also investigated the correlation
between the likelihood value lik(Θ) of a vertex Θ, and the distance between Θ and the ground
truth Stanford Bunny mesh. We have found that a threshold on the likelihood values can easily
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Figure 2: Meshes from 4 camera views (visualisation with Meshlab meshlab.sourceforge.net):
with all vertices and edges shown with their probability (top) and when low probability vertices
are deleted (bottom). The Max value on the colour scale refers to the maximum value of lik(Θ)
found on each mesh.

Figure 3: Visual comparison with ground truth (using Cloud Compare software
www.cloudcompare.org ): our method (top row), and Ruttle et al. [12] (bottom row).

be set to keep 73.65% of vertices, amongst which only 3% are vertices far from the ground
truth (or 97% of vertices with high likelihood are close to the ground truth). This indicates that
lik(Θ) is a good measure of confidence for each element of the mesh. It can provide users with
feedback to improve areas of the surface that have low likelihood and are therefore very likely
to be far from the ground truth. Because this ground truth mesh is not available in general,
lik(Θ) can be used as a good substitute.
We have run several experiments with noisy depth images. Similarly to Ruttle et al., the cost
function is robust to noise and our algorithm is not affected by this noise on the depth values.
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5 Conclusion

We have proposed another algorithm for optimisation of the robust cost function proposed by
Ruttle et al. [12]. This new approach allows us to infer a mesh of vertices and edges for each
camera view including a measure of uncertainty for each element in the mesh. Future work
will focus on stitching together the meshes created for each camera view so that a single mesh
is generated. Considering the confidence value associated with each vertex will ensure those
vertices with a higher likelihood will be given preference.
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Abstract

The localisation of facial landmarks is an important problem in computer vision, with
applications to biometric identification and medicine. The increasing availability of three-
dimensional data allows for a complete representation of the facial geometry, overcoming
traditional limitations inherent to 2D, such as viewpoint and lighting conditions. However,
these benefits can only be fully exploited when the processing concentrates purely on the
geometric information, disregarding texture. This fact is particularly interesting when
addressing the localisation of anatomical landmarks, as it is not clear to date whether
geometric information can be used to fully replace texture (e.g. the localisation of the eye
corners and the lips is believed to be strongly linked to texture clues).

In this paper we present a quantitative study of 3D landmark localization based on
geometry, texture or a combination of both, integrated in a common framework based on
Gabor filters that has reported state of the art results. We target 10 facial landmarks and
find that, while the algorithm performs poorly for the nose tip with a mean 3D error of
6.15mm, the remaining landmarks are all localised with an error under 3.35mm, with the
outer eye corners and mouth corners performing particularly well. Interestingly, geometry
and texture achieved comparable results for the inner eye corners and mouth corners, while
texture clearly outperformed geometry for the outer eye corners.

1 Introduction

Facial landmark localisation is the primary step in a number of computer vision systems includ-
ing facial recognition, facial pose estimation, medical diagnostics and multimedia applications.
Historically most landmark localisation algorithms have used standard 2D images. Such sys-
tems, no matter how accurate, are always going to be limited by the fact that they are operating
on dimensionally reduced representations of 3D objects. A significant amount of extra infor-
mation about the human face is contained in the 3D spatial dimension.

A number of different approaches have been taken with regard to localising facial land-
marks in 3D images. Geometry based techniques have received a good deal of attention. Se-
gundo et al. present an effective system which uses surface classification techniques in order to
localise landmarks [Segundo et al., 2010]. The authors record a 3D localisation error of under
10mm for 90% of images in their test set. Creusot et al. combine machine learning and a large
number of geometric techniques in their system [Creusot et al., 2013]. The authors note that
while this system does not outperform others in terms of accuracy, it does perform quite well
in terms of robustness. Since the algorithm used is not sequential in nature, a failure to detect
certain landmarks does not influence the localisation of subsequent landmarks. This system
provides a framework for landmark localisation and leaves potential for future improvement.

Zhao et al. present a statistical model based approach in [Zhao et al., 2011]. This system
works well in challenging situations where there is facial occlusion and/or very expressive
faces. This system learns the spatial relationships between different landmarks and uses this
in conjunction with local texture and range information. The authors use Principal Component
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Analysis (PCA) to create astatistical facial feature map. This is essentially a combination of
individual geometry (landmark coordinates), shape(range images) and texture (texture images)
models. The authors report a mean 3D error rate of below 5.07mm for all 15 facial landmarks.

Perakis et al. use local shape descriptors to localise facial landmarks [Perakis et al., 2013,
Passalis et al., 2011]. These local shape descriptors characterise the shape profile at a given
landmark. By evaluating the shape index at a landmark in a number of training images a model
can be constructed. These descriptors are generated by examining the principal curvature and
spin image at a landmark. A facial landmark model is then created. This is used to constrain
the relative locations of detected landmarks. Models are also created for the left and right hand
side of the face. These are used to deal with profile or semi-profile faces. The systems achieves
relatively good results with a mean 3D error of below 5.58mm for all 8 targeted landmarks.

One particular approach which has received increased attention in recent years is the use
of Gabor filters for facial landmark localisation [Movellan, 2002]. Jahanbin et al. use Gabor
filter banks for landmark localisation in [Jahanbin et al., 2008]. This technique implements
the same landmark localisation procedure as Wiscott et al. used in their Elastic Bunch Graph
Match system (without the elastic constraint) [Wiskott et al., 1997]. While the authors do not
present in depth results in this particular paper, it does serve as a basis for later work carried out
by the same research group [Gupta et al., 2010b]. This particular system combines curvature
detection, Gabor filters and expert knowledge of the human face to localise landmarks using
anthropometric information based on the work carried out by Farkas et al. in the medical
field [Farkas and Munro, 1987]. This information plays a vital role in establishing a sensible
search region which is then examined to further improve the accuracy of localisation.

An interesting element of the work by Gupta et al. [Gupta et al., 2010b] is that Gabor filters
are applied to both range and texture and their framework allows for a direct integration of
both sources of information. However, the authors did not provide a detailed analysis of this
aspect and results were limited to 2D standard deviation errors, which hampers a thorough
comparison to other approaches. In this work we present a quantitative analysis of landmark
localization errors when using texture, range or both sources of information at the same time.
We use the framework developed by Gupta et al. and reproduce the results reported originally,
which allows to also calculate the mean 3D error to make results comparable to related work.
We find that the inclusion of both texture and range information always yields the best results,
although the benefit of range was negligible in some cases. Interestingly, for the inner eye
corners and mouth corners the error results were similar for all three tested alternatives.

2 Automatic Landmark Localisation Using Anthropometric Infor-
mation

The landmark localisation procedure carried out remains as faithful as possible to the method
developed by Gupta et al. [Gupta et al., 2010b]. Generally speaking the algorithm first uses
curvature information to detect an approximate location for a particular landmark. Using an-
thropometric information a search region is defined around this approximation and the position
is then refined using as described below. The 10 landmarks localised are the nose tip, with
points and root center, inner and outer eye corners and mouth corners.

Nose Tip (prn): The Iterative Closest Point (ICP) algorithm is used to register each face in
the database to a frontal template face. These aligned images are used in all subsequent steps.
Once all images have been aligned the manually localised tip of the template face is taken as
an approximate location for tip of the nose in all images. A window of 96 mm x 96mm is
then defined around this approximated nose tip. Since all faces have been frontally aligned, the
actual nose tip is present in this large window for all cases. This means that the method is not
fully automated since it relies on the manually localised tip of the template face.

It has been observed that the Gaussian surface curvature of the tip of the nose is distinctly
elliptical (K >0,) [Moreno et al., 2003,Segundo et al., 2010,Creusot et al., 2013]. For this rea-
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son the Gaussian surface curvature (σ= 15 pixels) is evaluated within the searchregion about
the nose tip approximation. The maximum Gaussian curvature within the region is taken as
final location of the nose tip (prn).

Nose Width Points (al-al): These points are localised by first defining a search region around
the detected nose tip. The size of this window (42 mm x 50 mm) is defined based on the mean
and standard deviation values published by Farkas [Farkas and Munro, 1987]. A Laplacian of
Gaussian edge detector (σ= 7 pixels) is then used within this region. Moving in a horizontal
direction from the nose tip, the first edge encountered is considered to be the nose contour and
is retained. Then, points of negative curvature are detected by generating an unwrapped chain
code for the nose contour and using a derivative of Gaussian filter on this one dimensional sig-
nal to detect points of critical curvature [Rodriguez and Aggarwal, 1990]. Nose width points
are finally selected from the critical points immediately above and below the vertical coordi-
nate of the nose tip. The widest of these are selected as nose width points.

Inner Eye Corner (en-en) & Center of Nose Root (m’): A search region for the left and right
inner eye corners is defined using the location of the detected nose tip and nose width points.
The vertical limit defined based on the fact that for the average adult, the distance between
inner eye corners and the tip of the nose in the vertical direction is 0.3803 times the distance
between the tip of the nose and the top point of the head [Farkas and Munro, 1987,Gupta et al.,
2010b]. Gupta et al. allow for variations in the measure by setting the upper vertical limit
at (prny + 0.3803 × 1.5|prny − Vy|), whereVy is theY coordinate of the highest vertical
point in the 3D model. The horizontal limit is obtained by using the locations of the nose
width points and the nose tip. Specifically, horizontal limits are defined from the nose tip to
alx,left/right ± 0.5|alx,left − alx,right| for the left and right inner eye corners.

The Gaussian curvature within this region is evaluated and the location of maximum cur-
vature is used as an approximation for the location of the inner eye corner (σ= 15 pixels).
Finally a region of 20mm x 20mm is defined around this peak of Gaussian curvature.

The location of inner eye corners are then refined with a modified version of the EBGM
technique [Jahanbin et al., 2008, Wiskott et al., 1997]. In brief, this technique involves com-
paring the Gabor coefficients generated for each pixel in the search region with the coefficients
for the landmarks of 89 training images. These 89 images consist of neutral and expressive
faces. The images are selected in an attempt to cover as much feature variance as possible (i.e.
closed/open mouth and eyes). 80 Gabor coefficients (known as a Gabor jet) are generated at
each landmark for each of the example images. A filter bank of 40 Gabor filters is used (5
scales x 8 orientations). 40 coefficients are generated for both range (3D) and texture (2D)
images. While the specific parameters of these filters are not provided in [Gupta et al., 2010b],
we used the filter bank outlined in by Wiscott et al. [Wiskott et al., 1997]. Note that, for the
database used, all images should be scaled by1

3
when Gabor filtering is applied.The final loca-

tion of the innereye corner is obtained by finding the pixel which has a Gabor jet most similar
to that of any training landmark. The similarity score is given in equation (1):

S(
−→
J ,

−→
J ′) =

∑40/80
i=1

aia
′

i cos(Φi − Φ′

i)
√

∑40/80
i=1

a2i
∑40/80

i=1
a′2i

(1)

whereJ andJ ′ arethe jets to be compared, defined asJj = aj e
iφj . Wherea is the magnitude

andφ is the phase of the Gabor coefficient at a given pixel.The jets contain either 40 or 80
coefficients depending on which form of EBGM is to be used. Gupta et al. chose to use 2D
and 3D Gabor coefficients. In this work 2D, 3D and 2D+3D results are compared. The center
of the nose root is determined by finding the mid-point between the two inner eye corners.

Outer Eye Corners (ex-ex): A search region for the outer eye corners is defined based on the
location of the detected inner eye corners as per [Gupta et al., 2010b]. This 20 x 34 mm region
is evaluated using the same search procedure as used for the inner eye corners. Gupta et al.
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chose to use 2D EBGMsearch as the outer eye corner region does not have distinct enough
curvature characteristics. Inthis work all three EBGM techniques are evaluated.

Mouth Corners (ch-ch): The lip curvature is examined in order to determine a search region
for the mouth corners. The Gaussian curvature of both the upper and lower lips is elliptical in
nature. The regions immediately above the upper lip and below the lower lip are hyperbolic
(K < 0). These properties can be used to define upper and lower search limits for the mouth
corners. The horizontal limits are defined by[(alx,left − 0.7|alx,left − alx,right|), (alx,left)]
for chleft and analogously forchright. In order to remove noise a certain amount of smoothing
must be carried out when calculating Gaussian curvature. In some cases the Gaussian curvature
of the upper or lower lip is too weak and cannot be localised. In such cases the troughs in
Gaussian curvature immediately above and below the lip region are used as limits. While
these are usually stronger features than the lips, errors can arise when searching for peak mean
curvature in the next stage of the algorithm as there is a high mean curvature along the jaw line.

The mean curvature (σ= 2 pixels) is then calculated for the defined search region. Since
the mouth corners are regions of high mean curvature the peak curvature value in this region is
taken as an estimate for of the mouth corner. A 30mm x 11mm search region is defined around
these mouth corner estimates. The same EBGM procedure used to localise the eye corners is
also used to precisely localise the mouth corners. Gupta et al. chose to use 2D+3D EBGM. In
this work 2D, 3D and 2D+3D EBGM results are compared.

3 Experimental Results & Discussion

3.1 Test Data

The performance of the landmark localisation algorithm is evaluated using the Texas 3DFR
database [Gupta et al., 2010a]. It contains high resolution (751 x 501 pixels, 0.32 mm per pixel)
pairs of portrait and range images from 118 healthy adult subjects. 25 facial landmarks have
been manually located. Both range and portrait images were acquired simultaneously using a
regularly calibrated stereo vision system and the data was filtered, interpolated and smoothed
to remove impulse noise and large holes [Gupta et al., 2010a]. From the 1149 portrait-range
pairs of the database, 89 were used in the EBGM search and the remaining 1060 were used as
test data.

3.2 Landmark Localisation Results

The landmark localisation results obtained for the Texas 3DFR database are given in Table
2. All results are given in millimetres. As mentioned previously Gupta et al. do not provide
3D error results [Gupta et al., 2010b]. Thus, we compared our results to the ones originally
provided, in terms of 2D standard deviation and confirmed that our implementation a faithfully
reproduced the original method (Table 1).

The mean error result of the nose tip is noticeably larger than the localisation of the other
landmarks. On closer examination it appears that in all cases the detected nose tip is above
the manually localised nose tip (in the Y direction). This can clearly be seen in the boxplot in
Figure 1. This figure shows clearly that the median value for the X error is 0mm as expected in
a normal error distribution. The Y distribution is extremely skewed to one side of the manually
localised nose tip (a negative Y error is above the manual location for an upright face). Since
the standard deviation of the Y error is relatively small it seems that the issue is that the peak
of Gaussian curvature does not correspond to the same location the manual annotators have
identified as the nose tip.

The mean error results obtained for the nose width points are reasonable while the standard
deviations are impressive, especially when using the modified EBGM technique. A 3D mean
error of under 2mm is recorded for both inner eye corners. The outer eye corners which are
slightly more difficult to localise are detected with a mean error of under 2.6mm. A mean
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X std. dev (mm) Y std. dev (mm) 2D std. dev (mm)

Landmark Gupta This Method Gupta This Method Gupta This Method
PRN 1.045 0.766 1.680 1.714 1.978 1.705

AL Left 0.721 0.647 1.655 0.710 1.805 0.739
Al Right 0.798 0.546 1.646 0.814 1.829 0.818
EN Left 1.488 1.249 1.245 0.908 1.940 1.363

EN Right 1.354 1.378 1.344 0.792 1.908 1.417
M’ 1.355 1.415 1.811 1.010 2.261 1.417

EX Left 1.795 1.727 1.285 1.047 2.208 1.850
EX Right 2.126 1.940 1.384 1.248 2.537 2.149
CH Left 1.948 1.749 0.933 1.692 2.160 2.321

CH Right 1.976 1.429 1.045 0.844 2.235 1.460

Table 1: Error standard deviation results comparison with Gupta et al. [Gupta et al., 2010b]
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Figure 1: Vertical Prn Error Bias

error of below 2.16mm is achieved forboth mouth corners. The algorithm does have particular
difficultly with faces where facial hair is present. This is as expected when using Gabor filters
as there is a significantly different response to a Gabor filter when facial hair is present.

One interesting point to note is that the three worst results obtained are for the three land-
marks localised using techniques which do not involve training. The training stage of EBGM
uses manual landmark locations. This means that when EBGM is used, the algorithm searches
for a location on an unknown image which is most similar to the training data, which is based
on manual locations. For the nose tip and width points the algorithm searches for a particular
image feature (e.g. maximum Gaussian curvature) which is said to be present at that landmark.
Perhaps using EBGM for all landmarks might yield better performance. Another possible issue
could be marker bias. No details are provided about how many annotators are used but using
separate annotators for test and training data could be a possible solution.

Landmark Prn AlL AlR EnL EnR M’ ExL ExR ChL ChR

3D mean 6.15 3.35 3.31 1.82 1.75 2.76 2.48 2.59 2.16 2.02
3D stdev 1.75 1.65 1.88 1.50 1.52 1.59 2.58 2.99 3.04 2.15

Table 2: Landmark localisation error
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3.3 Texture & Range Comparison

Theinner eyes and outer mouth corners are detected using 2D + 3D EBGM while 2D EBGM
is used for the outer eye corners. The same similarity metric is used in each case (1) with the
only difference being the coefficients examined.

Landmark 2D EBGM 3D EBGM 2D+3D EBGM

En Left 1.83± 1.53 2.18± 1.70 1.82± 1.50
En Right 1.75± 1.55 1.99± 1.58 1.75± 1.52
Ex Left 2.48± 2.58 5.10± 5.28 2.39± 2.12

Ex Right 2.59± 2.99 8.91± 7.22 2.49± 2.27
Ch Left 2.20± 2.83 2.54± 2.89 2.16± 3.04

Ch Right 2.15± 2.44 2.20± 1.61 2.02± 2.15

Table 3: 2D, 3D& 2D+3D EBGM comparison, in terms of 3D error (mean± std. dev.)

Interestingly, Table3 shows that for the inner and outer eye corners the inclusion of range
coefficients improves localisation results. Gupta et al. use 2D + 3D for the inner eye corner
while they choose to use just 2D for the outer eye corners. The results obtained here suggest
that a similar improvement in localisation could be achieved with the inclusion of range infor-
mation. While it is clear that just using 3D information results in poor localisation performance
it should be noted that the 3D information only influences the result of localisation when a 3D
coefficient is more similar to one of the training image coefficients than any of the 2D coeffi-
cients. This means that in some individual cases the inclusion of 3D information may adversely
affect localisation but for the entire database the average error is reduced.

With regard to the mouth corners the use of texture and range information results in the
best mean error performance. This is the same as the behaviour for the other landmarks. Once
again the worst mean error is recorded when just range information is used.

It is clear that in all cases examined the inclusion of more information (texture & range) in
the EBGM stage results in better overall localisation. This suggests that the similarity score and
the procedure Gupta et al. use for choosing the landmark location works quite well. It suggests
that in the majority of cases the inclusion of extra information leads to enhanced localisation
performance. Obviously there is a computational overhead to be considered when including
this extra information but in cases where speed isn’t an issue it seems that the inclusion of 2D
and 3D information leads to the best localisation performance.

Since the 2D and 3D EBGM techniques are directly comparable, Table 3 shows that for all
landmarks examined texture information yields better results. Though for the inner eye corners
and mouth corners this difference is quite small.
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4 Conclusion

We have shown that the method developed by Gupta et al. achieves state of the art landmark
localisation results. The one weak point is the localisation of the nose tip which is quite poor.
Even though the localisation of the tip is poor it does not appear to adversely affect the local-
isation of subsequent landmarks where the location of the nose tip is used to define a search
region. Another better performing method, such as that used by Segundo et al., could perhaps
be used for the localisation of the nose tip [Segundo et al., 2010].

It was determined that for the EBGM stage, the inclusion of both texture and range infor-
mation yields the best results. Interestingly, for the inner eye corners and mouth corners the
error results recorded are similar for each of the EBGM methods. For the outer eye corner 3D
EBGM performed quite poorly, with 2D and 2D+3D obtaining similar results. This suggests
that for outer eye corner detection, 2D EBGM could be used without a significant (∼0.3mm)
decrease in mean error.
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Abstract 
 

This paper presents a method for recognising spherical shapes in 3D point cloud 
XYZ coordinate data obtained by scanning an indoor environment using a LIDAR 
scanner. Firstly, bilateral smoothing is performed to smooth the surfaces consisting of 
points. Then, the surface curvature and surface roughness of each point in the scan are 
extracted by analysing the point cloud data. Finally, a three layer multilayer perceptron 
neural network trained by the Levenberg-Marquardt algorithm is used to automatically 
distinguish points belonging to spheres from all the other points making use of 
extracted features. A novel feedback technique is applied in which the neural network 
is used several times on the recognised data.  

 
Keywords: Point cloud data, Object recognition, Neural networks, 3D laser scanning, LIDAR. 
 
 
1 Introduction 
 
The development of 3D scanning and camera projection technology make it possible for people to 
have better access to large amounts of accurate 3D point cloud data. The point cloud data, recorded 
by 3D LIDAR scanners, is used in a variety of fields, including architecture, medical science, 
surveying and mapping. It is widely applied in generating 3D models, undertaking metrology 
inspection and performing medical imaging.  

In general, point cloud data itself is not directly usable in most 3D applications as it occupies 
a lot of memory and storage, requiring further analysis and processing. For example, point clouds 
can be converted to mesh models or CAD models for further use. In the field of architecture, the 
Building Information Modelling (BIM) concept was introduced in recent years. BIM describes the 
whole life cycle of a project and gives very detailed information of everything related to the 
building, including cost, construction, project and facility management. Currently, BIM is mainly 
used at the start of construction projects where laser scanning may not be that useful since 3D 
models of buildings would normally already exist. However, with the expansion of the BIM 
industry, existing buildings will require BIM as well, and that will offer a market for laser scanning 
and modelling automation. At present, the conversion from point cloud data obtained from a 
scanned building to BIM is typically performed by manual means, which is time consuming and 
labour intensive. In order to facilitate the procedure, S. Oesau et al. [1] proposed a method using 
feature sensitive primitive extraction and graph-cut for automatic reconstruction of permanent 
structures, such as walls, floors and ceilings. X. Xiong et al. [2] succeeded in identifying and 
modelling the main visible structural components of an indoor environment. Apart from large 
planar areas, windows and doorways are also able to be identified by applying this method. The 
question is whether other shapes such as spheres can also be automatically identified. 

This paper focuses on indoor sphere recognition. Spheres have the characteristic of rotational 
symmetry, which can be regarded as a distinctive feature for alignment between different scans. As 

28



a basic geometric shape, spheres of small or large radius appear everywhere in buildings. Being 
able to recognise spherical objects can be seen as a start for the recognition of more complex 3D 
objects. The Hough transform is a powerful tool in shape analysis. O. Ogundana et al. [3] extended 
the strategy for detecting circles in 2D images to detecting spheres in 3D point clouds. RANSAC is 
also a useful tool for 3D sphere extraction [4]. This paper proposes a new method for sphere 
recognition. Our algorithm can be divided into four main steps: 1) bilateral smoothing, in which the 
point clouds are smoothed; 2) calculation of the surface curvature and the surface roughness; 3) 
multilayer perceptron neural networks are trained using supervised learning by the Levenberg-
Marquardt algorithm, and used to distinguish points belonging to spheres from other points; 4) low-
density filtering, in which low-density points are removed from the point cloud. 
 
2 Methodology 
 
2.1  Bilateral smoothing  
 
The 3D point cloud data is obtained by Faro Focus 3D LIDAR. Due to the tolerances of the scanner 
itself, the 3D data, inevitably, contains range noise. In order to improve the accuracy and reliability 
to point cloud computation, it is important to de-noise and smooth the point cloud. The bilateral 
filter, introduced by Tomasi and Manduchi [5], is a non-linear, edge-preserving and noise-reducing 
filter, which was first used to filter images. It has a simple and intuitive formulation and can be 
adapted to point cloud data easily and successfully [6-7]. 

In 3D point cloud data smoothing, let, p , be the 3D coordinates of a point in the scan. After 
the application of the filter, updating, p , as is given in Eq. (1): 

                                                                npp b'  (1) 
Where, n , is the surface normal of the point, b  , is the bilateral smoothing factor defined as 
follows: 
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Where, R , is the spherical neighbourhood of p , Rip apart from the point p , ipp  is the 

distance between point p  and ip , inn, is the angle between vector n  and in . The closeness 

smoothing filter is a standard Gaussian filter with parameter c : 
22 2/ cx

c exW . A feature-

preserving weight function with parameter s  is defined as: 
22 2/ sx

s exW . 
 
2.2  Surface curvature and surface roughness 
 
The surface curvature (SC) of each point of the scan is computed from eigenvalues of a local 3 by 3 
covariance matrix [8] of a certain region of interest around the point. This region is usually taken to 
be a sphere. The radius of the sphere is required to be chosen wisely. It should be much smaller 
than the size of the scanned spheres while relatively larger than the surface thickness of the scanned 
objects. The surface roughness can be obtained by comparing surface normals of neighbouring 
points. Again this is calculated over a spherical region of interest whose radius is set to be the same 
as that for the SC calculation. The surface normal of each point is calculated using principle 
component analysis and covariance analysis [9] with an Octree-based 3D-grid method [10] for 
efficient neighbouring point searching.   

Theoretically, the average SC of a sphere should be invariant despite any changes in the 
distance between the parts of the sphere and the scanner and the variable density of points, and the 
SC of each point on one sphere should be the same. However, in practice this is not the case. The 
point cloud data in the experiments is from a single scan, so objects are partially scanned and will 
have point cloud boundary edges. The discrepancy in surface curvature calculation is mainly due to 
the effect of edges and the spatially varying range noise. 
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2.3  Neural networks trained by the Levenberg-Marquardt algorithm 
 
Artificial neural networks (ANN) can detect complex nonlinear relationships between dependent 
variables and separate and distinguish different classes of pattern. Several algorithms can be used 
for the training procedure of an ANN. The Levenberg-Marquardt (LM) algorithm [11] is selected 
for this research. The LM algorithm is a combination of the steepest descent method and the Gauss-
Newton algorithm. It inherits the stability of the steepest descent method and the speed advantage 
of the Gauss-Newton algorithm. 

In this research, two features, surface curvature and surface roughness, are extracted from 
point cloud data for each point. They are used for the inputs of a 3 layer multilayer perceptron 
ANN for each point. Four spheres and two non-sphere backgrounds selected from the scan are used 
for training this ANN. After being well trained but not overtrained, the ANN model is applied to 
each point in a sample area in order to identify points belonging to spheres. Repeated application of 
the ANN helps in obtaining better discrimination results. Each time after the ANN model is 
applied, the points identified by the ANN as not belonging to a spherical surface are removed from 
the scene. This reduction of number of points results in the modification of the curvature and the 
roughness values for points remaining in the scene when they are recalculated before putting back 
into the same ANN. As a result each time the ANN acts as a filter removing non-sphere points and 
the SC and SR are recalculated and the ANN is applied again. After applying the ANN for several 
times, there still remain some points that do not belong to spheres, so a low-density filter is applied, 
which is described in section 2.3, to remove these points. 
 
2.3 Low-density filtering 

 
For each point, the number of its neighbouring points within a certain spherical volume of radius,  
r , around that point is calculated. The distance, d , between each point and the LIDAR is also 
computed. Points, whose neighbouring points count is smaller than a threshold number, th , are 
removed from the point cloud. The threshold, th , is calculated as follows: 

                                                                 2

2

2d
rth                                                                        (3) 

where, , is the number of points per unit area at 1 metre away from the scanner.  
 
2.4 Flowchart of methodology 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Flowchart of methodology 
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3 Experimental results 
 
In the experiment, eight spheres were randomly placed in an indoor environment. The scene was 
then scanned with Faro Focus 3D LIDAR. Figure 2 shows a side view of a partially captured 
sphere. After applying bilateral smoothing, the surface of this sphere appears smoother and better 
defined. A quantitative comparison of the calculated surface thicknesses for spherical objects and 
the scene floor before and after smoothing is presented in Table 1. Filtering improves the accuracy 
in computing the curvature and the roughness measures for each point, which are illustrated in 
Figure 3 and Figure 5. Figure 4 shows the calculated curvature value distribution on the surface of 
a partially captured sphere. Near the edges of the partial sphere, the curvature is relatively low, 
with a value close to that of a flat surface. Conversely, points on the sphere, located further away 
from the edges possess relatively higher curvature. Figure 6 plots both the curvature and the 
roughness of a sphere after smoothing shows that there exists a relationship between the two. These 
two different properties of the sphere surface have a similar tendency. 
 

                                                
a. Before smoothing                                  b. After smoothing 

Figure 2: Comparison of a scanned sphere before/after smoothing  
 

 
  Surface thickness 

Sphere (2 m 
away from 

the scanner) 

Sphere (4.5 
m away from 
the scanner) 

Floor (2 m 
away from 

the scanner) 

Floor (4.5 m 
away from 

the scanner) 
Before smoothing (mm) 20 15 12 3 

  After smoothing (mm) 8 6 2 1 
Table 1: Comparison of the surface thicknesses of scanned objects before and after smoothing    

 

                            
 

Figure 3: Comparison of surface curvature (a) before and (b) after smoothing. The curvature is calculated 
for each point on a selected sphere and for each point on a selected area of floor 

 

                
                                       a. Front view                                             b. Side view 

Figure 4: Calculated surface curvature distribution over a sphere 

a. Before smoothing     b. After smoothing 
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      a. Before smoothing                                     b. After smoothing 

Figure 5: Comparison of surface roughness before and after smoothing. The roughness is calculated for 
each point on the selected area of the sphere and for each point on the selected area of the floor 

 

 
Figure 6: Surface curvature and roughness for points of a selected area of the sphere after smoothing 

 
The distance between each of these eight scanned spheres and the scanner was in the range 

from 2 m to 6 m. As is shown in Figure 7 and Figure 8, the implementation of bilateral smoothing 
reduces the variability of average curvature and average roughness for spheres placed at different 
distances with respect to the LIDAR scanner. For detecting objects, it is desirable that the 
calculated curvature and roughness are independent of their distances to the scanner. 

 

            
 

 
 

Four of these scanned spheres and two non-sphere volumes were selected to train the ANN 
model. Parameters for the ANN chosen for this experiment are presented in Table 2. Figure 9 (a) 
shows the sample area selected from a scan, which includes a sphere, a lamp and a flat surface. 
This data was not used in the training of the ANN model. Figure 9 (a) - (c) show the effect of 
repeatedly applying the ANN to the data. After this, low-density filtering described in section 2.3 is 
applied to the remaining points. The result of this is shown in Figure 9 (d). 

Table 2: Parameters for ANN 
 
 

Number of neurons for input/hidden/output layer 2; 10; 2 
Transfer function Tan-sigmoid, Log-sigmoid 
Percentage of data for training/validation/testing 70%; 15%; 15% 

Figure 8: Comparison of the average roughness 
before/after smoothing between spheres 

Figure 7: Comparison of the average curvature 
before/after smoothing between spheres 
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                       a. Selected sample              b. Applying ANN once             c. Applying ANN 3 times  

       
                  d. Recognised sphere     e. Points other than the recognised sphere     f. Overview 

Figure 9: Recognition process. (a) Input data. (b)-(c), result of applying ANN repeatedly to input data. (d) 
remaining points after ANN and density filtering of input data. (e) and (f) Points identified to lie on non-

spherical surfaces (black) and points classified to lie on surface of sphere (white). 
 

4 Conclusions 
 

In this paper, we present an artificial neural network pattern recognition approach to detect points 
in a point cloud that define the surface of a spherical object. Our method is able to correctly 
distinguish points belonging to spheres from other points in the environment which may also 
include other curved surfaces present. A novel feedback technique is applied in which the neural 
network is used several times on the input data.  
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Abstract 

An increase in commercial availability of 3D scanning technology has led to an increase 
of 3D perception for a variety of applications. High quality scanners require to be stationary 
and so multiple scans are required and subsequently need to be registered. A new error 
metric for registration based on the deviation of registered planar surfaces is introduced here 
and compared with a commonly used metric: mean square point-to-point distance. Four 
different sets of features are used to register six scans, the point-to-point errors are compared 
to the new error metric, planar surface deviation, and a disparity is observed for certain sets 
of features. The two metrics agree as to which sets of features gave the best registration but 
disagree as to which set produced the worst registration. It is concluded that further analysis 
and evaluation is required to determine which metric is more meaningful as a representative 
measure of registration accuracy and to also investigate other error metrics. 

Keywords: Point Cloud Registration, 3D Laser Scanning, LIDAR, Feature Recognition, Principal 
Component Analysis 

1 Introduction 

LIDAR is a remote sensing technology that measures direction and range, similar to RADAR, except 
that it uses a laser. The laser beam from the LIDAR illuminates a surface; the surface may scatter some 
of the light back to the LIDAR from which the distance is determined using either phase-shift or time 
information. Stationary LIDARs perform a sweeping scan of their environment creating a point in 3D 
space for each range measurement; such a collection of points is referred to as a point cloud. For a 
dense, high resolution and accurate point cloud at relatively long ranges, LIDAR is type of technology 
typically used though there are other options available. The increase in commercial availability of such 
technologies means that 3D perception continually gains importance in applications such as 3D 
mapping and navigation, architecture, augmented reality, robotics and gaming.  

A LIDAR scanner is used here to collect point cloud data due to its cost, accuracy and 
availability. Like many other similar technologies it is a stationary unit and so multiple scans are 
required from multiple vantage points to attempt to reduce of impact of occlusions and capture a 
complete or near-complete point cloud. The multiple scans lead to the common problem in computer 
vision of registration. The task of registration is to place the individual point clouds in the same spatial 
reference frame by estimating rigid body transformations between the datasets. The problem is difficult 
because the correspondences of the datasets and the precise location of the scanner are unknown a priori; 
the difficulty in obtaining this information accurately means that it is problematic to evaluate 
meaningful and truly representative registration errors.  

The purpose of finding such transformations is to acquire a more complete dataset which 
increases its usability and reliability which is important for many applications. Due to the relatively 
high accuracy of 3D laser scanning technology (typically ±2 mm at 25 m), the importance of accurate 
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registration becomes of greater significance since the range accuracy is a key limiting factor of 
registration accuracy. The required registration accuracy is ultimately specified by the client and the 
application. The point cloud data may be used to provide an approximate representation of the scanned 
environment for visualisation applications or it may be used for some other application where metrology 
is of greater importance such as BIM (Building Information Modelling). BIM is one of the most 
significant drivers for 3D scanning technology and 3D imaging [1], and in the UK, government mandate 
states that by 2016, public sector centrally procured construction projects will be delivered using level 
2 BIM [2].  

Scanning processes in BIM have a required minimum accuracy, however, the ‘Client Guide to 
Scanning and Data Capture’ published by the BIM Task Group [3] advocate a functional performance 
approach rather than a prescriptive approach to establishing this number. This essentially means that 
considering the technology used for data capture, construction tolerances, budgetary restrictions and 
other constraints the best achievable accuracy should be sought. 

In the next section, we discuss point cloud registration error metrics associated with the most 
popular registration methods such as ICP (Iterative Closest Point) [4]. ICP often requires good initial 
alignment typically achieved by feature-based registration. We also introduce our new error metric 
which measures the deviation of planar or near-planar surfaces in registered scans. We address the 
problem of registration error metrics of point clouds in scenarios where the true value is not observable. 
In real-world applications, an accurately and precisely measured true value is too difficult to obtain so 
we resort to measuring quantities about objects from the scene from which we can infer the degree of 
registration accuracy. Typically this may be corresponding points or nearby points and planes, however, 
since we work with indoor 3D scans in which there is typically an abundance of planar features, we use 
these to assess the degree of registration accuracy. 

Real point clouds with planar regions have some surface deviation arising from range noise 
(ranging accuracy), surface profile and poor registration. In the ideal case, truly planar surfaces produce 
point clouds restricted to two dimensions such that there is no surface deviation; furthermore, perfectly 
registered ideal point clouds would also return no surface deviation. If we can account for range noise 
and surface profile in our error metric then planar surface as an error metric should provide 
representative registration errors. 
 
2 Registration Error Metrics 
 
A method which is often used for registration of two point clouds is ICP (Iterative Closest Point); in 
this algorithm, one point cloud, the reference or the target is kept constant, while the other one is 
transformed to minimise the distance of the closest points between the reference and target. The rigid 
body transformation is iteratively evaluated for the revised closest points. ICP is very popular due to its 
simplicity, however, it only works very well in ideal cases, subsequently there are a very large number 
of ICP variants (around 400 papers in the past 20 years with ICP in the title or abstract) [5] which enable 
it to be more robust or faster but the basic principal remains the same which is that the distance between 
iteratively revised closest points are minimised.  

A paper by Rusinkiewicz and Levoy [6] reviews some of the efficient variants of ICP and 
classifies these as affecting one of the 6 stages of the algorithm: selection, matching, weighting, 
rejecting, assigning an error metric and minimising the error metric. Most of the variants aim to add 
speed and robustness to the algorithm, but here we are concerned with the accuracy of registration which 
is ultimately determined by the error metric. The metric specified in the original ICP paper [4] is the 
sum of squared point-to-point distances, other metrics include a combination of point-to-point and 
difference in colour [7], point-to-plane [8] and point-to-line [9] distances. Certain metrics may behave 
better than others in certain cases in terms of converging to the ground truth but their limitations are 
intrinsic to ICP. Whether the ICP variant uses points, planes, lines or anything else, the limitation lies 
in the fact that corresponding references are chosen by proximity. After numerous iterations the error 
may converge, but it may or may not converge to the true value; in either case, this cannot be known 
from summing squares distances between points which are not truly corresponding. 

Another limitation of ICP is that it converges monotonically to local minima and the final result 
is very dependent on the initial conditions, for this reason, most ICP variants require a good initial 
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estimate to increase the likelihood of converging to a global minimum. The initial estimate is typically 
evaluated using methods which are more robust to range noise such as feature-based registration. 
Feature-based registration algorithms attempt to identify truly corresponding points and to minimise the 
sum of these squared point-to-point distances. They are limited in accuracy due to range noise and on 
the premise that corresponding points are only truly corresponding within a certain tolerance. 
Nonetheless, they are a popular tool in determining coarse registration which is typically followed by 
fine registration performed by ICP. 

Even with a good initial estimate, ICP is very susceptible to range noise which is something 
which is typical of real data; Low and Lastra [10] have shown that rate of convergence and likelihood 
of convergence to a global minimum can be improved by supressing noise through smoothing of 
smoothly varying surfaces. In our collected data, as mentioned previously, the data is relatively low in 
noise though there are many points which are perturbed by noise (44 million points per scan), the 
accuracy of range measurements is accurate within a standard deviation of 2 mm at 25 m. This level of 
noise and number of points may prove to inhibit ICPs likelihood of converging to the global minimum 
[11]. 

Recently there has been a re-emergence and increased interest in registration of point clouds 
represented as Gaussian mixture models [12]–[14], these models do not require pair-wise 
correspondences in the same way as ICP or feature based registration algorithms but instead use a 
probabilistic approach to reduce correspondence mismatch errors. Due to the simplicity and popularity 
of ICP, here we compare our metric with point-to-point/plane only and analysis on the mixture model 
registration errors is reserved for future work. 

 
3 Planar Surface Deviation (PSD) 
 
There are a number of advantages to using planar surfaces for an error metric. Particularly in our 
application of indoor 3D scanning, planar surfaces such as walls, ceilings and furnishings are typically 
found in abundance. Also, planar regions are identified by many points, at least hundreds if not 
thousands within a 25 cm radius depending on the distance of the scanner to the surface. Such a large 
number of points can be utilised to supress noise (by averaging or plane-fitting, for example) without 
deforming the structure by smoothing or other pre-processing. Lastly, unlike feature points, planes are 
localised in one dimension; relatively small variations in the other two dimensions do not alter the 
distance normal to corresponding registered planes and subsequently do not significantly affect the error 
metric. As a result, errors on planar surfaces should be calculated on multiple orthogonally orientated 
samples. 

To evaluate the surface deviation of planar regions in combined registered scans, knowledge of 
the surface normal is required first; the normal is the direction in which we determine the surface 
deviation. First we identify the query points, which are the points which lie at the centre of the regions 
of interest; such points can be identified using shape detection algorithms such as RANSAC [15] and 
Hough transforms [16], however, for simplicity and proof of concept we identify such points manually 
here.  

Next we identify points in the neighbourhood of our query point and use these to calculate the 
normal. Surface normal estimation can be achieved in many different ways (see [17]), the simplest is 
based on first order 3D plane fitting outlined in [18], which is essentially a least-square plane fitting 
estimation problem. The surface estimation problem is reduced to an eigenvector and eigenvalue 
analysis (or principal component analysis) of a 3D covariance matrix created from the neighbourhood 
of points around the query point. The surface normal is then estimated by the eigenvector corresponding 
to the smallest eigenvalue which corresponds to the direction of smallest variance [19]; additionally, 
the square root of the eigenvalue determines the standard deviation along the corresponding 
eigenvector. By comparing the standard deviation of individual planar regions to the registered and 
combined region, we obtain our planar surface deviation metric. 

PSD is well suited to our application of indoor 3D scanning due to the typical abundance of 
planar surfaces in many buildings, however, scenes that lack plentiful planar surfaces would deem this 
metric far less useful. Since most new scanning applications are concerned with buildings and large 
structures, it is fair to say that PSD would be suited for many applications. Additionally, it should be 
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noted that this metric, currently, does not identify corresponding planes but only evaluates errors for 
nearby planes which are assumed to be corresponding; this means that the usefulness of the metric is 
determined by reasonably well registered scans which will depend on the search radius for 
neighbourhood points and the size of the plane itself. For example, if the registration returns planes 
which are not very close together then they may be excluded from the neighbourhood around your query 
point and provide an overly optimistic registration error. Another limitation of PSD depends upon the 
surfaces themselves, the surface may have a certain profile which cannot easily be known from the scan 
data, such a profile would manifest as surface deviation. Additionally the surface profile will be 
measured differently depending on the position of the scanner relative to the surface normal; this would 
cause misinterpretation of the true position of the surface. 

 
4 Method 
 
We scanned the nanotechnology laboratory in the Department of Electronic and Electrical Engineering 
at UCL from 6 vantage points using a LIDAR (see Figure 1). The main types of features used for 
registration here are checkerboard targets which are strategically placed on walls and planar surfaces 
which are also used for registration. The first step of registration is to identify the features, 3 sets of 
features are extracted from the scans (automatically identified checkerboards (AI CHB), manually 
identified checkerboards (MI CHB) and automatically identified planes (AI Planes)) and a 4th set is 
acquired by using total station surveying instruments (total station identified checkerboards (TSI 
CHB)). To register two scans, the correspondences are identified between features from sets A and B. 
These correspondences are then used to determine the transformation required to minimise the distance 
between the corresponding features. Following this, the correspondences are then used to perform fine 
registration to minimise the distances further. We then compared the mean correspondence distance 
(also referred to as CD or point-to-point distance) after fine registration with the planar surface deviation 
(PSD) of a number of planar regions. Since the laboratory is rectangular, we take the mean PSD of five 
regions (typically containing many thousands of points) from the long walls, short walls and the ceiling, 
respectively labelled X, Y and Z. The errors, in both cases, are evaluated for the final registration of the 
6 scans. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Method Feature Set A Feature Set B 
Manual CHB MI CHBs MI CHBs 

Automatic CHB AI CHBs AI CHBs 
Total Station CHB AI CHBs TSI CHBs 
Automatic Planes AI Planes AI Planes 

Table 1 – Table identifying the features used in each registration method. MI – Manually Identified, AI – 
Automatically Identified, TSI – Total Station Identified and CHB – Checkerboard. 

 

Figure 1 – Laboratory layout indicating workbenches and LIDAR 
position. 
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5 3D Scans and Results 
  

 

 

 

 

 

 

 

 

 

 
 

 
 

 Manual CHB Automatic 
CHB 

TSI CHB Automatic 
Planes 

 Correspondences 38 218 33 100 
 

CD Mean (mm) 0.8 0.6 2.7 6.7 
 Deviation (mm) 0.4 0.7 1.8 6.9 

 

PSD X (mm) 0.8 0.8 16.3 1.3 
 Y (mm) 0.9 1.2 10.0 3.2 
 Z (mm) 10.2 10.1 4.0 6.2 

Table 2 - Table of alignment errors measured by CD (correspondence distance or point-to-point distances of 
corresponding points) and PSD (planar surface deviation) for the 4 methods. Mean and deviation of all 

correspondences are determined for CD. PSD is evaluated for a set of 3 orthogonal surfaces. 

6 Conclusion 
 
It can be seen from Table 2 that CD and PSD agree that Manual and Automatic CHBs provide good 
alignment. CD states that Automatic planes produce the worst alignment while PSD states that Total 
Station CHBs produce the worst alignment. Though both alignment error measures agree as to which 
sets of features produce the best alignment, they disagree as to which produce the worst alignment. 
Further testing and evaluation is required to determine which method is the more meaningful measure 
of error. The CD error method hides variations in error in X, Y and Z so multiple checkerboards on the 
walls reduce the misalignment error in X and Y while hiding the much larger misalignment error in Z. 

This work attempts to assess the accuracy of registration in a novel way by using the spatial 
deviation in the direction of the surface normal of overlapping planar regions from different scans. 
Planar features are found in abundance indoors, and using additional information from these planar 
regions gives for a more detailed analysis of the final registration. In the future, we intend to include 
more information in PSD, to also extend the method to better account for the type of surface in question 
and to analyse a wider range of metrics. 

 
 

Figure 2 - Screenshot of the registered scans of the laboratory and classroom. 
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Abstract 

 

This paper assesses how the combination of different features, colour models and 

SVM kernels affect the classification performance of wheat disease identification. The 

basic approach consists of pre-processing, feature extraction, and classification. Five 

colour models (greyscale, RGB, HSV, YCbCr and L*a*b*), four different feature sets 

(Haralick, Tamura, First-order statistics and HOG features) and three kernels for a 

support vector machine (linear, RBF and polynomial) are assessed in terms of overall 

performance accuracy. Image datasets including non-diseased, Yellow Rust diseased 

and Septoria diseased leaves have been acquired under controlled conditions. The 

results show that homogeneity and contrast or energy features combined with basic 

statistical information such as mean, skewness and kurtosis, and visually perceptual 

features consisting of directionality, contrast and coarseness, which are extracted from 

YCbCr images using a classification model based on a linear kernel, produce the 

highest classification accuracy with low computational complexity 

 

Keywords: Plant Disease Classification, Feature Extraction, Combination of Features, SVM Kernel 

 

1 Introduction 
 
Crop diseases can lead to a substantial decrease in both quantity and quality of agricultural products 

worldwide. To reduce such losses, early notification or continuous monitoring of crops is required. However, 

it is expensive, time-consuming and labour-intensive for experts to accurately diagnose the symptoms 

appearing on a plant, especially in remote areas.  

When plants are infected, they can exhibit a range of symptoms, for example, colour spots or colour 

bands on the leaves, fruit, stems, or seeds. Recently, various image processing techniques have been 

developed for automated disease detection. Automated systems for plant disease identification have played a 

role in agriculture not only for rapid detection but also reducing human error. However, to apply an 

automated classification system to real plant diseases, robust imaging methods are required. The aim of this 

work is to develop an automated plant disease identification system using image processing. We briefly 

discuss previous literature on plant disease classification in Section 2, give the details of our methodology 

and proposed classification system in Section 3, and describe experimentation and evaluation in Section 4. 

Finally, conclusions are given in Section 5. 

2 Literature Review  

General automated systems have four main components: pre-processing, segmentation, feature extraction, 

and classification. Firstly, pre-processing techniques are applied to handle data differences arising from 

different lighting conditions, or capture devices.  The methods used include, but are not limited to, Colour 

Transformation, Colour Correction using a colour chart, and image enhancement. The choice of colour model 

is crucial in representing an image for statistical processing. The standard colour model in computer displays 

is the RGB model. The channels in RGB are highly correlated, so RGB is unlikely to be the best model for 

describing information [1]. The CIELAB (L*a*b*) model provides a normalised and more visually uniform 
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chromaticity and more perceptually uniform luminance [1]. The HSV colour space is an intuitive colour 

model for describing data as well as the HSI colour model, which is designed for image processing [2]. 

Moreover, YCbCr is a model applied in digital video. The Cb and Cr components are employed as 

independent two-dimensional distributions which are unaffected by brightness [3]. Secondly, the pre-

processed data are clustered into several groups such as background and particularly foreground, as regions 

of interest will be segmented out and used in the next process. Widely used methods include K-means 

clustering as a fast and simple technique [4]–[8], Fuzzy c-means [9] as it is more flexible than K-means, and 

Otsu’s thresholding [4], [10], [11] as a robust binary classification. Thirdly, feature extraction is applied to 

calculate disease pattern representation in segmented areas. Various features have been used including 

features derived from the greyscale spatial independence matrix [4], [6], [12]–[15], shape and properties of 

regions of interest [9], [10], [16] and first-order statistical features [9]. Other potential features are widely 

applied in different applications such as HOG features [17] and visual perception features [18]. However, 

there is little evidence to demonstrate the effectiveness of features especially for plant disease patterns. In 

addition, most research studies apply individual sets of features [4], [6], [12], [13], [15], [19] or combine the 

whole set of different features in the system [10], [16]. The more features that are calculated, the more 

computational time is required, and so some studies have applied principal component analysis to remove 

correlated features [16], [20]. Fourthly, the classification models are constructed mainly using Neural 

Networks (NNs) and Support Vector Machine (SVM). Neural Networks are widely used for many 

applications in intelligent systems because of their ability to perform non-linear modelling. However, NNs 

have drawbacks in high computation complexity, a tendency for over-fitting, and lack of explainable 

relationships amongst inputs, outputs and variables [21]. The Support Vector Machine is a well-known 

classification method that is generalisable and able to cope with non-separable data [22]. 

Our classification system comprises pre-processing using different colour transformations, feature 

extraction using many types of features, and classification using SVM. The system is proposed to investigate 

the potential of different colour components, various features and SVM kernels affecting plant disease 

classification performance. Image segmentation is omitted in the automated system as we assume that the 

leaves are already segmented out from the background (though we recognise that this is far from a trivial 

task).  

 

3  Methodology and Proposed Classification System 
 
An automated classification system is proposed and is shown in Figure 1. The system consists of three main 

steps: pre-processing, feature extraction and classification. We assume that leaves have been segmented out 

from the background and that only one main leaf in each image is considered. 

 
Figure 1 Proposed Classification System 
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3.1    Pre-processing 

 
Images were obtained from the UK Food and Environment Research Agency [23] by the University of 

Bristol and the leaves in these images are previously segmented manually from the clutter in order to 

constrain the background conditions. Because of the diversity of captured images in terms of distance and 

orientation, pre-processing (see block  in Figure 1) is then applied to standardise the images.. Firstly, a 

resize operation is performed to each image using nearest-neighbour interpolation. To mitigate for the 

differences in direction of angle of the captured leaves, the orientation angles of the leaves are calculated in 

terms of the directions of the major axes of the leaf ellipses, and then rotation is automatically applied to 

align the main leaf horizontally. Finally, the rotated leaf is cropped to remove empty space (background in 

black pixels). Image resizing and cropping is used to reduce processing time of subsequent feature extraction 

and the rotation process increases the reliability of the extracted features. For this system, five colour spaces, 

greyscale, RGB, YCbCr, L*a*b* and HSV, are used to evaluate their effects on classification performance. 

 

3.2  Feature Extraction 

 
After the images have been pre-processed, the patterns in the images are extracted in terms of Haralick 

features, first-order statistical features, Tamura features and HOG features (see block  in Figure 1). 

 

3.2.1 Haralick Features 

 
Haralick features are developed through the grey-level co-occurrence matrix which measures the spatial 

relationships in image intensity [24]. This relationship is in terms of a matrix of relative frequencies P(i,j,d,) 

between two neighbouring pixels, one with intensity level i and another with intensity level j, and separated 

by distance d at directional angle . Thirteen features based on a normalised matrix p(i,j) are calculated. 

Firstly, Angular Second Moment or Energy (EN) is a measure of uniformity of an image: 

     ∑ ∑ {      }          (1) 

Contrast (CON) measures the variations or spatial frequency of intensity levels for a greyscale image 

at the reference positions and their neighbours: 
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where Ng is the number of quantised intensity levels. 

Homogeneity (HOM) is a measure of local homogeneity of an image. HOM will be high when an 

image is homogeneous because it takes the inhomogeneous area into account less than the homogeneous area 

by use of a weighting factor: 

      ∑ ∑
 

         
                   (3) 

Other features include Correlation, Sum of Squares, Sum Average, Sum Variance, Entropy, 

Difference Variance, Difference Entropy, and First and Second Information Measures of Correlation. 

 

3.2.2 Tamura Features 

 
As some features do not correspond to well-explained image patterns, Tamura features, which are based on 

visual perception, are also introduced [18]. These features include coarseness, directionality, contrast, line-

likeness, regularity, and roughness. The first three features are selected in our classification system and the 

latter three features are omitted as they are combinations of the first three features. Contrast measures the 

polarization of distribution of black and white in an intensity image. Contrast by Tamura is a global property 

based on the skewness value of the image which differs from local contrast by Haralick: 

                
   : where      

  

       (4) 

where      
  

   , μ4 is Kurtosis value. 

Coarseness (COAR) measures the block size in an image that is frequently repeated. The element size 

is large when that image is coarse, whereas the image has fine textures when the element size is small. 

Directionality (DIR) measures the frequency of transition from one colour value to another. An image with 

high pattern frequency tends to have a higher degree of directionality. Images with the same pattern but 

different direction have the same degree of directionality.  

 

3.2.3 First-order Statistical Features (Colour Feature) 

 
These features measure basic statistical information in an image. Mean (MEAN, μ) and standard deviation 

(STD, σ) determine a global average and variation of an intensity image, respectively. Skewness (SKEW) 
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measures asymmetry of the intensity probability distribution (p(i)). Skewness can have negative or positive 

values: 

        ∑           
 

   
        (5) 

Kurtosis (KUR) measures the shape of the probability distribution relative to the standard normal 

distribution, and the value is based on the fourth moment of the data. A higher kurtosis value implies a 

broader and taller distribution shape, whereas a lower kurtosis indicates a narrower and shorter distribution 

shape: 

       ∑           
 

   
       (6) 

 

3.2.4 Histogram of Oriented Gradients (HOG) 

 
Histogram of Oriented Gradients measures the local edge distribution of an image [17]. HOG features are 

calculated by the following processes. Firstly, an image is divided into a number of windows, and each 

window contains overlapping blocks. Each block comprises non-overlapping cells for which histograms of 

gradient orientation are computed. To cope with a variety of local contrast, normalization is applied to the 

HOG vector for each block separately. All vector components from each block are combined to create the 

HOG descriptors. The final HOG descriptor is an average of all vector components from sliding windows in 

the image. 

 

3.4  Classification 

 
Support Vector Machine (SVM) has been shown to obtain high classification performance and good 

generalization from various studies. It is a supervised learning method which is based on the basic concept of 

searching for an optimum hyperplane to separate training data into two classes with maximum margin (see 

block  in Figure 1) [22].  

 

In some classification problems, a simple linear hyperplane cannot be applied to divide groups of data 

efficiently, especially when handling data that have a number of dimensions. Thus, a non-linear function is 

represented in the discrimination function instead of a linear function. Assuming the weight vector is a linear 

combination of training data, the function is expressed in terms of a dot product of kernels. This kernel 

function, which avoids the explicit mapping of data into the high-dimensional feature space, plays a vital role 

in improving performance. The widely used types of kernel functions include Radial Basis Function (RBF), 

Polynomial, and Multilayer perceptron [22].,To determine the hyperplane function which divides particular 

datasets properly is crucial. The last step of the process aims to discover the best fitting model from three 

kernel characteristics, namely linear, polynomial, or RBF. 

 

4  Experimental Results 

 
The system proposed in Figure 1 is implemented in MATLAB 2012b. Image data were collected by the UK 

Food and Environment Research Agency [23] (Figure 2 (a)-(b)). The leaves in each image were initially 

segmented out from the background manually (Figure 2(c)-(d)). Firstly, the system was tested for binary 

classification (i.e., yellow rust disease or non-disease) using 5-fold cross-validation on 50 non-diseased and 

50 Yellow Rust diseased leaves. For pre-processing, the images are resized into 300x300 pixels, then rotated 

to arrange the leaves horizontally, and finally cropped to remove major areas of background (now 

represented as black pixels). RGB images are converted to greyscale, HSV, YCbCr, or L*a*b* models, from 

which each model is used individually or a combination of different colour models is used. 

 
 (a) Non-disease  (b) Yellow Rust disease (c) Segmented non-disease (d) Segmented Yellow Rust  

Figure 2 Wheat diseased and non-diseased images in the experiment 

Thirteen Haralick features are created using relative information for pixels in an image with their 

consecutive neighbouring pixels at a zero directional angle. Also, the intensity levels of an image are 

quantised into 8 levels, creating an 8x8 spatial matrix for each colour component. Histogram of oriented 

gradients is calculated using average HOGs from all sliding windows in an image. Optimal window size is 

empirically set to 32x64 pixels with 50% overlap between blocks. Each block contains 2x2 cells and each 

cell size is 8x8 pixels. For SVM classifier, the scaling factor of the RBF kernel and the polynomial degree is 

set empirically to 1 and 2, respectively.  
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Initially, the combinations of four popular main Haralick features (homogeneity, energy, contrast and 

correlation) were investigated. It was found that the combinations of homogeneity and energy/contrast 

produced the highest binary classification accuracy, so these combinations were carried into the next phase of 

experiments. For the other nine Haralick features, different entropy, sum variance and first information 

measures of correlation have potential to improve classification accuracy; whereas combination of all four 

colour features and all three Tamura features have dominant on the classification accuracy. Hence, all 

combinations of four colour features and three Tamura features were carried into the next phase of 

combinations among feature sets for bi-class classification and multi-class classification.  
Performance of the system for binary classification using a mixture of different features is shown in 

Figure 3. From the results, YCbCr and L*a*b* colour spaces have a significant influence on classification 

performance. Similarly, the SVM linear kernel is the best classifier to describe feature distribution for this 

dataset compared to RBF or polynomial kernels. Homogeneity of Haralick features and colour features 

(mean, skewness and kurtosis) are effective features to classify disease or non-disease leaf images as it is 

seen that these features always present in the best eleven accuracy results up to 98.5% in Figure 3(a). 

 
(a) Classification Accuracy 

 
(b) Computational time 

Figure 3 Top eleven accuracies for wheat binary classification (disease/non-disease) 

Computational complexity for each classification is shown in Figure 3(b). It is simple to calculate 

Haralick and colour features, so the combinations containing only those features show low computational 

times as shown in the first bar in the chart in Figure 3(b); the classification time is less than 100 milliseconds. 

The computational times of Tamura and HOG features are relatively higher than the other two feature sets as 

they require many steps to calculate each feature; the fifth bar in the chart shows that with these additional 

two feature sets the computational time increases by about 300 milliseconds (from 81 msec to 440 msec). 

       
 (a) Classification Accuracy (b) Computational time 

Figure 4 Top six accuracies for wheat non-disease and disease 

These feature sets were also investigated for multi-class classification (non-disease, Yellow Rust and 

Septoria diseases) as shown in Figure 4. Similar to binary classification, the best six mixtures of features, 

including two Haralick features (homogeneity and contrast or energy), two Tamura features (coarseness and 

directionality) and colour features, give the highest accuracy of up to 95%. When we combine HOG with 

other features we found that there is little improvement in accuracies compared to the use of HOG alone, and 

classification accuracies are less than for the feature combinations without HOG. The processing time for 
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computing only the colour feature set is the least at approximately 30 milliseconds, and the classification 

accuracy shows a high value at 93% (fifth bar in the chart in Figure 4(a)-(b)). 

 

5  Conclusion 

Since using too many features may cause over-fitting and also require more computational time, the 

classification system discussed in this paper is proposed to assess effectiveness of features from different 

feature sets, such as Haralick features, first-order statistical features, Tamura features and HOG features. The 

results show that the most efficient features include, but are not limited to, two Haralick features (mixture of 

homogeneity and contrast or energy), three Tamura features and colour features. Use of only the HOG 

features is also a potential approach for classification, but the combination of features mentioned above 

performs better in both binary and multi-class classification. Also, processing times in calculating Haralick 

and colour features are less than for Tamura and HOG features. Following the experiments, it is planned that 

the effective sets of features be implemented in lightweight systems, such as a mobile application for real 

plant disease classification. 
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Abstract

In recent years, safety of passengers on moving transport has been of paramount importance and
this has led to an increase in the number of CCTV cameras fitted on buses and trains for monitoring
purposes. Automated Computer Vision systems are expected to perform background subtraction on
the footage from these cameras for various reasons like person detection, tracking etc. However, the
scene is quite unique especially because of the dynamic background present in the bus window region.
Normal background subtraction techniques cannot differentiate between this dynamic background
and the foreground inside the bus. As the scene outside the bus is dependent on the motion of the
bus, we investigate the use of optical flow to counteract this problem. We provide the results based
on our initial experiments and show that this is a promising approach for this type of scenario while
suggesting improvements to our initial approach.

Keywords: Optical flow, Mixture of Gaussians, Background Subtraction, Video Surveillance

1 Introduction
Classifying a scene into foreground or background is an essential component in many Computer Vision
systems. Foreground is the part of the scene that one may be interested in segmenting for further analysis
and background forms the rest of the scene. In simple scenarios, the background is static and does not
change while the foreground usually changes with time. But real time scenes have a more complex
background because of various factors like motion in the background, shadows or reflections in the
scene, change in illumination etc. All these factors make the segmentation problem quite difficult. In this
paper, we look into analysing CCTV footage on moving transport like buses and trains. This scenario
is different from general background subtraction problems because the background is a combination of
fixed and moving elements. The scene in the window region of the bus changes dynamically based on
the environment outside the bus. This is hard to predict especially when the bus or train is in motion.
Most of the above mentioned complexities like reflections, changes in illumination also occur in this
region.

This paper extracts the motion information of the bus by using optical flow and combines it with the
general background subtraction output to differentiate between the dynamic background and the fore-
ground region. This differentiation is the key problem in this type of scenario and normal background
subtraction methods that do not use any motion information fails to do this. The unique difference
between the foreground and the dynamic background is that the dynamic background region is highly
influenced by the motion of the bus whereas the foreground is not. Apart from this single factor, both
the regions vary in a similar manner in terms of intensity, colour etc. Thus, the motion information is
used to separate the foreground and the dynamic background from the background subtraction output.
A brief overview of the background subtraction technique and the optical flow method are provided in
the next two sections followed by the combination of the two with some examples from the experimen-
tal results. Finally, the possible hurdles with this approach are discussed with suitable suggestions and
ideas provided for these problems.

2 Background subtraction
Classic background subtraction approaches work by modelling the scene based on the pixel distribu-
tions. There has been a lot of research done in this field to model backgrounds ranging from simple
static ones to complex dynamic cases. Probably the most widely used method in this area is the Mixture
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Figure 1: Typical CCTV image, the corresponding ground truth and a typical background subtraction
output

of Gaussians (MoG) approach by Stauffer and Grimson [8] where the background modelling is done as a
multi modal combination of Gaussian distributions. Non-parametric modelling has also been used in the
past [3] to model pixels without the assumption of an inherent probability distribution. Wallflower [9]
is a background maintenance algorithm that combines three different components (pixel-level, region-
level and frame-level) to subtract even dynamic backgrounds from the scene. Their system works well
for most of the dynamic background cases like illumination changes, shadows etc. There have been
various other MoG algorithms [1] developed that are derivatives of the original Stauffer and Grimson
algorithm. The problem with all these background subtraction algorithms is that in this particular sce-
nario of a moving transport, they are not very effective as the dynamic background has very similar
properties as the foreground. Pixel modelling alone will not be able to differentiate between the two
regions.

Mixture modelling is done based on the assumption that the background pixels are constant over a
large period of time and therefore can be modelled to have larger weights and low variances whereas the
foreground pixels are constantly changing thus modelling them with smaller weights and high variances.
Any pixel location can have a combination of these background and foreground pixels and classification
is done by building a background model and checking whether a pixel falls within this model or not.
The probability of observing a pixel value is given by

p(xt) =
K∑

k=1

ωt
k∗N (xt|µt

k,Σ
t
k) (1)

where xt is the pixel value at time instant t, K is the number of mixtures, ωk, µk,Σk are the weights,
means and variances of the different mixtures and N denotes a Gaussian distribution.

The model is updated over time by updating the parameters of the closest mixture {ωt
k, µ

t
k,Σ

t
k} that

matches the current pixel xt with the update equations (2)-(4). A match is said to be found only if the
mixture is within a certain distance from the pixel. If not, a new mixture is created replacing the mixture
with the lowest weight at that particular time instant.

ωt
k = (1− α) ∗ ωt−1

k + α (2)

µt
k = (1− ρ) ∗ µt−1

k + ρ ∗ xt (3)

Σt
k = (1− ρ) ∗ Σt−1

k + ρ ∗ (xt − µt
k)2 (4)

Figure 1 shows the major problem when using background subtraction algorithms in this environ-
ment. The person is the foreground and the scene outside the window is part of the background in this
scene. However, as the bus is in motion, the background part changes unpredictably and this results in
the output of the background subtraction algorithm including this part of the scene as well.

Numerous other pixel based background subtraction algorithms are available in literature, some
more sophisticated than others, but the general theme here is to model the pixel distribution based on
their intensity or colour. The problem with all these algorithms is that they will view the window region
as another foreground as it has characteristics very similar to any typical foreground dealt with by these
algorithms.

3 Flow Information
The idea of using optical flow to aid in the segmentation is based on the knowledge that as the vehicle
moves, the scene in the window region appears to move in the opposite direction of the motion of the
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Figure 2: Two consecutive frames from an empty bus scene and the corresponding flow field for the bus
window region

vehicle. The problem with traditional background subtraction methods is that they fail to differentiate
between the actual foreground (people or objects inside the bus) and the dynamic background (scene
outside the bus). However, with the motion information available, it can be used to separate the window
region from the region of interest inside the bus.

A well-known global method is the Horn-Schunck approach [4] that assumes that the optical flow is
smooth over the entire image. Lucas-Kanade method [7] is a widely used local approach that minimises
the square difference between two images over a region. Global methods provide a dense field of flow
vectors whereas local methods are less sensitive to noise in the image. Some researchers have tried to
get the best of both worlds by combining the local and the global methods [2]. In this work, we use a
multiscale coarse to fine approach based on [2] to compute a dense flow field [6].

Previously, optical flow has been combined with background subtraction in [10] to extract moving
objects in noisy environment and in [5] for detection motion in large crowds. In this paper, the back-
ground subtraction output obtained from the online Mixture of Gaussians is combined with the optical
flow method in the following manner. The flow vectors are used to separate the scene into various bins
based on the angle at each pixel. From these bins, the ones corresponding to the window region are
chosen to generate a magnitude map. This map is then used to subtract the window region from the
output of the background subtraction method with the help of a logical operator and produce the final
output containing only the foreground.

4 Experiments and Results
Our experiments were performed on our dataset created by using a CCTV camera inside a bus. In the
video, the bus is initially empty and it starts moving after a while following which a person enters the
scene and takes a seat in front of the bus. Fig. 2 shows two consecutive frames from a typical scene
from the CCTV camera inside an empty bus that is in motion and the corresponding flow vectors after
applying optical flow on these two frames. Taking a closer look in Fig. 2, it shows the direction is
predominantly in a direction opposite to that of the direction of the bus. It should also be noted that
the motion vectors are only well-defined in areas that are not uniform throughout. This could be due
to the presence of an object or a structure in the dynamic background region. This is a common issue
while using optical flow as it is known to not work properly in general in a uniform region devoid of
any texture. But on the other hand, if the region is uniform, it can be compared to a static background
without much change in the colour information thus not posing much of a problem in subtracting it.

In Fig. 3, a frame is shown from the video with a person present in the scene along with its magnitude
heat map. This heat map is generated by normalising the magnitude of motion vectors and using a
grayscale colour map to display the different levels of magnitude, with black corresponding to the lowest
values and white corresponding to the highest values. This figure shows that the dynamic background
region has higher magnitudes of motion when compared to the foreground region which in turn has
a higher magnitude compared to the static background region inside the bus. The magnitude in the
foreground region arises from the slight swaying of the person while sitting inside the moving bus. This
type of map is the most commonly encountered scenario in the moving transport however, there can be
times when the foreground region can have higher magnitudes comparable to the dynamic background
region, for example, when the person walks into or out of the scene.

Now, once the motion vectors are obtained, the pixels are clustered into bins based on their angles.
This is done in order to separate the image into similar regions based on the direction of motion. We used
12 bins to divide the angles (360◦). This can be looked upon as an angle based histogram. However,
this might result in some stray pixels from the inside of the bus to be clustered along with the window
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Figure 3: Typical scene with person and the corresponding magnitude heat map

Figure 4: The magnitude heat maps clustered into different bins based on angles. Notice how the
window region falls predominantly under different bins than the ones that have the person in them

region. In order to separate these regions, the magnitude of motion is used in unison with the angles.
The magnitude of motion is much larger in the window region when compared to the other regions
of the bus. Therefore, when the appropriate angles are chosen, they can be multiplied based on their
magnitude to differentiate between regions.

Fig. 4 shows an example frame where the entire frame is split into 12 subplots based on the 12
bins mentioned above. This means the image under bin 45 shows all pixels having vectors with angles
between 30◦ and 59◦. The magnitude of these vectors have been normalised over grayscale as above.
Note that this number 12 is an arbitrary choice and was chosen so that the number of bins are not too
many and not too few. In this figure, the window region falls entirely under the bins with central angles
45, 75, 105. The foreground is mostly included under the bins with central angles 165 and 195. It
was noted from our experiments that the dynamic background mostly fell under the angles 60 and 150
while the foreground did not stay under specific bins continuously from frame to frame. This is because
the person usually sways in his seat thus causing the dominant angles of the motion vectors to change
randomly whereas the motion of the scene outside the bus mostly moved at an angle opposite to the
motion of the bus. This reiterates our idea at the beginning of the paper. In Fig. 5, the window region
is isolated by selecting the appropriate bins based on the central angles mentioned above. It can be seen
that these angles are opposite to that of the direction of motion of the bus.

Now, once this region has been isolated, it can be combined with the output of the background
subtraction method by a simple logical operation that retains the foreground but removes the dynamic
background from the output. Figure 6 shows the three results side by side for various frames from the

Figure 5: Clustering of the bins containing the angles between 60 and 150. This image clearly shows
that the window region has been isolated from the foreground
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Figure 6: Segmentation result for an example frame from the video. Left: Original Frame; Middle:
Output of the Background Subtraction method; Right: Final Output combining the Optical flow and
Background Subtraction outputs

Table 1: Quantitative Analysis

Frame no. True Positive Rate False Positive Rate
BGSub Output Final Output BGSub Output Final Output

91 NO FG NO FG 3.84 1.93
104 76.29 76.26 3.99 0.83
119 84.20 82.83 4.05 2.17
134 86.64 84.85 4.08 2.06
147 86.63 84.60 4.20 1.94
163 83.22 83.00 3.59 1.01

video sequence. It can be clearly seen that the dynamic background region is mostly removed from the
final output.

Table 1 shows the true positive rates and the false positive rates for a few different frames obtained
by comparing the results with our manually labelled groundtruth images. It can be seen that the false
positive rate reduces in the final output which corresponds to the subtraction of the dynamic background
region. Note that frame number 91 does not have any foreground in it hence the true positive rate cannot
be calculated for it. Fig. 6 shows the results for a typical frame (Frame no. 163 from Table 1). The
middle image of Fig. 6 is the output of the mixture of Gaussians approach while the right column shows
the output after combining with the flow information. It is evident from Fig. 6 that the decrease in
false positives is because the pixels in the window region are subtracted quite well with the combined
method.

The experiments show that there is a correlation between the motion of the bus and the dynamic
background region. This motion information helps remove the background from the segmentation out-
put. However, we noticed few drawbacks in using optical flow for generating motion vectors. The first
one is quite obvious in that optical flow is known to be quite sensitive to noise and the quality of the
CCTV camera footage is usually not very good and it tends to affect the output of the flow vectors. This
in turn affects the final segmentation output as it is dependent on the optical flow output.

It was mentioned previously that the person swaying in his seat results in flow vectors in random
directions. There is a possibility that the direction of motion of the person could mirror the direction
of motion of the scene in the window region. This results in bad clustering of the foreground and the
dynamic background into same bins. One such example is shown in Fig. 7 where part of the foreground
region is subtracted along with the background. This happened in a few frames in our experiments and
the consequence is that the foreground also gets subtracted along with the background while performing
the logical operation. The method of choosing the bins to isolate the dynamic background region is
done in a heuristic manner and although it works fine in most cases, it is not optimal but additional
information like the speed of the bus could be used to aid in the clustering process. This is an area we
will be looking into, in the future. We will also be looking at the combination of the optical flow based
motion features and the pixel colour features in the background modelling process to produce a better
statistical model of the scene.
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Figure 7: Segmentation output for an example frame when the angle of the foreground region matches
the dominant angles of the bus window region. Left: Original Frame; Middle: Output of the Background
Subtraction method; Right: Final Output combining the Optical flow and Background Subtraction out-
puts

5 Conclusion
This paper is an initial investigation into this unique topic of background subtraction in moving transport.
We showed why probability based background subtraction methods fail to perform well in this scenario.
We looked into the use of optical flow to obtain motion information which would aid in better subtraction
of the dynamic background region. The initial results look promising and future research directions
include more complex cases like multiple people in the foreground and combining the colour and flow
features in the background modelling step.
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Abstract

Microlens-based light field cameras, which are capable of recording both angular and
spatial information of light, are already commercially available as consumer commodi-
ties. Intrinsically, the large f -number and the use of a microlens array introduce a more
severe vignetting effect than a conventional camera. Proper devignetting is required to
reconstruct a high quality light field from the captured 2D raw image. In this paper, a 2D
Gaussian kernel is proposed to model the microlens image vignetting and local parame-
ters are estimated by solving a nonlinear optimization problem. We assume this kernel is
smoothly varying across the whole image. The global parameters are estimated by poly-
nomial fitting. Our results show that it accurately predicts the vignetting effect. We also
demonstrate successful vignetting correction based on our modeling prediction.

Keywords: Light Field Imaging, Vignetting, Gaussian Kernel, Non-linear Optimization

1 Introduction

In contrast to conventional cameras which capture light intensity, light field cameras capture
the radiance of the light. A single pixel of a 2D image sensor collects photons coming from all
directions and converts them to electrons. To avoid the loss of the directional information, an
array of microlenses is inserted between the main lens and the image sensor [Ng et al., 2005].
With this optical setup, the light rays inside the camera body can be parameterized by 4D
coordinates [Levoy and Hanrahan, 1996]. Knowing the travel path of light rays from objects
to the sensor enables novel applications such as refocusing, changing perspective and depth
estimation. However, in such a spatially multiplexing device, the price to pay is the significant
loss of spatial resolution.

Vignetting refers to the gradual fall-off of light intensity from the center of the image cap-
tured by an imaging system [Smith, 2007]. It is a common imaging phenomenon and is usually
corrected in the camera processing pipeline along with other processing steps such as demo-
saicing, distortion correction and noise reduction. The sources of vignetting can be classified
into natural vignetting, optical vignetting, mechanical vignetting and pixel vignetting. Short
focal lengths, large apertures and large format sensors introduce more severe vignetting effects
in imaging systems.

A microlens-based light field camera exhibits severe vignetting effects due to two factors.
First, the pixels underneath each microlens can be seen as a large format sensor. As a result
of natural vignetting, also known as the cosine-fourth law, the edge pixels receive much less
light than the central ones. Second, a microlens-based light field camera has a constant, large
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f -number1, usually as large as f/2. For such an optical configuration in a conventional camera,
vignetting effects are always significant.

(a)

Main Lens

Microlens
Aarray

Image
Sensor

(b)

(c)

Figure 1: (a) The Lytro camera. (b) The internal structure of a microlens based light field
camera. The pixels underneath the microlens record the directional information of the light
rays. (c) Detail of a raw image captured by a Lytro camera. The closeup view (green window)
shows the distorted microlens images as evidenced by the non-circular shapes caused by optical
vignetting.

2 Related Work

Vignetting correction is a well-explored topic in optics and computer vision. It is also known
as flat-field correction (FFC) in astronomy. The most simple and efficient approach to FFC can
be written [Lindfors, 1998],

I ′(x, y) =
I(x, y)− IB(x, y)
IU (x, y)− IB(x, y)

M (1)

where IB is a dark frame, IU is the uniform illumination image, I is the uncalibrated image,
I ′ is the flat field corrected image and M is a normalizing constant.

Evidently, the above approach is simple and robust for any optical imaging system. How-
ever, it requires a large amount of memory to store the reference images with different op-
tical configurations, i.e. focal distance, exposure time, etc. Accurate prediction of light in-
tensity fall-off and modeling the vignetting effect can significantly reduces the memory re-
quirement . A quadratic polynomial function [Sawchuk, 1977] and a hyperbolic function
[Yu et al., 2004] have been proposed to approximate the light fall-off profile across the im-
age. In [K. Sooknanan, 2012], a multi-frame approach was proposed for removing vignetting
of underwater video sequences.

According to our knowledge, our work is the first attempt to model the vignetting effect for
a light field camera. In [Dansereau et al., 2013], a light field camera decoding and calibration

1The f number or focal ratio is defined as the focal length divided by the aperture diameter
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pipeline is proposed, but the vignetting is corrected by a traditional FFC approach. In contrast,
our work demonstrates modeling and removing vignetting with global and local parametric
fitting.

3 Microlens-based Light Field Camera Image Formation

As illustrated in Fig.1(b), in order to avoid the loss of angular information, a microlens array
is inserted at the image plane of the main lens [Ng et al., 2005].2 With this optical setup, each
microlens image is an image of the exit pupil, viewing at different angles on the image plane.
Ideally, the microlens image has a circular shape. In practice, due to light rays being blocked
by the apertures of the main lens elements, we observed severe distortions for the off-axis
microlens images as shown in Fig.1(c). This effect is also discussed in [Aggarwal et al., 2001].

4 Vignetting Modeling

4.1 Local Parametric Kernel Estimation

In [Kee et al., 2011], a spatially smooth 2D kernel is proposed for estimating the image blur
kernel to restore images. Inspired by their work, we choose a two-dimensional Gaussian func-
tionG(Σ, a) to fit the light intensity profile of each individual microlens image. The orientation
is controlled by single one parameter ρ. All the parameters can be obtained by minimizing the
energy function,

{Σ̂, â} = argmin
Σ,a

M∑
m=0

N∑
n=0

||Im,n −G(Σ, a)||2 (2)

where the 2D Gaussian function is expressed as,

G(Σ, a) =
exp(−xTΣ−1x)

a|Σ|1/2
(3)

The covariance matrix Σ is

Σ =

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
(4)

x is the spatial coordinate vector in the microlens image. The Levenberg-Marquardt algo-
rithm [Levenber, 1944] is used to solve this non-linear optimization problem. Fig.2 shows the
fitting performance for different microlens images at different locations. Our model ensures
the errors are consistently at an acceptable level.

4.2 Global Parametric Fitting

The orientation of each microlens image varies smoothly in spatial coordinates. Polynomial
functions are employed to model the global variations of the local parameters a, σ1, σ2 and ρ.
To balance the approximation accuracy and computational complexity, we use a fourth order
polynomial. Table 1 shows the impact of the polynomial order on the final approximation
result. Fig.3 shows a real example of the global fitting result for the local parameters. We
discard the 10% estimated local parameters from the poorest fit microlens images to obtain
global parameters a, σ1, σ2 and ρ.

2In an alternative optical setup, the so-call focused plenoptic camera [Lumsdaine and Georgiev, 2008], a mi-
crolens array is positioned at the image plane of the main lens.
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255
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Figure 2: (a) The ground truth microlens array image generated by simulation. (b) Microlens
image fitting results at different locations. The first row is the ground truth microlens image,
second row is the parametric fitting result, the third row is residual errors. For the purpose of
visualization, the errors are magnified by a factor of 10.

1st 2nd 3rd 4th 5th 6th
a 10.0558 0.0200 0.0189 0.0171 0.0168 0.0160
σ1 0.1391 0.0684 0.0676 0.0549 0.0543 0.0526
σ2 0.1583 0.0707 0.0686 0.0520 0.0512 0.0493
ρ 15.9008 21.9774 1.9110 1.4530 1.4195 1.3246

Table 1: The parameter estimation errors from 1st to 6th order polynomial fitting. Based on the
performance and complexity, 4th order polynomial fitting is our choice.
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Figure 3: Global fitting result for the four local parameters. Top row are the measured results.
Bottom row are the polynomial fitting results. From left to right, the figure corresponds to
parameter ρ, σ1. σ2 and a respectively.

5 Experimental Result

Our experiment is based on the first commercially available consumer light field camera, the
Lytro3. It has approximately 360 by 380 microlenses. There are around 10 by 10 pixels under
each individual microlens. The resolution of the image sensor is 3,280 x 3,280 pixels. To
maintain the uniform illumination, we place a diffuser in front of the Lytro camera. A sequence
of uniform illumination images and a dark frame with the same zoom and exposure settings are

3www.lytro.com
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captured. The average image of the sequence is used for our modeling. In order to verify our
vignetting correction result, we reconstruct the multiview array image from the light field raw
data. Detailed implementation can be found in [Dansereau et al., 2013] and [Cho et al., 2013].
In Fig.4(b), (c), we show that our approach significantly reduces the intensity variation between
views and provides smooth vignetting correction in single view images.

6 Conclusion

In this paper, we present the modeling and correction of vignetting for a microlens-based light
field camera. Using our approach, the vignetting effect can be successfully compensated. How-
ever, there are some over-compensated regions around the edge of the corrected multiview im-
age array. The vignetting compensation factor is much larger in those regions because light
falls dramatically at the edge of the microlens. The errors of the microlens center position
estimation leads to the prediction errors. In our future work, we will investigate how to accu-
rately identify the center of each microlens image and how to compose an effective boundary
constraint to suppress the over compensation.
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Figure 4: (a) The 7 by 7 multiview image array of a natural scene reconstructed from raw light
field data. Each view’s spatial resolution is 512 by 512. From left to right: without vignetting
correction, with FFC approach vignetting correction, our approach. (b) The intensity profile of
a horizontal 7 views. From Top to bottom: without vignetting correction, with FFC approach
vignetting correction, our approach. (c) Top is the correction coefficients plot. Bottom is the
intensity profile plot.
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Abstract

This paper describes a method for the classification of seabed type from a video cap-
tured by a camera mounted on a towed vehicle that is dragged along the sea floor. Classifi-
cation of seabed type is important for the mapping of marine habitats. Unlike other meth-
ods that are based on various sonar technologies, the proposed method is based purely
on video frames. The aim is to tell from a single frame, what seabed type is present. A
supervised learning approach is adopted, with a total of 5 different seabed types being
represented. We developed a set of 6 image features to characterise the visual appearances
of these seabed types. Both k-Nearest Neighbours (kNN) and Support Vector Machine
(SVM) classifiers are implemented based on this feature set. Our analysis shows that is
possible to achieve a cross-validation error of 10% for the 5-class problem.

Keywords: Marine Surveillance, Seabed Classification, Habitat Mapping, Supervised Learn-
ing

1 Introduction

Knowledge of seabed habitats is important for both environmental and commercial purposes
[Robinson et al., 2009]. Environmental Impact Assessments (EIAs) are often required for the
licensing of marine development or fishing operations. Furthermore, EU legislation, namely
the Habitats Directive [European Community, 2007], requires member states to contribute to a
European ecological network specifying special areas of conservation within their territories.
To this end, each state must conduct seabed surveys to establish if areas of conservation exist
within their territories [Sotheran et al., 1997].

At present the majority of seabed surveys are conducted using various sonar technolo-
gies such as backscatter and AGDS [Collier and Brown, 2005]. These acoustic methods, how-
ever, provide results which are hard to interpret and require ground-truthing (often by the
acquisition of sample grabs or underwater photography) to establish the true seabed type
[Blondel and Murton, 1997]. Video is less commonly used to acquire survey data as it re-
quires the extra expense of mounting cameras on vehicles that are either towed or remotely
operated [Robinson et al., 2009, Davie et al., 2008]. However, it is easier to visually identify
seabed type from video and also allows the identification of marine flora and fauna that are
indicative of habitat present.

The aim of our work is to develop a system than can automatically classify seabed type
from an underwater video captured by a camera mounted on a towed vehicle dragged along
the sea floor. This would reduce the amount of time spent on manual analysis of these surveys
and hence accelerate the acquisition and analysis of new data. We treat the classification as
an image texture analysis problem and we use 6 features to characterise the texture of each
video frame. Unlike related work [Pican et al., 1998, Davie et al., 2008], our method adopts a
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Figure 1: Examples of the 5 types of seabeds classified by our method. From Left to Right:
Boulders, Cobbles, Pebbles, Sand and Shells.

Table 1: The number of examples of each class in the training set.

Class Boulders Cobbles Pebbles Sand Shells
# Images 11 4 11 66 19

supervised learning approach. This allows the classifier to be explicitly trained to determine
type according to accepted definitions (eg. the EUNIS (eunis.eea.europa.eu) or JNCC
(jncc.defra.gov.uk/page-1584) classification systems) and, given sufficient training
data, would allow the classifier to work under different lighting conditions, geographical loca-
tions and with different vehicles. A second key difference is that classification is performed at
frame resolution rather than identifying multiple seabed types within a frame. This is a rea-
sonable approach as the field of view is typically much less than the recommended 5 × 5 m2

resolution specified by the EUNIS mapping instructions.
The remainder of the paper is organised as follows. The next section describes the test

data and how it is used to generate the ground truth for both the training and testing of the
classifiers. This is followed by a description of the feature set. Section 3 provides details of the
classifiers implemented and presents the results of our experiments. The paper concludes with
a discussion of our results and outlines avenues of future work.

2 Methodology

A total of 111 images were extracted from an underwater video from the HABMAP dataset
[Robinson et al., 2009] and were manually classified into five seabed types of Boulders, Cob-
bles, Pebbles, Sand and Shells. Figure 1 shows an example of a video frame containing each
seabed type and the number of examples of each type is given in Table 1. Only a small number
of the video frames were suitable due to the large amount of motion blur present and because
the camera was periodically stationary. Since the salient image content is unchanging while the
camera is stationary, features are only estimated for one frame of each stationary period. This
frame was extracted manually. All of the images were first pre-processed to mitigate against
the uneven lighting present. This was performed by filtering the image with a low-pass filter
with a narrow bandwidth and subtracting it from the original image.

From each of these pre-processed images six features were extracted for use in the seabed
classifier. The features were designed to exploit the various image texture properties of each of
the seabed classes. Each feature, bar one, was scaled so as to have zero mean and unit variance.
This step was performed as the scale of each feature differed greatly and so added an error to
the classification results.

Number of Edges

The first feature calculated is the number of edge pixels in the example image. This is an
obvious choice since, for example, the sand class would contain fewer edges than other classes.
An edge map was estimated from the edge() function in Matlab using the Prewitt edge detector
[Prewitt, 1970]. The threshold for all of the frames was chosen to be the mean of the threshold
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values for all of the training examples obtained by setting the automatic threshold flag in the
edge function. The number of edges feature is given by the total number of non-zero values
in the edge map. An obvious drawback of this method is the falsely inflated number of edges
introduced by the time and date stamp in the bottom left corner. For training and testing of
the classifier with the same dataset this offset in the number of edges would remain relatively
constant and so can be ignored. However, to make the feature useful in general, this could be
accounted for by ignoring the parts of the frame where the timestamp is located.

Mean Colour

As colour is a prominent feature across the seabed types, with sand exhibiting a greater yellow
hue compared to the remaining classes, a mean colour feature was calculated by taking the
mean of each of the RGB channels and returning the average of these three values.

Discrete Wavelet Transform Coefficient Energies

The Discrete Wavelet Transform (DWT) is a useful tool for texture analysis [Smith and Chang, 1994]
and breaks down the texture into various bands according to texture orientation and frequency
content. We developed three separate features based on the energy of the horizontal (CH ), verti-
cal (CV ) and diagonal (CD) bands at the third level of the wavelet transform [Arivazhagan et al., 2005,
Kociolek et al., 2001]. For this paper the ‘bior2.2’ wavelet, a symmetric biorthogonal wavelet,
was selected for the DWT. Each of the features, Ex, are calculated from the DWT coefficients,
Cx, by

Ex =
1

N

∑
C2
x (1)

where x = H, V or D and N is the number of coefficients.

Co-occurrence Matrix Correlation

A Grey-Level Co-occurrence Matrix (GLCM) is a statistical method used to examine the tex-
ture of an image through the spatial relationship between the pixels [Nanthagopal and Sukanesh, 2012].
The GLCM is created by calculating the number of times pixels with intensity i and j, sepa-
rated by a distance d in a specified direction, occur in an input image [Haralick et al., 1973,
Pican et al., 1998]. The GLCM is constructed with the (i,j) location of the matrix representing
the calculated number of occurrences of the i and j pixels.

The GLCM is, in fact, calculated from a quantised version of the input image. The default
quantisation is used for this feature which scales all of the grey level intensities to integers
between 1 and 8. This decreases the size of the GLCM to an 8x8 matrix and so lowers memory
overhead and computation time and allows the matrix to be more densely populated. However,
the distance and direction of the pixel pairs, known as the offset, was altered from the default
of one pixel distance in the horizontal plane. For this feature the distances were chosen as
1, 2, 3, 8, 16 and 32 pixels so as to give a range of GLCMs based on increasing distance
[Ghazali et al., 2007]. In addition, GLCMs were estimated for both the horizontal and vertical
orientations, giving a total of 12 GLCMs.

Haralick proposed a number of features suitable for texture analysis that can be extracted
from a GLCM [Haralick et al., 1973]. In this work the GLCM correlation was chosen as a
feature and is calculated on each of the GLCMs after having been normalised to sum to one.
The correlation of a GLCM is calculated as

Correlation =

N∑
i

N∑
j
(ij)p(i, j)− µxµy

σxσy
(2)

where p(i, j) is the normalised GLCM and where µx, µy, σx and σy are the means and standard
deviations respectively of the sums of the rows and columns.
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Table 2: Cross-validation errors for the one-v-the-rest SVM Classifiers.

Kernel Type Boulders Cobbles Pebbles Sand Shells
Linear 29% 19% 8% 5% 5%

RBF (σ = 1) 10% 18% 6% 5% 3%
Polynomial
(3rd order)

5% 15% 9% 4% 5%

This correlation provides an indication of how correlated a pixel is to its neighbour over the
whole image. This value ranges between -1 and +1, corresponding to a perfectly positively or
negatively correlated image. As the correlation of constant textures is non-determined, feature
scaling was not performed on this feature. The correlation feature is the mean of the coefficients
for the 12 GLCMs.

3 Results

The k-Nearest Neighbours (kNN) and Support Vector Machine (SVM) classifiers were both
developed to classify the seabed images. The kNN classifier is referred to as a lazy classifier and
implementation of a multi-class classifier is straightforward. However, it is computationally
inefficient at classifying unknown examples when the amount of training data is large. The key
parameter in the kNN classifier is the value of k, which implicitly defines the complexity of
the decision boundary between the classes. On the other hand, SVMs are much more efficient
at classifying unknown examples once training has been completed. However, optimising an
SVM for more than 2 classes is not straightforward. The notion of a kernel is central to SVMs
as it allows complex decision boundaries between the classes. In our experiments, we tested
both the value of k in the kNN and the Polynomial and Radial Basis Function (RBF) kernels of
the SVM to minimise the classification error on the training data.

As SVMs are designed for 2-class problems, we trained a one-v-the rest SVM classifier for
each of the 5 classes. By performing a K-fold cross-validation with 10 folds, the average cross-
validation error can be estimated on the training set and this value is used to optimise either the
polynomial degree or sigma parameter for the respective kernels. From our experiments it was
determined that the optimal degree of the polynomial kernel was 3 and achieved an average
cross-validation error of 7.6% for the 5 one-v-the rest classifiers. The optimal value of the
sigma parameter for the RBF was 1, resulting in a slightly higher than average cross-validation
error of 8.4%. For comparison we estimated the average cross validation error for the default
linear kernel as 13.2%. A summary of the classification errors for each classifier is given in
Table 2.

We used a kNN to implement a full 5-class classifier and use K-fold cross-validation to
optimise the value of k. The optimum result was achieved with a value of k of 1 (ie. A nearest
Neighbour Classifier) and the cross-validation error achieved was 10%.

As expected with these results the linear SVM kernel causes the greatest classification
error due to the lack of linearly separable data. The more complex, non-linear polynomial and
Gaussian kernels had a lower classification error with the polynomial kernel outperforming the
Gaussian with the optimal order of three. It is also expected that this classification error is less
than the kNN classifier due to the the fact that it is classifying between 5 rather than 2 classes.

Throughout the testing of both classifiers it was found that there was a constant misclassi-
fication of several of the sand images. Analysis of these specific images revealed they depicted
coarse sand, as shown in Figure 2, not the smooth, silty sand that would typically be associ-
ated with a sandy seabed. As such the features detected this increased level of coarseness and
likely viewed these images as resembling the features of the pebble images. The Joint Nature
Conservation Committee (JNCC) classification framework defines the various classes based
predominantly on the physical size of the individual stones or grains of sand. Hence, there
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(a) Coarse sand (b) Sand

Figure 2: An example of a coarse sand image which is miss-classified as pebbles compared to
a ‘standard’ sand image.

is scope for miss-classifications where the sizes are near the specified boundaries between the
classes.

4 Conclusion

This paper has proposed a method for the automatic detection of seabed type from a video
taken from a towed or remotely operated vehicle. The key idea is to use a supervised learning
approach that allows a classifier to be trained to accepted definitions of seabed type and given
sufficient training data should be robust to variations in lighting conditions and geographical
location. Our experiments show that on a small dataset it is possible to get a classification error
of 10% for the 5 class problem.

Acquiring more labelled videos of seabeds is key to improving the performance of the
classifications. It will allow both improvements in the design of the classifiers and on the design
of features as well as to obtain a more reliable estimate of the accuracy of the classifier. For
example, including data from more than one survey will establish the accuracy of the classifier
on newly acquired marine surveys and will ensure that the features used are not overfit to the
training data. We would also like to explore multi-class implementations of the SVM as well
as Neural Networks as frameworks for the multi-class classification problem.
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Abstract

We are performing two conceptual transformations on captured underwater acoustic
data. Through the use of spectrograms we transform this data into a visual format, upon
which we can apply standard image processing techniques. Then, we map events detected
back into the acoustic domain, associating visual artefacts with acoustic events.

Keywords: Acoustic monitoring, spectrogram image, visual analysis.

1 Introduction

One common strategy for studying acoustic signals is to display a recorded signal as a spec-
trogram image. Spectrograms are used to visualize the frequency content of sounds in various
applications. This includes acoustic monitoring of the underwater environment, our primary
interest. Live spectrograms, obtained by sliding an analysis window over a continuous acoustic
data stream, are well suited to acoustic monitoring and event detection.

A live spectrogram can be considered as a sequence of N×1 images, where N is the
number of harmonics output by the Discrete Fourier Transform (DFT) after processing a sub-
series of the acoustic signal. This useful interpretation implies applicability of certain machine
vision methods to time-series analysis. In fact, many acoustic events are of a very complicated
nature, only becoming apparent via a 2-D spectrogram representation.

In this study, we have applied a background modelling approach to event detection in a
sequence of spectrum “images”; just as streaming video is used for video-surveillance. Our
ultimate goal is to build a real-time, underwater monitoring system for detection of “events
of interest” without or limited knowledge of their underlying nature. This system ingests a
real-time data feed, which is often too large to store for off-line processing (100’s of gigabytes
per day). So the system must identify the presence of some perceptible events and store only a
subset of time-series where the event has occurred.

2 Background Modelling

In video-surveillance applications background subtraction methods are used to detect scene
changes. A comprehensive survey of modern background modelling and subtraction methods
[Bouwmans, 2014] clearly demonstrates a large variety of ideas in this field, fuelled primarily
by increasing demand on security systems.

For the task of acoustic monitoring, a high level of sophistication is not necessary. There
are no sudden illumination changes, dynamic textures, “ghost” objects, shadows or many other
video-surveillance specific problems. The following properties are typical for audio streams
collected in underwater environment. (1) The background noise is relatively strong. Its ampli-
tude slowly evolves over time depending on weather conditions, time of day, season, etc. (2)
The normal ambient (background) noise can be influenced by equipment interference at some
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frequencies, resulting in a mixture of extraneous signals registered by a sensor. (3) In the ab-
sence of acoustic events, the distributions of the majority of spectral components are (nearly)
independent, except for a few harmonics contaminated by equipment noise.

We consider background subtraction in the broader context of change detection. Given an
input audio stream, the Fourier transform is applied to successive (overlapping) data segments.
Then for each data segment the amplitudes of Fourier harmonics are computed. ObtainedN×1
“image” of amplitudes is appended to the (infinite) live spectrogram image as the right-most
column, where N is the number of harmonics with non-negative frequencies. At each entry
(“pixel”) of successive N×1 “images”, the normal (background) process can be interrupted by
an acoustic event. In what follows, the terms “foreground object”, “pixel” and “pixel value”,
familiar to the computer vision community, will be often used instead of “acoustic event”,
“entry of Fourier spectrum” and “amplitude of Fourier harmonic” respectively.

Interestingly, the Fourier transform has been already employed for background modelling,
for example [Porikli and Wren, 2005]. However, our use case is different. Here, we monitor the
amplitudes of Fourier harmonics directly without relation to the objects in the image domain.

In this research we have chosen the popular Mixture of Gaussians Model (GMM)
[Stauffer and Grimson, 1999], recently extended in [Zivkovic and van der Heijden, 2006]. We
shall refer the latter as GMMA, which stands for adaptive GMM. GMMA provides a statis-
tically sound and high performance mechanism to handle the mixture of components and
decide their number. Other important extensions, including robust non-Gaussian mixtures
[Bouwmans, 2014], are worthy of mention, but they were not examined here.

To handle the case of non-stationary background, it is common to store and gradually up-
date the recent history of background observations without assuming any model
[Bouwmans, 2014]. An interesting example of non-parametric method has been presented in
[Barnich and Van Droogenbroeck, 2011], which, in addition to history tracking, also spreads
information across neighbouring pixels to boost inter-pixel consistency. Our version of back-
ground history tracking algorithm, hereafter referred as BHT, shares these common ideas.

In the subsequent sections we shall present some real data results for extended GMMA and
BHT, along with brief description of algorithms and our most important extensions to them.

3 BHT algorithm

BHT updates background history at each pixel replacing the oldest observation. This replace-
ment is done not every frame but every M -th one, M = 5. . .30, in order to cover larger
time span. The history size (the number of past observations) H is chosen sufficiently large,
H ≥ 50. A counter variable at each pixel helps to ensure that only N/M pixels are updated
upon arrival of a new frame of size N . The latter saves on computational time. In contrast to
the original paper, we gradually replace outdated values in non-random way.

One interesting feature of [Barnich and Van Droogenbroeck, 2011] is that the history of
neighbouring pixels is periodically updated by the samples of a pixel in question. Spreading
information across the neighbourhood prevents the background model from sticking in a wrong
state forever. We use a similar approach, introducing yet another time sub-sampling factor
V = 5. . .30. Each time N/V pixels copy their values into the history of randomly chosen
neighbours in the small vicinity {−2,−1,+1,+2}. Recall, “images” are N×1 dimensional.

In the meantime we use the same measure of proximity between a new observation and
pixel history as in [Barnich and Van Droogenbroeck, 2011]. The value belongs to background
if at least K = 3 previously observed samples fell within distance threshold R. However,
in BHT, R is not a hard-coded parameter but the one estimated from the data as a multiplic-
ity of noise amplitude. Robust estimation of noise deviation is a computationally demanding
procedure. A simpler approach uses the moving average in the following form:

ξt+1
k = (1− α)ξtk + α

√∣∣∣ptk − 2pt−1
k + pt−2

k

∣∣∣, σtk = const ·
(
ξtk

)2
, (1)
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where t is a discrete time, α is an update rate, α = 0.01, pk is the value of k-th pixel, the
expression under square root is the 2nd order time derivative of a time-series at k-th pixel, ξk is
its moving average estimation, σk is an estimation of noise deviation at the k-th pixel. The 2nd
order time derivative in (1) eliminates any linear trend in data. The square root, on the other
hand, softly diminishes the influence of outliers introducing some robustness in σn estimation.
In all conducted experiments, parameter R was defined as R = 3 ·

(
ξtk
)2 and evolves over time.

The algorithm in [Barnich and Van Droogenbroeck, 2011] relies on a so called conserva-
tive update policy, which “never includes a sample belonging to a foreground region in the
background model”. It works very well for slowly changing backgrounds, while most innova-
tions fall within a fraction of proximity threshold R. To speed up recovery when a data stream
starts with foreground dominance, we introduced a user-defined time threshold T � H , where
H is the history size. If foreground values constitute the majority of the history, the normal
background would be detected as an “event”. If an event has been detected in 90% of cases
during time interval T , the history is discarded and reinitialized. Obviously, very long-lived
events do eventually become part of background, but this is the usual trade-off.

4 Extended GMMA

One major question in the practical realization of any (online) clustering method: “how many
clusters?” GMMA [Zivkovic and van der Heijden, 2006] was particularly designed to answer
this question by choosing an appropriate prior (Figueiredo & Jain 2002, Brand 1999) and au-
tomatically adjusting the number of components in a mixture.

The OpenCV implementation comes with reasonable default values of several crucial pa-
rameters of GMMA, and works very well on many standard video-sequences. However, when
GMMA was applied to spectrogram analysis it showed much less impressive results than BHT.
First of all, mixture models are sensitive to the selection of initial variance value (when a new
component is added). Also, the minimum and maximum admissible variances matter, because
otherwise a component can shrink or expand unpredictably.

To make GMMA less dependent on ad-hoc variance parameters, we have developed a rela-
tively computationally expensive pre-processor, actually a clustering algorithm, which we refer
to as variance estimator. To achieve real-time performance, a time-series, formed by succes-
sive values at a spectrogram entry, is divided into a 256-sample chunks. Selecting the proper
time offsets, only 1/256 of the total number of time-series’ have to be processed upon arrival
of a new spectrogram. Thus, while GMMA works all the time, the clusterizer gradually updates
estimated mean variance of mixture components from time to time.

Development of clustering algorithm was motivated by unsatisfactory results obtained by
more traditional approach based on information criterion (AIC, BIC, etc.), which often leads
to under- or over-clustering given a sample of relatively small volume.

Our clustering algorithm uses a variant of global k-means [Xie and Jiang, 2010], for its el-
egant procedure for selection of candidate cluster centre, combined with fuzzy c-means, which
adjusts partition once a new cluster has been added. One cluster is added in a time starting from
a single cluster configuration. On each iteration the distribution of Mahalanobis distances be-
tween a point and the nearest cluster centre is formed. Distributions obtained for configurations
with C−1 and C clusters are compared by Kolmogorov-Smirnov test. If the null hypothesis
(distributions are similar) was rejected given significance level (0.1 by default), then we pro-
ceed adding more clusters, otherwise the former configuration with C−1 clusters is accepted
and algorithm stops. For practical computational purposes, the maximum number of clusters
is limited to 5. Once the clustering is finished, the minimum, average and maximum vari-
ances over all clusters are estimated, then smoothed with the previously obtained values using
a simple moving average and fed into GMMA to impose restrictions on component variance.

With this variance estimator, GMMA demonstrates much better results but is still behind
BHT. The reason is that often the mixture components are not well modelled by Gaussian
distribution. Better results could be obtained using a non-Gaussian mixture (e.g. t-distribution)
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having a “heavy” tail, which seems more suitable for our use case. The advantage of GMMA,
on the other hand, is analytically simpler and practically “faster” updating formulae. The trade-
off is that an expensive pre-processing could undermine the overall GMMA performance.

We have made yet another extension to GMMA, considering a multi-variate metric that com-
prises 2 to 4 recent observations, for example, m = (mt,mt−1,mt−2). When m is compared
against component’s center c = (c1, c2, c3) all cyclic permutations are tried c(1) = (c1, c2, c3),
c(2) = (c3, c1, c2), c(3) = (c2, c3, c1). The smallest value ‖m− c(k)‖ gives the distance to com-
ponent. This simple scheme accounts for co-occurrence of successive pixels at the expense of
the larger number of components and provides a significant improvement.

5 Experiments

In this section, we present the results for the GMMA and BHT algorithms with all the extensions
as described above. To our knowledge, there is no well established framework for compari-
son of different methods of live spectrogram evaluation like changedetection.net. The
critical issue is the process of extracting “ground-truth”, typically requiring manual data anno-
tation. In the meantime, we assess detectability visually, inspecting the spectrogram of a data
record. We are also investigating other options for semi-automatic labeling.

Our live data feed comes from hydrophones connected to an off-shore buoy. The buoy is
equipped with an analog to digital conversion unit and has appropriate network connectivity.
Unavoidably, the on-board systems produce artificial noise that can be seen in the first two rows
on Figure 1 (thick horizontal lines). Thus, the system should reject persistent disturbance and
register only new patterns.

In our experimental set-up, the hydrophone data stream is sampled at 500 KHz, then chop-
ped into successive windows (50% overlapping) and fed into DFT engine to compute spectrum
amplitudes. The size of the analysis window is selected to be smaller than one second; typically,
for performance reasons, a power of two: 215...17. This reduces the best achievable frequency
resolution, which is usually redundant for acoustic monitoring.

The first two rows on Figure 1 show the result of detection of acoustic events. The left-hand
side present the results of the extended GMMA method, the middle show the fragments of live
spectrogram without any highlighting, and on the right-hand side are the results of the BHT
method. When harmonic amplitudes deviate significantly from the normal background, it is
detected as a part of an event and highlighted in yellow. BHT additionally distinguishes strong
n < K−1 evidence (yellow) and weak n = K−1 evidence (green), where the parameter
K (minimum number of close background samples) was discussed in Section 3. For better
visibility, only part of the spectrum is shown with exact numbers given in the caption.

In the first row, a boat is passing and stopping nearby the buoy. Its engine produces a typical
spectral picture — a bunch of frequencies k·f0, k = 1, 2, . . ., where f0 relates to the engine
rotation speed varying over time. The second row shows an unknown event, which looks like
a train of vertical lines around 18 KHz. Note that persistent disturbances (electrical noise) —
the horizontal lines crossing the spectrogram — were not detected as events.

We also detect other types of acoustic events. For example, Lloyd’s mirror — an interfer-
ence pattern between direct and reflected noise produced by a passing vessel. Detection of the
presence of sea mammals is another point of practical interest. Mammal vocalization results in
a number of very different acoustic events. We selected file examples of crabeater seal from the
collection of the Alfred Wegener Institute for Polar and Marine Research (Am Handelshafen
12, 27570 Bremerhaven, Germany), and these are shown in the last two rows of Figure 1. The
very short time-series does not provide sufficent event-free data for background adaptation.
However, both methods do well on repeated play-back of the files.

Our multi-threaded software implementation of both extended GMMA and BHT is written
in C++ and runs on an Intel I7 CPU, 1.7GHz, using 7 threads out of 8 available. The same real-
time performance can be achieved with a single thread, if so called AVX vector instructions of
modern CPUs are employed. The latter, however, requires further programming effort.
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In general, our version of GMMA tends to produce slightly cleaner, but less accurate change
mask. The bottleneck of this GMMA is an expensive step for rough variance estimation, which
takes about 0.2-0.25 seconds for analysis window with 217 entries, although we envisage sev-
eral options for significant performance improvement.

6 Conclusion and Future Work

This paper summarizes our experience with the application of modern background modelling
and subtraction methods, developed by computer vision community, to the problem of acoustic
monitoring. This approach aims to facilitate collection of atypical acoustics events in large data
sets and live (intense) data streams in an unattended manner. In many cases the model of event
is not known in advance, so the traditional signal processing methods, like filtering, might not
work. Another application of the proposed approach, useful for training various classifiers, is
to instrument data annotation, which would be otherwise unmanageable given the large amount
of data containing nothing but noise.

We have made certain extensions to existing state-of-the-art approaches, but we are still
looking to other opportunities. For example, subspace methods like PCA and its numerous
extensions [Monnet et al., 2003, Bouwmans, 2014], as well as sophisticated statistical models
based on Support Vector Machines (SVM), e.g. [Tavakkoli et al., 2008], are the alternative
algorithms worth considering. Cepstrum representation of input data rather than conventional
spectrogram is yet another option.

Post-processing is a separate subject of research, intentionally omitted in this paper. The
traditional morphological approach would work well on acoustic data, however, in many cases
the detected event has an elongated structure(s). This property along with the strong correlation
between successive spectrum images is worth exploiting when a change mask is constructed.
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Figure 1: X: time, Y: frequency. Left column – results of GMMA, middle column – fragment
of live spectrogram, right column – results of BHT. First row: a boat passing and stopping
nearby sensor location, frequency range [0, 10000] Hz, 300 seconds. Second row: unknown
underwater event, frequency range [15000, 20000] Hz, 164 seconds. Third row: crabeater seal
voice, frequency range [0, 7200] Hz, 60 seconds duration (repeated playback). Fourth row:
crabeater seal voice, frequency range [0, 1200] Hz, 60 seconds (repeated playback). Detected
events are highlighted by yellow (strong evidence) and green (weak evidence) colours.
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Abstract

The paper presents a novel computer aided diagnosis method for prostate cancer detec-
tion within the prostate’s peripheral zone using a combination of different image features
and grey level histogram analysis. The peripheral zone is subdivided into four regions
and a scoring algorithm is employed to determine the most cancerous sub region based on
specific metrics. The initial evaluation of this method is based on 200 MRI images from
40 patients and we achieved 89% accuracy with 0.89 and 0.88 sensitivity and specificity,
respectively.

Keywords: Prostate Cancer Detection, MRI, Prostate Cancer Localisation

1 Introduction

More than 40,000 men are diagnosed with prostate cancer annually and it is expected to be
the most common cancer by 2030 across the United Kingdom [1]. According to a recent
article in [2] targeted biopsies would be better than the random ones which are currently used.
Therefore, we propose a CAD method which can specifies a region(s) which has (have) the
highest probability to be malignant, hence help radiologists to perform targeted biopsies and
potentially improve the accuracy of prostate cancer diagnosis.

2 Modeling Prostate Peripheral Zone

Since 80%− 85% of the cancers arise in the peripheral zone (PZ) [3], we aim to detect prostate
abnormality within that region. Note that, we did not perform prostate segmentation because all
prostates were already delineated by an expert radiologist.

Figure 1: 2D Prostate Model

Figure 1 shows our 2D prostate model where prostate’s
boundary and PZ’s boundary are in black and magenta
lines, respectively. The prostate’s PZ is defined us-
ing the quadratic equation y = ax2 + bx + c based on
three crucial coordinate points of the prostate which
are v1, v2 and v3. They are determined by the outmost
x and y coordinates of the prostate boundary which are
xmin, xmax, ymin, ymax (see Figure 1). For example, xmin

and ymax can be determined by taking the minimum x
and maximum y coordinates along the prostate bound-
ary. Moreover, the x coordinates of v1 and v3 are cap-
tured from xmin and xmax and their y coordinate is determined by taking the y coordinate be-
tween ymin and ymax. On the other hand, the x coordinate of v2 is taken from the x coordinate
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xmin and xmax and its y coordinate is determined by taking 3
4 of the distance from ymin to ymax.

Mathematically, these can be represented equations (1), (2), (3) and (4).

Cp = ((xmin + xmax)/2, (ymin + ymax)/2) (1)

v1 = (xmin, (ymin + ymax)/2) (2)

v2 = ((xmin + xmax)/2, ymin + ((ymax − ymin) × 3
4

)) (3)

v3 = (xmax, (ymin + ymax)/2) (4)

where Cp is the central point of the prostate. Once the coordinates of v1, v2 and v3 are defined,
we can determine the values of a, b and c and determine the PZ’s boundary (magenta line).

3 Methodology

Figure 2: The proposed methodology starts from left to right (phase I to IV).

In phase I we construct a malignant histogram model. We use the malignant histogram
model to calculate metrics and implements the scoring algorithm to determine the most cancer-
ous sub region within the PZ (phase II). In phase III we compute image features and perform
Fuzzy c-means (FCM) and Otsu’s segmentation algorithms to segment cancerous tissues. Fi-
nally, we perform erosion to reduce false positives and use the results in phase II and III for
detection and localisation purpose.

3.1 Preprocessing

Firstly, we perform median filtering on the original image (I) to reduce the amount of noise.
Previous study has shown that median filter is effective at preserving sharp edges in MRI and in
our case we want to preserve the information-bearing structures such as tumor’s edge bound-
aries [4].
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3.2 Construction of Histogram Model

We construct a histogram model (H) of 256 bins based on 40 malignant regions (40 patients)
delineated by an expert radiologist. For every cancerous region we compute its normalised
grey level histogram (by assigning each pixel to its corresponding grey level) and sum up all
histograms (40) followed by diving each bin with the number of regions (in our case it is 40).
All histograms are normalised so the sum of histogram’s bins is equal to 1. This means, H
represents the mean distribution of grey level based on 40 malignant regions.

3.3 Scoring Algorithm

We divide the PZ (under the magenta line) into four sub regions (R1, R2, R3 and R4) (Figure
2, phase II) which is similar to the prostate anatomy proposed in the European consensus
guidelines division of prostate gland [5]. The main purpose of dividing the PZ into four sub
regions is to enable the algorithm to determine the most cancerous sub region based on the
highest score point thus reduce the number of false positives. The algorithm considers three
metrics (subsection 3.3.1, 3.3.2 and 3.3.3) to determine score point value to be assigned to
every sub region. For simplicity of the scoring algorithm design, we assign the least suspecious
(based on the metrics values) sub region to be malignant with the lowest score followed by the
most suspecious with the highest score (e.g. +1 is the least suspecious followed by +2,+3 and
the most suspecious will be assigned +4). In principles, the scores could be any positive integer
numbers as long as the sub region with a higher rank receives higher score than the lower ones.

3.3.1 Histogram Mean

For each Rn (n ∈ {1, 2, 3, 4}) we calculate the mean of the lower half of the histogram (HRn)
because it represents the darker level of a region. Several studies have suggested that prostate
cancer tissue tends to appear darker on a T2-weighted MRI image [6, 7]. In fact, contrast level
in normal tissue is higher than cancerous tissues [8] and radiologists also tend to use darker
regions to identify abnormality within the PZ [9]. Therefore higher probability to capture
cancerous tissues by taking the lower half of the histogram. HRn indicates the frequencies
of low grey levels distributed within a sub region. Higher HRn means higher number of low
grey levels within the sub region. This indicates the sub region has darker appearance (higher
probability to be malignant). We rank HRn from the lowest to the highest value and assign
each Rn with an appropriate score. In this case R1 receives the highest score point because it
has the highest mean value (highest number of low grey levels, hence highest probability to be
malignant). Equation ( 5) shows how this metric is calculated.

HRn =
1

N/2

N/2∑
i=1

Hn(i) (5)

where N is the number of bins and i represents the ith bin in a histogram.

3.3.2 Histogram Intersection Distance

The second metric is histogram intersection distance (dn) between H and each of HRn . The
distance (e.g. the distance between H and HR1) indicates the histogram similarity between H
(the histogram malignant model) and HR1 . The smaller the distance the more similar H and
HR1 which means higher probability of R1 being malignant, hence receives the higher score.
However, since we are interested only in low grey levels, we only consider the lower half of the
histograms to capture malignant tissues [6, 7, 9, 8]. The minimum and maximum values are 0
and 1, respectively. This metric can be calculated using Equation ( 6).

dn = 1 − (
N/2∑
i=1

min{H(i),HRn(i)}/
N/2∑
i=1

H(i)) (6)
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Next, we rank dn from the highest to the lowest using the same scores and assign each sub
region with an appropriate score depending on its ranking.

3.3.3 Grey Level Co-Occurrence Matrix (GLCM) Feature

For the final metric, we calculate the GLCM contrast feature (CRn) for each of Rn. We chose
GLCM contrast as it is found to be the most discriminate feature among GLCM features for the
differentiation between cancerous and non-cancerous tissues [8]. Rn with the lowest contrast
has the highest probability to be malignant [8], hence receives the highest score. To maximise
the variations we took all orientations (θ = 0◦, 45◦, 90◦, 135◦) and calculated the mean by
summing up the contrast value of each orientation and divided it by the number of orientations.
Subsequently, we ranked CRn from the highest to the lowest and assigned each sub region with
an appropriate score.

3.4 Prostate Segmentation

We calculate the probability and local contrast image feature from the filtered original image
(I′) which can be calculated using equation ( 7) and ( 8), respectively. For an I′(x, y) image,
the probability value for the kth grey level is:

P(x, y) =
#(I′(x, y) = k)

R ×C
(7)

where #(I′(x, y) = k) is the number of pixels at the kth grey level in an R×C image, and as such
each element in P is the probability value for a particular intensity level. Gharge and Kekre
[10] used probability image for tumor demarcation in mammograms and MRI images while a
study in [11] used probability image feature to segment cancerous regions within the peripheral
zone. The local contrast image feature (D) is determined by

D(x, y) = Wmax −Wmin (8)

where Wmax and Wmin are the maximum and minimum values, respectively within a 5 × 5 win-
dow. Litjens et al. [12] have shown that local contrast feature can improve the characterisation
of tumour from normal tissues while Mukhopadhyay and Chande [13] showed qualitatively
that capturing local contrast can enhance both regions’ edges and textures. Subsequently, we
segment image feature P and D individually into four different classes using a modified Fuzzy
c-means algorithm proposed in [14] because it is robust in dealing with noises in medical im-
ages and used Otsu’s segmentation method to segment I′ for grey level segmentation. We chose
four classes because there are four tissue categories in the prostate (two of them are associated
with abnormal tissues) [15]. Since malignant regions within the PZ have dark appearance [3]
we select segmented regions which correspond to the first two lowest intensities (indicated by
the subscript ’low’ in equation ( 9)) FCM clusters in D (the same in Otsu’s clusters in I′). On
the other hand, we selected two highest intensities (malignant region appears to be bright in P)
FCM clusters in P. After selecting the regions of interest, we combine all binary segmenta-
tions by finding its overlapping region as showed in Figure 2, phase III. This process can be
represented using the following equation

O = I′low ∩ Dlow ∩ Phigh (9)

To this point, we have segmented possible cancerous tissues (phase III) and have identified the
most cancerous sub region according (phase II).

3.5 Abnormality Detection and Localisation

The propose method uses score points and O to identify whether cancer is truly present or not.
The maximum and minimum total score points are 12 and 3, respectively. We use the combined
binary segmentations (O) (Figure 2, phase III ) and take the sub region which has the highest
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score. If a sub region has a maximum score point of 12 (R4 = 12), we assume the level of
confidence is strong and a malignant region is located within R4. Therefore, we ignore all other
sub regions (R1, R2 and R3) and only consider the segmented area within R4 (Figure 2, phase
IV) for detection and localisation purpose. If there is no segmented area in R4, we assume that
it is normal (hence the whole slice is considered normal). Figure 3 shows the ground truth
(malignant region is indicated in red) with O together with its score points in Rn. Without the
scoring algorithm the segmentation within R2 (false positive) in Figure 3, will be considered a
malignant region which lead to incorrect localisation.

On the other hand, if the maximum score point is 11 (R3 = 11), we assume the level

Figure 3: Tumor is located in R4.

of confidence is average and ignore all other sub re-
gions but performed erosion with a ‘disk’ shape struc-
turing element with size 1 (note that no erosion is per-
formed if the maximum score point is 12 because the
level of confidence is high). This ensures that the seg-
mented areas are not noise which could lead to false
positive result. If there are segmented areas after ero-
sion, then we assume R3 is malignant (otherwise nor-
mal). Finally, if the maximum score point is less than
11 (R3 ≤ 10), we assume the level of confidence is
weak and all sub regions should be considered. We
performed erosion with the same shape structuring element with size 2. The malignant region
is the one with the biggest segmented area within Rn after erosion is performed.

4 Experimental Results

We evaluated the proposed method based on 200 (105 malignant and 95 normal slices, excluded
40 slices used to construct H) prostate T2-Weighted MRI images (512×512) from 40 different
patients aged 54 to , collected from Norwich. Each case has 4 to 6 slices through the central part
of the prostate. The prostates, cancer and central zones were delineated by an expert radiologist
on each of the MRI images. Data was analysed and classified as to whether the prostate contains
cancer. The detection of cancer occurs when there are any retained segmented regions within
Rn. Subsequently, we compared the result with the ground truth whether the prostate contains
cancer regions or not. The proposed method achieved 89% accuracy (0.89 sensitivity and
0.88 specificity) with 7.5% false negatives and 7.5% false positives. In comparison to the
state of the arts methods, it is extremely difficult to make quantitative comparisons due to the
absence of public datasets. However, to have an overall qualitative estimate of the functioning
of our method we compared with some of the recent studies. The method proposed by Artan
and Yetik [4] achieved 82% accuracy (sensitivity =0.76 and specificity = 0.86) based on 15
patients. Niaf et al. [16] reported 0.89 sensitivity and 0.82 specificity for 30 patients. Futterer
et al. [17] presented their results for six patients and their results show 0.83 for both sensitivity
and specificity. Finally a method proposed in [11] reported 85% accuracy with 0.82 and 0.88
sensitivity and specificity, respectively. Although these comparisons are very subjective, the
results achieved the state of the art in the literature qualitatively.

5 Conclusions

In conclusion, we have presented a novel method of prostate cancer detection and localisation
within the PZ. Our idea is to subdivide the PZ into four regions and employed a scoring algo-
rithm to determine the most cancerous sub region based on the cumulative score. In addition,
we combined binary segmentations to segment the most cancerous tissues and performed dif-
ferent erosion sizes to reduce false positives and false negatives. Early evaluation have showed
that the proposed method has the potential to help radiologists in corresponding to the current
problem stated in [2].
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Abstract

In this paper we propose a novel automated glaucoma detection framework for mass-screening
that operates on inexpensive retinal cameras. The proposed methodology is based on the assumption
that discriminative features for glaucoma diagnosis can be extracted from the optical nerve head struc-
tures, such as the cup-to-disc ratio or the neuro-retinal rim variation. After automatically segmenting
the cup and optical disc, these features are feed into a machine learning classifier. Experiments were
performed using two different datasets and from the obtained results the proposed technique provides
better performance than approaches based on appearance. A main advantage of our approach is that it
only requires a few training samples to provide high accuracy over several different glaucoma stages.

1 Introduction
Glaucoma is one of the most common causes of preventable blindness [1] and official population projec-
tions and epidemiological prevalence surveys predict that the number of glaucoma cases will increase by
a third in the next twenty years [2]. Glaucoma, and those at risk of suffering from glaucoma, constitute a
major part of the workload of secondary care eye services [3]. However, patient overload is not the only
problem. Currently, referrals for suspected glaucoma are usually initiated by a community optometrist
and then assessed at hospital by trained ophthalmologists. The reported diagnostic accuracy for detect-
ing glaucoma by optometrists is suboptimal: only 20-30% of these referrals actually have glaucoma,
and 45% of patients are discharged after their first visit [4]. This illustrates the inefficiency of current
glaucoma detection methods and causes avoidable distress and worry to patients and carers. Interven-
tions for optometrists, such as glaucoma training [5] or agreed guidelines [6], do not appear to affect the
rates of false positive referrals. Even definitive glaucoma diagnosis, carried out by ophthalmologists,
are not exempt from drawbacks: clinical optic nerve assessment is limited by subjectivity and reliance
on examiner experience, while new diagnostic techniques for assessment of the structural changes at the
optic nerve head (ONH) and retinal nerve fibre layer (RNFL) are expensive and therefore not widely
available.

In this context, automatic detection methods are highly valuable for early glaucoma diagnosis [1],
especially considering that glaucoma can be treated effectively if detected at an early stage. We propose
a method based on the automatic analysis of the eye fundus, which brings together the expertise of
human practitioners and the cost-effective advantages of computers. Given that digital fundus cameras
are relatively inexpensive and are already widely available in optometrists’ and hospital eye services,
our system could potentially be deployed as a systematic screening programme for glaucoma.

Our method differs from other state-of-art systems in the usage of geometric parameters of the ONH
structures that change in case of glaucoma disease: optic disc diameter, optic disc area, cup diameter,
rim area, mean cup depth, etc. These features are extracted from the automatic segmentation of the
structures and used for training a machine learning classifier which provides the final decision given a
new fundus image. The usage of these features, traditionally employed in the manual analysis, has some
competitive advantages regarding appearance based methods: they are less dependent on the camera
model, they require a lower order of magnitude in the number of training images -dozens instead of
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Figure 1: Block diagram of the proposed approach

hundred or thousands- and they allow detection of different levels of glaucoma even in the presence of
other ocular pathologies.

1.1 State of the Art
Initial attempts to automatise the glaucoma diagnosis were based on quantitative parameters that can
help to make the qualitative assessment more objective, reproducible and lead to a reduction of the ob-
server variability. However, these methods were based on manually annotated ONH images [7, 20],
or they lacked robustness and reliability. In response, researchers moved away from the extraction of
geometrical features, which rely on good ONH segmentation, towards frameworks based on the pixel
appearance of the whole retinal image [8, 16]. These methodologies were inspired by a pipeline previ-
ously used for face and object recognition [24] and have the advantage of not needing the segmentation
of the ONH. Recently Bock et al. achieved 73% sensitivity and 85% specificity in the detection of glau-
coma using a fully-automated analysis of monoscopic photographs [8] based on appearance. However,
this is computationally expensive, their classification depends on the camera or machinery involved and
they require hundreds of positive and negative glaucoma samples for retraining. The structure of the
retina and how glaucoma affects its appearance is much more subtle than the differences between faces
or objects for which these frameworks were originally designed. This makes it difficult for systems only
based on appearance to detect glaucoma, specially in the early stages.

In the last few years there have been great advances, not only in medical image processing, but also
in fundus cameras able to provide high resolution and low-noise retinal images. As a consequence, new
studies have been performed showing high accuracy on the segmentation of the ONH characteristics
such as disc area, disc diameter or the well established cup-to-disc ratio. Most successful approaches
are based on ONH models able to automatically adjust to the image [14, 16, 17], although this implies
additional training for model generation. In general, most of these approaches have only been validated
on healthy eyes under assumptions that are not valid for glaucomatous eyes. Other approaches, tested on
glaucomatous examples, have been validated against human segmentation, but they were not evaluated
for diagnosis since they were neither input to a classifier, nor compared against pixel based approaches
[12, 13, 15].

In this paper, we propose a computerised glaucoma diagnosis system which relies on the automatic
extraction of high level geometrical features related to ONH structures. As a main advantage, it only
requires a few training samples and provides high accuracy even in the presence of different stages of
glaucoma. The approach is compared against a state-of-art methodology based on pixel appearance.

2 Methodology
Our image processing framework is structured in a standard 4-stage pipeline as depicted in Figure 1: (i)
preprocessing, (ii) image-based segmentation, (iii) feature extraction and (iv) classification.
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2.1 Preprocessing
Image normalisation is required to correct for variations caused by acquisition and illumination con-
ditions. For this purpose, only the green channel is selected, as it has been shown as the most robust
against variations [8]. After that, a low-pass filter [21] is applied to reduce the fine grain noise. Finally,
histogram equalisation [21] is applied to ensure consistancy across images, Fig. 2(b).

2.2 Automatic segmentation
After the glaucoma specific preprocessing, the ONH structures needs to be segmented in order to extract
the features. Our automatic segmentation methods aims to segment the disc and the cup. First, retinal
vessels are located accurately using the Isotropic Undecimated Wavelet Transform (IUWT) and edge
location refinement [9], Fig. 2(c). The resulting image is used as a mask to remove blood vessels
and facilitate the segmentation of the different image regions, Fig. 2(d). After that, an iterative and
multilevel variation of the Otsu’s adaptative thresholding [22] is applied, which allows us to identify
several different image regions [25]. Given the composition of retinal images, four thresholds are applied
to segment the first and second brightest regions, corresponding to the cup and the rim respectively, Fig.
2(e). The morphological operator open is applied to filter noise without changing the feature size.

a) b) c) d)

e) f) g) h)
Figure 2: Segmentation process. From left to right, from top to bottom: a)original image, b) prepro-
cessed image, c)Vessel mask, d) Vessel subtracted image, e) segmented image, f) segmented rim, g)
segmented cup, h) optical discs candidates.

Although the algorithm gives an accurate segmentation, other image regions can be falsely detected
as belonging to these ONH primary structures, especially in the presence of other retinal anomalies. In
order to filter those false positives, an optical disc detection algorithm is employed. This detector applies
a combination of the Circular Hough Transform with a scale invariant kernel operator, as described
in [19], to detect circles within the retinal image. The primary goal is not to provide the geometrical
parameters of the ONH, since its assumption about circularity may not be well-matched to the real shape
of the ONH and may distort the feature values. Instead, the optical disc candidates are used for removing
all those segmented areas outside the detected circles, thus filtering those false positives included by the
region segmentation. More than one candidate is allowed, since the goal is not to uniquely identify the
optical disc center, but to filter wrongly segmented pixels outside the ONH, Fig. 2(h).

2.3 Feature extraction
We hypothesise that geometric features measured from the segmentation of the disc and rim are of
greater value than appearance features in detecting glaucoma. To this aim, two features are extracted
and used in our framework:
Cup-to-disc ratio (CDR): The ratio of the vertical diameters of the inner cup and the outer disc rim is
commonly used as an indicator of glaucoma likelihood or disease progression [10]. In our pipeline, the
ratio is calculated by localising the highest and the lowest pixel in the vertical axis for both the rim and
the cup segmented regions (see Fig. 3).

CDR = Dcup/Drim (1)
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Figure 3: Feature extraction variables

Neuro-retinal rim width variation: The relative width of the neuro-retinal rim at different angular
locations is known to differ between normal and glaucomatous discs. Normal subjects have a charac-
teristic distribution, being widest at the inferior part of the disc, followed by decreasing width at the
superior, nasal and temporal locations. Glaucomatous eyes typically do not follow such a pattern, which
is commonly known as the ”ISN’T rule” [11]. In our system, the upper and lower widths of the rim are
calculated as the distance between the highest point of the rim and the highest point of the cup and the
distance between the lowest point of the rim and the lowest point of the cup respectively, see Fig. 3.
Then, the feature is implemented as the difference between these vertical distances.

Diff = dRCup − dRCdown
(2)

The above features are the most common features used by ophthalmologists and therefore likely to
provide discriminative information for classification.

2.4 Classification
Although in the past these features have been used directly for diagnosis by applying a set of rules,
mimicking what optometrists do manually, this is subjective, depending on the experience of the expert
and the demography of the population. It also assumes that features are perfectly extracted, which
is not always true due to segmentation difficulties. On the contrary, by feeding the above feature set
into a robust classifier, more complex rules can be automatically inferred and deviations produced by
segmentation failures accounted for. Therefore, in our implementation, a SVM classifier with linear
kernel is used [23]. This linear classifier determines a maximum-margin and soft hyperplane that best
separates the considered classes. Data is normalised and transformed via the linear radial basis kernel.

The decision to use a linear classifier is supported by the literature [16, 8], where linear classifiers
have reported excellent results for glaucoma diagnosis. The choice of SVM over more traditional ap-
proaches such as nearest neighbours, regression, neural networks and discriminant analysis is supported
by their reported advantages [23]: they do not require regularity in the data so it can be applied to data
following an unknown distribution, it delivers a unique solution since the optimality problem is convex
contrary to neural networks, it can be easily extended to non-linear nonparametric problems by replac-
ing the linear kernel, it scales well to high dimensional data, and the trade-off between complexity and
error can be controlled explicitly.

Although more complex classification pipelines could be applied in our framework, such as the
double schema proposed in [8] or non linear kernels [16], it is not the scope of our paper to state the
best classification technique but to prove the validity of geometrical features. Therefore, SVM is the
classifier providing the best framework for comparison with other state-of-art methodologies without
compromising future improvements of the system.

3 Experimental Results
Two different datasets have been used to validate the experiments and ensure that the conclusions are
not dependant on the fundus camera. The first dataset was captured with a stereoscopic camera Kowa
nonmyd WX. Only one of the two images provided was used since our goal is to evaluate monoscopic
systems for screening, given their broader availability. The dataset is composed of 29 samples, 14
healthy eyes and 15 glaucomatous ones. The second dataset is a standard set, publicly available [18],
which facilitates future comparison of our methodology with others. It contains 26 samples, 8 healthy
and 18 glaucomatous discs. Both datasets contain different degrees of glaucoma, from very early stages
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Table 1: Results over the 2 datasets. Four first rows show the state-of-art appearance features, while
three middle rows show different variation of our framework and last two rows the combination of our
pipeline with appearance features

Dataset 1 Dataset 2
Method Acc Sens Spec Prec Recl Fmes Acc Sens Spec Prec Recl Fmes

Intensity + PCA [8] 0.59 0.60 0.57 0.6 0.6 0.6 0.48 0.55 0.33 0.65 0.55 0.59
FFT + PCA [8] 0.45 0.40 0.50 0.46 0.40 0.43 0.38 0.45 0.22 0.56 0.45 0.50

Spline + PCA [8] 0.59 0.60 0.57 0.60 0.60 0.60 0.59 0.65 0.44 0.72 0.65 0.68
All appearance [8] 0.55 0.53 0.57 0.57 0.53 0.55 0.46 0.50 0.33 0.63 0.50 0.55

CDR (no circle detect.) 0.79 0.73 0.85 0.85 0.73 0.79 0.46 0.50 0.38 0.62 0.50 0.55
CDR 0.89 0.93 0.85 0.88 0.93 0.90 0.59 0.56 0.63 0.75 0.56 0.64

CDR + Diff 0.82 0.87 0.77 0.81 0.87 0.84 0.71 0.69 0.75 0.85 0.69 0.76
Intensity + PCA + CDR 0.69 0.73 0.64 0.69 0.73 0.71 0.50 0.56 0.38 0.64 0.56 0.60
All Appearance + CDR 0.62 0.60 0.64 0.64 0.60 0.62 0.46 0.56 0.25 0.60 0.56 0.58

to severe cases, as well as other disorders, such as hypermetrope, haemorrhages or peripapillary atrophy,
that can make diagnosis difficult.

Different variations of our methodology were tested, using only the cup-to-disc ratio, the rim width
variation or a combination of both. The circle detector and filter, used to reduce segmentation errors
outside the ONH was also evaluated. All the parameters were setup experimentally and kept identical
for all experiments and datasets in order to compare the methods in equal conditions and to avoid over-
fitting to specific cases. In order to validate our method and extract pertinent conclusions regarding the
comparison between geometrical and appearance features, different appearance based methodologies
-pixel values, fft coefficients B-spline coefficients and a combination of all- were implemented follow-
ing the description, setup and conclusions by Block et al. [8]. All experiments were performed using
leave-one-out cross validation.

Results are shown in Table 1 in terms of accuracy (Acc), sensitivity (Sens), specificity (Spec), pre-
cision (Prec), recall (Recl) and F measurement (Fmes). It can be seen how our framework provides
accurate glaucoma diagnosis. The extraction and usage of geometrical features seems to provide supe-
rior diagnosis accuracy under realistic conditions: when the number of training images is small, they
perform much better than appearance based. This explains the significant decrease in performance of
appearance based feature compared to other results reported in the literature [16, 8], where hundred
of examples were available. Since those features depend heavily on the camera setting, they require
retraining for every camera model and therefore they are difficult to deploy in the real world.

Other conclusions can be drawn from these results. The optical disc detection and filtering gives a
significant improvement in the final classification. The rim variation feature does not always provide a
significant increase in accuracy, especially in the first dataset where the high resolution allows a perfect
segmentation of disc and cup, but it plays a significant role for cheaper cameras. The second dataset
complexity, with a much lower resolution, is reflected in the final performance of all the tested methods.
Finally, by adding geometrical features to the appearance feature vector, results appear to invariably im-
prove, which shows the potential of combining both methodologies with the potential of fully exploiting
the advantages of both techniques.

4 Conclusions
In this paper, a method for glaucoma diagnosis, based on ONH segmentation of retinal images, is pro-
posed. Our framework is able to accurately extract the cup and the rim of the optical disc to extract high
level geometrical features. The obtained values are then used as input to a machine learning classifier,
responsible for detecting glaucoma given a new retinal image.

Our approach has been designed for glaucoma screening in real world conditions. Experiments on
varied datasets were performed to evaluate our schema with different cameras and resolutions, and both
colour and black and white images. The proposed method achieved high accuracy rates overperforming
state-of-art methodologies in real conditions, when small training sets are available. The experiments
also validated the usage of geometrical features for glaucoma detection and as a complement to appear-
ance based methods. As future work, a diagnosis study will be performed to ensure the validity of our
conclusion in a larger scale and the potential of our framework for glaucoma screening and diagnosis in
real life.
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Abstract 

 
Improving the computational efficiency of video processing tasks has become a 

dominant issue with the ultimate goal of real-time processing. One methodology to 
achieve efficient processing on still images is the use of a hexagonal image 
representation, which permits efficient implementation of feature extraction. To 
enhance the efficiency of video processing tasks, this paper presents a hexagonal pixel-
based framework for video processing, where a biologically inspired eye tremor 
approach is used for efficient application of processing algorithms. We demonstrate 
that this eye tremor approach is significantly faster than the use of conventional spiral 
convolution or the use of a neighbourhood address look-up table for hexagonal based 
video processing. 

 
Keywords: Hexagonal imaging, eye tremor, video processing. 
 
1.   Introduction 
Preliminary research into the human vision system perceived the human eye to be a sensor that 
closely relates to the operation of a pinhole camera [12]. More recently, it has been concluded that 
the human visual system is much more sophisticated, operating and functioning like a mini brain 
[9].  The use of hexagonal grid structures for image representation is inspired by the hexagonal 
structures of the fovea present in the human vision system. The fovea is responsible for sharp 
vision capture and is comprised of cones that are shaped and placed in a hexagonal arrangement 
[6], [13], [20]. Recent work using the hexagonal structure to imitate the human vision system 
includes biologically inspired fovea modelling [14] and the development of silicon retinas for robot 
vision [16], [25]. Some examples of work completed on processing images represented on a 
hexagonal grid include low-level feature extraction [4],[29] and efficient image rotation and 
translation [19]. 

Computer vision systems often possess similar characteristics and functionality to those of 
the human vision system. A camera is the basic sensing element, and its purpose as a visual input 
device has provided the opportunity for numerous digital processing procedures to assist humans in 
tasks such as video surveillance, object recognition and motion tracking. Visual tracking in video 
data can be described as the segmentation of an object from a sequence of video scenes, keeping 
track of its motion and orientation. Techniques such as video object detection and tracking are the 
initial  steps for more complex processes, such as video context analysis and multimedia indexing 
[21]. Visual object tracking is closely related to object detection in still images but relies also on 
the motion characteristics of objects, i.e. the continuity of the object detection over time. The need 
for real-time object tracking for video analysis exists in many aspects of our daily lives, for 
instance: surveillance [28], assistive robotics [2] and traffic accident detection [26]. Moving object 
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detection is considered to be the most important task in automated video systems, representing the 
low level image processing technique that is the basis of automated video analysis [1]. 

The state of the art in visual object detection has advanced considerably over the last 15 
years [5], [1], [17], [22]. Recently, advances in other image processing areas have generated 
renewed interest in tracking: specifically, progress in the definition of features invariant to various 
imaging transformations [18], [3], online learning [27], [10], and object detection [8], [15]. In order 
to process video in an efficient manner, it is not only important to investigate reliable and robust 
detection algorithms but to investigate the new processes for applying such algorithms to video 
sequences as fast and efficiently as possible. Hence, this paper presents a hexagonal pixel-based 
framework for video tracking, demonstrating its capability for reducing computational overheads 
when processing frame sequences. This efficiency gain is possible for a number of reasons. Firstly 
the hexagonal lattice has a number of advantages over conventional grid structures [19], for 
example, equidistance between neighbouring pixels, greater angular resolution and a higher degree 
of freedom. Secondly, in the fovea of the human eye, where the photoreceptive fields of ganglion 
cells do not overlap [7], we may use non-overlapping neighbourhoods when processing image or 
video data. Typically detection algorithms are applied over each complete frame throughout the 
video sequence and hence use convolution neighbourhoods that overlap. In contrast, we have 
developed a framework within which the convolution neighbourhoods do not overlap. In addition, 
the human eye can be subjected to three types of movement: tremor, drift, and micro-saccades [23]. 
As a consequence of eye tremor - rhythmic oscillations of the eye - the human vision system does 
not process single static images, but a series of temporal images that are slightly off-set due to these 
involuntary eye movements. Therefore, we adopt this concept for video processing by off-setting 
neighbouring frames, each of which is partially processed using non-overlapping convolution 
neighbourhoods.  

Although the framework presented can be used for many video processing algorithms, this 
paper uses edge detection as the application, as it provides a visually effective demonstration. In 
previous work [4] the finite element method was used to develop a systematic and efficient design 
procedure for operators for use with hexagonal images, and these operators will be used as a test 
bed to demonstrate the efficiency of the proposed framework.  
 
2.   Spiral Framework 
In the spiral architecture [24] the addressing scheme for the spiral image, denoted by S, originates 
at the centre of the image (pixel index 0) and spirals out using one-dimensional indexing. Figure 1 
shows the spiral addressing scheme for the central portion of an image. Pixel 0 may be considered 
as a layer 0 cluster. Pixel 0, together with its six immediate neighbours indexed in a clockwise 
direction (pixels 1,…,6) then form a layer 1 cluster centred at pixel 0.  
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Figure 1: One-dimensional addressing scheme in the central region of the image 

 
This layer 1 cluster may then be combined with its six immediately neighbouring layer 1 clusters, 
the centres of which are indexed as 10, 20, 30, 40, 50 and 60, to form a layer 2 cluster centred at 
pixel 0 (as shown in Figure 1); the remaining pixels in each of these layer 1 clusters are indexed in 
a clockwise direction in the same fashion as the layer 1 cluster centred at 0, (e.g., for the layer 1 
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cluster centred at 30, the pixel indices are 30, 31, 32, 33, 34, 35 and 36). The entire spiral 
addressing scheme is generated by recursive use of the clusters; for example, seven layer 2 clusters 
are combined to form a layer 3 cluster.  Ultimately the entire hexagonal image may be considered 
to be a layer L cluster centred at 0 comprising L7  pixels. 

An important advantage of the spiral addressing scheme is that any location in the image can 
be represented by a single co-ordinate value, and hence the spiral image can be stored as a vector 
[5]. Spatially neighbouring pixels within any 7-pixel layer 1 cluster in the image remain 
neighbouring pixels in the one-dimensional image storage structure. This is a very useful 
characteristic when performing processing tasks on the stored image vector, and this contiguity 
property lies at the heart of our approach to achieve fast and efficient processing for visual object 
detection. 
 
3.   Biologically Inspired Framework
In this section a biologically inspired eye tremor approach is presented for efficient application of 
processing algorithms. This approach involves the development of an eye tremor framework that 
permits non-overlapping convolution of processing algorithms. 
 
3.1  Simulating Eye Tremor 
Following the approach presented in [8] we consider the spiral image 0I  to be the “base” image, 
corresponding to a particular frame in the video sequence. For the following six frames we denote 
further images, 6,...,1, =jI j . The location of the origin of each of these frames is offset spatially 
from 0I  by a distance of one pixel in the image plane along one of the three natural hexagonal axis 
directions. This mechanism simulates the phenomenon of “eye tremor”. In each image 6,...,1, =jI j , 
the pixel with spiral address “0” represents the same spatial location in the scene as the pixel with 
spiral address “j” in 0I . (We are assuming that the camera is static.) The “centre” (i.e., the pixel 
with spiral address zero) of each image 6,...,0, =jI j , is thus located at a pixel within the layer 

1=λ neighbourhood centred at the pixel with spiral address “0” in image 0I , as shown in Figure 2. 
 

 
 

Figure 2. The 7 image centres in the eye tremor approach 

Through use of the spiral architecture for pixel addressing, it is assumed that image 0I  is stored in a 
one-dimensional vector (with base-7 indexing). Using the spiral architecture the following 
frames 6,...,1, =jI j , are stored similarly. 
 

3.2 Non-Overlapping Convolution
For a given image 0I , convolution of the operator 1H  across the entire image plane is achieved by 
applying the operator sparsely to each of the seven frames 6,...,0, =jI j  and then combining the 
resultant outputs. Figure 3 shows a sample of pixels in image 0I for which the label 6,...,0=j  for 
each pixel indicates in which of the images 6,...,0, =jI j , the pixel address takes the value 0 mod 7. 
Each pixel in image 0I  may be thus uniquely labeled.  
 

4.   Performance evaluation 
For initial testing of the proposed eye tremor framework, application of a 7-point hexagonal edge 
detection operator (previously developed in [11]), with mask values shown in Figure 4, is applied 
to a video sequence of resolution 160x120 pixels, sampled at 30fps. The video comprises of a man 
walking across the camera view from right to left. For comparison, the same operator is then 
applied to the same video sequence using the standard spiral convolution framework and the spiral  
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Figure 3. Pixel positions in image 0I corresponding to pixels 6,...,0, =jI j  with address 0 mod 7. 

 

convolution framework that utilises a look-up table to compute neighbourhood pixel addresses. The 
look-up table (LUT) which stores the pixel neighbour addresses takes 153ms to generate, but is 
significantly faster than using standard hexagonal addressing, which requires mod 7 arithmetic. The 
LUT is an alternative to computing the nodal addresses within a neighbourhood by using hexagonal 
arithmetic, which is very computationally expensive. The LUT approach effectively pre-computes 
and stores the indices for all of the 7-pixel neighbourhood clusters.  
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Figure 4: x- and y-components of hexagonal operator developed in [11] 

In Table 1 we present run times for application of the feature extraction operator using the different 
frameworks. Processing times are computed on a Pentium dual-core workstation using unoptimised 
C++ code. Each image is processed 100 times and the average runtime is determined. Using the 
eye tremor approach, the time taken to apply the operator to the first 7 frames and combining these 
partial edge maps to generate a complete edge map takes 1.114ms. It is important to note that this 
process need be computed only once for any video sequence. The time taken to apply the operator 
to one additional frame and combine this with the 6 previously obtained partial edge maps to 
generate the next complete edge map takes 0.190ms. When comparing these results with the other 
approaches in Table 1, we see that our biologically motivated approach is approximately 10 times 
faster than spiral LUT convolution, and 480 times faster than standard spiral convolution. 
 

Table 1: Algorithm runtimes for feature extraction 
Method Runtime 
Standard spiral convolution 91.278ms 
Spiral convolution using LUT  1.862ms  
Biologically motivated “eye tremor” approach  0.190ms 

 
Figures 5 (a) and (c) show two sample frames, the first frame F0, the seventh frame F6 respectively. 
Corresponding sparse edge maps obtained by the proposed eye tremor framework are presented in 
Figure 5 (b) and (d).  Figure 5(e) shows the resultant edge map when the operator is applied 
conventionally to F6 in the image sequence, and Figure 5(f) shows the combined partial edge maps 
for the first 7 frames using the eye tremor approach. Visual results demonstrate promise that 
applying  object  tracking  algorithms  based  on  the  proposed framework will perform well whilst 
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(a) F0 (c)  F6 (e)  7-point operator applied 

using Spiral approach 

   
(b) S0 (d)  S6 (f)  7-point operator applied 

using eye-tremor approach 
Figure 5: Frames and corresponding edge maps represented on spiral hexagonal structure 

 
significantly reducing computational overhead for processing video data in real time. Having 
applied the core 7-point operator to each of the images, we may combine the outputs to form a 
complete edge map. To reiterate, this process need be computed only once for any video sequence. 
It is only necessary to apply the operator to one additional frame and combine this with the 6 
previously obtained partial edge maps to generate the next complete edge map, which takes 
0.190ms. In terms of implementation using the one-dimensional vector structure for the 
images 6,...,0, =jI j , each output response 6,...,0, =jD j

λ is stored in a one-dimensional vector with 
non-empty values corresponding to the array positions with indices 0 mod 7. These one-
dimensional vectors may then be assembled according to the “shifted” structure as illustrated in 
Figure 6: { } )()(   ,7  0 000 sDksEmodsss k

λλ =+=∈∀  for 6,...,0=k  to yield the consolidated output 
image 00 )( IHIE ⊗= λλ as shown in Figure 7. 
 

1D :  0       10       20       30       ...      
2D :   0       10       20       30       ...     
3D :    0       10       20       30       ...    
4D :     0       10       20       30       ...   
5D :      0       10       20       30       ...  
6D :       0       10       20       30       ... 

0D :  0       10       20       30       ...       

 
Figure 6.  Assembly of the one-dimensional vectors 6,...,0, =jD j

λ  

)0(0D  )0(1D  )0(2D  )0(3D  )0(4D  )0(5D  )0(6D  )10(0D  )10(1D  )10(2D  )10(3D  )10(4D  )10(5D  )10(6D  )20(0D  ... …  
Figure 7.  Consolidated output image resulting from assembly of the vectors in Figure 6 

 
5.   Summary    
In this paper we present a biologically inspired approach to fast video processing. Using spiral 
addressing within a hexagonal framework, each frame in a sequence can be off-set slightly from its 
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adjacent frames in a cyclic pattern and a non-overlapping convolution can be applied. Once the first 
seven a-trous frames are processed to generate a complete edge map, the addition of each 
subsequent a-trous frame will generate a new complete edge map from the previous 6 processed 
frames.  Hence each subsequent edge map will be generated in one seventh of the time.  The results 
presented in this paper demonstrate that with only minimal degradation of accuracy, this 
biologically motivated framework is significantly faster than both the standard and LUT spiral 
convolution for video processing. 
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Abstract 
 

Modelling biological systems is difficult due to insufficient knowledge about the 
internal components and organisation, and the complexity of the interactions within the 
system. At cellular level existing computational models of visual neurons can be 
derived by quantitatively fitting particular sets of physiological data using an input-
output analysis where a known input is given to the system and its output is recorded. 
These models need to capture the full spatio-temporal description of neuron behaviour 
under natural viewing conditions. At a computational level we aspire to take advantage 
of state-of-the-art techniques to accurately model non-standard types of retinal 
ganglion cells. Using neural network techniques we model the highly complex 
neuronal structures of visual processing retinal cells and represent the mapping 
between perception and response automatically. 

 
Keywords: Retinal Ganglion Cells, Linear-Nonlinear Model, Neural Network 
 
 
1 Introduction 
 
Modelling biological systems is difficult due to insufficient knowledge about the internal 
components and organisation, and the complexity of the interactions within the system. System 
identification has emerged as a viable alternative to classical hypothesis testing for the 
understanding of biological systems and was first used to understand the responses of auditory 
neurons [De Boer, 1968]. Using white noise stimuli as input, the output responses were recorded 
and inferences made on mapping the stimulus to the response. White noise stimulation is often 
selected to model biological vision systems [Sakai, 1988, Chichilnisky, 2001] as it is 
mathematically simple to analyse. However, it is unlikely that white noise stimuli would test the 
full function of a neuron’s behaviour [Talebi, 2012]. Thus, any model developed with this stimulus 
could only be considered a subset of the biological model under certain conditions.  
 
In the work by [Marmarelis, 1972], the Wiener theory of nonlinear system identification was 
applied to study the underlying operation of the three stage neuronal structures in the catfish retina. 
Following from this work, the Volterra-Wiener method has been used extensively to model 
nonlinear biological systems [Victor, 1977, 1979, Marmarelis, 2004, Korenberg, 1996]. However, 
computational effort increases geometrically with the kernel order and in interpretation of higher 
order kernels [Herikstad, 2011]. Marmarelis and Zhao [Marmarelis, 1997] presented a way of 
overcoming these limitations by developing a perceptron type network with polynomial activation 
functions.  
 
Block-structured [Giri, 2010] or modular models in the form of cascaded or parallel configurations 
have been used to overcome the limitations of Volterra-Wiener models. Cascade models may take 
various forms such as linear-nonlinear [Ostojic, 2011], nonlinear-linear, linear-nonlinear-linear, etc. 
In particular, linear-nonlinear models have been used to describe the processing in the retina 
[Pillow, 2005]. The generalised modular model proposed by [Korenberg, 1991] employed parallel 
linear-nonlinear cascades generating spike outputs with a threshold-trigger function. To model 
specific neuron responses such as burstiness, refractoriness and gain control, [Pillow, 2008] 
amended the linear-nonlinear models with feedback terms. Correlated neuron activity was 
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modelled through the use of coupling filters [Pillow, 2008] to couple multiple linear-nonlinear 
models of individual cells.  
 
Neural network approaches have also been used to model biological aspects of the vision system. 
For example [Lau, 2002] used a two layer neural network with the backpropagation training 
algorithm to model the nonlinear responses of neurons in the visual cortex to visual stimuli. 
Similarly, [Prenger, 2004] used a multilayer feed-forward neural network to model the nonlinear 
stimulus-response relationship in the primary visual cortex using natural images. In this paper we 
show how time-delay neural networks may be used to model the retinas early visual processing 
system by modeling the biological input-output coupling. 
 
2 Neuronal Data 
 
Recordings were obtained from isolated mice retinas under full field stimulation. The stimulus used 
is a temporal sequence consisting of an intensity value pseudorandomly selected every 20 ms using 
a Gaussian white noise sequence. An example temporal sequence is illustrated in Figure 1.  
 

 
Figure 1. Full-field temporal stimuli sequence generated with Gaussian white noise. 

 
The isolated retina was placed on a multi-electrode array, which recorded spike trains from many 
ganglion cells simultaneously. Stimuli were projected onto the isolated retina via a miniature 
cathode ray tube monitor. Spikes were sorted off-line by a cluster analysis of their shapes, and 
spike times were measured relative to the beginning of stimulus presentation. In the experiments 
presented in this paper we analyse the response from a temporal retinal ganglion cell (RGC). 
 
3 Neural Network Structure and Experiments 
 
Among all the available techniques and methods to model input-output relationships Artificial 
Neural Networks (ANN) offer a desirable solution in terms of accuracy. Artificial neural networks 
can be applied to time series modelling without assuming a priori function forms of models. Many 
varieties of neural network techniques including Multilayer Feed-forward Neural Network [FFNN], 
Recurrent Neural Network (RNN), Time delay Neural Network and Nonlinear Autoregressive 
eXogenous Neural Network (NARX) have been proposed, investigated, and successfully applied to 
time series prediction. Multilayer FFNN is the most common Neural Network used in prediction 
and RNN is basically a FNN with a recurrent loop, where the output signals are fed back to the 
input. NARX are a combination of FFNN, RNN, and time delays.  
 
Artificial Neural Networks have been previously used to model biological aspects of the vision 
system [Lau 2002, Prenger 2004].  ANNs have the advantage over other techniques of a fast and 
simple implementation. However, this advantage has to be balanced against the weakness that the 
obtained mapping is opaque, and not easily analysed. Hence, such an opaque ANN model of the 
neurons stimulus-response relationship becomes less useful for understanding the underlying 
neuronal architecture and structure. Even so, we use such techniques to model neuronal behaviour 
with artificial visual scenes, and to represent the mapping between stimulus and response. 
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In particular, we use Time delay Neural Network (TDNN) to model the stimulus-response 
relationship as these have tuneable nonlinearities, interconnectivity structures and 
additive/multiplicative synapses that may represent the functional behaviour of complicated retinal 
circuitry. We use a fully recurrent network that is a network of artificial neurons, each with a direct 
connection to every other artificial neuron. Each neuron has a time-varying real-valued activation 
function and each connection has a modifiable real-valued weight. Some of the artificial neurons 
are called input nodes, some output nodes, the remainder are hidden nodes. In supervised training 
of TDNNs, one starts with teacher data (or training data): empirically observed or artificially 
constructed input-output time series, which represent examples of the desired model behaviour. 
The training data is used to train a TDNN such that it approximately reproduces the training data so 
that the TDNN then generalizes to novel inputs. 
 
3.1  Data Pre-processing 
 
The overall goal of the pre-processing stage is to manipulate the data so that they form a regression 
dataset, i.e. input-output corresponding to the stimulus-response. In this case the dataset will be 
single-input single-output. The Gaussian white noise stimulus is a stochastic highly interleaved 
stimuli spanning a wide range of visual inputs, is relatively robust to fluctuations in responsivity, 
avoids adaptation to strong or prolonged stimuli and is well suited to simultaneous measurements 
from multiple neurons. Examples of stimuli are presented in Figure 1 where each image in the 
sequence is presented sequentially to the isolated retina. As the stimulus has uniform intensity there 
is no need to extract the stimulus in the region of the receptive field. 
 
Recordings of the ganglion cell neural response (spikes) to the full-field stimulation were supplied 
for two different ganglion cells in the case of this dataset. Each file contains the recorded times of 
spikes in seconds. For example, [1.76304, 1.76912, 1.78504,…,546.63776]. Using these recorded 
spike times we compute a continuous temporal spike rate using the standard method of binning and 
convolution with a window function. Using this method we then have a continuous valued input-
output dataset. For example, in Figure 2 we have illustrated the input data (stimulus intensity), 
recorded spikes and also computed the spike rate using a number of different window functions for 
1000ms of a retinal recording session.  
 
 

[a] 

 

[b] 

[c] 

[d] 

[e] 

[f] 

Figure 2. (a) Temporal stimulus intensity, (b) recorded spikes, and (c-f) computed spike rate 
 
Figure 2(a) illustrates the stimulus intensity, Figure 2(b) illustrates the recorded spikes, Figure 2(c) 
illustrates the spike rates computed using fixed binning, Figure 2(d) illustrates the spike rate 
computed using a sliding rectangular window, Figure 2(e) illustrates the spike rate computed using 
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a sliding Gaussian window, and Figure 2(f) illustrates the spike rate computed using a half wave 
rectified α function. 
 
After this pre-processing stage we can use the TDNN method to obtain a predictive model that 
models the ganglion cells spike rate based on the input stimulus intensity where the spatially 
uniform stimulus intensity is used as input (Figure 2(a)) and the computed spike rate (Figure 2(f)) 
in this case) is used as output. 
 
3.2  Experiments and Results 
 
Here we illustrate how the various neural networks within the layered retina structure can be 
modelled using a TDNN that incorporates the neuron's nonlinear behaviour and dynamics. The 
proposed approach represents a decisive departure from current methods of generating retina 
models such as the Linear-Nonlinear model. We propose to model the neuron’s behaviour with 
artificial visual scenes, and to represent the mapping between perception and response 
automatically, using the TDNN approach. Using the pre-processed dataset described in 3.1 we then 
create a time delay neural network with 10 neurons in the hidden layer. The network incorporates a 
time delay considering the previous 10 time-steps, i.e. 200ms (see Figure 3). This neural network 
was implemented in Matlab using the neural network toolbox. The network is trained with a dataset 
that contains neuronal recordings from a retinal ganglion cell recorded over a period of 
approximately 9 minutes. Training the network take approximately 10 minutes on a high-powered 
workstation. 
 

 
Figure 3. Time Delay Neural Network Structure 

 
Once the neural network has been trained we then use a novel test stimulus sequence to evaluate 
the performance of the time-delay TDNN and compare to the actual neuronal response to the test 
stimulus. Results are presented in Figure 4. The plot in the top-left illustrates the actual spike rate 
(blue) and the TDNN model predicted spike rate (green) compare visually well. The RMSE shows 
the overall performance for the test stimulus. 
 
To provide further comparison for the NARMAX models we evaluate against a standard 
benchmark by computing the Linear-Nonlinear (LNL) model [Ostojic, 2011]. The first stage in 
computing the Linear-Nonlinear model is to compute the spike triggered average (STA) which is 
the average stimulus preceding a spike. The second stage in the Linear-Nonlinear model is used to 
re-construct the ganglion cells nonlinearity by plotting the actual response against the STA 
predicted response, binning the values and fitting a curve using a cumulative density function. For 
full details of this process please see [Ostojic, 2011]. Next, we apply the STA and nonlinearity to 
the same test stimulus used previously and compute the response. Results are presented in Figure 5. 
 
Visual comparison illustrates that the TDNN approach results in a closer fitting model when 
compared to the LNL approach. This can be measured quantitatively by measuring the RMSE 
which is 32.29 and 49.98 for the TDNN and the LNL model respectively.  
 
4 Discussion 
 
Modelling biological systems is difficult due to insufficient knowledge about the internal 
components and organisation, and the complexity of the interactions within the system.  
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Figure 4. Comparison of TDNN model and actual neuron response to novel test stimulus sequence. 

 

 
 

Figure 5. Comparison of LNL model and actual neuron response to novel test stimulus sequence 
 
Existing computational models of visual neurons can be derived by quantitatively fitting particular 
sets of physiological data using an input-output analysis where a known input is given to the 
system and its output is recorded as illustrated in the Linear-Nonlinear approach. At a 
computational level we have presented the use of TDNN methods to accurately model individual 
retinal ganglion cells as shown in Figure 4. We have presented a comparison of the actual neuronal 
response and the predicted neuronal response and a comparison with the Linear Nonlinear 
approach (see Figure 5). 
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Using TDNN to express the biological input-output coupling mathematically we have modelled 
highly complex neuronal structures, and modelled ganglion cell behaviour with visual scenes. The 
next stage in this work will be to increase the complexity of the stimulus by having spatially 
varying stimuli; we have already started to test the effectiveness of this using the natural image 
sequences. 
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Abstract 
 

This paper presents a comparison of the effect of varying both the bit-depth and resolution of a 
real-world route video sequence with a control video of 1920x1080 resolution and 24-bit bit-
depth. A video was acquired of a regional road in Ireland, using an off-the-shelf witness 
camera. The acceleration and deceleration effects of the acquisition vehicle’s speed were 
removed using the GPS data acquired by the camera. The video was then processed to generate 
four variants; two variants using a sampled bit-depth, and two variants using a sampled 
resolution. These videos were then integrated with a driving simulator, allowing the user to 
control the speed at which a video was played back to the user using the simulator’s control 
pedals. The videos describe a route that is approximately 4 km long. The average driver speed 
associated with each of these sampled videos is then compared with the average driver speed of 
the control video. Previous research has shown that the type of simulator display setup can 
have an effect on long-term post-simulation accident statistics. The results of this paper show 
that both the bit-depth and resolution of the video in a video-based driving simulator can affect 
driver speed. 

. 
Keywords: Video-based driving simulation, bit-depth, resolution, speed 
 
1 Introduction 
 
Fidelity is defined as the faithfulness with which something is reproduced [1]. The auditory, 
proprioceptive and vestibular elements that a driver experiences have each been replicated to 
realistic levels of fidelity [2][3]. A high-fidelity representation of a visual cue stream can be 
acquired using a video camera, although the use of videos in driving simulation is rare. Even 
though the visual cue stream is the element that delivers the greatest amount of environmental 
information to a driver, the replication of this is limited to graphical recreations of roads and 
environments in driving simulators [4]. Other research into introducing a photo-based visual cue 
stream into driving simulation has produced systems capable of delivering photo-textured three-
dimensional environments, although, to date, no data has been presented on the effects of increased 
visual fidelity on driver behavior. The amount of visual information delivered to a driver that must 
be processed by the driver’s cognitive abilities can be defined as the visual cognitive load. A scene 
with a large amount of visual information can therefore be considered to be of a higher cognitive 
load than a scene with a lower amount of visual information [5]. 
 The effect of video quality on user engagement and quality of experience are well-
documented, particularly with reference to Internet streaming and downloading [6][7][8]. It has 
been shown that bit-rate; frame-rate and audio quality can be degraded with little effect on the 
quality of user experience [9], although such studies are concerned more with the qualitative 
measures as opposed to the quantitative effects of video quality sampling. 

The type of driving simulation display has been shown to have an effect on the performance 
of driver training, with research showing that drivers trained using a triple-monitor display are 
involved in fewer road traffic accidents when compared to those trained on a single display [10]. 
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Changing the display setup when using graphical models is straightforward, as the resolution of the 
virtual world can be updated to reflect the new setup. When dealing with video however, the 
resolution of the visual stream can change dependent on the new setup. For example, a 1920x1080 
resolution video can playback at its native resolution on a single screen, but is sampled when 
played back on a triple 1920x1080 resolution setup, or on a 1280x1024 resolution display.  

This paper describes a comparison on the effect on driver response of sampling the bit-depth 
of the video, with the effect of sampling the resolution of the video. The control video was acquired 
along a rural route using an off-the-shelf witness camera, that acquires video data in 1920x1080 
resolution at a frame rate of 29.97003 frames per second (fps), alongside global positioning data at 
a rate of 1 Hz [11]. 

This paper is divided into seven sections; section 1 gives an introduction to the topic. Section 
2 provides an overview of the effects of reduced cognitive loads on drivers in real vehicles.  
Section 3 details the implementation of the driving simulator and integration of the video datasets. 
Section 4 describes the bit-depths and resolutions at which the original video was sampled. Section 
5 presents the testing and results. Section 6 details the future work being undertaken with the 
driving simulator. The paper concludes with section 7, which draws conclusions based upon the 
results of the paper. 

 
2 Effects of Reduced Visual Cognitive Loads on Driver Behavior 
 
The most obvious scenario where a driver encounters a reduced visual cognitive load is during 
night-time driving. Night-time driving is inherently more dangerous than day-time driving, due to 
the decreased visibility associated with reduced illumination [12][13]. Even when temporal factors 
such as driver fatigue are accounted for, road traffic accident statistics indicate that the number of 
accidents is similar between day and night, even though three-quarters of road use occurs during 
day-light hours [12][13]. Increased levels of night-time accident rates were observed when research 
into the effects of reduced speed limits was conducted, with the night-time accident rate being 
173% of the corresponding day-time rate on two-lane urban roads [14]. It has been noted that even 
subtle levels of illumination can play a significant role in the reduction of accidents. It has been 
reported that fatal accidents involving pedestrians reduce by up to 22% on nights when a full-moon 
occurs [15]. Other research has shown that increase in fog density results in increased speed when 
testing is undertaken in driving simulators [16].  
 
3 Driving Simulator Implementation and Video Integration 
 
Previous research used data that were acquired using a Mobile Mapping System (MMS). Data 
acquired by this system were processed to generate a synchronized graphical model and video 
sequence. Strong correlations were recorded across the video, model and ground-truth (driver speed 
during data acquisition) data sets. Due to the low frame rate however, video playback was 
somewhat uneven [17][18]. The video acquired for the purposes of this paper was in 1920x1080 
resolution at 29.97003 fps, increasing the smoothness of the playback significantly. 

The driving simulator used in the experiments described in this paper consists of an Ubuntu-
based PC, triple 1280x1024 resolution monitors, unified to a single 3840x1024 display using a 
Matrox TripleHead2Go, and a Logitech G27 gaming steering wheel and pedals [19][20]. As the 
vehicle carrying the witness camera was driven at non-constant road speeds, the geo-tags were 
processed and interpolated such that a series of evenly-spaced co-ordinates were generated. This 
allowed the acceleration/deceleration affect caused by the non-constant acquisition speed to be 
discounted [17]. The equalized video contains video data as if acquired at a constant acquisition 
speed of 80 km/h. 
 
3.1 Even Spacing of Video 
 
The witness camera acquired High-Definition frames at a rate of 29.97003 fps, and positional data 
at a rate of 1 Hz. To space the video frames evenly and remove any acceleration affects introduced 
by driving the acquisition vehicle at normal road speeds, the distance between each GPS sample 
was calculated and divided by the frame rate to estimate the distance traveled between frames. 
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Each frame was assigned a geo-tag based on this method. The route was then divided into equal 
distances, and the nearest frame to each equal distance was selected using a Look-Up Table that 
related each video frame’s geo-tag to its nearest neighbor along the equally-spaced route. This 
removed the acceleration effect. 
 
3.2 Driving Simulator Software Development Environment 

 
The driving simulator software was developed in MonoDevelop C#. Video playback was 
performed through the use of the MPlayer video playback application, with both MPlayer and the 
control system being assigned a thread. Current speed was relayed to the driver using an onscreen 
speedometer, itself assigned a third thread. The speed was normalized within the range of 0 km/h 
and 90 km/h. The lower value was obtained by releasing the accelerator pedal, in which state the 
video playback would pause, and the higher value was obtained by applying full pressure to the 
accelerator pedal. 
 
4 Video Sampling 
 
The original video, as acquired by the witness camera, consisted of a three minute segment of 
1920x1080 resolution with a 24-bit bit-depth. When equalized for speed this reduced to two 
minutes and 20 seconds. This equalized video was taken as the control video, and was then 
sampled four times. The testing videos consisted of the original control video, a 1920x1080 
resolution video with a 3-bit bit-depth, a 1920x1080 resolution video with a 9-bit bit-depth, a 
672x378 resolution video with a 24-bit bit-depth, and an 1168x657 resolution video with a 24-bit 
bit-depth. These resolutions were chosen as they offered a noticeable level of degradation when 
compared to the control video; the corresponding sized bit-depths were then selected based on the 
frame size of the sampled resolution videos. Data loss is interpreted as the loss in video frame size 
occurred through the bit-depth and resolution sampling processes. 
 
4.1  Selection of Bit-Depths and Resolutions 
 
Each frame of the 1920x1080 resolution 3-bit bit-depth video was 0.73 Megabytes (MB) in size, 
the same as that of the 672x378 resolution video with a 24-bit bit-depth video, representing a data 
loss across each of 87%. This process was repeated for the 1920x1080 resolution 9-bit bit-depth 
video (2.22 MB frame size), again, the same as that of the 1168x657 resolution video with a 24-bit 
bit-depth video, representing a data loss of 63% across each. This resulted in a set of videos that 
allowed for a comparison on the reduction of similar levels of information from two aspects of 
visual cognitive load; bit-depth and resolution. The data loss is shown in Table 1. 
 

Table 1: Data loss of the control video and four sampled videos. 

Video Pixels Per 
Frame 

Bit-Depth 
Per Pixel 

Frame Size 
(MB) 

Information 
Loss (%) 

3-bit Bit-Depth 2,073,600 3 0.73 87.5 
9-bit Bit-Depth 2,073,600 9 2.22 62.5 

672x378 Resolution 254,016 24 0.73 87.8 
1168x657 Resolution 767,376 24 2.22 63.0 

Control 2,073,600 24 5.94 0.0 
 
4.2 Bit-Depth Sampling and Resolution Sampling Methods 
 
To sample the original 24-bit video, each frame was split into its constituent three channels; Red, 
Green and Blue (RGB), with each of these channels having 8-bit pixel intensities ranging from 0 to 
255. Each 8-bit value was bitwise shifted right the number of required times. For example, a 
required 1-bit sample would have each pixel intensity shifted right seven times. This shift reduces 
the 8-bit pixel intensity to an n-bit pixel intensity. This sampled value was then rescaled into the 0 
to 255 range to allow the sampled images to be written to file as 24-bit format bitmaps. This was 
undertaken to prevent any compatibility issues between non-standard bit-depth images and the 
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codec used for video decoding in the driving simulator. Once sampled, each channel was 
recombined into a single RGB image. To sample the resolution of the original 24-bit video, each 
frame was resized into the desired vertical and horizontal dimensions. Examples of these are shown 
in Fig. 1. 
 

 

 
Figure 1: Example frame segment of the (a) control, (b) 3-bit, (c) 9-bit, (d) 672x378 and (e) 

1168x657 frames. 
 
5 Testing and Results 
 
Ten participants drove through each of the five videos, presented in a random fashion, with their 
speed recorded once per frame. The participants consisted of five males and five females, ranging 
from 21 to 41 years of age. These speed values were averaged using a running calculation to 
produce 200 values per dataset. Drivers were notified of the control system and the initial speed 
limit. The only instruction given to the drivers was “to drive as they would normally”. The 
averaged data for each video type are shown in Fig. 2, with the cross-correlation matrix of the five 
datasets shown in Table 2. It should be noted that, although the speed appears to increase across 
time, this is, in fact, a reflection of the route’s geometry. 
 

 
Figure 2: The average driver speeds across the same route using the five different videos. 

 
Table 2: Cross-correlation matrix of average driver speed response (mean = 0.969) 

Video 3-bit 
Bit-Depth 

9-bit 
Bit-Depth 

672x378 
Resolution 

1168x657 
Resolution Control 

3-bit Bit-Depth 1.000 0.985 0.971 0.933 0.961 
9-bit Bit-Depth 0.985 1.000 0.966 0.912 0.942 

672x378 Resolution 0.971 0.966 1.000 0.935 0.975 
1168x657 Resolution 0.933 0.912 0.935 1.000 0.958 

Control 0.961 0.942 0.975 0.958 1.000 
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A repeated-measures ANOVA was conducted to compare the means of the five conditions. An 
overall significant effect was found ( , , ). Subsequent t-
tests performed between each sampled video and the control video found significant differences 
between each. The critical t-value was 1.65, and the calculated t-values were 56.68 (3-bit), 19.45 
(9-bit), 6.73 (672x378 resolution) and 12.81 (1168x657 resolution). The mean 3-bit speed was 63 
km/h (115.3% of the control’s mean), the mean 9-bit speed was 58 km/h (106.2% of the control’s 
mean), the 672x378 resolution mean speed was 56 km/h (101.8% of the control’s mean) and the 
1168x657 resolution mean speed was 57 km/h (103.4% of the control’s mean). 

5.1  Discussion of Results 

The very strong cross-correlation among the five videos (mean = 0.969), suggests that drivers 
respond to the geometry of the road in a broadly uniform manner, regardless of the bit-depth or 
resolution of the video presented to them. The primary difference among the five data sets was the 
magnitude of speed, where the average speed along the 3-bit video was 115.3% of the control 
video. The average speeds along the other three sampled videos were between 101.8% and 106.2% 
of the control video’s average speed. The ANOVA test confirmed that the differences observed in 
the datasets could not be contributed to random sampling error, with an F-value far in excess of the 
critical F-value.  

Previous research has shown a lower cognitive load on a driver in the form of both night-
time and fog driving can result in increased speed [14][16]. By sampling a video to produce the 
same amount of visual data in different forms, this paper has shown that the bit-depth of a video 
carries less cognitive load for a driver in a video-based driving simulator than the corresponding 
sampled resolution video, resulting in an increase in speed. A decrease in resolution is also 
associated with an increase in speed, although not to the same degree. 

These results show that when considering the speed values acquired using a video-based 
driving simulator, the resolution of the video and display system may have some influence on the 
recorded participant speeds. 

6 Future Work 

The work presented in this paper has used “on-the-rails” videos (i.e. there was no steering 
component) for the purposes of measuring one independent variable as an indicator of driver 
performance; namely speed. Work is underway to introduce a steering element into the video 
sequence. Once this has been achieved, the experiment will be repeated with the aim of measuring 
the effect of bit-depth and resolution sampling on the perception of driver steering and positioning. 

Future work will also include addressing the limitations of the methods described in this 
paper; i.e. introducing a comparison of bit-depth with dynamic range, and also a comparison of 
modified day-time video with an authentic night-time video of the same route. 

7 Conclusions 

This paper has described a video-based driving simulator, and presented the differences in speed 
when drivers are presented with videos sampled both in terms of bit-depth and resolution. Drivers 
still responded to road geometry, with correlations of over 90% across all datasets. The primary 
difference observed in this work was the overall increase in speed of the drivers when presented 
with a 3-bit sampled video, where the average speed was in excess of 115% of the control video. 
The other three sampled videos had average speeds closer to 100% of the control. This supports 
earlier research suggesting that drivers increase their speed at night and during foggy conditions 
[14][16]. This is reflected primarily in the 3-bit bit-depth video, and at a lower level again in each 
of the sampled videos, where a decrease in visual cognitive load resulted in a statistically-
significant increase in speed. This indicates that, when measuring driver speed in a video-based 
driving simulator, the contribution of video resolution and bit-depth on the recorded speeds may 
have to taken into account. 
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Abstract 

This paper describes a novel system for performing subject reacquisition, by 
reasoning with events from heterogeneous sensors and allowing for decisions to 
be revised in light of new information. The system uses Radio Frequency 
IDentification (RFID) readers to build a list of possible subject candidates at a 
given point and identifies the true subject using facial recognition in video. The 
system has been evaluated with a data set of 77 subjects, based on a challenging 
real world scenario. The baseline accuracy of the facial recognition sub-system 
is 82%, which is increased to 96% by combining RFID information and further 
increased to 99.5% by applying reasoning techniques. The results illustrate the 
importance of fusing information from modular components. A practical 
advantage of the system is that it leverages standard commercial off-the-shelf 
(COTS) equipment and so can be deployed relatively cheaply using existing 
infrastructure. 

Keywords: Machine vision, event reasoning, application 

1 Introduction 
Subject reacquisition is a form of subject identification and in particular is a multi-class classification 
problem. It is the process of identifying an individual at a specific point in space and time given 
knowledge of one or more previous observations. It is especially important in secure corridors, which 
are delineated spaces closed to random access where subjects are constantly monitored. Subject 
reacquisition is one solution to the problem of associating observations across a sensor network, Figure 
1. 

 
Figure 1: Subject reacquisition, where the subject at checkpoint 2 is identified using features obtained 
from checkpoint 1. 

Subject identification is a common task in sensor networks and existing research covers a broad 
area of applications. In [1] a novel framework is presented for searching archived video using human 
attributes as search terms. The authors acknowledge the difficulties of using facial recognition due to 
illumination variation, changes in face pose and low-resolution imagery. Results are shown using 
clothing colour, eyewear and hair features in low-resolution video. The precision and recall rates of the 
detectors vary in quality, with moustaches and hats being difficult to detect. The receiver operating 
characteristic (ROC) curves show that infrared sensors far outperform visible when using these facial 
detectors. Bauml et al. [2] present a system for person retrieval in camera networks using facial 
features that are robust to wide variations in pose. The system can cope with face sizes as small as 
18×18. The recognition algorithm uses layered detectors to register face images using eye and mouth 
features. With operator feedback the system can achieve 86% precision in challenging conditions. 

In [3] a watchlist system is presented which is motivated by human perceptual facial 
recognition. Dedicated neural-network classifiers are trained for each subject on the watchlist using 
face classifiers to screen probe images before using eye classifiers to make the final decision. The 
system has been deployed in a live environment and successfully identified 10 people on a watchlist 
from a total pool of 211 subjects with no error. The computation required for training dedicated 
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classifiers such as these prohibits their use in an online setting. As a counterpoint to watchlist systems, 
an intruder dection system looks for subjects not on the watchlist. In [4] RFID is used to provide an 
identity of a subject and facial recognition is used to authenticate. The system is fast in execution, able 
to search 100 subjects in less than half a second, however it is not clear what level of accuracy is 
achieved. Jong et al., [5], also combined face recognition and RFID, building an electronic security 
system for cars to solve the one-to-one authentication problem. 

Commercial solutions for tracking across a sensor network include Snap and IntelliVid, which 
both use time-of-flight between sensors as cues to infer the topology of the camera network. Snap 
automatically calculates the overlapping fields of view of cameras in the network and overlays this 
information onto the camera feeds. This makes the task of tracking a subject across the network easy 
for a human operator, even one without any knowledge of the camera network. IntelliVid is a video 
intelligence system that can detect suspicious activity, such as loitering or theft, and bundle evidence in 
alert-based notifications. These systems rely on continuous operator interaction and lack automated 
intelligent processing. 

Räty, [6], identified that the two most substantial factors restricting the deployment of 
surveillance systems in real world scenarios are real-time performance and cost. Current state of the art 
methods for face recognition are L1-minimisation algorithms, [7], which traditionally are unsuitable 
for large-scale systems, but are improving all the time. The need for performance and the suitability of 
older methods, such as PCA or LDA, is discussed in [8]. Face recognition using correlation filters has 
been shown to outperform PCA in terms of both accuracy and computation, [9]. 

Reasoning has been applied to the problem of subject reacquisition in [10] using time-of-flight 
between known checkpoints as a source of information. The specific challenges of subject 
reacquisition are not addressed widely in the literature. 

The system described in this paper performs automatic, contactless identification of all subjects 
moving through a secure corridor. A combination of facial recognition from video with RFID sensors 
is used to identify subjects and a reasoning scheme improves performance and ensures consistency. An 
authentic data set of 77 subjects, captured to reflect a challenging operational scenario, is used for the 
evaluation. The data set is partitioned into segments, one for each subject, which allows thousands of 
unique sequences to be generated with different permutations of subject ordering. The overall system 
can operate in real-time, is scalable for large installations, and requires no specialist equipment. As a 
result, it is an effective and low-cost solution to the problem of subject reacquisition in secure 
corridors. 

2 Subject reacquisition 
Subject reacquisition can be formulated as a closed-set matching problem. Given an observation of 
subject X at a checkpoint with heterogeneous sensors, the task is to match with observation(s) at 
previous checkpoint(s). In this work the sensors are an RFID reader, which can identify tags within a 
limited radius, and an IP video camera. Each tag is linked to a subject's appearance model, obtained 
through face detection in video, at the first checkpoint. Given a set of possible identities, i.e. owners of 
tags within a certain range, facial recognition is used to identify the subject at subsequent checkpoints. 

2.1 Face detection and recognition 
2.1.1 Face image normalisation 
Faces are detected in each video frame using the Viola-Jones algorithm [11], which is popular due to 
its real-time performance as well as good precision and recall characteristics [12]. Faces are extracted 
as greyscale intensity images. 

Illumination compensation involves adjusting the pixel intensities of a face image so images 
with different illumination profiles can be directly compared. The method used in this paper is taken 
from [13], and is based on the Retinex illumination model [14]. The advantages of this method are its 
computational simplicity and good performance. Given an intensity image I, the logarithm image L is 
calculated by taking the logarithm of each pixel. The low frequency information is extracted by 
convolving a 3×3 maximum filter with the logarithm image to produce U. The final illumination 
compensated image, F, is calculated as F=L-U.  

2.1.2 Learning a face model 
As a subject walks within the field of view of the video camera, face images are extracted and 
illumination normalised. In this system the face is modelled by a set of minimum average correlation 
energy (MACE) filters, [9]. The advantages of using a MACE filter are that it produces a compact 
feature representation and is computationally efficient so both training and testing can be completed in 
real-time. 
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Every normalised face is stored in a buffer with a maximum capacity B. When the buffer is full, 
the faces are processed to create a single face model, then the buffer is cleared and the process 
continues. A single subject can therefore have many models associated with it. 

The buffer contains a set of normalised greyscale images Fi. Each image Fi is d×d pixels. The 
model, h, produced from the images in the buffer is a MACE filter. To construct the MACE filter, for 
each facial image Fi its 2D Fourier transform Zi is calculated and stored in the training matrix X, which 
is a d2×B matrix. The ith column of X is a lexicographically re-ordered version of Zi. The MACE filter 
can be calculated from the closed form equation [9]: 

ܐ ൌ ۲ିଵ܆ሺ۲ି∗܆ଵ܆ሻିଵܝ     
(1) 

where D is a d2×d2 diagonal matrix containing the power spectrum of the training images, h is a d2×1 
column vector containing a lexicographically re-ordered form of the 2-D correlation (MACE) filter and 
u is a B×1 column vector containing the linear constraints on the training images. We train the filter 
with positive samples, so u=1. X* denotes the complex conjugate transpose of X. 

As the size of the training buffer increases the time required to build the model increases and 
there is a chance that the subject will change pose. Pose changes are modeled by training multiple 
MACE filters, but each should contain a single pose. The MACE filter performs well when trained 
with a small number of samples, so in our experiments we use ܤ ൌ 7. As d increases the amount of 
detail in the face feature increases, at the cost of increased computation time. In our experiments we set 
݀ ൌ 64. 

2.1.3 Evaluating a probe face image 
When a subject is detected at checkpoint 2 the steps described in section 2.1.1 are followed to detect, 
extract and illumination normalise the face images of the unknown subject. Each of these probe face 
images is compared to the set of known face models.  

To compare a probe image with a face model the peak-to-sidelobe (PSR) ratio is calculated [9]. 
The comparison can be represented by a function which produces a real-valued score given a model 
and a probe image. The global score matrix, M, contains the PSR value for every probe image and 
every known model. The global set of models G contains an element for every observed subject at 
checkpoint 1. Each element, Si, contains one or more MACE filters. The maximum value obtained 
from comparing the probe image with the models in Si is stored in M. If there are P probe images and 
N subjects in G then M contains P rows and N columns and is constructed by 

௜,௝ܯ ൌ max௞:ࢎೖ∈ௌ೔ ቀܴܲܵ൫ܨ௝, ,௝ܨ∀௞൯ቁܐ ݅ ∈ ሾ1, ܰሿ, ݆ ∈ ሾ1, ܲሿ   
 (2) 

For example, the score in the third column, second row is the output of the facial recognition algorithm 
when applied to the third test image using the second candidate as a model for matching. 

Once this matrix has been constructed it is possible to determine which of the models Si best 
matches the unknown subject X.  

2.2 Reacquisition decision methods 
Given an unknown subject X and a closed set of candidate subjects, G, the reacquisition task is to 
identify which of the candidates, i.e. which model in M, is the true subject. Described below are three 
different methods for making this decision. 

2.2.1 Method 1 – Dempster-Shafer belief function 
The first decision method is based on Dempster-Shafer combination theory. Each column of the score 
matrix, M, is normalised to produce the matrix ܯ෡  as 

ప,ఫ෢ܯ 	ൌ ௜,௝ܯ 	
ଵ

∑ ெೖ,ೕ
ಿ
ೖసభ

      

(3) 
For each column of ܯ෡  the confidence scores are sorted in descending order. Each row of ܯ෡  is 

assigned an initial confidence score of 1. For each column in ܯ෡  the highest confidence score is left 
unchanged, but all other confidence scores are multiplied by the ratio p2/p1, where p1 is the highest 
confidence score and p2 is the second highest. 

Once all columns have been processed there is a set of confidence scores, one for each row of 
෡ܯ . The subject that corresponds to the largest of these scores is chosen as the reacquired subject and 
the confidence in the decision is the normalised confidence value. This scheme rewards a subject 
whose model consistently matches the probe images and penalises the other subjects. 

2.2.2 Methods 2 and 3 – Normalised mean scores 
The second method involves averaging the scores over all probe images, i.e. the average over the 
columns of Mi,j. The resultant vector, V, calculated by 
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௜ܸ ൌ
ଵ

௉
∑ ௜,௝ܯ
௉
௝ୀଵ       

(4) 
is then normalised, producing the unit vector ෠ܸ . Each element of ෠ܸ  corresponds to a model and the 
value is the normalised mean response of that model to all the probe images. The reacquisition 
decision is to choose subject Si, where i is the index of the largest element of V. The confidence score 
is given by the largest element of the unit vector ෠ܸ . 

The final method is similar to the second, but is more sensitive to differences between models 
for each probe image. Like method 1, the normalised matrix ܯ෡  is calculated, then a vector, V, is 
created by averaging the rows of ܯ෡ : 

௜ܸ ൌ
ଵ

௉
∑ ෡௜,௝ܯ
௉
௝ୀଵ       

(5) 
Note that V is also normalised, since it is the average of normalised values. The reacquisition decision 
is to choose subject Si, where i is the largest element of V. The confidence score is given by the 
maximum value of V. The difference between methods 2 and 3 is that in the former the normalisation 
is performed after the average is calculated, but in the latter the normalisation is performed beforehand. 
The methods are similar but are capable of yielding very different results depending on the input 
values. 

The decision methods presented require all face models to be compared with all probe images. 
As the number of subjects increases, it becomes increasingly difficult to achieve real-time 
performance. Therefore it is necessary to reduce the search space when looking for the correct subject. 

2.3 Comparison sets from RFID 
An active RFID tag transmits a signal at regular intervals and an RFID reader can extract the unique 
identifier of the tag and the signal strength. Due to interference, particularly contact with the human 
body, the received signal strength at the reader can exhibit large variations. It is possible to determine 
whether a tag is within a certain radius of the reader, but not to pinpoint its exact position, even with 
multiple readers. 

In this system, the RFID readers at each checkpoint are able to determine which tags are nearby 
and therefore which tag the current subject may be holding. This means that for a subject X the system 
does not have to compare the probe images against all N models, improving both precision and 
scalability. 

A comparison set, C, is a subset of the global model set, G. When an unknown subject X 
appears at a checkpoint the comparison set is constructed. The face-based decision method described 
in section 2.2 then only needs to be used over the smaller comparison set, as opposed to the global set. 
An ideal comparison set is the smallest subset of G that is guaranteed to contain the subject’s true 
identity. At worst, |C| is the total number of subjects, N. It is assumed that the true identity of X is 
contained in C. In secure corridors, such as airports, where the set is closed and subjects carry 
identification tags this is a reasonable assumption. 

The score matrix, M, described in section 2.2 is still constructed, but only rows for subjects 
within C need to be calculated. This significantly reduces the number of computations required but 
otherwise the process for making a decision remains the same. 

2.4 Belief revision 
Belief revision is the process of changing a decision in light of new information. In the context of this 
system, the change of decision is prompted by a duplicate reacquisition decision. The secure corridor is 
a closed-set matching problem, therefore each subject must appear once and only once at each 
checkpoint. If a subject is reacquired twice, it means that another subject has not been reacquired at all. 

The solution to this problem presented here is a process called one-step revision, based on [10]. 
This allows at most one change to be made given new information and prevents cascading of errors 
through the system as a result of a bad decision. Suppose two different subjects, X and Y have both 
been reacquired as subject S1 from checkpoint 1 and that a third subject, Z, has been reacquired as S2. 
First, the confidence values of the decisions for X and Y are compared. The decision with the greater 
confidence score is retained, suppose it is X. The comparison set for Y is then modified to remove S1. 
The next best match is chosen from the comparison set. If the new choice does not result in conflict 
then the change stands and the system is stable. If the new choice for Y is S2, however, there is then a 
conflict with Z. If the confidence value for X is less than the confidence value for Z, then Y is left as S1 
and no change is made. If the confidence value for X is greater than the confidence value for Z, then Y 
is changed to S2. 

Note that this scheme can result in inconsistency, as it is possible for two subjects to be 
reacquired with the same identity. It is preferable to keep inconsistency in the presence of uncertainty 
than to force a change which may be incorrect and introduce further errors. Inconsistency can be 
flagged to a human operator with oversight of the system. 
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3 Data set 
To evaluate the system a simulated secure corridor environment was constructed that contained two 
checkpoints, one at each end. Both checkpoints consisted of an IP video camera, a Panasonic WV-
NP240 with zoom lens, and an RFID reader, an RF Code M250 that operates with 433 MHz active 
tags. The tags were configured to transmit every 2 seconds. 

The tests involved a total of 77 subjects. Each subject moved through the corridor while holding 
their own RFID tag. The subjects were cooperative, and looked directly at the video cameras but were 
not forced to adopt a specific pose. Example face images from one subject are shown in Figure 2, 
where the change in illumination caused by ambient lighting between checkpoints is clear. The data 
was captured over a period of five days. The data for each subject was manually delineated so that 
random simulated sequences could be generated using playback of the original data. 

   
Figure 2: Example face images of the same subject at different checkpoints. 

The use of cooperative subjects is justified in a secure corridor scenario because people expect to 
cooperate when it is in their best interest. For example, people currently tolerate long queues to pass 
security in major airports. Current automated identification systems deployed in airports rely heavily 
on cooperation, with passengers being funneled into corridors or cubicles for a sequence of scans, [15]. 
Using contactless identification technology, such as RFID, can alleviate some of the bottlenecks 
inherent in these systems. 

4 Evaluation 
The system evaluation was divided into two parts. First, the whole data set of 77 subjects was 
considered in its entirety to give the baseline performance of the facial recognition component. The 
three decision metrics presented in section 2.2 were evaluated in terms of precision versus rank using a 
cumulative match curve (CMC). In the second part of the evaluation a large number of random 
simulations based on the real data were performed to show the benefits of using comparison sets and 
belief revision. 

4.1 Baseline facial recognition evaluation 
Traditional precision and recall metrics, [16], when applied to evaluate this system will give the same 
result. When a subject is detected in the field of view of the video sensor, the system will always give a 
reacquisition result. A false positive (FP) and a false negative (FN) occur simultaneously since to 
incorrectly classify one subject as ‘positive’ necessarily means the real subject has been incorrectly 
classified as ‘negative’. The baseline precision of the system for all three decision methods is shown in 
Table 1, the maximum is 82%. 

To put the results in context, the subject reacquisition problem can be viewed as a linear 
assignment problem (LAP). Given N subjects at checkpoint 2 and scores, or weights, for the same 
subjects at checkpoint 1 the task is to optimally match subjects in pairs. One solution to the LAP is the 
Hungarian Method, [17]. Applying this method to the baseline results gives a maximum precision of 
94%. This can be viewed as an upper bound on the precision that can be obtained when viewing the 
whole data set at once. Note that the LAP requires all the data to be available, so it cannot be used as 
subjects appear at checkpoint 2 in a live setting. 

The CMCs, plotting cumulative precision versus rank, for the three decision methods are shown 
in Figure 3a. Decision method 1 gives the best performance, while methods 2 and 3 produce nearly 
identical CMC curves. To achieve 90% precision using facial recognition alone it is necessary to 
consider the top five ranked subjects. The remaining part of the evaluation will show the system-level 
improvement, compared to the recognition performance at the component level, obtained by using 
comparison sets and belief revision. 

4.2 Simulation results 
The data set described in section 3 can be used to create random sequences using different ordering of 
the subjects. To create a simulated sequence, each subject is assigned two random time values. The 
first determines their time of arrival at the first checkpoint, the second determines the time-of-flight 
between checkpoints. The random values are sampled from a Poisson distribution, which is commonly 
used in queuing theory. For the results presented here the two values, in seconds, were generated with 
means ߣଵ ൌ 60, ଶߣ ൌ 600. This simulates one minute between passengers to pass through security 
then 10 minutes to walk to the gate. With the data set of 77 subjects there are 77! possible unique 
orderings. Since there are no restrictions on a subject being considered multiple times there are 277 
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possible comparison sets and so 25929 meaningfully distinct simulations. For the results here, 10,000 
random sequences were generated and the precision results averaged over all simulations, Table 1. 

The results show that all three decision methods perform equally well and that limiting the size 
of the comparison set has a large positive impact on performance. Allowing mistakes to be identified 
and corrected increases the precision to nearly maximal levels. The histograms in Figure 3b show that 
for decision method 1 70% of the simulations resulted in 100% precision. The lowest recorded 
precision when using belief revision is 94%. 

 
(a)       (b) 

Figure 3: CMCs for the three decision methods when applied to the entire data set, (a). Histograms 
showing the frequency of precision scores from 10,000 simulations using decision method 1 with 
comparison sets and belief revision, (b). 

System Component Decision Method 1 2 3 
Baseline Precision 82% 81% 81% 
Hungarian Method 90% 94% 94% 
With comparison sets 96% 96% 96% 
With comparison sets and belief revision 99.5% 99% 99% 

Table 1: Summary of precision results for the data set of 77 subjects. 

5 Conclusions 
A novel system has been described for subject reacquisition using event reasoning in secure corridors. 
Facial appearance features are used to train MACE filters for facial recognition, supported by RFID 
information that reduces the search space for the classification decision. When classification errors 
occur, a one-step belief revision scheme allows the system to change decisions in an attempt to resolve 
the inconsistency. 

The system was evaluated using a data set with 77 subjects. The baseline precision of the facial 
recognition system is 82%. Different conditions were simulated by replaying the video and RFID 
readings in a different order. In total 10,000 different simulations were run using this real data. The use 
of comparison sets increases the average precision to 96% and the belief revision scheme increases the 
average precision to 99%. 

Several improvements to this prototype are planned. For effective facial recognition, especially 
with uncooperative subjects, spatial registration is necessary, [2]. Full-body colour and texture features 
will be used as a third source of information for the reacquisition reasoning. This will help detect 
uncooperative subjects. The system described here is part of a larger third generation security system 
(3GSS), [6], being developed with a multi-agent architecture. Each checkpoint in the secure corridor 
will be monitored by an agent, which sends messages to other agents in the form of events. This 
architecture allows the system to scale up to large facilities, with each agent capable of autonomous 
processing. Key decision-making agents collate events from their child agents to infer final decisions 
from observed events. Future work in the intelligent decision making is to incorporate more 
sophisticated belief revision rules that include detecting missing subjects and leveraging time-of-flight 
information. 
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Abstract

This paper presents a method to detect backpacks worn by individuals when they are

facing towards the camera in a wide variety of environments, illumination conditions and

with low contrast between the backpack straps and the clothing of the individuals. Previ-

ous work has only looked at this problem in well-lit indoor environments typically with

high contrast between the backpack and the clothing worn. A combination of background

subtraction and the histogram of oriented gradients is used to isolate the upper torso region

of individual subjects. Colour clustering is used to extract backpack like features from this

region and statistical analysis is used (over the frames in which the person is visible) to

classify whether each individual is wearing a backpack. A database containing test videos

of individuals (designed to be representative of the conditions real security cameras would

encounter) both with and without backpacks walking towards the camera was constructed.

Accuracy of 79.5% was achieved.

Keywords: Video Surveillance, Luggage Detection, Frontal Backpack Detection, k-Means

1 Introduction

Backpack detection in surveillance videos is an important and difficult problem, which is mo-

tivated largely by security concerns relating to terrorist events. It is important to be able to

detect when people abandon baggage and there is a growing body of literature in this field

(e.g. [Tian et al., 2011, SanMiguel et al., 2012]). However all of this research assumes that the

abandoned objects are visible to some surveillance camera, an assumption which will often be

invalid (e.g. if an area is not visible to a camera or if the object is placed under/inside/behind

some other object). Hence, to increase the chances of locating abandoned objects, it is nec-

essary to analyse what people are carrying and hence identify when they stop carrying these

objects. Part of this problem is the determination of whether a person is carrying a backpack.

In Section 2 we look at the background literature relating to backpack detection. Section 3

presents the method proposed in this paper. Section 4 presents the new dataset and the results

of applying the proposed method to this dataset.

2 Background

A number of researchers have looked at the problem of backpack detection but this has been

done primarily from consideration of a side-on silhouette view where the backpack creates an

asymmetrical protrusion [Haritaoglu et al., 1999, Cutler and Davis, 2000, DeCann and Ross, 2010,

Damen and Hogg, 2012]. The most influential method, known as “Backpack, was developed

by Haritaoglu et al. [Haritaoglu et al., 1999] and relied upon the natural symmetry of the hu-

man silhouette. Any asymmetrical protrusions (such as backpacks) are identified by looking

at the periodicity of these asymmetrical regions over a full gait cycle, compared to the period-

icity of the overall silhouette. Using a slight variation on this approach, BenAbdelkader and

Davis [BenAbdelkader and Davis, 2002] used a method that calculated only the periodicity of
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the upper torso region. This method detected the change in gait due to walking while encum-

bered by an item such as a backpack. Tao et al. used Gabor wavelets to enhance this method

[Tao et al., 2006].

Only one research paper to date by Chua et al. [Chua et al., 2013] has considered back-

pack detection from a frontal viewpoint, and in that case the technique presented required that

there was a high contrast between the backpack straps and the clothing worn. However the test

data used was only representative of the local conditions encountered in an airport terminal in

a warm climate where most of the people were wearing bright shirts with dark coloured bag

straps which resulted in a high level of contrast. The scene was indoors and the illumination

was bright and consistent. Two methods were used to detect straps. The first used background

subtraction to extract the upper torso and then applied binary thresholding to this region. The

height to width ratio of connected components within this area was examined to find compo-

nents with the proportions of straps. The second method applied canny edge detection and used

a probabilistic Hough transform to find parallel edges. If a pair was found within 15 pixels of

each other and a length greater than 20 pixels it was considered a backpack. The comparable

accuracy rate for backpacks from all orientations was around 88% (assuming an equal number

of positive and negative samples). Unfortunately this figure includes side-on and rear views

(as well as frontal views) of backpacks, with no indication of the specific success rates for (or

portion of) each viewpoint type. The authors report that false detections were mainly due to

segmentation errors due to insufficient contrast between the bag and clothing (or background),

and this low contrast is typical in the dataset used in this paper. Hence a lower success rate

could be anticipated.

3 Proposed Method

This paper proposes a method that attempts to automatically locate backpacks when looking at

the front of an individual. Only the backpack straps will be visible from this angle presenting

us with the challenging task of differentiating them from the underlying clothing. Bear in mind

that the goal is to locate backpacks in video sequences where the contrast between the backpack

and the clothing may be quite low. For example consider the dataset samples shown in Figure

1. We determine if a backpack is present in a video sequence of a person through the following

steps:

1. Upper Torso Location determination, using Histograms of Oriented Gradients (HOGs)

and a Gaussian Mixture Model (GMM).

2. Strap identification through colour clustering on each image row of the upper torso re-

gion.

3. Statistical Analysis of the rows of each image (and of the frames in the sequence) to

confirm or reject the presence of a backpack.

3.1 Upper Torso Location determination.

The straps will always lie within the upper torso region which is roughly bounded by the

bottom of the head, the bottom of the arm pits and the outer edges of the arms. We lo-

cate this region by analysing the intersection of the rectangular person region detected by the

HOG technique [Dalal and Triggs, 2005] and the foreground pixels identified using a GMM

[Stauffer and Grimson, 2000] to distinguish moving objects from the background. See Figure

1. We analyse only those foreground pixels in the top half of the person region and take the

highest foreground pixel to be the top of the head. We look to each side of the head to find the

top of the shoulders, which should be significantly lower than the top of the head. The upper

torso location is taken to be a region directly below the shoulders which is one tenth of the

height of the person. Again, see Figure 1.
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Figure 1: Fifteen sample frames from the dataset (left) together with an illustration of the

processing used to find the torso region (in the two larger images on the right). In the first of

the larger images a red box is shown around the person detected using the HOG, and a green

line is shown half way up this box indicating that only the top half of this region is processed

when searching for the torso. Using the foreground pixels (shown in the binary image on the

right) a magenta line traces down to the highest foreground pixel in the center column at the

top of the head, and yellow and cyan lines trace down to the highest foreground pixels detected

in columns placed above the likely shoulder locations. These allow us to select the torso region

(highlighted by a dark blue box).

3.2 Strap identification.

K-mean clustering is used to distinguish the straps from the clothing within the upper torso

region. It is applied to each row separately using k = 3, as this was found to typically provide

good segmentation of the straps. It is noted that some clothing can cause a problem for such

a low value of k (and hence the value of k should probably be somewhat more adaptive). A

sample application of k-means to a single image row (and to the entire upper torso region) is

shown in Figure 2. Each row is examined for chains of pixels of the same colour. Pairs of

chains (which might represent the backpack straps) are identified which

• have the same colour,

• whose widths are within 180% of each other, and

• whose distances from the centreline of the upper torso region are within 180% (i.e. are

positioned roughly symmetrically around the centre line of the torso0.

The relative chain length (and position around the centre line) directly constrain how par-

allel to the image plane the individual needs to be. As the allowed difference in chain length is

increased, the angle of the person with respect to the camera that the system can tolerate also

increases. At the same time, though, the rate of false detections also increases.

3.3 Statistical Analysis.

We classify a frame as containing a backpack for an individual if:

• The number of rows between the top and bottom most rows labelled as having a potential

strap is greater than 64% of the total number of rows in the upper torso region. This

represents the length of the straps relative to the upper torso region.
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Figure 2: Torso region as detected using HOG and background subtraction (left), the processing

for one particular row (centre) and the result of processing all rows (right). In the centre and

right images the outer pixels of the person are highlighted in white, the outer edges of the straps

are highlighted in yellow and the inner edges of the left and right straps are highlighted in cyan

and magentra respectuflly.

• The percentage of rows between the topmost and bottommost rows which were labelled

as having a potential strap is greater than 57%. Note that these rows may be well inside

the upper torso region.

• The location of backpack straps on all the positive rows line up, as measured by the

average horizontal distance between the centre of the straps on each row (for the left and

right straps separately. The average horizontal distance must be less than 4 pixels.

• The width of the backpack straps do not vary too much, as measured by the standard

deviation of each strap width. The standard deviation must be less than 80%.

We classify a person in a video sequence as wearing a backpack if either

• N sequential frames are positive. The lower N is the less time a backpack needs to be

visible before triggering detection. The higher N is the more confidence the detection

has. N is a location specific parameter, as, for example, a camera at the end of a long

hallway can have it set higher than one positioned near a bend. In the results presented

N was 3 frames.

• or, a local percentage of frames are detected as positive, for instance three out of the past

five. This catches cases where the method is not triggering detection for every frame.

This can be the case when the contrast of the strap is very low relative to the underlying

garment. In the results presented the percentage required was 25% out of the previous

16 frames.

4 Results

The test data used consisted of 22 test pairs. Each pair contained two videos clips shot in iden-

tical circumstances with the main difference being the presence of a backpack in one sequence

and the absence of the backpack in the other sequence. This test set was created using students

and locations in our university. This was necessary as no suitable test data could be found in

available databases. In total nine different subjects in four outdoor and three indoor locations

were recorded with numerous garment and strap combinations. This resulted in a test set that

was representative of the conditions likely to be encountered by a surveillance camera in our

university. This included clips that tested the ability of the system to detect straps with a low

level of contrast relative to the underlying garment, as well as clips with a varying level of

illumination including several scenes under a streetlamp in twilight. See Figure 3 for sample

successful detections.

The results of applying the new technique to the dataset are shown in Table 1, giving an

accuracy of 79.5%. In order to compare with the research described in [Chua et al., 2013] we

implemented a technique based on parallel edges, which gave us an accuracy of only 68% (See

Table 1). Note that the thresholding approach described in [Chua et al., 2013] does not work

on this dataset due to the complexity of the underlying clothing.
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Figure 3: Successful detections of backpacks in individual frames in twilight conditions (top

row) and indoor with low level of contrast relative to the underlying clothing (bottom row).

Technique TP TN FP FN Precision Recall Accuracy

Our approach 16 19 3 6 84.2% 72.7% 79.5%

Parallel edges 17 13 9 5 65.4% 77.3% 68.2%

Table 1: Classification of subjects as carrying a backpack or not. This table shows the number

of true positives (TP - a backpack in the scene and detected as such) and negative (TN - no

backpack in the scene and none detected) detections as well as the false positive (FP - no

backpack in the scene but one detected) and negative (FN - a backpack in the scene but none

detected) detections for each method.

The false positive (FP) errors from the evaluation of our technique were due to (1) jacket

lapels being detected as straps due to a partial background subtraction failure, (2) the border

between scarf and underlying garment being detected as a strap, and (3) strap shaped shadows

in the upper torso region. The false negative (FN) errors from the evaluation of our technique

were caused twice by (1) scarfs occluding straps, once by (2) a background subtraction failure,

once by (3) a two-toned garment causing incorrect clustering of the straps, and twice by (4)

too low a number of frames triggering a detection due to low contrast of straps. Two sample

failures are shown in Figure 4.

Figure 4: Unsuccessful detections. False positive caused by clothing pattern (top row) and a

false negative due to partial occlusion by a scarf (bottom row).

5 Conclusions

The method presented in this paper is reasonably successful at detecting backpacks on individ-

uals when only the front straps are visible. This has been achieved in a variety of conditions
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including poor illumination and low contrast such as shown in Figure 3. This is an area where

edge detection based techniques often fail due to the weak response of low contrasting edges.

There are limitations to the work presented. The dataset used is too small and as it was

constructed by the authors there is clearly a question of the independence of the dataset. There

is a clear need for a sizeable dataset of videos of individuals wearing backpacks (and not

wearing backpacks), viewed from a variety of angles, in a variety of environments and in

situations where there are single and multiple subjects. The videos used were taken from a low

angle (in comparison to many surveillance cameras) and this raises a question over how the

technique presented would respond given data taken from a higher camera.
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Abstract

The paper presents initial investigations into the development of a virtual conference system

which will allow users to locate and view relevant presentations or parts of presentations after a

conference has been held. It is part of a much larger investigation into the use of advanced intelligent

content. The work presented in this paper details how information from slides can be automatically

extracted and used.

Keywords: Video adaptation, Text Segmentation, Optical character recognition, Video Processing Ap-

plication.

1 Introduction

Information is becoming more and more readily accessible. Data availability, data access and transmis-

sion rates have been increasing at exponential rates. Around two thirds of the data now transmitted on

the internet is video data. However, unless a user just wants to watch a single complete video, it is very

difficult to interact with video to obtain the information that is wanted by the user. Video adaptation is

the process of adapting video footage to the needs of a particular individual. This could be in the form

of dubbing, sub-titling or extracting smaller, more relevant, clips from a video [2]. For example, if a user

wants to learn about a specific topic, video adaptation must identify the complete videos, or clips from

videos, which deal with the specific topic.

The Centre for Global Intelligent Content (CNGL) has been working on providing ways for people to

interact seamlessly with content by embedding additional knowledge into the content to create advanced
intelligent content. CNGL is a collaborative effort situated across 4 Irish universities and funded by in-

dustry and the Irish government. Its function is to provide an end-to-end value chain of multilingual con-

tent which is optimised, adapted, monitored and analysed from multimodal sources such as video, audio

and text. The centre is currently split into six themes covering creation and curation concerned with text

normalisation and sentiment analysis, delivery and interaction concerned with multimodal input/output

delivery, interoperability and analytics concerned with correct multilingual web-based markup, work-

flows and data-mining, personalisation and adaptivity concerned with adapting the content to the pref-

erences of the end user is an explicit or implicit way, search and discovery concerned with multimodal

search, translation and localisation concerned with machine translation to commonly used languages and

languages of emergent countries (See www.cngl.ie for further details).

CNGL is now turning its attention to video data and looking at ways in which data can be extracted

from video so that video can be included as part of the advanced intelligent content. The intention is to

allow video to be indexed in such a fashion that relevant sections of videos can be extracted and delivered

to users to satisfy their specific needs. The initial domain of study has been limited to video lectures and

presentations. For example, Coursera offers 641 courses to nearly 7.5 million users with several hours of

video lectures and presentations for each course.
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1.1 Demonstration System for Conferences

With rising travel costs, expensive hotel stays, delayed visa applications and large conference fees it’s

becoming more desirable to attend conferences virtually. Particularly in academic circles the workload

of the attendee is increasing. Professors and students alike are expected to attend a large number of

conferences per year containing multiple track to keep abreast of the state-of-the-art in their areas of

interest. Sometimes the fields of interest of the participant lie in more than one track meaning that they

either miss out on sessions that they might attend, or bring along a student to attend the sessions they

miss giving them feedback on that session. Ideally it would be less time consuming if a attendee were

presented with 10% of the complete conference in a recommender system rather than wading through

the complete set of sessions.

A nice virtual solution where a user logs into the conference management system, views the talks of

interest to them and is automatically recommended talks that are potentially of interest to them is useful

and conceivable. A recommender system can be produced if each session track is videoed with a fixed

camera on the slideshow and moving camera on the speaker. Also, good microphone arrays are required

to capture the speech of the speaker as audibly as possible.

Aligning the speakers slides to their speech, it is then possible to use optical character recognition

(OCR) and automatic speech recognition (ASR) to extract timestamped subtitles for each session. In fact,

given that the slideshow of the presenter is timestamped means that the words appearing on the slides of

the presenter may also be possibly spoken by the presenter. This means that the OCR can actually be

used to inform the language models of the ASR, producing domain specific language models and hence

improving the accuracy of the ASR [3].

Since the ASR and OCR are timestamped the information can also be used to inform the ranking

scheme of a search engine on the conference management system. Usually the text within search engines

is ranking according to how often it occurs, however in this case the search engine can be informed

according to size of fonts in the slides obtained from the OCR. Essentially the rank can be increased

if the text appears in headings rather than bullet points in slides. Additionally, the duration of time

that a sentence appears in the slides also obtained from the OCR can also be used to increase the rank

of sentences of text. Since, the OCR produces timestamps, it is possible to create a webservice that

produces search results allowing the user to jump to the exact position in the video where a particular

phrase was spoken/presented by the presenter. Again this type of technology saves time in perusing

important information.

We therefore see that obtaining the timestamped, font-size specific text from the OCR as a key part

of the tool from the point of view that it informs three parts of the conference management system: the

automatic speech recognition, the search engine and the recommender system.

1.2 Background

Our main task (in this paper) is to locate the slides in videos and to recognise the characters on those

slides, generating a structured mark-up of what is present (and when). The detection of slide transitions

has been addressed by looking at the difference in text layout [4] and by considering the differences

with respect to a background template [5]. The extraction and recognition of text from images is a well

addressed task (e.g. [8]) and has led to the development of quite powerful and freely available engines

such as Tesseract [7].

Perhaps the most similar work to ours is the TalkMiner system [1] which automatically locates

lecture presentations on the web, extracts the slides and builds a search index from the words on the

slides. They process 1 frame per second from a video and use the global pixel differences to identify

slide transitions. They found that this created problems however where the audience and/or speaker are

visible in the shot. As a result they enhanced their approach by considering the central part of the frame

separately, by considering the size of the bounding box around any changes, by locating any faces in the

images, and by explicitly identifying the build up of information on slides.
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2 Approach

This paper presents the initial results of our video adaptation work on video lectures and presentations.

The two main components in such videos are the slides and the presenter (See Figure 1). The goal is to

provide as much indexed information as possible for the video. For example, if we can reliably obtain

the words spoken by the presenter we can index these words to the times at which they are spoken. We

have used speech recognition to extract what the presenter is saying but in general have obtained very

low success rates in terms of words recognised correctly. Some video content provides subtitles as meta

data and this provides a much more reliable data stream.

(a) (b) (c) (d)

Figure 1: Example of videos lectures with slides.

Our method for extracting slides from video frames is presented in Section 3. Section 4 presents our

algorithm for extracting text present in slide frames and the structure and creation of XML data from the

slides is presented in Section 5. Finally we present initial results and future plans in Section 6.

3 Extracting slide frame from video frame

Generally in a video sequence of a lecture presentation, the total number of slides presented is very small

in comparison to the total number of video frames. Therefore, to save both computational power and time

it is important to detect slide change in the video and process video frames only if slide has changed.

In video frames, we assume that most pixels belonging to the slide will be brighter than most of the

remaining pixels. Ostu’s method is used for detection of the brighter pixels [6]. Ostu’s method returns a

binary mask where pixels brighter than an optimal threshold are marked as foreground. It is possible that

a video frame may have several small bright areas other than the slide. As a result, the binary mask may

also contain several foreground regions. In the first video frame, the slide normally takes maximum part

of the frame. Therefore, in the binary mask of the first frame foreground region belonging to the slide

should be bigger than all other foreground regions.

The biggest foreground region present in the binary mask of the first video frame is used for extracting

the pixels belonging to the slide in the first frame. Pixels belonging to the slides are saved in a separate

image file called slide frames. Figure 2(a) shows slide frame extracted from the frame shown in figure

1(a). Information about slide location in the previous frame can be used to detect the slide location in

the current frame. Therefore, after the first frame it is not necessary that slide take up the maximum

part of frame. In some cases slides may present in a distorted (geometrical transform) form due to the

projection. Using the boundaries of foreground region belonging to the slide and the boundaries of a

minimum bounding box holding that region, parameters of projective transformation can be learned.

These parameters can further be used for removing the projective distortion.

Our method starts from extracting the text information from the first frame. A new frame is processed

in case of a slide transition. For each processed frame the OCR result are saved in a XML file (See Section

5).

4 Text recognition in slides

After extracting slides from the video we use the Tesseract OCR engine [7] for recognising the text in the

slides. Tesseract results are significantly improved if text is present in a single column or block and the
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font size is the same throughout. If text is in multicolumn, Tesseract returns garbled output. Therefore

the text layout (number of blocks and font sizes) needs to be determined for successful recognition.

In this section, we present our two stage algorithm for understanding the layout of text in slides.

In the first step, pixels of slides are classified as either background or foreground. Pixels belonging

to text should be part of the foreground. Generally, all characters of similar font size present in close

proximity belong to a single column block of text. Therefore they should be passed to the OCR engine

together. In the second step, the algorithm determines font size of each foreground region and then

merges neighbouring foreground regions of similar font size to get individual block of text. Once layout

is determined, the various parts of the video frame representing individual blocks of text are passed

separately to Tesseract OCR engine for text recognition.

4.1 Foreground and background segmentation

Alphabets and words present in slides can be seen as group of pixels of similar colours. To separate

text from the background we use colour based segmentation using kmeans. There typically will only be

a limited number of colours present in slide so a small values of k is used. Figure 2(b), shows results

of kmeans clustering for k = 5, where k is the number of cluster centres. The k colours are then fur-

ther segmented into regions using the standard connected components technique. Each of these regions

should either correspond to foreground (individual letters or words) or background. Normally, regions

corresponding to text will be smaller than the regions corresponding to the background. Therefore, a

size based metric is used to separate foreground and background regions. All pixels p belonging to any

region c are classified as follows:

c(p) =

{

foreground if carea < 1
γ × Iarea

background otherwise
(1)

where, γ is constant, i.e, 1 ≤ γ ≤ Iarea; carea and Iarea represent number of pixels in region c and

slide frame I respectively. Figure 2(c) shows foreground (white) and background (black) regions where

γ = 40 is used for all three slides.

(a) (b) (c) (d)

Figure 2: Text location. Slides (a), colour based segmentation using kmeans (b), foreground and back-

ground segmentation (c) and separated text sections (d).
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4.2 Joining foreground regions based on font size and proximity

Foreground regions created in the previous section can represent either alphabets or words or sentences

or noise. We used median height of each foreground region as its font size. Foregrounds regions of same

font size in close proximity within (n×font size) distance from region boundaries are merged together.

After merging all possible foreground regions, each joint region holds all characters of a single block of

text. Bounding boxes of final foreground regions are used to mark the block of texts in slide frames.

Figure 2(d) shows the foreground regions located in the slide. These block of texts are passed one by one

to OCR engine. In the slides some sections of images also were marked as blocks of text (See Figure 2).

These false foreground regions do not effect the accuracy of the algorithm because for these regions the

OCR engine does not return any text data.

5 Creating XML from detected text
OCR data generated by the OCR engine for whole video sequence is saved in a single XML file. A XML
element contains:

<Sentence>
<Text>. . .</Text>
<UID>. . .</UID>
<StartTime>. . .</StartTime>
<EndTime></EndTime>

</Sentence>

where Text element contains text present inside a foreground region which appears and disappears

together. Therefore, text inside a single foreground region in a frame can be represented by different

Sentence elements in the XML file. UID is a unique identification number, StartTime is the time when

text present inside Text element appeared in video and EndTime is StartTime plus length of time for which

text is continuously present in the video.

Video adaptation tool uses this XML file to create customised video content based on user require-

ments. For example, if user wants to learn about a particular topic, the video adaptation tool searches

for the topic in the text elements. If topic is present then customised video can be created by extracting

frames from video using start and end time information.

6 Initial Results and Future Plans

Our initial tests have been restricted to videos from the Coursera dataset such as those shown in Figure

1. Four videos similar to the one in Figure 1(a) were evaluated which contained roughly 2800 words in

169 slides. Words in the body of the slides were detected with a precision of 93% and a recall of 99%.

One video shown in Figure 1(b) was also evaluated giving a precision of 98% and a recall of 94% for the

570 words in the body of the 19 slides.

These initial tests are simply a precursor to more thorough testing to be conducted following a con-

ference which is being held during May 2014, where all sessions will be recorded. At this event it is

intended that the original presentations will also be kept and hence our task may be changed from recog-

nising the text to recognising the slides, as well as determining when one presentation has finished and

when another is starting. A demonstrator system will be built based on this conference.

There is other information which can be extracted from lecture presentations, such as images of the

presenter and the audience. In addition we need to be able to identify (and extract) any demonstrations

(e.g. videos or animations) from the slide presentations and not regard these as slide transitions. The

ultimate goal of this work is not simply to extract text information but rather to allow users to access

video data efficiently, obtaining the relevant part(s) as easily as possible.

126



References

[1] Adcock, J., Cooper, M., Denoue, L., Pirsiavash, H., and Rowe, L. (2010). TalkMiner: a lecture

webcast search engine. In Proceedings of the ACM international conference on Multimedia (MM
’10), page TalkMiner: a lecture webcast search engine.

[2] Chang, S.-F. and Vetro, A. (2005). Video adaptation: Concepts, technologies, and open issues.

Proceedings of the IEEE, 93(1):148–158.

[3] Ianeva, T., Boldareva, L., Westerveld, T. H. W., Cornacchia, R., Hiemstra, D., and de Vries, A. P.

(2005). Probabilistic approaches to video retrieval. In TREC Video Retrieval Evaluation Online
Proceedings (TRECVID 2004), Gaithersburg, MD, USA, TREC Video Retrieval Evaluation Online

Proceedings. National Institute of Standards and Technology (NIST).

[4] Mukhopadhyay, S. and Smith, B. (1999). Passive capture and structuring of lectures. In Proceedings
of the Seventh ACM International Conference on Multimedia (Part 1), MULTIMEDIA ’99, pages

477–487, New York, NY, USA. ACM.

[5] Ngo, C.-W., Pong, T.-C., and Huang, T. (2002). Detection of slide transition for topic indexing.

In Multimedia and Expo, 2002. ICME ’02. Proceedings. 2002 IEEE International Conference on,

volume 2, pages 533–536 vol.2.

[6] Otsu, N. (1979). A threshold selection method from gray-level histograms. Systems, Man and
Cybernetics, IEEE Transactions on, 9(1):62–66.

[7] Smith, R. (2007). An overview of the tesseract ocr engine. In Proceedings of the Ninth Interna-
tional Conference on Document Analysis and Recognition - Volume 02, ICDAR ’07, pages 629–633,

Washington, DC, USA. IEEE Computer Society.

[8] Smith, R. (November 1987). The Extraction and Recognition of Text from Multimedia Document
Images. PhD thesis, University of Bristol.

127





IMVIP 2014 
Image Processing 





Constant colour matting with foreground estimation

Guillaume GALES
National University of Ireland Maynooth

Department of Computer Science
guillaume.gales@nuim.ie

John MC DONALD
National University of Ireland Maynooth

Department of Computer Science
johnmcd@cs.nuim.ie

Abstract

Constant colour matting consists of estimating for each pixel of an image the propor-
tion α of an unknown foreground colour with a known constant background colour. The
α-matte is then used to replace this background with another image. Existing approaches
approximate α directly but post-processing is required to remove spill of the background
colour in semi-transparent areas. Instead of estimating α directly, we propose 3 methods
to estimate the unknown foreground colour, and then to deduce α. This approach leads to
high quality mattes for transparent objects and allows spill-free results (see Fig. 1). We
show this through an evaluation of the proposed methods based on a ground truth dataset.

Keywords: constant colour matting, foreground colour estimation, α estimation.

1 Introduction

Matting is a classic problem that consists of creating a matte to mask an unwanted area from
video footage. This area is then replaced by content from separate footage to create a compos-
ite. Cinema, television and web TV use this technique extensively for visual special effects.
Although the principle of this technique is simple, it is often difficult to achieve a realistic seam-
less result. This is particularly true where the observed colour is a blend from foreground and
background. The proportion of foreground colour F , and background colour B for one pixel
is called α. This typically occurs at the boundary between both areas, with semi-transparent
foreground, or blur. We distinguish between two types of matting techniques: constant colour
matting techniques, where the background colour is known, or natural image matting, working
with an arbitrary background. The former methods are widely used in visual productions but
post-processing is usually required to clean up the matte and to deal with spill (background
colour reflecting in the foreground). The latter methods can give impressive results but require
additional prior information and are more computationally expensive.

In this paper, our goal is to estimate the F and α, knowing B, to obtain high quality results
in difficult areas exhibiting fine and semi-transparent details. Unlike others constant colour
methods, we start by estimating F , inspired by natural image matting approaches, but without

Input

Figure 1: Examples of final results obtained with the proposed method.
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the need to input additional information. Our contributions are three methods for the estimation
of F (and consequently α) that give mattes requiring little or no cleaning, and produce spill-
free results. Furthermore, our algorithm is highly parallelisable (working independently on
each pixel) with a low computational complexity. We also provide a ground truth dataset which
we use to demonstrate and quantitatively evaluate the performance of our technique.

After a brief description of the state of the art, we detail our approach. Then, we provide
an evaluation of the three methods based on a a proposed ground truth dataset.

2 Previous work

2.1 Constant colour matting

Constant colour matting aims at estimating a matte from images where the background is as-
sumed to be a constant colour (usually blue or green).

In [Smith and Blinn, 1996], the authors formalise the problem of constant colour matting
as follows. For each pixel, we express the observed colour (O, known) as the proportion
α ∈ [0; 1] (unknown) of foreground (F , unknown) and background (B, known) colours. The
matting equation is given by:[

r g b
]⊤︸ ︷︷ ︸

O

= α
[
Fr Fg Fb

]⊤︸ ︷︷ ︸
F

+(1− α)
[
Br Bg Bb

]⊤︸ ︷︷ ︸
B

(1)

There are four unknowns for three equations and therefore the problem is underdetermined,
i.e. it exists no or many solutions. The authors identify three cases where a solution can be
found: no blue in the observed colour, the observed colour is gray or two different shades of
background are known. However, these cases do not usually occur in practice.

We can distinguish between the following types of method to estimate α with a constant
background colour:

– Colour difference technique – α is based on differences between the red, green and
blue components. This method (a.k.a Ultimatte R⃝), invented by [Vlahos, 1964], is a legacy
of an optical multistep process where colour filters are placed in front of an optical printer
to filter out the background colour (an interesting history of matting in filmmaking is given
in [Filmmaker IQ, 2013]). This process is usually summarised by α = 1 − max(0, b −
max(r, g)) where B is assumed to be blue. Spill is then removed by changing the blue compo-
nent to b← min(b, kg) where k is a user control parameter.

– Colorspace segmentation – The colorspace is partitioned into background, foreground
and semi-transparent regions. In the semi-transparent region, α is based on the distance be-
tween the other two. In [Ashikhmin, 2001, Jack, 1996], they use the Y CbCr colorspace to
separate the luminance (Y ) and the chrominance (CbCr). The segmentation is performed in
the 2D chrominance space. A classic approach, called Hue Saturation Luminance keying and
described in [Schultz, 2006], consists of segmenting the HSL colorspace to isolate the back-
ground and foreground regions. These segmentations are done manually by selecting the center
and the dimensions of basic shapes (simple polyhedron or sphere) that encapsulates the differ-
ent regions. The Primatte R⃝ algorithm by [Mishima, 1992], is based on this principle, however
it automatically adjusts a 128 face polyhedron to obtain an fine segmentation of the colorspace.

2.2 Natural image matting

Natural image matting aims at estimating a matte from images with arbitrary background.
These methods use optimisation techniques to estimate the best combination of α, F and B
that minimises an objective function based on spatial statistical models. To build these models,
they require a pre-segmentation (called trimap) in three classes: foreground, background and
unknown. For example, in [Chuang et al., 2001], the algorithm marches inward from known
to unknown regions. It uses the colour distribution in a weighted window of the known (or al-
ready computed) neighbouring regions to estimate the most likely combination of α, F and B.
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In [Rother et al., 2004], an adapted iterative graph cut optimisation method is used to minimise
an objective function that takes into account a fitting term (how close the solution is to what
is observed) and smoothness term (to prevent abrupt changes of α between two neighbours).
These methods use local sampling for the estimation of the foreground and background colours.
In [He et al., 2011], the authors obtain good results with a global sampling approach for the es-
timation of F and B. A detailed survey of such methods is provided in [Wang and Cohen, 2007].

3 Our approach

Our approach starts by building, for each pixel, a set of candidates for the foreground colour
F . These candidates are computed from a set of predefined possible colours C for the image.
We propose three independent methods for this computation. Then, we assign to F the best
candidate according to a distance measure between the candidate and the observed colour.
Finally, assuming F known, we can calculate α.

First, we describe how we obtain the set of possible colours C. Then, we give the general
structure of the algorithm. Finally, we present the three methods to estimate F .

3.1 Set of possible foreground colours for the image

We reduce the solution space for the foreground colour F using the following constraints:
(i) F should be already present in the image. – As in natural image methods, the first
assumption is that F , is already present in the image. To obtain a set of possible colours for F ,
we calculate the modes of the colour distribution of the image. To do so, we use the mean-shift
algorithm on the image histogram, [Comaniciu and Meer, 2002] using the Lab colorspace as it
is perceptually uniform. The output is a set C0 of colour clusters.
(ii) F should be distinct from B. – We need to remove from the set C0 the clusters Ci

that are too close to B: Ci is removed from C0 if ∥−−→BCi∥ < t1. Let C = C0 \ CB with

CB =

{
Ci

∣∣∣∣∥−−→BCi∥ < t1

}
.

(iii) If B ̸= O, F lies on the line passing through B and O. – By definition of Eq. (1).

3.2 Algorithm

Algorithm 1 gives a high-level description of the approach used to estimate F and α from a set
of possible colour clusters C. It starts by looking at the distance between B and O. If B = O,
the given pixel is a background pixel. On the other hand, if this distance is large enough (above
a threshold th1), one can be confident that the given pixel is a foreground pixel. For the other
pixels, each colour cluster Ci ∈ C is used to estimate Fi and a cost c, as described in the
Section 3.3, depending on the chosen method m. This cost evaluates how “close” Ci is to the
line BO . If it is too “far away” (above a threshold th2) from BO (not satisfying the condition
(iii)), the estimated Fi is rejected. Finally, if no candidate can be found, we assume the given
pixel belongs to the background. If more than one candidate are found, we chose the closest
one from the observed colour O.

3.3 Estimation of F

Ideally, if we can find exactly one colour cluster Ci lying on the line BO, satisfying the con-
dition (iii), we could assume F = Ci. In practice, this alignement does not occur because of
noise and because the colour clusters correspond to the mode of the colour distribution for F .
To deal with this issue, we propose three independent methods to estimate Fi from a cluster Ci

( see Table 1):

(a) This method minimises the sum of squared residuals of the matting equation system where
F is replaced by Ci. Geometrically this solution minimises ∥

−−→
O′

iO∥ whereO′
i is the orthog-

onal projection of the observed colour O on BCi. Thus, Fi is given by the intersection of
the line BO and the plane passing through Ci orthogonal to the line BCi. The cost ci is
given by: ci = ∥∥

−−→
CiFi∥∥.
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Algorithm 1: Algorithm for one pixel.
Data: O, B, C, th1, th2, m
Result: F , α

1 if ∥−−→BO∥ = 0 then
2 F ← 0 ; α← 0 /* This is a background pixel. */
3 else
4 if ∥

−−→
BO∥ > th1 then

5 F ← O ; α← 1 /* This is a foreground pixel. */
6 else
7 L ← ∅ /* Initiate a list of candidates. */
8 for each Ci ∈ C do
9 Fi ← estimate F with a method m using (O,B,Ci)

10 ci ← cost for this Fi

11 if ci < th2 then
12 L ← L ∩ Fi /* Fi is a candidate. */

13 if |L| = 0 then
14 F ← 0 ; α← 0 /* No candidate → background. */
15 else

/* Get the best candidate. */

16 F ← Fi ∈ L
∣∣ ∀ Fi, Fj ∈ L2, ∥

−−→
OFi∥ ≤ ∥

−−→
OFj∥ ; α← ∥−−→BO∥

∥−−→BF∥

(b) In this method, Fi is given by the orthogonal projection of the Ci onto the line BO. The
cost is given by the Euclidean distance between Ci and Fi: ci = ∥

−−→
CiFi∥.

(c) This method rotates Ci around B with an angle θi = cos−1

( −−→
BCi

−−→
BO

∥
−−→
BCi∥∥

−−→
BO∥

)
so that B, O

and Ci are collinear. The cost is given by the rotation angle: ci = θi.

(a) (b) (c)

..
O′

i

.
Fi

.
B
.

O
. ci = ρCi.

Ci

..
Fi

.
B
.

O
.

Ci

.
ci = ∥

−−→
CiFi∥

..
Fi

.
B
.

O
.

Ci

. ci = θi

Fi =
−−→
BO∥

−−→
BCi∥2−−→

BO·
−−→
BCi

+B Fi =
−−→
BO(

−−→
BO·

−−→
BCi)

∥
−−→
BO∥2

+B Fi =
−−→
BO

∥
−−→
BO∥
∥
−−→
BCi∥+B

Table 1: Illustration of the 3 methods (a), (b) and (c) proposed to estimate Fi in the Algorithm 1.

4 Evaluation and results

Ground truth dataset To provide a quantitative evaluation of our three methods, we cre-
ated a ground-truth dataset. As explained in [Smith and Blinn, 1996], if at least two different
shades of background are known, Eq. 1 becomes overdetermined and we can estimate α and
F . We took pictures of six different objects (bath, bottle, muppet, pot1, pot2 and spider, see
Table 3) in front of five different backgrounds (blue, green, black, yellow and red) for further
overdetermination. Then, we calculated a least squared solution for αF and α:[

−Bblue −Bgreen . . .
I3 I3 . . .

]⊤ [
α
αF

]
=

[
(Oblue −Bblue) (Ogreen −Bgreen) . . .

]⊤ (2)

where I3 is the 3× 3 identity matrix.

Parameters Each method requires two parameters for the initial clustering: the size of the
bins sb, and the size of the mean-shift window sms. It also requires th1, the minimum ∥

−−→
BF∥
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distance, and th2 the threshold on the cost depending on the method employed, see § 3.2.
According to an initial experiment, (sb, sms) can be fixed to (2, 4) for the method (a) (giving
about 60 clusters) and to (2, 2) for the methods (b) and (c) (giving about 400 clusters). The
best results (according to the criterion described below) are obtained with th1 ≈ 40 ± 5 and
(a) th2 ≈ 2 ; (b) th2 ≈ 10 ; (c) th2 ≈ 0.4 (see Tables 3 and 2). These values can then be fine
tuned interactively.

Measure of error For each of the three methods m, we evaluate the results obtained with
a different set of values for th1 and th2. We chose to evaluate the methods using the images
having a green background. As we are interested in F and α, we compare the estimated values
with the ground truth. The mean squared error for an image is given by:

MSEth1,th2,m =
1

hw

h−1,w−1∑
i,j=0,0

∥(αF )i,j − (αF )i,j∥ (3)

where (h,w) are the dimensions of the image, (αF )i,j is the estimated value for the pixel at
coordinates (i, j) and (αF )i,j is the ground truth value for the pixel of same coordinates.

Tables 2 and 3 show the results. With the appropriate set of parameter values, the three
methods can achieve results with a low error score. The best average values for each method
are MSE45,3,(a) = 3.339, MSE50,5,(b) = 2.814 and MSE50,0.4,(c) = 2.811 showing that (b)
and (c) perform slightly better than (a). In some scenes, (b) and (c) clearly outperform (a).
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Table 2: Contour plots of the averaged MSEth1,th2,m over the 6 images for each of the three
methods in function of th1 and th2.

5 Discussion and conclusion

We proposed three methods to estimate F and α in a constant colour background matting
problem. According to our evaluation, these methods give very encouraging results.

A comparison with commercial methods would be interesting. However, source code is not
available, executables are not free and they may include extra post processing to give a visually
appealing, but not mathematically accurate, result. These issues make a fair and rigorous com-
parison difficult. But, to permit a qualitative evaluation of how our algorithm may compete, we
visually compared our result (left) with one obtained using Apple Motion HSL Keyer (right).
The latter one has more spill. We also noticed one inconsistent ground truth data in Pot1 where
the opaque fluorescent marker is considered to have some transparency. Although the variances
in the observed values are relatively small (due to noise and background indirect illumination),
the residual of Eq. 2 is quite large. We propose to re-estimate the ground truth using a robust

(a) Our method

(b) Apple Motion HSL Keyer

Figure 2: Visual comparison with a commercial solution.
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Table 3: Input (green background), ground truth dataset (αF , α) and best result with our
method. Also available www.cs.nuim.ie/research/vision/data/imvip2014/

estimation method (e.g. LTS). We propose in a future work to refine our evaluation with more
detailed criteria (examining errors in difficult areas only, sensitivity to noise), cross-validation
for the choice of parameter values and provide a GPU-based implementation.
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Abstract 

   This paper presents an algorithm allowing to perform photometric stereo with high 
accuracy results in the presence of shadows. First, we choose a combination of three images 
suited to reveal the presence of shadow and use it to calculate the normal vector on each 
pixel. This normal vector is then used to recalculate the intensity in order to evaluate the 
distance with the real intensities and detect the shadow pixels on each image. If the error 
between the calculated intensities and the real intensities are superior to a certain threshold, 
the pixel is determined to be in the region of a shadow. The algorithm runs in loop to identify 
a valid set of images, that is to say without shadow, for each pixel. The method is designed 
to limit the computational cost. The results show that the accuracy is maintained as compared 
to much heavier computational cost algorithms. 

Keywords: photometric stereo, shadows, 3D reconstruction. 

1    Introduction  

Photometric Stereo is a method used to recover the 3D shape of an object with high detail accuracy. For 
that it uses a set of images of the object from the same point of view but under different illuminations. 
In case of calibrated photometric stereo, which is the one being presented in this paper, the light sources 
directions are known. The approximation of Lambertian surface is also made. One remaining issue in 
photometric stereo is how to handle shadow areas. Some papers proposed algorithms to deal with the 
shadows in photometric stereo, however all the proposed methods require heavy calculations and are not 
suitable for real time processing. In this paper we describe a new algorithm with reduced time of 
calculation and producing results with as good accuracy as heavier methods. This method was developed 
in order to be used for 3D shape reconstruction of the human skin by photometric stereo technique for 
medical control. 
       This paper is separated into four sections. In the first section, we provide an overview of previous 
work. In section 2 we introduce our methods and in section 4 we conclude with results. 
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2    Related work 
 
Photometric stereo is considered as an interesting intensity-based 3D shape recovering technique because 
of the precision of the results it can achieve on objects with Lambertian reflectance. Methods have also 
been developed to handle specular surfaces [7].The theory called calibrated photometric stereo requires 
known the light sources directions. Additionally, the principles of this method have now been extended 
to uncalibrated photometric stereo where the light sources directions are unknown [3]. This paper 
however uses calibrated photometric stereo since our application uses known light sources and focuses 
on the accuracy of the results as opposed to overcoming such constraints.  
       The main difficulty in the accuracy of the results lies in the presence of shadows. In order to have 
results reliable enough, especially for a medical use, the shadow areas need to be detected and handled 
properly.  The traditional way to remove the shadows of an image is to apply an intensity threshold. 
However this simple technique only works on objects with constant surface albedo coefficient. 
Chandraker et al. [6] proposed a method allowing shadow labeling in photometric stereo with changing 
albedo and mutli-light sources using energy minimization where the “data term” is based on photometric 
stereo and the “smoothness term” supports the spatial continuity. Due to the exponential number of 
possible label configurations, minimizing this type of energy requires the use of a fast graph cuts 
algorithm from Boykov et al.[10]. However, even with this type of approximation the computational cost 
stays very high. Sunkavalli et al. [8] also proposed a method dealing with shadows in uncalibrated 
photometric stereo. Instead of reasoning about per-pixel intensity, their approach is reasoning about 
illumination subspaces using a RANSAC type algorithm, which needs about 1000 iterations thus 
requiring a large amount of time to compute.  
       Our work is a per-pixel approach but using targeted combinations to decrease the amount of 
calculation required. We show that by not considering the totality of the possible labels, by choosing the 
right combination for each pixel, we can achieve a similar degree of accuracy and allow for high-speed 
execution. 
 
3    Identifying shadows 
 
For clarity we will briefly describe notations. We consider a set of n images of a same object from the 
same point of view. Each image is illuminated by a light source j and has m surface points. This section 
begins by describing the photometric stereo theory. We then explicitly show the impact of the shadows 
in the equations and propose an algorithm to detect pixels corrupted by shadow in each image.  
 
3.1    Calibrated Photometric Stereo 
 
Photometric Stereo is a technique used to recover the 3D shape of an object from 2D images of it. The 
objects considered in this paper are assumed to have Lambertian reflectance.  Given a set of images of 
the same object, from the same point of view but illuminated by different known light sources, the 
intensity of the pixel  in the image  is expressed as:  
 

 ,                         (1) 
 

 where  is the light source direction vector,  the normal vector at the pixel i and  the albedo 
coefficient.  
       For m surface points and n>3 light sources, the concatenation of all pixels on all images leads to the 
following system:  
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 ,                 (2) 
 

where  indicates a intensity matrix,  denotes a  light source matrix and  is a  
matrix containing the product of the albedo coefficients and normal vectors. For a number of linear 
independant light sources superior to 3,  is at least of rank 3. The normal matrix  can be recovered 
using the pseudo inverse of  as: 
 

 .         (3) 
 

       The relative depth of each point can then be calculated by integrating the normal vectors. 
 
3.2    Shadows 
 
One limitation of this method comes from the presence of shadows. When a point of the surface of an 
object is not reached by the light the Photometry stereo theory is not applicable anymore. Areas of 
shadows can produce corrupted results in the normal map and thus lead to an inaccurate recovery of the 
depth. If we write equation (3) for one pixel we have: 
 

 .                    (4) 

 
       The coefficients  and only depends on the lights source directions, which are 
known in the case of calibrated photometric stereo. When a pixel is in the shadow, only the term  
representing its intensity is corrupted in the equation: the intensity value will be lower than it should be 
because of the shadow. Thus we can naturally infer that when the percentage of images touched by 
shadow for a pixel is low, the influence on the calculated normal vector for this pixel is almost 
undetectable. If the percentage of shadow images is however too important the calculation leads to a 
highly inaccurate normal vector. Based on this simple observation we can deduce that if we apply 
photometric stereo on three images among which one contains shadows, the normal vector of the pixels 
in the shadow will be highly corrupted, making it easier to detect. Consequently, a method based on 
combinations of three images to detect the shadows can be used. 
 
3.3    Algorithm 
 
We consider a set of n images containing some shadows. We also make the hypothesis for each pixel 
that there is at least three images without shadow. If that is not the case, Photometric Stereo theory is not 
applicable. We assume that the hypothesis is respected by choosing a number of images important 
enough and light source directions offering a good coverage of the object. The previous observations 
lead us to the following per-pixel algorithm: 
 

1. Sort the images by intensity. Notice that we first convert the images into grayscale images. We 
organize this group of sorted images from the brightest to the darkest . 

2. Apply three sources photometric stereo using the darkest image  and two of the three 
brightest images in order to recover the normal vector . The image choice relies on the fact that 
we consider that the three brightest images do not contain shadows and that if the pixel is in the 
shadow in some images then the darkest image  will contain shadows. Thus we get a combination 
of three images, two of which without shadows and one potentially containing shadows. 
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3. Use the recovered normal vector  to recalculate the intensity  on each image  and

calculate the global relative error with the real intensities .

4. If , we can regard the pixel as non-affected by shadow because the calculated intensities
 are almost equal to the real intensities .  Then we attribute the set of images as a valid set 

to this pixel. If , which mean that the calculated intensities are too different from 
, then we label this pixel as a shadow pixel in image  and repeat step one to three on the 

set of images . The threshold  is chosen according to experimental results. 

       The loop runs until every pixel is attributed a valid set of images or until there is only three images 
left in the set of images, so there is maximum  loops and the number of combinations calculated is 
a . As a comparison, the method from [6] requires the calculation of a  combinations
and the fast graph cut algorithm needs about 100 iterations to reach a good minimum. The method 
developed in [8] does not operates on a per-pixel basis but still has a high computational cost because of 
its RANSAC type procedure. If we consider that the image contains  visibility subspaces, each 
occupying the same proportion of space then for  pixels the number of operations is 

. 

Figure 1. schema of the algorithm.

4    Results 

In this section we present the results obtained with our method on synthetic data and real data. The first 
example we show is a synthetic set of images of a simple sphere on a plane (Figure 2). This dataset 
contains both attached and cast shadows and the albedo coefficient differs from the sphere to the plan. 
The multiple shadows are also overlapping, creating a more complex map of valid sets but the symmetry 
of the problem makes it easy to judge on the accuracy of the results. We can notice the difference of the 
normal map obtained by using classic photometric stereo where the influence of shadows is explicitly 
corrupting the result and with our shadow handling method where the marks left by the shadows do not 
appear anymore. 
       The second dataset presented contains eight images of a real object with a complex shadow map 
(Figure 3). Each color on the shadow map represents a different valid set of images, this means pixels 
sharing the same color are in the shadow in the same images. Please note that the color is decided 
arbitrary for each valid set of images. We can notice the produced shadow map seems very close to the 
true shadow map of the object. For comparison we show the shadow map obtained using the algorithm 
from [8], the accuracy of the shadows area is about as high as the one we achieve. Additionally, this is 

Input: 
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Sort by intensity 
from brightest to 
darkest: 

 

Calculate the 
global error with 
real intensities:

Calculate the normal vector 
from 3-source photometric 
stereo with ,  and  

Suppress  
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of images as a 
valid set for the 
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performed with a smaller computation time. The last example is a set of twelve pictures of a horse head 
shaped object (Figure 4). If we first look at the horse’s ear we can see that the area is highly affected by 
shadows. As a consequence, the 3D reconstruction obtained from classic photometric stereo contains 
some artifacts. In this case a peak along the ear area is formed. Our method however avoids the formation 
of such inconsistencies by effectively detecting the shadows projected by the ear.  
  

  
                                      (a)                                                           (b)                                      (c) 

 
                 (d)                                     (e)                                        (f)                                   (g) 
Figure 2. (a) 2 of the 8 input images of synthetic sphere on a plan. (b) normal map without applying our 
method. We can see the impact of the shadows. (c) error between the true normal map and the normal 
map (b) . (d) shadow map obtained with our method. (e) 3D reconstruction of the object after applying 
our method. (f) normal map obtained with our method, you can notice the disappearance of the marks 
previously made by the shadow areas. (g) error between the true normal map and the normal map 
obtained with our method (f). 

                  

                   (a)                                   (b)                                      (c)                                        (d)  
Figure 3. (a) sample input images of the statue of a frog. (b) shadow map obtained with our method. 
Pixels sharing the same color are in the shadow in the same images. Please note that the color of each 
valid set of images is chosen arbitrary. We can see how similar it is to the true shadow map (c) true 
shadow map taken from [8]. (d) shadow map obtained with method from [8]. 
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(a)                                                      (b)                                      (c)      

 Figure 4. (a) sample input images of the statue of a head of a horse. (b) 3D reconstruction obtained 
from classic photometric stereo. We can notice the pic the area of the ear due to cast shadows. (c) 3D 
reconstruction obtained from our method. The artifact created by the shadows of the ear have been 
removed. Note that image (b) and (c) look more pixelated than the input images due to the lost of 
definition caused by the passage from 2D to 3D.   
 
5    Conclusion 
 
We have presented in this paper a new method to detect both cast and attached shadows in photometric 
stereo with albedo variation and complex shapes. Using well-chosen combinations of three images to 
calculate the intensity error on a per-pixel basis allow us to avoid the heavy computational cost needed 
in the previous existing methods while conserving the high degree of accuracy in the results.  
       This paper only focuses on calibrated photometric stereo because it offers the best accuracy for 
medical applications such as human skin reconstruction, but one possible direction of work could be to 
extend the method to uncalibrated photometric stereo in order to use it in a wider range of applications.  
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Abstract

This paper, addresses the problem of detecting heads in crowded real world scenes,
by combining a human head, an upper-body and a body detector to create a robust head
detector. The idea is not to rely on a single detector. Instead, a head, an upper-body and
a body detector, are used for decision making by combining their individual opinions to
derive a consensus decision. The combined classifier is tested on the town centre dataset,
and results show an 18% reduction in log-average miss rate of our combined classifier and
illustrate that combining classifiers may perform better than a single head detector.

Keywords: Pedestrian Detection, Head Detection

1 Introduction

Detecting humans is an important task for a wide range of applications, like surveillance,
smart environments, or ambient assisted living. In crowded scenes such as shown in Figure
1, only some humans are fully visible; for many others, only the upper-body is visible, or even
just the head. Such impediments led previous works such as [Benfold and Reid, 2011] and
[Rodriguez et al., 2011] to rely on head detection and ignore the rest of the body. However,
robust head detection is difficult to achieve, and our experiments indicate that head detection
is not as reliable as full body detection (see Section 3), this is a significant drawback. These
observations motivated us to combine detectors to create a more robust head detector. The idea
is not to rely on a single detector. Instead, a head, an upper-body and a body detector, are used
for decision making by combining their individual opinions to derive a consensus decision.

Person detection is a well-studied problem in computer vision with many methods and
evaluation benchmarks available [Dollár et al., 2012]. Most of the methods consider full-body
(pedestrians) or upper-body detection. In theory, the same algorithms can be used for head
detection, but in practice, these algorithms do not achieve a satisfactory result. In order to
overcome this problem, several authors have proposed strategies to exploit addition features.

Zhang et al. [Zhang et al., 2009] constructed a categorical model for hair and skin, and
trained the models in four categories of skin representing the different illumination conditions
(bright, standard and dark) to increase pedestrian detection rates during an occlusion event.
Head detection using a skeleton graph is proposed in [Merad et al., 2010]. The skeleton graph
is extracted from the foreground mask obtained using background subtraction.

In [Venkatesh et al., 2012], interest points are detected using gradient information in order
to approximately locate top of head regions to reduce the search space. The interest points
are then masked using a foreground region that were obtained by background subtraction. A
sub-window is then placed around the interest points, and it is classified as a head or non-
head region using an AdaBoost classifier. Xie et al. [Xie et al., 2012] detected heads using the
histogram of gradients (HoG) feature. To improve the detection result, motion and appearance
features are extracted and then the Bayesian posterior is used to represent the probability of
detected region belonging to actual human head regions.
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Figure 1: In a crowed scene only some humans are fully visible (left image), for many others
(right image), only the upper-body is visible, or even just the head.

Marin-Jimenez et al. [Marin-Jimenez et al., 2014] proposed a two-level pipeline in which
an upper-body detector is applied and then heads are detected within upper-body detection
areas. For both the upper-body and the head detector, they trained a part-based model.

In this paper, a novel approach is proposed that combines different detectors for head detec-
tion. Three new detectors for head, upper-body, and body detection were trained based on the
Aggregated Channel Features (ACF) detector framework of Dollár et al. [Dollár et al., 2014].
For each detector, the head is defined as a point of reference that allows a naive and obvious
geometric approach to combining the detectors, which only takes geometric properties into ac-
count. The main principle of combination consists of estimating the head location of each part
detector and then group detections by partition into disjoint subsets. For confidence score com-
bination, the maximum posterior probability over all parts is computed. In order to validate the
findings, the combined detector is tested on the town centre dataset, and results show an 18%
reduction in the log-average miss rate of our combined classifier and illustrate that combining
head detectors may perform better than a single detector.

2 Combined Head Detection

The proposed approach consists mainly of three steps. The first step is to train each part detector
separately. The second step is to apply the part detectors to a test image and to group the
resulting detections. The final step is to compute the combined detection score. In the following
section, each step is described in detail.

2.1 Detector

The proposed detector is based on three part detectors: a head, an upper-body and a body detec-
tor. A separate detector is trained for each part using the Aggregated Channel Features (ACF)
detector framework of Dollár et al. [Dollár et al., 2014], which has shown higher accuracy on
the related task of full-body pedestrian detection.

The ACF detection framework first smooths an input image I with a [1 2 1]/4 filter and
then computes several channels C = Ω(I). Then the channels are divided into blocks, and
pixels in each block are summed. Finally, the resulting channels are smoothed again with a
[1 2 1]/4 filter. Features are single pixel lookups in the aggregated channels. Boosting is used
to train and combine decision trees over these features (pixels) to distinguish objects from the
background. In order to allow multi-scale detection, a feature pyramid is build. At each scale,
a sliding-window approach is then used to detect objects.

In order to train the detector a novel dataset was created that contains 650 overhead person
images (plus horizontal mirror images) from different indoor and outdoor locations. The peo-
ple are usually standing, but appear in any orientation and against a wide range of backgrounds.
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Figure 2: Overview of the combined head detector. Given an input image I , several channels
are computed C = Ω(I). Boosted trees (H1 − H3) for head, upper-body and body are used
to distinguish objects from the background. Head locations are computed for the upper-body
and body detections using a fixed ratio and then all part detections are grouped to the resulting
detections. Finally, a combined confidence score is computed.

The head bounding box (BB) were manual annotated, the upper-body and body BB were esti-
mated by extending the head BB by fixed ratio. Head images have a size of 16×16 without and
32× 32 with padding, upper-body images a size of 30× 41 without and 60× 64 with padding,
and body images a size of 41× 100 without and 64× 128 with padding. As negative training
set, background images from the INRIA dataset [Dalal and Triggs, 2005] were used. By esti-
mating the upper-body and body locations based on the head location, the resulting detectors
are aligned at the head location. That allows more accurate head location estimation based on
this detector output than if the training set were centred at the body or upper-body location as
is commonly done [Dalal and Triggs, 2005, Dollár et al., 2012].

For each detector, the same configuration was used. Ten feature channels were used: nor-
malised gradient magnitude, histogram of oriented gradients (6 channels), and LUV colour
channels; the block size was set to 4×4. AdaBoost was used to train and combine 2048 depth-
two trees over the candidate features (channel pixel lookups) in each window. The step size of
the detectors was set to 4 pixels and 8 scales per octave.

2.2 Combining Part Detectors

The final part detectors are then applied across a test image. The same feature pyramid is
used for each detector, which speeds up the detection process (see Section 3). Then the head
location is estimated for the upper-body and body detections, using the same ratio that was
used to build the training set 2.1. Detections from multiple parts will usually occur around
each head in the scanned image. In order to return one final detection it is useful to combine
overlapping detections into a single detection.

Part-based models such as [Felzenszwalb et al., 2010], model the geometric relationship
between parts explicitly. In the proposed case, this is not necessary since the part detectors are
aligned at the head location, so the detection can be combined in a very simple way.

The set of all part detections is first partitioned into disjoint subsets. Two detections are
in the same subset if their bounding regions overlap more than 0.5 %. Each partition yields
a single final detection. The final bounding box is the bounding box of the most confident
head detection (see Section 2.3), and if the partition does not include a head detection, then the
bounding box of the most confident detection of the remaining parts is used. In order to be able
to compute the combined confidence for each detection (see Section 2.3), the most confident
detection of each part in a partition is saved. It is worth nothing that it is not required that all
parts exist. If a partition does not include detections of all parts, the confidence of the missing
parts is set to zero.
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2.3 Confidence Combination

The confidence scores of a part detection can be obtained from the boosted classifier H , which
consist of K weak classifier:

H(x) = HK(x) =
K
∑

j=1

αihi(x) (1)

where each hj is a weak classifier (with output -1 or 1) and αi is its associated weight; x
is classified as positive if H(x) > 0 and H(x) serves as a score. When a person is not oc-
cluded, our experiments have shown that a body detector is more reliable than a head detector.
However, if a person is partly occluded, a head detector is significantly more reliable than a
full body detector. In order to address this problem, occlusion information is inferred from the
scores of the part detections by selecting the part, which maximises the detection score:

score(x) = arg max
1≤i≤3

P (y = 1, Hi(x)) (2)

where P (y = 1, Hi(x)) is the posterior probability of the i-part being a true positive and
y is the class label y = {1,−1}. In this work the posterior is defined as a sigmoid function of
the score Hi(x):

P (y = 1, Hi(x)) =
1

1 + exp(AiHi(x) +Bi)
(3)

The sigmoid model is equivalent to assuming that the detection score is proportional to the log
odds of a positive example. The parameters A and B are learned for each part separately on the
training set (see Section 2.1) by the sigmoid fitting approach proposed in [Platt, 1999].

3 Experimental Setup and Evaluation

In order to evaluate the ability of the detector to distinguish between heads and all other
objects, experiments were done on the town centre dataset [Benfold and Reid, 2011], which
is a high definition video (1920x1080/25fps) of a shopping street that has a ground truth
consisting of 71500 hand labelled head and body locations. Following the methodology of
[Dollár et al., 2012], the performance is summarised using the log-average miss rate (MR),
computed by averaging miss rate at nine FPPI rates evenly spaced in log-space in the range
10−2 to 100. The log-average miss rate is similar to the performance at 101 FPPI but in gen-
eral gives a more stable and informative assessment of performance [Dollár et al., 2012]. A
detected bounding box and a ground truth bounding box form a potential match if they overlap
sufficiently. Because head regions are considerably smaller than full body regions, any error in
the location has a much more significant impact on the performance measures, which is why
the measure of Benfold and Reid [Benfold and Reid, 2011] is employed for heads, which states
that their area of overlap must exceed 25%, not 50%, as used in [Dollár et al., 2012] for full
body. Tests are performed on all three detectors separately and on the combined detector; in
addition, the two detectors provided by Dollár et al. [Dollár et al., 2014] that were trained on
the INRIA [Dalal and Triggs, 2005] and the Caltech [Dollár et al., 2012] dataset are tested.

Results are reported for head and body regions in Table 1, some examples of detection
results are shown in Figure 4. In addition, in Figure 3 the detectors are compared by plotting
the MR against FFPI (using log-log plots) by varying the threshold of detection confidence
(details can be found in [Dollár et al., 2012]). The body region for the combined, the head and
the upper-body detector as well as the head region for the upper-body, the body, the AcfInria
and the AcfClatech detector are estimated using the same ratios used in Section 2.1 to create
the training set.
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Figure 3: Log-log plots miss rate against false positives per image. Left: Head region. Right:
Body region.

Figure 4: Some examples of detections on test images (1 + 2 town centre, 3 test image from
the training set) for the final person detector.

The results show (see Table 1) that the combined head detector outperforms all other detec-
tors and reduced the MR for head detections from 76% (Head-Detector) to 58% (Combined-
Detector). Even in the case of the full body region, the combined detector achieves the best
result, particularly remarkable, because using the head is often not discriminative in various
tasks. In case of the body location, the proposed body detector and the AcfInria detector
achieve similar results, but in case of the head location the proposed body detector archives
a 28 % better result. This a result of defining the head as point of reference for the trainings
image instead of the full body.

Speed comparison The combined detector needs 360ms to process a 1920x1080 image on
the test machine, a desktop computer with an Intel Core i5-3470 CPU with 3.2 GHz and 8GB
RAM, a single detector needs 260ms. That the combined detector is only 38% slower is due to
the fact that the most time-consuming process, the features computation, only has to be done
once.

4 Conclusion

In this paper, a method was developed to combine different detectors for head detection. Three
separate detectors for head, upper-body, and body detection were trained based on the ACF de-
tector framework of Dollár et al. [Dollár et al., 2014]. An algorithm was proposed to combine
part detections that first estimates the head location of each part detector and then groups detec-
tions by partitioning them into disjoint subsets. The final confidence score is then calculated by
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Method MR - Head MR - Body
AcfClatech-Detector [Dollár et al., 2014] 99 96
AcfInria-Detector [Dollár et al., 2014] 95 72
Head-Detector 76 87
Body-Detector 67 70
Upper-Body-Detector 66 81
Combined-Detector 58 66

Table 1: Performance on the town centre dataset

maximising the detection score over all parts. In order to validate the findings, the performance
of the detection systems was examined on the town centre dataset. The results showed that
combing a head, an upper-body and a body detector gives very good result for head detection,
by reducing the MR by 18%.
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Abstract

This paper extends the generic frontal face detection framework using SURF cascade
classifier to handle profile views and rotated faces by the addition of minimized consuming
time with only the frontal face detector. We proposed a novel flipping scheme for multi-
view face detection making use of frontal face detector’s over-representation, rather than
building different detectors for different views. Our flipping scheme is actually a sliding
window scheme for searching the hypothetic axis of symmetry and classification of left
profile, right profile, or rotated profile. Our experimental results proved SURF cascade
based flipping scheme was able to detect faces of almost all variations over the pitch and
yaw angles while processing online.

Keywords: multi-view face detection, flipping scheme, profile face detector, frontal face de-
tector

1 Introduction

We are interested in automatic detection of human face captured by a single camera from dif-
ferent view angles. Theoretically, an ideal multi-view face detector under real-world scenarios
has to be capable of handling any possible human head rotations with the least time cost.
Nowadays, frontal faces can be detected accurately [Osuna et al., 1997], [Rowley et al., 1998].
While profile face detection methods are always not reliable which inspires some methods
[Li et al., 2002], [Schneiderman and Takeo, 2000] to specifically address the profile problem.
To achieve fast processing of frontal face detector, [Viola and Jones, 2001] proposed a boosted
cascade classification framework using Haar-like features, which is also called Viola-Jones
(VJ) framework. SURF cascade framework which was proposed in 2011 [Li et al., 2011]
and developed in 2013 [Li and Zhang, 2013] is derived from the VJ framework and adopt not
Haar-like features but multi-dimensional SURF features [Herbert et al., 2008] to describe local
patches.

Both SURF cascade and VJ frameworks outperform other methods particularly on the pro-
cessing time. SURF cascade based frontal face detector is faster than the face detector which
applies VJ framework [Li and Zhang, 2013]. To extend the frontal face detector to a multi-view
one while preserving the quality of efficiency, the common idea is to assemble many detectors
of different view angles each of which is trained individually to address a small specific view
angle range [Jones and Viola, 2003]. We proposed a novel method to make a multi-view de-
tector by making use of only one trained detector, which is the frontal face detector. In other
words, our method can combine with either SURF cascade or VJ framework for multi-view
detection. The detector trained with SURF cascade or VJ framework will be denoted by the
cascade detector below, because they both adopt the cascade classification framework.
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Figure 1: Twocases of flippingprofile faces to make new target images; (a), (d) ROI contains
right profile face or left profile face; (b), (e) flipping ROI to left; (c), (f) flipping ROI to right.

2 Flipping Scheme

The cascade detector is able to correctly locate frontal faces of the image with an acceptable
true-positive rate. However, when we input an imitated frontal face which is made by flipping a
profile face horizontally, the detector can still recognize it as a frontal face, see Figure 1 (b) and
(f). The interesting part is that the imitation is composed of a pair of mirrored profile views.
Tests of flipping different views are made and the results show that it is possible to detect profile
faces using a frontal face detector. We made an achievement to extend the frontal face detector
trained with SURF cascade framework and another trained with VJ framework to multi-view
detectors respectively. We call this extension “Flipping Scheme”.

2.1 Profile Face Detector

To identify profile face, the ROI (region of interest) is selected and flipped to the left or the right
to get the left flipping ROI or the right flipping ROI, see Figure 1. The original ROI and either
flipping ROI compose a new target image. Once a frontal face is detected in the new target
image correctly, there is a half-face in the original ROI. In this way, the flipped profile face
sharing the same symmetry axis with the new target image can be detected. The coordinate
results in the new target image can be restored to be corresponding ones in the original image.
The next section will describe how to detect a profile face in the image.

2.2 Sliding ROI

The detection is started by sliding the ROI from left to right. For each ROI, the common cascade
detector is used to judge whether there are frontal faces. The coordinates will be recorded if the
detector reports a “positive” which means there are faces found. Section 3.1 discusses about
best face selection among candidates. Otherwise, the profile face detector which is described
above will be activated. As for the result, the positive on the left flipping ROI indicates the
left profile face is detected. The left or right are based on the observer’s view. Similarly, the
positive on the right flipping ROI indicates the right profile face is detected. If there are still no
faces found after checking flipping ROIs, the searching comes to an end with the judgment of
no faces for this ROI and slides to another ROI until all the possible regions are checked.

The frontal face detector is made replaceable. Hence its algorithmic complexity (denoted
byD) will not be affected by the flipping scheme.D is determined by classification tree gener-
ated by the cascade classifiers which cannot be altered once trained out. The total complexity
equalsD if frontal faces are firstly detected. If there are profile faces found, the complexity
will be O(n)·D. The worst case is that neither frontal faces nor profile faces are found, the
complexity will ben·D. The complexityD cannot be reduced other than turning to another
faster frontal face detectors. We use some techniques to speed up computation by minimizing
n like choosing the best width and height for ROI.

150



2.3 Specify ROI’s Width and Height

The ROIwill be used to make the flipping ROIs which may contains a frontal face. ROI’s width
determines the maximum size of the face the detector can handle. The best way is choosing
image width as ROI width initially and reducing automatically to fit the distance from the
sliding vertical symmetry to the final possible position. The size of profile faces which could
be able to be detected ranges from the minimum size defined by the cascade classifier to the
maximum which may cover the whole image. However, ROI’s width should be flexible in case
that the detector is targeted at certain face size range and a higher speed.

There is another reason that we choose the ROI which is larger than the true-positive face
region. In order to use sliding ROI method to find the best symmetry for frontal face construc-
tion, the minimum ROI size will make the fastest searching, considering the cascade detector
is much faster in the small image than in the big one. However, the cascade classifier will not
work if input only the positive face region without surroundings because that will block the
rectangle grouping. Hence, a width larger than the target face width range is necessary.

The common detection method loops ROI’s height from the minimum to the maximum. For
the flipping scheme, there will be many overlapped ROIs sharing the same symmetry axis after
flipping. Therefore building ROI with the the image’s height once would be more efficient.

3 Algorithm

Profile face detector is developed to address head rotation along the yaw direction. Instead
of estimate head pose accurately, we simply differentiate profile problem into left profile and
right profile. There are two versions of detection depends on how to specify ROI’s width. The
first version (Algorithm 1) is capable to detect profile faces while the face size varies from the
minimum (same with the normalized minimum feature size which is 32× 32) to the size of
the whole image, but costs more computation time.

Profile Face Detection Algorithm 1

• Initialization: Initialize ROIR with (x=0, y=0, width=w, height=h) in image I
whose width and height is denoted aswI andhI . R’s width and height is set same
asI ’s initially: w=wI , h=hI .

• Loop: whilex<wI

– Construct new target image with the left flipping ROIfl(R):
Il=[fl(R),R].

– Construct new target image with the right flipping ROI of region outside ROI
fr(I−R) if large enough:
if I−R>minSize, Ir=[I−R, fr(I−R)].

– Perform frontal face detection on bothIl andIr, and record detected face region
with best confidence.

– Move ROI horizontally to new positions with user-defined shiftstep and update
ROI’s width to fit the image:
x=x+step, w=w−x.

• Output: face region with best confidence if detected.

The other version (Algorithm 2) provides an option for user to define the maximum half
face widthw′ which could lesson ranges of searching and process faster.w′ is used as a fixed
sliding ROI’s width and moves to a new position without changing on width. A fixed sliding
ROI’s width would miss some cases: left profile faces when ROI locates at the initial position
and right profile faces when ROI locates at the final position which need additional process.
Finally, to perform multi-view detection, profile face detector is activated when frontal face
detector cannot find any faces.
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Profile Face DetectionAlgorithm 2

• Initialization: InitializeR with (x=0, y=0, width=w, height=h) in I. R’s width and
height is set as follows:w=w′, h=hI . w′ is the user-defined maximum half face width.

• Perform algorithm 1 described above within initial position ofR when treatingR region
as a new target image

• Loop: whilex<wI−w′

– Construct new target image with the left flipping ROIfl(R):
Il=[fl(R),R], Ir=[R, fr(R)]

– Perform frontal face detection onIl andIr, and record detected face region with
best confidence

– Move ROI horizontally to new positions with user-defined shiftstep:
x=x+step

• Perform algorithm 1 within the last possible position while treatingR region as a new
target image

• Output: face region with best confidence if detected

3.1 Best Face Selection

There is an evaluation needed when the cascade detector output several positive candidates.
The usual method is to count the number of overlapped rectangles to evaluate one candidate’s
confidence. And to judge whether two rectangles is overlapped, we apply the well-known over
50% ratio rule which label two rectangles as overlapped when the overlapped area account for
more than half of their area’s sum. By counting overlapped rectangles the system retains the
best candidate every loop which results in single-target detection. Experimental results prove
the detection is fairly reliable in Section 4.

3.2 In-plane Rotation

The sliding window method can also handle in-plane rotation caused by head pose changes in
the tilt direction of 3D space. Suppose the point (x, y) in imageI(w, h) is rotated around image
center to be (x′, y′) in imageI ′(w′, h′) with an angleα. The range shift of image center can
be estimated by (0.5× (w′−w), 0.5× (h′ − h)). The correspondence can be calculated using
trigonometric function:

x′ = (x− 0.5 · w)cosα− (y − 0.5 · h)sinα+ 0.5 · w′ (1)

y′ = (x− 0.5 · w)sinα+ (y − 0.5 · h)cosα+ 0.5 · h′ (2)

The formulas can be used to get the rotated imageI ′. But detection result onI ′ need rotating
back to get coordinates onI which follows an inverted rotation whose rotation angle is−α.
To speed up the rotation module, we are supposed to put computation out of loop as much as
possible, such as store sine function values ahead of time and plus coordinates’ increment in-
stead of computing every time. Because SURF cascade has been trained with rotating positive
images±10◦, we can set the step value as 20◦.
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Figure 2: Examples of successfully detected profile faces on imagesof Pointing’04.

4 Experimental results

An automatic multi-view detection system is built in which the cascade detector is used to
detect frontal faces, the flipping scheme is added to detect profile face rotating along yaw and
pitch direction, and in-plane rotation module is made to handle profile face rotating along roll
direction. Because SURF cascade is faster than the OpenCV face detector on frontal face
detection, we choose SURF cascade to compare with SURF cascade based flipping scheme
for evaluation of flipping scheme. We define rectangles containing three points of the left eye
center, the right eye center and the mouth center as positive frontal face detection results and
rectangles containing one eye’s center, a part of nose and a part of mouth as positive profile
face detection results.

Figure 3 displays distribution over pitch and yaw angles for the faces detected by SURF
cascade on database Pointing’04 [Gourier and Crowley, 2004]. Figure 4 shows results using the
SURF cascade based flipping scheme. The low true-positive rates of Figure 3 does not mean
SURF cascade is bad because this is experimented with only the frontal face detector and the
database contains various head poses. For example, when pitch angle equals to+0◦, yaw angle
varies from−90◦ to +90◦ with shift step of15◦ and most images in this range are not frontal
face image. Conversely, almost no false-positives shows SURF cascade detector’s excellent
performance. In Figure 4, results over yaw angle indicates that for all possible values of pitch
angle and yaw angles on the range of [−45◦, +45◦], true-positive rates are all above80%. By
comparison, we proves that the flipping scheme is able to handle almost all variations over the
pitch and yaw angles with an average processing speed of41 fps on the images with normalized
size of320×240 with optimized parameters (3.4GHz Core-i5 CPU and8GB RAM).

5 Conclusion

A novel half face scheme is proposed to extend cascade classifier’s frontal face detection
to multi-view detection. Experimental results proves that SURF cascade outperforms the
OpenCV default face detector in efficiency. After integrating SURF cascade frontal face de-
tector into flipping scheme, almost all variations over the pitch and yaw angles can be handled
perfectly for the single-target detection problem. Although the half face scheme brings with
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Figure 3: Distribution over the pitch and yaw angles for the heads detected by SURF cascade
only. White shows true-positive rate (%), and gray shows false-positive rate; (a) yaw angle; (b)
pitch angle.
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Figure 4: Distribution over thepitch and yaw angles for the heads detected by SURF cascade
based flipping scheme. White shows true-positive rate (%), and gray shows false-positive rate;
(a) yaw angle; (b) pitch angle.

it more possibility for the flipping ROI to contain false-positives, our experiments shows the
single target detection is fairly reliable which would become weak for multi-target detection.
We will take measures to address this problem for multi-target detection in the future.
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Abstract

We propose a method to detect and track humans from an omnidirectional camera
image, and to visualize human trajectories in the room plan. There are two problems to
solve to achieve this issue. One is a robust algorithm of human detection in the case that
humans are moving or sedentary in complicated background such as a office room. Dy-
namic background subtraction is suitable for detection in the complicated background but
is not working to detect of a object having a little movement. In this paper, we propose
a detection method based on the combination of static background subtraction, dynamic
background subtraction, and Histogram of Oriented Gradients(HOG). The second prob-
lem is the way to visualize human trajectories in the room plan from distorted panoramic
image. Therefore, we propose a method to create a correspondence relation by sandwich-
ing a perspective image between a room plan and a panoramic image. The panoramic
image is divided into multiple areas, and each area is converted into a perspective image.
It is feasible to calculate the coordinate of human position in the room plan by using a
Homography matrix between the perspective image and the room plan. We conducted the
accuracy evaluation of human detection and human trajectory in order to ensure the ef-
fectiveness of this method. As a result, the proposed method of human detection reduced
false positive detection remarkably in comparison with existing method. The experimen-
tal results of visualizing human trajectories demonstrated the range of errors of position
estimation is about from 16 cm to 55 cm, but it is sufficient for use in data analysis such
as head-count and residence time.

Keywords: Human detection, Human tracking, Omnidirectional camera

1 Introduction

A number of surveillance have widely been studied. Among them, tracking of human trajec-
tory is extensively studied for use in the analysis of surveillance videos. The problem of single
camera monitoring is limited visual field, while the problem of multi-camera monitoring is ge-
ometrical calibration of multiple cameras. An omnidirctional camera can cover 360◦ direction
and enables to monitor broad range without overlapping. However, it is not easy to accu-
rately understand the human position in the distorted panoramic image. This paper proposes a
method which performs human detection and tracking from the omnidirectional camera image,
and visualizes human trajectories in the room plan.

There are a lot of researches related to a surveillance camera. For example, Oktavianto et
al.[1] proposed attendance logging system. Okabe et al.[2] tracked human trajectory using a
stereo camera. The key issue in these research is human detection and tracking. Oktavianto
et al.[1] proposed a method for human detection by background subtraction, but overlapped
humans can not robustly be detected by just using background subtraction. Human detection
using Histogram of Oriented Gradients(HOG)[3] is widely used. However, it is difficult to use
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(a) (b)

Figure 1: The result ofsystem.(a) showsthe result of human detection. (b) shows the trajecto-
ries of detected humans.

HOG features in complex backgrounds because a complex background have much gradient
information. Vondrick et al.[4] presented the results HOG features cause false positives in
some cases. There are many research to approach this problem. Jin et al.[5] proposed a method
of tracking in complex background by particle filter and HOG. Bing-bing et al.[6] proposed
a detection method that combines HOG and dynamic background subtraction. This approach
detects humans with HOG in the target area extracted by background subtraction. However,
in this approach humans need to be moving because sedentary humans are included in the
background image by using dynamic background subtraction.

Some researches on omnidirectional camera have been activity conducted in the past few
years. Peri et al.[7] proposed a method to generate perspective and panoramic image from
omnidirectional image obtained from a parabolic mirror omnidirectional camera. We used an
omnidirectional multi-camera system, Ladybug, Point Grey.

In this paper, we propose a method to detect humans robustly in complex background
based on the combination of static background subtraction, dynamic background subtraction
and HOG. Furthermore, we propose a method to visualize human trajectories in room plan
from the distorted panoramic image. Figure.1 shows an example of results of this system.

2 Overview of the system

This section provides an overview of the major steps in our system. Implementation details
are presented in Section 3 through Section 5. The system is composed of the combination of
on-line processing and off-line processing . In the off-line processing, We manually select cor-
responding points between the room plan and panoramic image. After dividing the panoramic
image based on the corresponding points, each area is converted into a perspective image. The
Homography matrix is then calculated between the perspective image and the room plan.

In the on-line processing, the system obtains a panoramic image as an input from the om-
nidirectional camera. The target areas are then extracted from a input image by background
subtraction. In these areas, human is detected using HOG, and the background image is up-
dated based on the detection result. After human detection, human tracking is performed by
data association. The trajectory of each detected human is visualized in the room plan by using
Homography between the perspective image and the room plan.

3 Human detection based on background subtraction and HOG

We propose the method to detect moving or sedentary humans in the complicated background.
This method is based on combination of static background subtraction, dynamic background
subtraction and HOG. Basically, by using Real AdaBoost classifier with HOG, upper bodies
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are detected in the target areas extracted by backgroundsubtraction because upper bodies are
certainly visible even when lower body is hidden by other object such as desks. And then, the
background image is updated based on the detection result and accumulation of background
statistics[8]. In this approach,I is pixel intensity of the background area and is modeled as
follow:

I = I + σ sin (2πωt) + kζ (1)

whereI is the time average of pixel intensity,σ is the amplitude of intensity,ω is the frequency
of intensity,t is time,k (−1 ≤ k ≤ 1) is coefficient, andζ is the maximum value of the noise
depending only on the camera.

Based on the detection result and accumulation of background statistics, one of the fol-
lowing three processes is performed in each pixel. One is in the case thatI is not included
in detected rectangles andI − σ − ζ ≤ I ≤ I + σ + ζ is satisfied. In this case, the pixel is
identified to exist in the background area andI andσ is updated based on follows:

I
′
=

(n− 1) I + I

n
(2)

σ′ =
(n− 1)σ +

√
2
(
I − I

)2
n

(3)

wheren is the parameter of the update speed.
Another is in the caseI is not included in the rectangles andI − σ − ζ ≤ I ≤ I + σ + ζ

is not satisfied. In this case, the pixel is identifiedto exist in the area of a moving object except
humans, andI is not updated butσ is updated as:

σ′ =
(m− 1)σ +

√
2
(
I − I

)2
m

(4)

wherem (m ≥ n) is the parameter of the update speed in object areas. Bydoing this, moving
object other than human will be included in the background area gradually. Updating the
background image over time prevents undetected error of the detector.

The other is in the caseI is included in the rectangles. In this case, the pixel is identified to
exist in human areas, andI andσ in this areas is not updated. By keeping these values, detected
areas are not included in the background image and will always be the subtraction areas. From
the empirical resultsn is 1/50.0,m is 1/300.0 andζ is 10.0 in our implementation.

4 Human tracking by data association

In this system, human tracking is performed by data association that compares the Euclid dis-
tances and the distances of the color histograms between the detected rectangle in the current
frame and the ones in the last frame. Data association is suitable for omnidirectional multi-
camera system whose frame rate is low because data association is simple and does not take
processing time. Firstly, the Euclid distanced is calculated. Bhattacharyya distancedH is
then calculated between histograms after making color histogram of each rectangle. Combined
distanceD is calculated in all combination of rectangles as follow:

D = d+ αdH (5)

whereα is a parameter. When there is a one-to-one correspondence between the rectangle of
current frame and the rectangle of the last frame, the combination of the minimal sum ofD
becomes the tracking result.

However, it is not sufficient to compare the histogram of only the previous frame to make an
accurate tracking possible even if human is overlapping or occlusion occurs. In this paper we
classify theK clusters fromN histograms fromN frame before to the current frame by using
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K-means. Each cluster’s centerof gravity is adopted as representative histograms of each hu-
man. We use the smallestdH of K representative histograms when calculating Bhattacharyya
distances. From the empirical resultsN is 100 andK is 3 in our implementation.

5 Visualizing human trajectory

We consider distortion of the panoramic image when visualizing human trajectories. In this
paper this problem is solved by converting perspective images from divided panoramic images.

In the off-line processing, we first select corresponding points between the room plan and
the panoramic image. The area between a desk and the other desk is utilized because the floor
is hidden by desks in the environment such as a office. (In the case that the aisle is broad like
figure.4(b), we select corresponding points on the floor.) We create some perspective images
which respectively contain an area constituted by every four input points. Assuming there is the
sphere with a focus central on omnidirectional camera, Figure.2 shows a relationship between
the panoramic image and the sphere. This relationship enables creating a perspective image
by projecting the pixel intensity of the spherical surface on a plane including four input points.
The Homography is calculated for each area utilizing the corresponding points between the
room plan and the perspective image.

In the on-line processing, human trajectories are visualized using the Homography and the
coordinate value of the detected rectangle. Assuming the lower side of the rectangle exists on
a plane between a desk and the other desk, we can estimate the coordinate value of the human
position in the room plan by multiplying the center of the lower side on the perspective image
by the Homography. Figure.3 shows the flow of visualizing.

Figure 2: Assuming the sphereof the constantradius exists with a focus central on omnidirec-
tional camera, pixel intensities are projected to the spherical surface. When the latitude isϕ
and the longitude isθ, we can make a panoramic image by using polar coordinate.

Figure 3: In off-lineprocess, After inputingthe corresponding points between the panoramic
image(left image) and the room plan(right image), the perspective image(center image) is cre-
ated. In on-line process, human position in the room plan is calculated by multiplying the
center of the lower side of the rectangle on the perspective image by the Homography between
the perspective image and the room plan.
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6 Experiment

We conducted the experiments for evaluatingthe human detection and trajectory tracking. Fig-
ure.4 shows two environments of the experiments. Figure.4(a) is the environment where the
aisle is narrow, and Figure.4(b) is one where the aisle is broad. Training images were cropped
from panoramic image to minimize the loss of accuracy of detection by distortion.

(a) The room interior (b) The room interior

Figure 4: The environment of the experiment

6.1 Evaluation of human detection

We compared our method with the combination method of static background subtraction and
HOG. In this experiment, a video of 8800 frames was prepared. The ROC curve is given in
Figure.5[a], in which the x-axis is False Positives Per Image(FPPI), and the y-axis is the de-
tection rate. Figure.5[a] shows FPPI of our method is markedly lower than the comparative
method. Since our method takes advantage of dynamic background subtraction, the false posi-
tive detection of our method is lower in subtraction area generated by movement of objects and
illumination changes. However, the maximum value of the detection rate is also lower. The
cause is possibly human areas included in the background image when human is not detected.

6.2 Evaluation of trajectory tracking

We measured the error of the Euclid distance between the visualizing result and the ground
truth in all frame, and calculated the average, the standard deviation, and the maximum of
the error. In this experiment, four videos of 200 frames were prepared. The ground truth is
the coordinate on the room plan obtained by manually plotting human position on the room
plan. The results of the trajectories are given in Figure.5 (b)-(e). The trajectories of black lines
indicate the ground truth. Table.1 shows the evaluation index of the error of the trajectories.
The range of distance error is about from 16 cm to 55 cm. The assumed cause of the distance
error is as follows. Since the classifier can detect only upper bodies, the amount of information
is not enough to decide human areas. When the rectangle can not surround a human accurately,
the coordinate multiplied by the Homography is misaligned.

Table 1: The error of trajectory
　 (b) (c) (d) (e)
Average[cm] 16.50 36.75 50.91 55.31
Standard deviation[cm] 10.98 22.91 28.88 26.23
Maximum[cm] 47.41 110.29 141.61 135.79

7 Conclusion

In this paper, we presented the method to detectand track humans using the omnidirectional
camera, and to visualize trajectories in the room plan. Our method which is based on combina-
tion of static background subtraction, dynamic background subtraction, and HOG, can detect
moving or sedentary human in the complicated background. This method overcomes the issue
that dynamic background subtraction is not working to detect a object having a little movement.
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Human tracking is performed by data association which is suitable for this system because the
frame rate of omnidirectional multi-camera system is low. On the other hand, in order to vi-
sualize trajectory from distorted panoramic image, we proposed the method that the panorama
image is divided into multiple areas and each area is converted into a perspective image. As an
experimental result, the proposed method of human detection reduced false positive detection
remarkably. Furthermore, the result of visualizing human trajectories showed trajectory error
of position estimation is about from 16 cm to 55 cm.
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Abstract 

Image compression is still an open area of research due to high memory and 
bandwidth requirements for storage and transmission. A novel scheme to store the 
Huffman coded words in JPEG algorithm is proposed in this work to improve the 
Compression Ratio while maintaining the same perceptual image quality. The proposed 
work also introduces a technique to reduce the number of intensity levels using novel 
regrouping of the zigzag ordered 63 ‘AC’ Coefficients. Image quality metrics such as 
Compression Ratio, SSIM, MSE and PSNR are used for quantitative benchmarking of 
the results with JPEG algorithm. 

Keywords: JPEG, Image Compression, Quantization. 

1 Introduction 

In recent years, with the advent of 3G and 4G, the available bandwidth has increased many-folds. But due to 
HD High Definition (HD) technology, the quality of multimedia signals has also increased further increasing 
the memory and bandwidth requirements. This has again resulted into a need for higher compression ratios 
without compromising with perceptual quality. While compressing images, we are taking advantage of the 
redundant information present in them. Redundancies present in images may be;   
i) Spatial (between neighboring pixels)
ii) Spectral (correlation between color components)
iii) Psychovisual (due to human visual system)
In JPEG, spatial and spectral redundancies are exploited using DCT which has high energy compaction in 
frequency domain. This technique is effective since the image is first divided into 8х8 blocks and DCT is 
applied on each 8х8 block separately. The mathematical expression for 2D-DCT for an M х N matrix, in 
general, is given an 

1 1

0 0

(2 1) (2 1)
( , ) ( ) ( ) ( , ) cos( ) cos( )

2 2

M N

x y

x u y v
F u v C u C v f x y

M N
             (1) 

( ), ( ) 1 / 2 , 0;

( ), ( ) 0 ;

where C u C v for u v

C u C v otherwise

After this step, each block is quantized using a specific quantization matrix (Q matrix). This step makes 
JPEG a lossy image compression. The above process may be represented as; 

( , )
( , )

( , )

F u v
D u v round

Q u v
          (2) 
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where F(u,v) is the DCT coefficient matrix, Q(u,v) is the standard JPEG quantization matrix. JPEG uses 
two standard quantization matrices, one for quantization of the luminance component of an image and one 
for chrominance component. The luminance and chrominance quantization matrices are shown in fig. 1 and 
fig. 2 respectively. Step sizes of the quantization matrix are defined based on luminance and chrominance 
perception of the human eye i.e. more importance is given to lower frequency coefficients than higher 
frequency coefficients. Quantization removes psycho visual redundancy in an image. The quantized matrix is 
then zigzag ordered using the scanning order shown in fig. 3.The linearly arranged coefficients are then run 
length coded and entropy coded using variable or fixed length codes. 

Fig. 1. Luminance Quantization Matrix Fig. 2. Chrominance Quantization Matrix Fig. 3. Zigzag Scanning Order 

Since JPEG is both an ISO standard and CCITT recommendation [7], it has been a universal image 
compression standard with its operability spanning a wide range of devices. The standard JPEG encoder and 
decoder are shown in [7]. JPEG is used for both color as well as gray scale image compression. For gray 
scale images, only one plane i.e. intensity (luminance) plane is coded. For color image coding, image is first 
converted to YCbCr color space where Y is the luminance component and Cb and Cr are the blue and red 
chrominance components respectively. As human eye is less sensitive to chrominance information than 
luminance, chrominance subsampling [9] is used without any perceptual loss in image quality. Later the 
luminance and the two subsampled chrominance planes are coded. 

Since the invention and application of JPEG to image compression, work has been done on each block of 
JPEG to improve compression ratio and/or image quality. In [1], author has used triangular and trapezoidal 
blocks according to the shape of the objects in the image instead of rectangular 8х8 blocks. Instead of DCT, 
DHT (Discrete Hartley Transform) has been used in [2] and the quantization and scanning order has been 
changed accordingly. A few authors have optimized the Quantization table and Run-length coding [3] and [4] 
making the compromise between compression and image quality an optimum. Improving image compression 
through hiding binary information and the study of Human Visual System (HVS) is discussed in [5] and [6].  

This paper deals with storing of the coded words and regrouping of AC jpeg coefficients. If the coded 
words are efficiently stored, higher compression ratio can be achieved with negligible or no loss of image 
quality. After zigzag ordering, we have prioritized different groups (bins) of 63 linearly arranged AC 
coefficients and analyzed its effects on the quality of the reconstructed image. 

Organization of this paper is as follows. In section II, JPEG basics and JPEG algorithm is discussed in 
detail. Section III deals with the proposed enhancements in the JPEG algorithm followed by results in section 
IV and concluding remarks in section V. 

2 Proposed Algorithm 

2.1  Efficient Storage 

Huffman encoder outputs variable length code words. If these code words are stored in individual memory 
locations (one code word in one memory location), a lot of memory space is wasted. For example, for a 3 bit 
code word 16 bits are used if each memory location is of size 16 bits (2 bytes). In such a case very less 
compression is achieved or in some cases compression even may not be achieved. For our experimental 
image, compression ratio of 5.48/1 is achieved. Now a lot of memory space is saved if coded bits are saved 
without any space. Suppose we have two code words (010 and 0100) which are to be stored. If each code 
word is stored in one memory location, 25 bits (≈ 3 bytes) of memory space is wasted. To avoid this, both the 
code words can be concatenated and stored as one (0100100) code word. But then the decoder will not be 
able to identify the actual code words transmitted. For example, the concatenated code word can be 
interpreted as either 0100 & 100 or 010 and 010 and 0 or in many more ways. Thus along with the code 
words, their lengths are also needed to be stored. Lengths can also be concatenated and stored but they are 
concatenated as decimal numbers as against the code words which are concatenated as binary numbers. 
Concatenation of lengths is possible as no code word has length less than 3 and more than 26. So, if a 1 or a 2 

1 2 6 7 15 16 28 29 

3 5 8 14 17 27 30 43 

4 9 13 18 26 31 42 44 

10 12 19 25 32 41 45 54 

11 20 24 33 40 46 53 55 

21 23 34 39 47 52 56 61 

22 35 38 48 51 57 60 62 

36 37 49 50 58 59 63 64 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 
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(decimal) is encountered in the length array, two consecutive digits are taken as length for example 15, 19, 
25, etc. With this technique compression ratio is increased to 26.05/1 for our experimental image shown in 
fig. 6 (d) and without any further deterioration in the image quality. Results for this step are not quoted 
separately as they are same as that of the results of the complete modified algorithm with Quantization Factor 
of 1. Hence, fig. 7 (d) and fig. 8 (d) also show the results of this step for experimental images shown in fig. 7 
(a) and fig. 8 (a) respectively. 

2.2  AC Quantization after zigzag ordering 

Compression ratio can be further increased if the linearly ordered 63 AC coefficients are further quantized 
using a certain quantization factor (QF) or a quantization ratio (QR). For this the 63 AC coefficients are 
divided into different groups as follows: 

Groups Coefficients 
 1 1,2,3 
2 4,5,6,7 
3 8,9,10,11 
4 12,13,14,15 
5 16,17,....,63 

    Table I. AC Coefficients’ Groups 

Since these coefficients are ordered from lower to higher frequencies, the groups contain increasingly 
higher frequency coefficients with group 1 containing the low frequency coefficients and group 5 all the high 
frequency coefficients [8]. In other words, these groups contain increasingly higher amounts of energies of 
the image sub-blocks. Thus, one possible way of quantization would be to divide each coefficient of a certain 
group by the group number itself. This means that each group is prioritized according to the amount of 
energy it contains. This results in a quantization ratio of 1:2:3:4:5. After experimentations it has been 
observed that groups 1, 2 and 5 contain most of the energy of the sub-block [8]. So, a quantization ratio of 
1:2:3:4:1 can also be used. One possible reason for the high energy content of group 5 even though it 
contains all the high frequency (low energy) coefficients is that it contains a large number of AC coefficients 
as compared to other groups as is evident from Table I. A variety of other quantization ratios have been tried 
and the results are analyzed and tabulated in Table III. 

Fig. 4. Modified JPEG Encoder 

Fig. 5. Modified JPEG Decoder 

Now, instead of quantizing each group using a different number, all the groups can be quantized using a 
same quality factor as it affects quality of the image. Thus, this quantization using a quantization ratio can be 
called as variable quantization and that using a quality factor, constant quantization. Constant QFs of 1 to 5 
have been used to quantize the AC coefficients and the results are tabulated in Table II. The 63 AC 
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coefficients can also be quantized using a combination of the above two methods such that all the AC 
coefficients are first quantized by a constant QF and then using a variable quantization ratio. 

Thus, we are adding two additional blocks (dotted) to the standard JPEG encoder and decoder as shown in 
fig. 4 and fig. 5. 

3 Metrics for Performance Evaluation 

Following quality metrics are used in this paper to compare original and reconstructed images: 

3.1  Compression Ratio 

It is defined as the ratio of the number of bits required to store the original image file to that required by the 
compressed image file. 

3.2  Mean Square Error (MSE) 

It is a measure of distortion of the reconstructed image as compared to the original image. Mean Square Error 
is defined as the sum of squares of the difference between pixel values of original and reconstructed image 
averaged over the complete image. 
Mathematically, 

1 1

2[( ( , ) '( , ))] / (M* N)
M N

x y

MSE g x y g x y  (3) 

where, g(x,y) is the intensity at pixel location (x,y) of the original image and g’(x,y) that of the reconstructed 
image. 

3.3  Peak Signal to Noise Ratio (PSNR) 

It is defined as the ratio of peak signal power of an image to the noise power that corrupts it. In an image, 
peak signal power refers to the maximum intensity value that an image pixel can have. Thus for an n-bit 
image, peak signal power will be 2n-1 and noise power for an image is represented by MSE. Hence, PSNR is 
given as: 

2

10

(2 1)
10 log

n

PSNR
MSE

 (4) 

MSE and PSNR are the most popularly used performance metrics for comparing original and 
reconstructed images but they may not give faithful results in some cases as they do not take into 
consideration spatial and temporal correlation between pixels. Thus, we are using a performance metric 
called Structural Similarity Index Metric (SSIM) which is more consistent with human eye perception. 

3.4  SSIM 

Mathematically, SSIM is defined as in 
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c c

c c
         (5) 

Where x and y are two windows of same size, μx and μy are the means of x and y respectively, σx and σy are 
standard deviations of x and y respectively, σxy is the covariance of x and y, c1 = (k1L)2, c2 = (k2L)2 where L 
is the dynamic range which is 2n-1 for an n-bit image, k1 = 0.01 and k2 = 0.03 by default. 

4 Results and Discussion 

Performance of the proposed algorithm was tested on several real life and test images. Out of these, results of 
implementation on one real life image, one nature image and one test image are shown in fig. 6, fig. 7 and 
fig. 8 respectively. Table III shows the variation of compression ratio, MSE, PSNR and SSIM for different 
Quantization Ratios (QRs) implemented on fig. 6 (a). Images compressed and reconstructed using some of 
these QRs are shown in fig. 6 (b), (c), fig. 7 (b), (c) and fig. 8 (b), (c). Highest compression ratio is obtained 
when QR 5:4:3:2:1 is used but MSE in this case is least i.e. 23.69. However, as seen prominently in fig. 9 (c) 
which is a zoomed in part of fig. 8 (c), we get blocking effect in the background. This proves that group 1 
contributes for the background information (low frequency) in the image and since in this case it is getting 
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quantized by the highest factor (i.e. 5), we see that a lot of blocks appear in the background. Blocking effect 
in the background is reduced slightly if quantization ratio of 1:4:3:2:1 is used. In this case while the 
compression ratio gets reduced to 33.69/1, MSE and SSIM are improved. For quantization ratios of 1:2:3:4:5 
and 1:2:3:4:1, background is reconstructed faithfully but a lot of blocks appear on the edges (fig. 9 (b)). In 
spite of all these facts, as seen from fig. 8 (b) to (d), visually all the images are more or less the same. 

Fig. 6. (a) Original Image (Real 
life Image) 

Fig. 6. (b) Image coded using QR 
1:2:3:4:5 (CR = 32.44). 

Fig. 6. (c) Image coded using QR 
5:4:3:2:1 (CR = 41.89). 

Fig. 6. (d) Image coded using QF 
1 (CR = 26.05). 

Fig. 7. (a) Original Image (Nature 
Image) 

Fig. 7. (b) Image coded using QR 
1:2:3:4:5 (CR = 26.60). 

Fig. 7. (c) Image coded using QR 
5:4:3:2:1 (CR = 24.25). 

Fig. 7. (d) Image coded using QF 
1 (CR = 17.42). 

Fig. 8. (a) Original Image (Std. 
test Image) 

Fig. 8. (b) Image coded using QR 
1:2:3:4:5 (CR = 31.13). 

Fig. 8. (c) Image coded using QR 
5:4:3:2:1 (CR = 36.46). 

Fig. 8. (d) Image coded using QF 
1 (CR = 24.56). 

Fig. 9. (a) Zoomed section 
of the Original Image 
shown in Fig. 8. (a) 

Fig. 9. (b) Zoomed section 
of Fig. 8. (b) with QR 
1:2:3:4:5 

Fig. 9. (c) Zoomed section 
of Fig. 8. (c) with QR 
5:4:3:2:1 

Table II shows the effect of increasing Quantization Factor (QF) on compression ratio, MSE, PSNR and 
SSIM. As the Quantization Factor goes on increasing, compression ratio goes on increasing but image quality 
deteriorates as is evident from the values of MSE, PSNR and SSIM. Fig. 6 (d), fig. 7 (d) and fig. 8 (d) show 
the images compressed and reconstructed using QF 1. 

Quantization 
Factor 

Compression 
Ratio MSE PSNR SSIM 

1 26.05 13.81 36.72 0.9180 
2 28.37 21.10 34.88 0.8658 
3 46.11 19.72 35.18 0.8741 
4 46.98 22.51 34.61 0.8529 
5 55.44 23.98 34.33 0.8377 

Quantization 
Ratio 

Compression 
Ratio MSE PSNR SSIM 

1:2:3:4:5 32.44 18.13 35.54 0.8853 
1:2:3:4:1 31.02 17.9 35.6 0.8864 
5:4:3:2:1 41.89 23.69 34.38 0.8445 
1:4:3:2:1 33.92 19.77 35.17 0.8795 
1:2:3:2:1 29.05 18.46 35.45 0.8849 

Table II. Constant Quantization Results Table III. Variable Quantization Results 
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Results tabulated in Tables II and III are graphically represented in fig. 10 and fig. 11. Fig. 10 and fig. 11 
show the plots of Compression Ratio and SSIM versus Quantization Factor for different Quantization Ratios 
respectively. Each curve in fig. 10 and fig. 11 represents the values of Compression Ratio and SSIM for a 
single Quantization Ratio obtained by progressively increasing the Quantization Factor from 1 to 25. 

As seen in Fig. 10, QR 5:4:3:2:1 gives the highest Compression Ratio but Fig. 11 shows that its image 
quality is the lowest. Fig. 10 also proves that quantization of the 63 linearly arranged AC coefficients by any 
of five above mentioned QRs always gives better compression than that by constant QF. 

Fig. 10. Compression Ratio vs Quantization Factor for different 
Quantization Ratios. 

Fig. 11. SSIM vs Quantization Factor for different Quantization 
Ratios. 

5 Conclusion 

The proposed modifications to the JPEG standard drastically improve the compression ratio. The presented 
experimentation shows that the efficient storage of Huffman coded words and the variable quantization of the 
zigzag ordered (linearly arranged) AC coefficients are resulting in the improved compression compared to 
the conventional JPEG technique. This is also evident from the fact that the images compressed using the 
proposed algorithm required on an average 86.306 % less storage space as compared to those compressed 
using the standard JPEG algorithm and the average time required for compression and reconstruction of these 
images is 50.316 seconds. The perceptual quality of the images is maintained even with the achieved higher 
compression ratios. 
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Abstract

Knowledge of the physical properties of objects is a requirement to enable effective
robotic grasping. Identifying the material from which an object is made, is one such
physical property. Characteristics of the material can be retrieved using different sensors;
vision-based, tactile based or sound based. Both visual inspection and physical contact
with materials can enable the retrieval of detailed information about the material, e.g.
colour, compressibility, surface texture and thermal properties. This paper describes a
system to classify a wide range of materials based on their thermal properties and surface
texture. This research seeks to develop a combined system using both tactile sensing and
vision based sensing. Following acquisition of data from a sophisticated tactile sensor,
the system uses principal component analysis (PCA) to extract features from the data,
which are then used to train a two stage Artificial Neural Network (ANN) to classify
materials, first into groups and then as individual materials. The system is compared with
human performance and the results demonstrate that the proposed system can outperform
humans.

Keywords: Material Classification, Tactile sensing, Neural Networks, PCA

1 Introduction

Humans can quickly learn a lot about an object or material by viewing it from different angles
and can estimate how it might feel to touch and how heavy it could be. This is due to our
highly sophisticated visual capabilities and based on adapting knowledge learned from known
objects in the past which may appear similar. However there are some properties which may be
difficult to detect by vision alone, for example surface texture or determining what material an
object is made from. Manipulating the object by hand enables us to learn a vast amount more
about the object, which in turn will help to determine how the object should be grasped.

Due to their sophisticated tactile perception, humans can inherently perform complex ma-
nipulation tasks, such as squeezing (to assess compressibility), adjusting the size and strength
of their grasp to securely hold an object, and distinguishing between objects of different tex-
tures and different temperatures. Completion of general exploratory movements outlined by
experimental psychologists [Lederman and Klatzky, 1987] is very fast for humans, leading to
rapid evaluation and possible identification of the object.

In this paper we focus on the use of an artificial fingertip to acquire data on the thermal
properties and surface texture of materials, that are subsequently analysed using a two stage ap-
proach, to initially identify which group the material belongs to (e.g. wood, metal, plastic etc.)
and subsequently the specific individual material (e.g. aluminium, copper, pine etc.). Building
on the work presented in [Kerr et al., 2014] the contribution of this work is the introduction
of a two stage ANN approach. This alternative approach is evaluated against the previous ap-
proach in [Kerr et al., 2014] to see if an approach with increased accuracy and speed could be
achieved. The remainder of this paper is organised as follows: Section 2 presents an overview
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of related research in material classification using both vision and tactile sensors. Section 3 de-
scribes the learning algorithm used for the robot system and the experimental set-up, including
an overview of the equipment used. Section 3.4 explains the set up of the human evaluation
experiments while Section 4 presents an evaluation and discussion of the performance of the
artificial system and the use of human subjects. Conclusions and plans for future work are
given in Section 5.

2 Background and Related Research

There are many texture classification methods using images in the literature. Sharma and
Singh [Sharma and Singh, 2001] presented a performance evaluation of five feature extraction
tools used in image analysis for texture. The five that were tested are auto-correlation, edge
frequency, primitive length, Law’s method, and co-occurrence matrices. These five methods
and combinations of them were tested on images from the Meastex database [Meastex, 1997],
containing samples of asphalt, concrete, grass and rock images. For performance evaluation of
the feature extractors, Linear Discriminant Analysis (LDA) and two modified k-nearest neigh-
bour (k-NN) were compared. The best results for thek-NN methods were obtained with co-
occurrence matrices whereas for LDA a combined set of features produced the best results.

Three critical characteristics that must be known about an object if performing a grasp-
ing action are surface texture, compressibility and thermal properties. Some methods reported
in the literature are capable of achieving high classification rates of materials based on sur-
face texture, e.g. Chathuranga et al. [Chathuranga et al., 2013] achieved a rate of 85%. How-
ever, many methods struggle to distinguish between quite different materials of similar rough-
ness [Jamali and Sammut, 2010, Decherchi et al., 2011]. Xu et al. [Xu et al., 2013], used the
BioTAC

TM
finger tactile sensor from SyntouchR© and present an algorithm which considers

the aforementioned three key properties of the material to enable classification. Classification
rates of 99% across the ten test materials were achieved. The only failure in the system was
due to a damp sponge being identified as a feather due to the similar compliance. Although
the approach in [Xu et al., 2013] achieved 99% classification this approach would be slow and
computationally expensive if it was used to explore a full object for identification as it requires
the analysis of a large quantity of datasets.

A method using only the thermal properties of a material was presented in [Kerr et al., 2013].
Materials were classified into groups initially in one experiment and classified individually in a
second experiment. PCA was performed on the raw thermal conductivity and static temperature
data in order to extract the relevant features of the data and these features were used to train an
ANN. The artificial system was found to outperform human performance, when the human was
restricted to use of the same thermal properties. This work was extended in [Kerr et al., 2014]
by introducing a further modality, namely surface texture (vibration). Furthermore the classi-
fication system was redesigned to be much more efficient by reducing the number of principal
components, hidden layer neurons and training epochs required. The work presented in this
paper further extends this previous work and proposes a two stage ANN approach to classify
materials into groups initially and then use the output from this network to feed a second set of
networks for each material group in order to identify each individual material, within a spec-
ified group. Knowing the exact material could allow a robot system to estimate the weight of
an object using its shape and estimated volume of the identified material.

3 Methodology

3.1 Data Collection and Pre-Processing

To classify the materials, an experiment was designed to enable a BioTAC fingertip to perform
two actions on the test materials. Both actions replicate, to some extent, the actions of a human
when inspecting an unknown material for the first time.
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The BioTAC fingertip is a tactile sensor which is shaped like a human fingertip and is liq-
uid filled, giving it similar compliance to a human fingertip [Lin et al., 2009, Kerr et al., 2014].
Using the fingertip, the thermal flow rate (TAC) and absolute temperature (TDC) values can
be used to determine the thermal properties of the material with which the fingertip is in con-
tact. The AC pressure vibration signal (PAC) and DC pressure signal (PDC) values can be
used to determine the vibration (of the internal conductive fluid) caused by the surface tex-
ture of the material when the fingertip is slid along it. Similar to the experiments carried out
in [Kerr et al., 2013, Xu et al., 2013], the BioTAC fingertip is allowed 15-20 mins to reach its
steady state temperature (approximately 31◦C, 10◦C above ambient) after being first powered
on. To produce the thermal exploratory movement, the fingertip is then pressed onto the mate-
rial with a constant force of 3N. All data for the press action were collected from the fingertip
for 20 seconds after initial contact was made. This allowed time for the heat flow to settle after
contact. To produce the slide action, the fingertip was pressed down on to the surface of the
material again using a constant weight applied to the fingertip, equating to a force of 1.59N,
and slid along the surface for a distance of approximately 5 cm. The data from the BioTAC
fingertip are extracted using MATLAB.

To reduce the dimensionality of the data inputs, Principal Component Analysis (PCA),
using Eigendecomposition of the sample’s covariance to calculate the principal components,
was applied to the modalities’ datasets. PCA was applied to each individual modality first. This
allows combinations of the different modalities to form a matrix of the principal components
for each material to suit each experiment (i.e. the principal components calculated from TAC
and TDC for the press experiment and principal components calculated from TAC, TDC, PAC,
PDC for the slide experiment). These combinations of principal components are then used to
train the ANN.

3.2 Classifier

The two stage approach used is a series of back propagation ANNs, each with one hidden
layer, as shown in Figure 1.1. The first ANN is used to classify the materials into groups.
Various versions of the ANN were trained and retrained until the optimal ANN was found.
Variations of the number of neurons in the hidden layer and the number of training epochs
were evaluated. It was found that the best performing structure for the ANN consisted of 75
neurons in the hidden layer after training for 1500 epochs. Various trails demonstrated that
the optimal value of principal components (PCs) for each dataset using PCA was found to
be three. Therefore, as there are six modalities in total that represent each material at each
experiment (two from the press action and four from the slide action) there are a total of 18
inputs (three PCs per modality, 12-bit values) to the ANN for each training sample, as shown
in Figure 1.1. The second stage of the ANN is comprised of six individual ANNs for each
material group (i.e. plastic, metal, masonry, fabrics, paper and wood). These ANNs were all
trained individually with their respective outputs relating to how many materials there are in
each group, for example plastic has two outputs for the two plastic materials whereas metal
had four outputs for the four metal materials in that group. After training these networks were
saved and then used for classifying the resulting output test material from the first ANN. In
order to avoid false positives being identified there was a threshold put in place for the testing
of materials within the group. If the output of the neuron fired for the material sample being
tested is not greater than 0.3 then it was eliminated and counted as a failed classification.

For all evaluations of the ANN, 5-fold cross validation was carried out. The data were split
into 5 subsets, then 80% (4 of the 5 subsets) of the data was used for training and the other
20% for testing (1 of the 5 subsets). The subsets used for training and testing were alternated
until all combinations were utilised. This produced five training accuracies and five testing
accuracies for first ANN and each of the individual material ANNs. The five accuracies for both
training and testing were then averaged, giving the average training and testing accuracies for
the classification of the materials into their groups. The test outputs from each of the individual
group ANNs were compiled in a matrix and evaluated to calculate an average classification
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1.1 1.2

Figure 1: (1.1) Diagram showing the two stage ANN used for material classification (1.2)
Fourteen test materials used for classification based on thermal conductivity and surface tex-
ture. Materials are (a) Red Brick, (b) Soft Foam, (c) Pine Wood, (d) Acrylic Plastic, (e) Copper,
(f) Carpet, (g) MDF Wood, (h) Glossy Finish Cardboard, (i) Plain Cardboard, (j) Doormat and
(k) Aluminium Metal, (l) Rough Copper, (m) Rough Aluminium, (n) Rough Acrylic.

accuracy of the fourteen individual materials.

3.3 Materials to be Classified

Fourteen materials are used in both the press and slide experiments. Some of the materials
are quite similar (i.e. two types of wood, two types of metal and two types of cardboard) in
order to test if the approach is capable of not only classifying the type (group) of material but
also distinguishing between materials within a group. Examples of each material and the list
of materials used can be seen in Figure 1.2. Although similar to three of the other materi-
als, the rough materials had a very rough surface in comparison to their smooth counterparts.
This roughness was apparent when dragging a finger across the surface. Fifteen trials of each
material were completed.

The first experiment aims to classify each material in terms of its group type, for example
MDF and pine are both in the wood group. The materials tested were split into six groups; these
groups and the materials belonging to each group are shown in Table 1. The second experiment
evaluates how accurately the artificial system can classify each material individually within the
classified grouped, by only having to consider the materials in the respective group.

Table 1: Table showing the groups of materials and their members.
Group Mater ials
Plastic Acrylic, Rough Acrylic
Metal Copper, Aluminium, Rough Copper, Rough Aluminium
Masonry Redbrick
Cardboard Cardboard Glossy, Cardboard Plain
Fabrics Soft Foam, Carpet, Doormat
Wood MDF, Pine

3.4 Evaluation Set-up

To evaluate the artificial system, it is compared with human performance using the same set
of fourteen materials. The participants consisted of 12 healthy humans, two female and 10
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male, all aged between 23-56 years and all participants used their right hand. The participants
were instructed to perform a ’press’ and ’slide’ procedure on each material using their finger; a
training and testing phase was completed. In the training phase, the participants are informed
what each material is. In the testing phase the materials were presented to the participants
again, but in a random order and the participant was required to identify the material. They
could select a material more than once and also had the option of saying they didn’t know.
For the press experiment, the participants were instructed to press down on the material with
their index finger and to leave it on the material for a maximum of 20 seconds (similar to the
artificial fingertip). They were also instructed that it was prohibited to slide or rotate their
finger, or move it laterally at any time when in contact with the material, for this initial phase
of the experiment. They were then instructed to lift their fingertip off and reapply it to the
material and this time to slide their fingertip along the material.

4 Evaluation Findings

Initially, the participants were evaluated for identification of material groups. It is found
the average accuracy was 79.76%. Secondly, the participants were evaluated for identifi-
cation of individual materials. It is found that the human participants achieved an average
of 69.64% accuracy for identifying the individual material from the fourteen test materials.
A breakdown of the results of the human evaluations from two experiments can be seen in
[Kerr et al., 2013, Kerr et al., 2014], one experiment where the participants identified the ma-
terial using their thermal properties only and the other experiment using both the thermal prop-
erties of the material and the surface texture. Every participant achieved 100% identification
of the soft foam, the carpet and the doormat. It was found that all of the individual mate-
rial identification accuracies, with the exception of aluminium, either increased or stayed at
a maximum when the exploration of the texture, via the sliding action, was introduced to the
human experiments. This shows that the surface texture plays a vital part in the identification
of materials, and indeed is a critical characteristic that humans use to identify materials. The
results also showed that pine and rough copper were the most difficult materials for the human
participants to identify. Furthermore, the human participants struggled with the identification
of the rough materials, with only 2 out of 12 of the participants being able to identify all three
rough materials.

Table 2: Table comparing the experimental results
Material
Group

Individual
Materials

Human Participants 79.76% 69.64%
One Stage Artificial System [Kerr et al., 2014] 83.81% 79.05%
Two Stage ANN Artificial System 72.86% 70.48%

Human participants did not perform as well as the artificial system on either of the experi-
ments. A comparison of the results from the human experiments, the results obtained from the
system presented in [Kerr et al., 2014] and the results obtained by the system presented in this
paper can be seen in Table 2. The results for the artificial system are calculated by computing
the average of the classification rates using 5-fold cross validation as explained in Section 3.2.
When classifying for the individual material, the two stage approach proved to be less compu-
tationally expensive and therefore marginally faster because the material had been firstly classi-
fied into its group. Therefore there was a maximum of only 4 materials to classify between and
materials from all the other groups could be ignored, unlike the system in [Kerr et al., 2014]
where there are 14 materials to classify between when attempting to identify the individual
material. However, despite this and the fact that it has outperformed the human participants,
the dual NN approach did not perform as well as the system presented in [Kerr et al., 2014]. If
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weighing up the marginal speed advantage of the system against the reduction in accuracy then
the system with the more accurate classification, namely that presented in [Kerr et al., 2014],
would be chosen as the more efficient system overall.

5 Conclusion and Future Work

A two stage ANN approach was presented for the classification of fourteen individual ma-
terials, firstly into their respective groups and secondly as individual materials within their
groups. The system outperformed human participants in both stages of experiments however
was slightly less accurate than the approach presented in previous work [Kerr et al., 2014],
therefore although the presented approached was marginally faster this was outweighed by the
reduction in accuracy meaning the approach presented in previous work [Kerr et al., 2014] is
the preferred approach. Other training classifiers will be considered for future work.
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Abstract 

Magnetoencephalography (MEG) is a non-invasive neural imaging technique which 
passively measures the miniscule magnetic fields produced by neuronal activity without 
any risk to the subject. Its superior temporal resolution has led to its use in multimodal 
studies alongside neural imaging techniques, such as functional magnetic resonance 
imaging (fMRI), which provide high spatial resolution. Multivariate analysis (MVA) is 
a well-established field of statistics and is currently applied to MEG data for the purposes 
of artefact identification using principal component analysis (PCA) and independent 
component analysis (ICA). This paper considers how the similarity measures of 
Frobenius norm, PCA similarity measure (SPCA) and Eros can directly analyse the 
multivariate data produced from MEG recordings. These techniques are applied to 
auditory stimuli to evaluate to what extent different stimuli can be distinguished by the 
corresponding neural activity. The results show that Frobenius norm finds dissimilarity 
between the neural response to distinct tones while Eros and SPCA show similarity 
between neural responses to certain pairs of tones. The results will be used to inform 
future studies where the measures identified in this study can be used as part of 
classification algorithms as well as provide a basic measure to map the similarities in the 
conditions to the similarity of the neural responses. 

Keywords: Multivariate Analysis; Multivariate Time Series; Magnetoencephalography; Similarity measures;
classification  

1. Introduction
Magnetoencephalography (MEG) is a non-invasive and passive neural imaging technique which records the 
magnetic fields emitted from the brain as a result of neural activity. MEG has temporal resolution of sub 
millisecond order, superior to that of MRI/fMRI, PET and CT, and better spatial resolution than EEG [1].
Thanks to advancements in technology and this high spatiotemporal resolution MEG has become a popular 
neural imaging technique for researchers. Despite this, the only clinical application for MEG is pre- and post-
assessment of patients with epilepsy and brain tumors being considered for neurosurgery [2, 3]. Research has 
seen MEG used in other areas such as Alzheimer’s disease [4], autism [5], schizophrenia [6] and tinnitus [7].
In both clinical and experimental work MEG is often considered as part of a multimodal approach; in particular 
with fMRI [8]. This requires multiple scans across the different imaging modalities which may not be 
appropriate for certain subjects; for example those with metallic implants may not be eligible for an fMRI scan 
but are able to undergo a MEG scan due to its passive nature. MEG alone can produce large amounts of 
information about neural activity in a short period of time with no known health risks to subjects. The data
produced from recordings are multivariate as each sensor can be thought of as a condition or observation across 
multiple time points. This paper discusses how similarity measures from multivariate analysis (MVA) can be 
used for comparing experimental conditions in MEG analysis in order to utilise the information gathered from 
a MEG recording. Although it is highly beneficial to use MEG in a multimodal context, specifically when its 
temporal resolution is combined with the spatial resolution of fMRI, this paper is designed to consider the 
potential of MEG as a powerful neural imaging tool in its own right. The outline of the paper is as follows. 
Section 2 considers what data can be extracted from MEG recordings while Section 3 introduces different 
similarity measures for multivariate time series data. Key points discussed are illustrated in Section 4 with 
MEG data representing different auditory evoked responses. The results are presented in Section 5 and final 
discussion follow in Section 6.

2. Introduction to MEG data
The miniscule magnetic fields produced by the brain, of magnitude 10fT, are vastly different in character

to magnetic artefacts such as muscular or cardiac movements as well as environmental noise. It is therefore 
sufficient to filter data with simple band pass filters, which provide a dichotomy between neural activity and 
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some environmental noise. Further filters such as signal space separation (SSS) or spatio-temporal signal space 
separation (tSSS) can be used to further remove external interferences and artefacts near the scalp [9]. The data 
collected from a MEG recording, filtered or unfiltered, can be represented by a matrix 

sensors × time points . The rows of , which are the sensor recordings, can be thought of as observations 
while the columns, corresponding to the amplitude of the magnetic field emitted across all sensors at a 
particular time, can be consider features. It is appropriate to describe as a multivariate time series (MVTS) 
with each row/sensor acting as a univariate time series.

In multimodal studies it is common to overlay the information gathered from MEG recordings onto that 
of MRI or fMRI recordings [10]. To determine the location of the sources researchers have had to address the 
inverse and forward modelling problems. This requires assumptions to be made about the potential sources and 
the propagation of the magnetic fields from these sources to the sensors. Details of different techniques and the 
assumptions used in gaining a solution to the inverse and forward models are explained in [11]. MEG 
recordings are simple, safe and comfortable for subjects. Although medical implants can often produce 
magnetic fields, which distort the recorded signal, there are no known health risks for a subject with such an 
implant when they undergo a MEG recording and these artefacts can be accounted for using statistical methods. 
Unlike a MR scanner, MEG scanners are completely silent and subjects can make small movements for comfort 
which can easily be accounted for in post analysis. This means that the recording process is less stressful than, 
for example, MRI and is more suitable for children and subjects who are unable to remain stationary during 
long recordings. Multimodal imaging is limited to the aggregation of the restrictions from individual imaging 
techniques.

3. Similarity Measures of Multivariate Time Series
Analysing the similarity between pairs of neural responses can provide a co-domain to map the experimental
diversity to the differences between the neural responses observed by the MEG scanner. In this section common 
similarity measures will be compared: Frobenius norm, principal component analysis similarity factor (SPCA)
and Eros [12].

3.1. Frobenius norm 
Given a  matrix , the Frobenius norm of  is defined as 

where the elements of ,  and . As this is an extension of the Euclidean
norm for vectors, the Frobenius norm is often thought as the ‘distance’ of the matrix from an arbitrary origin. 
This simple measure could be used to access the similarity between two matrices based on their distances from 
a common origin. Given the multivariate time series  and  for two experimental conditions, the similarity 
between the responses can be measured by   where  would mean the two responses are identical.
This measure does not take into account direction, rather only the distance. Also, there is no upper bound to 
this measure and thus it is difficult to prescribe a tolerance level of similarity. One way to overcome these 
problems is to represent each MVTS as a vector and evaluate the cosine of the acute angle between two vectors, 
bounded by  corresponding to perfect similarity and  representing perfect dissimilarity. Principal 
component analysis (PCA) is one such method of representing a MVTS as vectors. 

3.2. Principal Component Analysis Similarity Factor (SPCA) 
Given the  principal components ( ) of two MVTS  and , the PCA similarity factor between  and 
is  

where  is the angle from the  principal component of  and the  principal component of . If  and 
are perfectly similar then . Alternatively if the components are pairwise orthogonal, i.e.
completely dissimilar, . A heuristic for a similarity boundary of 5% could be placed upon each
pair of principal components and thus if then and are said to be similar.

Although this measure allows for an intuitive assessment of  the similarity between two time series it 
does not account for the covariance between components of the individual MVTS nor the magnitude of the 
principal components. 

3.3. Eros Similarity Measure 
Eros is a weighted similarity measure which compares two MVTS through their principal components. Let 
and  denote two MVTS both of size  and  and  be the two right

(1)

(2)
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eigenvector matrices obtained from single value decomposition (SVD) of the covariance matrices of  and  
respectively. Formally, the Eros similarity of  and  is  

where  and  is the acute angle between  and , . This accounts for the variance 
of individual principal components by the choice of the weight. Yang and Shahabi suggest an algorithm for 
computing , the weight vector [12]. It should be noted that it is not necessary to compare two MVTS with 
the same number of rows, however in the case of MEG data it is most sensible to exclude the same channels 
in the analysis of all data; this is why  and  have been defined to be of equal dimension. Furthermore, it is 
not necessary for  and  to be compared over the same time interval but when comparing neural responses it 
is unnecessary to consider otherwise. The interpretation of the result , where

, follows that  and  are similar when  and dissimilar 
when . Eros has been applied to the real world situations of identifying a person’s gait from 
camera footage and to analyse sign language based on sensor data from the hands of different people signing 
[12]. In this setting Eros out performed SPCA in a precision-recall assessment as well as being less 
computationally intensive.  

4. Experimental Approach 
MEG data were recorded from a female subject 27 years old, right handed with normal hearing using a 

306-channel system (Elekta Neuromag Triux) at a sampling rate of 1000 Hz with a low pass filter of 330Hz 
and high pass filter of 0.03Hz. The subject listened to five distinct pure tones (250Hz, 500Hz, 750Hz, 1000Hz, 
and 1500Hz) which were randomly presented binaurally and at equal volume. It should be noted that the subject 
found 250Hz challenging to hear in comparison to the other pitches due to its low tonal quality. Tones were 
played every second with each tone lasting 0.2secs. The subject was instructed to fixate on a cross on a screen 
in front of them. After every fourth tone this fixation point changed colour signifying the moment the subject 
was to blink and press a button. By providing this opportunity for the subject to blink, muscular blink artefacts 
were suppressed from the stimulus response. The experiment was run three times with each tone presented 120 
times. 

Data were preprocessed using the temporal extension of signal space separation (tSSS) within MaxFilter 
software (Elekta Neuromag Oy).  Epochs were extracted from the filtered data 100ms before stimulus onset to 
700ms after stimulus onset ensuring there was no overlap between two different conditions. All occurrences 
of eye blinks and button presses were removed before the analysis process. Initial analysis used Brainstorm 
[13] to calculate an average (mean) response to each condition or tone. The matrix representation for the 
average response to condition , given by channels time points , was extracted 
from Brainstorm for similarity analysis in Matlab (Matlab R2013a V8.1) using the Frobenius norm, SPCA and 
Eros. The Frobenius norm was calculated for the difference between the pair  and , that 
is . The results of the Frobenius norm similarity were normalised with respect to largest distance 
between all pairs.  

5. Results 
The similarity between the neural responses for each pair of conditions is presented in a similarity matrix; 
shown in Tables I-III. For example, the element in row 2 and column 3 of the similarity matrices corresponds 
to the similarity between the neural responses to 500Hz and 750Hz respectively. Table I shows that the 
normalised Frobenius norm finds no two neural responses to be similar as the minimum ‘distance’ between 
any pair is 79% of the maximum distance. Eros and SPCA (Table II and Table III respectively) both describe 
the data for 1000Hz and 1500Hz to be similar (>95% similarity). Under this same criterion Eros considers the 
response to three other pairs of distinct tones to be similar (500Hz and 1000Hz, 750Hz and 1000Hz, 500Hz 
and 1500Hz). There is an anomalous result in the Eros data of no similarity between the neural responses to 
750Hz and 1500Hz despite similarity occurring between the neighboring conditions. Even though similarity is 
shown to two decimal places, the result is not in keeping with the surrounding information. Eros and SPCA 
define the relative strength of similarity between pairs in the same way except for the pairs 500Hz and 1000Hz, 
750Hz and 1000Hz where Eros found that the response to 500Hz is more similar to that of 1000Hz than the 
response of 750Hz is to 1000Hz. All three measures found the response to 250Hz to be dissimilar to all other 
tones. The weaker similarity to other responses can be explained by the subject’s difficulty to hear the 
associated tone during the recording. 
 The results show that the Frobenius norm finds dissimilarity between the neural responses to different 
tones. This could be beneficial in classification algorithms with the purposes of differentiating tones through 
the neural response. However, this measure appears to be poor at finding relations between the neural responses 
to tones which could be related, for example closer tones in pitch do not show similar neural responses. Eros 
and SPCA do elude to this as demonstrated with 1000Hz and 1500Hz being similar while the responses to 250Hz 

 
 (3) 
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and 1500Hz are dissimilar.  The anomalous result within the Eros results suggest that Eros could find too many 
similarities between neural responses which could be misleading.  

Table I: Similarity matrix for the normalised Frobenius norm 

Freq(Hz) 250 500 750 1000 1500 
250 0 1.0000 0.9158 0.9406 0.9560 
500 1.000 0 0.9230 0.8817 0.8781 
750 0.9158 0.9230 0 0.7867 0.8512 
1000 0.9406 0.8817 0.7867 0 0.8234 
1500 0.9560 0.8781 0.8512 0.8234 0 

Table II: Similarity matrix for SPCA  

Freq(Hz) 250 500 750 1000 1500 
250 1 0.7993 0.7506 0.7707 0.7912 
500 0.7993 1 0.8604 0.9107 0.9379 
750 0.7506 0.8604 1 0.9279 0.8951 
1000 0.7707 0.9107 0.9279 1 0.9571 
1500 0.7912 0.9379 0.8951 0.9571 1 

Table III: Similarity matrix for Eros 

6. Discussion
The analysis of the multivariate data obtained from MEG recordings has not been exploited to date. By using 
MVA on MEG data, one obtains more authentic conclusions as less assumptions have been made during the 
analysis process in comparison to results obtained when MEG is a constituent of a multimodal approach. The 
analysis techniques represent a spatiotemporal review of the data. The channels which depict the location of 
detected activity are represented by the rows of the MVTS matrix while the columns represent the temporal 
information. One advantage when comparing the neural activity to different experimental conditions is the 
ability to account for the spatial and temporal information across the entire time window. Alternatively by 
isolating specific rows or channels the analysis could be made across the same region, here we included all 
channels in the discussion. Although the largest amplitude of neural activity for an auditory response occurs 
around 100ms, when investigating speech the information after this peak provides more interesting data than 
what appears in simple auditory tones [14]. By using MVA on the entire time window this later activity is taken 
in to account.  

The interpretation of the data presented is limited by the single subject and the number of tones played 
during the experiment. The different pitches cover a small spectrum of the human auditory range. More subjects 
would be needed to conclusively explain the results. The lack of similarity between the response to 250Hz and 
all other tones, as seen across the three measures, is easily illustrated with the topography of the response 
100ms after stimulus onset (Figure 1). The strength of the response 250Hz is up to 1/4 lower than that of all 
other responses. This illustrates that similarity measures can only go so far as to describe the relationship 
between two neural responses. These measures could be used in classification algorithms, as illustrated by 
Yang and Shahabi [12] with k-nearest neighbors. Cichy et al. [15] used a support vector machine (SVM) to 
classify 92 images based on the visual response obtained from MEG recordings. Through this MVA technique 
they revealed the dynamics of the neural processing of objects at various levels of categorization. More research 
is required into the best classification technique for MEG data, such as the commonly used -means, SVM or 
Ward’s method. MVA has already been applied to MEG analysis in the form of artefact separation [16] and 
source localization [17].  

Future work is proposed to use classification techniques to provide a novel approach to tinnitus 
research. Tinnitus is the phantom perception of a sound in the absence of an identifiable source. It is thought 
that after the onset of tinnitus, there are plastic changes in the auditory system which alters the cortical 

Freq(Hz) 250 500 750 1000 1500 
250 1 0.9083 0.8656 0.8741 0.8882 
500 0.9083 1 0.9447 0.9699 0.9774 
750 0.8656 0.9447 1 0.9667 0.9467 
1000 0.8741 0.9699 0.9667 1 0.9823 
1500 0.8882 0.9774 0.9467 0.9823 1 

Similarity matrices  
Table I: The normalised Frobenius 
norm. Data has been normalised with 
respect to the largest value 

 representing the similarity 
between 250Hz and 500Hz. 

Table II: SPCA indicates the largest 
similarity lies between 1000Hz and 
1500Hz.  

Table III: Eros determines 4 pairs of 
distinct tones as having similar neural 
responses. 
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organisation of frequencies. However, a definitive answer has been elusive [18, 19]. If there is a microscopic 
shift in the cortical organisation then the neural responses to frequencies perceived by people with tinnitus then 
the classifier for people without tinnitus should not classify the neural responses of the tinnitus group correctly; 
and vice versa.  

Figure 1: Topography of the neural response for (a) 250Hz and (b) 1500Hz. Both represent 100ms after 
stimulus onset with a clear difference in amplitude of the responses. Both illustrate clear activity over the 
auditory cortices. 

To conclude, this paper illustrates how MEG data, by its multivariate nature, is ideal for application of MVA 
techniques. With only one real clinical application of MEG appearing in the form of Epilepsy treatment, more 
research is required to extract information from MEG data that can clearly and effectively distinguish subtleties 
in neural responses and provide a composite mapping between experimental conditions, neural response and 
computational modelling. Kriegeskorte et al. [20] outline the need to unite neural imaging data, behavioral 
measurements and mathematical modelling quantitatively through dissimilarity measures, or analogously 
similarity measures. This study for fMRI could be translated to MEG research and emphasizes the need to 
relate the similarity measures and classification techniques back to the experimental conditions.  
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Abstract

Social media traffic and mobile usage is growing at an accelerating rate, and the
amount of media that is being uploaded on social media sites (such as Twitter, Face-
book and Instagram) is also increasing. The consortium GRAISearch aims at developing
tools to merge, to visualise and to present this wealth of data in a comprehensive, compact
and user-friendly way. This poster will present a work-in-progress architecture for such a
purpose - to provide users with a central point of access to media from the largest social
media sites.

Keywords: Social Media, Web Harvesting, Video Summarisation, Visual Saliency

The European Project GRAISearch (Use of Graphics Rendering and Artificial Intelligence
for Improved Mobile Search Capabilities, http://tapastreet.com/GRAISearch, FP7-
PEOPLE-2013-IAPP (612334), 2014-18) is a research collaboration between two universities
(Trinity College Dublin, Ireland, and INSA Lyon, France) and the company Tapastreet Ltd
(see mobile app at http://tapastreet.com/). It aims at providing enhanced visuali-
sation tools for visual content available on social media and an architecture for social media
summarisation. Tapastreet has a location based social media search engine platform that, in
its current form, returns geo-located video and image media from major social networks for
any location and any topic (#hashtags) anywhere in the world. The current platform deals well
with images on social media but videos are yet not well tackled. Several challenges exist for
videos on social platforms. First, they are too large to all be downloaded when browsing on
mobile devices and therefore need to be summarised very efficiently. Second, media on social
platforms consist mainly of very diverse amateur recordings with little or no editing rules that
also contain many artefacts that alter their quality, such as low lights and motion shakiness
when the recording device is hand-held.

Harvesting Social media. Using social network APIs, a Ruby script is used to download
all media using a user-defined query (hashtags, GPS location), and links to these images and
videos are stored along with their description in JSON format (keywords, GPS location, cre-
ation date, etc. ) on our server. An image-processing pipeline is currently under development
for automatically creating video summaries.

Video Summarisation. A lot of research has been devoted to creating video summarisa-
tions (a.k.a. video abstractions) [Truong and Venkatesh, 2007] and many algorithms have been
proposed. For example, several authors [Zhang et al., 2003, Kim and Hwang, 2002] suggest
processing a video sequentially and marking keyframes as those that are significantly different
from previously extracted keyframes. A more computationally demanding method has been
proposed by Gibson et al. [Gibson et al., 2002] and Yu et al. [Yu et al., 2004]. They employ
a clustering technique where video frames are treated as points in a feature space (e.g. colour
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histogram) and representative points from each cluster are selected as keyframes of the video.
The keyframes extracted by these methods can then be presented to the user as a summary of
the video.
For the GRAISearch project, a real-time system is required, hence video summarisation needs
to be very fast as well as informative (i.e. representative of the video) and very small in storage
size (due to the limitations of mobile devices and wireless networks [Liu et al., 2014]). Several
techniques are currently being tested using information theory (e.g. measure of entropy) to se-
lect the most diverse frames in a stream, and visual saliency algorithms [Hou and Zhang, 2007]
to assist in detecting salient regions in frames and hence improve the keyframe extraction pro-
cess. A further extension to this project is to develop video summaries suitable for 3D screens
and for this 3D visual saliency algorithms [Zdziarski and Dahyot, 2014] will also be investi-
gated.

Examples of scenarios. Tapastreet Ltd currently have a number of outside bodies actively
using their app. The Danish Football Association uses the app as a fan engagement tool. When-
ever the Danish football team plays, the association channels all images onto their website that
were taken at a particular stadium (specified by GPS location) and/or tagged with appropriate
hashtags for users to view in real-time. The MET office in the UK uses the app to measure the
impact of weather events on human activity. When it knows that a significant weather event is
imminent for a particular area, it will mine all media from that area before, during and after the
event, allowing the study of the impact of climate change on human behaviour.
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Abstract 

Virtually all TV transmission systems use highly automated file-based 

broadcast systems for audio and video. Content management systems 

automatically deliver programmes ready for broadcast by matching content to a 

schedule and deliver all ancillary services in their correct format and on time. 

Within these sub-systems is a growing need to validate that the correct language 

is delivered to a particular service and/or region. In many cases, a single instance 

of a programme exists and the automated system merely selects the correct 

language for a particular service. This process is currently managed manually by 

operators listening to the audio of each programme and confirming that the 

accompanying language is correct for its video broadcast. Incorrect language 

transmission can be caused by system faults or errors in the scheduling 

workflow. An error can occur at numerous points during the broadcast. The 

Broadcast Language Identification System (BLIS) will provide a single operator 

with the ability to monitor multiple services by “dash-boarding” language flags 

from each service and enable the operator to intervene if an error is detected. 

BLIS will examine streaming audio from a pre-broadcast to identify spoken 

language within the broadcast content and compare it with the expected language 

of the video for broadcast. 

 

Keywords: Audio, Language Identification, Automatic Speech Recognition, Television 

Broadcast, Broadcast Language Identification System (BLIS) 

 

1. Introduction 
In a file-based modern highly-automated transmission environment, unintentional errors can 

produce mismatches between transmitted video and audio, resulting in a reduction in 

broadcast Quality of Service (QoS). The common broadcasting technical standards document 

[1] agreed by the BBC, BskyB, Channel 4, Channel 5, ITV and S4C includes details on video 

and audio production formats. All audio is encoded within the Pulse Code Modulation (PCM) 

standard [2] and must have an audio sampling frequency of 48 kHz, 24 bit audio depth. 

Although such documentation provides audio structure standards, there are several stages 

within audio integration and delivery processes where errors can occur. Programmes can be 

broadcast in standard definition (SD) or High Definition (HD) and may be delivered for 

broadcast in file or tape format. Audio track layout and allocations differ for both platforms 

and can exist in 4 or 16 track layout. Programmes that contain single language tracks, or are 

in SD format use 4 track audio. The first 2 tracks of SD and HD formats contain left and right 

final mix sound. Third and fourth tracks may contain music and effects (M&E), audio 

description or digital silence. With HD audio, additional tracks provide 5.1 surround sound. 

Remaining tracks may contain 2 or 3 additional languages. Additional audio tracks can be 

independently delivered in Broadcast Wave Format (BWAV) [3]. For tape broadcast format, 

a supplementary language can be allocated to the third and fourth track, or to track 11 and 12 

for HD audio. Remaining tracks contain surround sound and M&E. Furthermore, standards 

for live broadcasts differ between broadcasters, although all are working towards a 

standardised audio layout.  

Metadata contains all information relevant to a file or tape broadcast. It ensures all 

video and audio content is correctly reconstructed for playback or for various system 

conversions. Structural metadata is manually added by a broadcast producer and includes title 

and ID number for the programme and structure of associated audio tracks. Errors can be 
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introduced to the system at several stages. Audio track layout may be accidently mismatched 

to the definition standard of the accompanying programme. Incorrect use of file, tape or live 

audio format can cause misalignment between intended and expected broadcast language. 

Metadata information can contain incorrect reference to primary, secondary and tertiary audio 

language channels. Section 2 discusses our proposed solution to these problems using BLIS 

and section 3 concludes with future work. 

2. Broadcast Language Identification System (BLIS)
An operator manually examines audio for each broadcast to ensure both are correctly 

matched. Typically an operator is responsible for correct identification of 8 simultaneous 

broadcast channels. Broadcast Language Identification System (BLIS) will provide a single 

operator with the ability to monitor multiple services by “dash-boarding” language flags from 

each service and enable the operator to intervene if an error is detected. BLIS will examine 

streaming audio from pre-broadcasts to identify spoken language content and compare it with 

the expected language of the video for broadcast. BLIS will exist as two units. The first unit 

will provide front-end functionality to the local broadcast operator through dash-boarding 

software as shown in Fig. 1(a). The dash-board will deliver error feedback to the operator if a 

mismatch between pre-broadcast audio and video is identified, and an instant view on the 

status of programmes throughout each broadcast. Training for new language dictionaries will 

improve language detection and accuracy. Software functionality may be integrated with 

existing broadcast software systems that have the capability to call third party functions that 

exist on the broadcast network. These functions will reside on a broadcast network server.  

The second unit will provide back-office functionality to the dash-boarding software as 

shown in Fig. 1(b). It will reside on the broadcast network on a Windows Server system (Fig. 

1(c)). This server may exist within the broadcast network, or function as a separate sub-

domain. Communication using REST technology will respond to language query services of 

the local software system to identify spoken language of a pre-broadcast. The server-based 

system will interact with cloud-based language models if the local system cannot uniquely 

identify the spoken language of a pre-broadcast audio stream. The cloud based language 

model will update locally stored language models.  

Temp storage

AVID
Pro tools

Production planning

Quality CheckWork in progress

File

Tape

Tape / Disc

BLIS plugin architecture

Language 
detection plugin

File server

FTP link

(b)

(a)

BLIS plugin (c)

Figure 1: Architecture of typical broadcast system. 

3. Conclusion & future work
TV transmission networks use highly automated file-based broadcast systems for audio and 

video. Human error can unintentionally introduce audio and video mismatches to the system. 

Manual techniques are currently used for problem identification. BLIS is an automatic 

language identification system that replaces manual intervention with dash-boarding 

software. Multiple channels can be automatically monitored and the broadcast operator can 

be immediately notified of potential problems. 
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Abstract

A relatively simple, computationally inexpensive 2-Stage SVM based approach to fea-
ture combination is applied to the problem of gender recognition of pedestrian images. As
expected, performance is boosted over single features alone. Examination of the weight-
ings assigned by the SVM to combined features gives insight into the most influential
features in the classification problem.

Keywords: Full Body Gender Classification, Feature Combination, Support Vector Machines

1 Background

Full body gender recognition is a difficult problem due to the high degree of variation in subject
appearance. Previous work has established that some feature types will play a much higher role
in the recognition of some objects, while other less informative features should be ignored or
at least assigned a lower weighting when features are combined. Automatic feature selection
techniques and methods of effective feature combination have been greatly focused on in much
of the recent research in object classification.

In this paper, we explore the use of a 2-Stage SVM feature combination approach of
[Zhang et al., 2007] and apply it to a selection of key feature types shown to be effective for full
body gender classification.[Collins et al., 2009, Collins et al., 2010] We examined the weight-
ings applied to each feature vector in comparing combinations and find that consistently, the
features which would be expected to perform better individually are prioritised by the learning
method and assigned the highest weights.

2 Gender Recognition System

The features used attempt to capture aspects of body shape, appearance. For shape these are
Canny Histogram of Gradients (CHOG) and PiHOG. For appearance we use local HSV Colour
Histograms to exploit the fact that males tend to wear darker clothing than females. PCA based
features were also calculated and ranked according to their encoding power for the gender
classification problem using Linear Discriminate Analysis. The top seven identified gender
components were concatenated to form a feature vector. [Collins et al., 2010]

Lastly a variation on the the Gist features of [Oliva and Torralba, 2001] was also explored.
We experimented with a number of variations of the Gist feature vector applying different
levels of spatial constraints to enhance their descriptive power for the task at hand.

For the first stage of the classification, SVM classification was performed for each feature
type individually. The outputs from these SVMs where then concatenated to produce new
feature vectors and second stage SVM classification was performed on these.
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3 Results and Conclusions

The individual standalone classification scores for each feature from the first stage of the 2-
Stage SVM showed that PiHOG and the variants of Gist with the stronger spacial constraints
applied, had the highest descriptive power. Classification accuracies in the region of 75% were
recorded for the dataset of 826 pedestrian images (413 of each gender).

The dataset itself was constructed by merging two pedestrian recognition datasets and uni-
formly scaling the images. It was noted that Gist based features tended to perform better on
one of these source datasets than the other, while the PiHOG feature was consistent across the
board.

Various combinations of the features were explored, from a simple pairing on HOG based
features and LHSV colour features, to a overall combination of all available features. In all
cases the classification accuracy for a combination was higher than any one feature alone. The
highest recorded accuracy using the 2-Stage SVM approach was 84.05% for a combination of
PiHOG, LHSV, PCA, and 3 variants of Gist.

Furthermore, upon analysing the weightings assigned to the features involved in the com-
binations, consistently it was the ones which were intuitively more descriptive which were
assigned the highest weightings. Complimentary features were higher weighted and those fea-
tures which didnt contribute. In combinations containing many similar features such as mul-
tiple variations of the Gist feature, the variations which intuitively describe the image better
are assigned significantly higher weights than their simpler counterparts, which were assigned
very low to negligible weightings. For the 2-Stage SVM it was consisently the PiHOG feature
which was assigned the overall highest weighting.

Looking at classification accuracies across multiple combinations of feature types, it is
clear that while more features will often improve the overall classification accuracy, some-
times, the accuracy may in fact fall from what it would have been if the feature had not been
included at all. It is not sufficient to rely on the automatic weight learning framework to assign
a zero weight to uncomplimentary features. Generally the weights assigned to the features by
automatic learning methods are a good indication of their strength for the task, but should not
be relied on as the overall decider. Ultimately the weights assigned to features should be used
as a guide in fine tuning the selection of the optimal complementary features for a particular
classification task.
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Abstract 

Access to the Web 2.0 technologies and social networking has become a 

ubiquitous factor of our lifestyles. Mobile devices, smart phones and other such 

technologies create a permanent link between the person and their presence on 

the Internet. Reporting daily activities, feelings, opinions and emotions have 

become common place, particularly with teenagers and young adults. Circles of 

friendships can expand rapidly without careful consideration to what is being 

shared and to whom. Such an environment has become an avenue for cyber 

bullying, enabling persecutors to breach the safety of the home environment to 

reach their victims. In order for social networking to be a safe technology in the 

lives of adolescents and vulnerable adults, measures need to be put in place to 

monitor and detect potentially threatening online activity. In this paper an 

overview is given of the possible techniques that could be employed in the 

detection of negative online interactions. The combination of sentiment analysis 

with image processing techniques is considered as a suitable platform from 

which to categorize the textual and visual connotations of the content. This is 

illustrated as a flow diagram illustrating the key processes envisaged for the 

detection of potential cyber bullying threats. 

Keywords: Image analysis, Sentiment analysis, Cyber bullying, Social networking. 

1 Introduction 

The detection of negative material within social media sites often centers on the textual content of the 

communication providing sentiment analysis by looking at key phrases and context. A complexity that 

arises in the detection of cyber bullying, is that in contrast to spam which is generic and not targeted, 

the attack is “more personal, varied and contextual” [1]. Dinakar et al. [1] investigate an approach that 

combines natural language processing with machine learning algorithms and a common sense 

knowledge base, which provides coverage over a range of situations. They break down the context of 

the attack as being based on sexuality, race, culture, intelligence, physical attribute etc., and based on 

these categories they label and define verbal communications, performing machine learning algorithms 

to classify intent. Sentiment analysis on the textual information is a key aspect to detecting cyber 

bullying but often images are attached to social media posts (or tweets) and these too require 

consideration as they open up another dimension as to how a victim may be targeted. Violation could 

incur through the spread of generic obscene and offensive images or the distribution of images of the 

victim that may have been tampered or may depict inappropriate behavior. In addition to using 

sentiment analysis to isolate certain images a further stage can be included to investigate image content 

through image processing techniques. Examples of features that might signify negativity include level 

of nudity, evidence of edits within the image and analysis of text within the image.  
Vanhove et al. [2] present a platform for automated detection of cyber bullying on social media 

networks. Their proposed architecture is a modular extendible framework, which can be tailored to a 

range of scenarios. In their paper they demonstrate two example scenarios, one for the detection of 

suicidal tendencies, whereby nudity detection and self-harm features, were combined in parallel with 

textual content analysis, and transgressive sexual behavior, whereby image and video analysis for 

nudity were combined in parallel with sexual language detection. In this abstract a proposal is made for 

a similar architecture with a further examples on image analysis. 
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2 Methods 
Figure 1 illustrates a proposed flow of analysis. In particular, textual content associated with the 

images can be used to help determine not only the risk of negative content present but also to which 

category it might relate to. For example, text consisting of sexual content would signify a higher risk 

that the associated image contains nudity [3], thereby analysis on skin tone can give greater confidence 

to this classification.. Kazemier and Heijkoop [4] provide a review of digital forensic mechanisms such 

as the analysis of quantization tables used in a JPEG image which can signify the likelihood that the 

image has been saved from Photoshop. They also discuss techniques such as Principle Component 

Analysis to specify regions in which an image has been manipulated. Optical character recognition on 

images and videos [5] can also be used to extract messages allowing for sentiment analysis to be 

extended to the images themselves. It may not be necessary to fully categorize the negative content but 

to instead use the gathered information to send an alert (via MMS or Email) to a guardian once a 

threshold has been met. The person alerted can then visually review the image and judge the negative 

impact it may have. This can streamline the processing required by the system. 

Figure 1: Flow chart for determining the risk of negative content in an image and associated 

message on a social media platform. 

3 Discussion 
A high-level overview of a monitoring system for the automatic detection of negative content on social 

media platforms has been presented which focusses on the analysis of images as a useful contributing 

measure. There is a growing acceptance that intervention and monitoring methods are required for 

online social networks particularly when in the use by adolescents or vulnerable adults [6], thus the 

inclusion of such a monitoring system governed by guardians is expected to be a popular ‘add-on’ 

feature in the near future that will complement existing anti-bullying campaigns 

(www.nobullying.com/). 
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Abstract

This paper proposes a novel appearance-based Simultaneous Localization and Map-

ping (SLAM) method which integrates priors over network structure complexity and one’s 
trajectory through this network. A quantitative evaluation relative to an existing state-of-

the-art method was performed and the corresponding results achieved were very positive.

Keywords: SLAM, Appearance, Network Complexity Prior.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in the field of 
robotics which concerns mapping an environment while simultaneously localizing within this 
map (Leonard and Durrant-Whyte, 1991). Much of the initial research into this problem fo-

cused on solutions which construct maps containing rich metric information (Kaess et al., 
2008). Such methods are commonly referred to as metric SLAM methods. Recently there has 
been significant interest in the development appearance-based SLAM methods which use 
appearance or visual information to detect loop closures and in turn use this information to 
solve the SLAM problem. In this context a loop closure corresponds to one returning to a 
previously visited location (Cummins and Newman, 2008). Since no metric information re-

garding the environment is estimated, the resulting maps only represent topological properties 
such as connectivity between locations. In this paper we present a novel appearance-based 
SLAM method.

Loop closure detection is subject to the following two types of errors. The first type corre-

sponds to a failure to detect a loop closure and may be caused by a change in a locations 
visual appearance. The consequence of such an error is the incorrect addition of a new 
location to the map. The second type of error corresponds to detecting an incorrect loop 
closure and may be caused by perceptual aliasing. The consequence of such an error is an 
incorrect localization and/or incorrect inference of a path between locations. Given the 
adverse consequences of loop closure detection errors, much research has been invested in the 
development of methods for performing robust inference over these detections (Carlone et al., 
2014).
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In this work we propose a novel method for performing inference over such detections. 
This method exploits the fact that SLAM methods are regularly applied in corridor or network 
type environments and consequently strong priors may be placed on the topological and metric 
structure of, and one’s trajectory through, such environments.

2 Methodology and Results

The map representation used consists of a set of vertices and edges where each edge consists of a 
sequence of discrete locations along that edge. Each of these locations is represented by 
appearance information for an individual image and specifically a bag-of-words represen-tation. 
One’s location within this map is specified by an edge and location along that edge. 
Simultaneously estimating the above map and one’s locations corresponds to an instance of the 
appearance-based SLAM problem.

In this work we propose a solution to this problem which uses a multi-hypothesis tracking 
Bayesian filter. Let Mt, Lt and Zt represent the map, one’s location and appearance informa-tion 
respectively at time t. We factor the problem as follows:

P (Mt, Lt|Zt,Mt−1, Lt−1) ∝ P (Zt|Mt, Lt,Mt−1, Lt−1)P (Mt, Lt|Mt−1, Lt−1) (1)

The term P (Mt, L t|Mt−1, L t−1) represents a prior placed over the complexity of the net-

work structure and trajectory through the network. Specifically network structures with fewer 
vertices and edges, and longer edges are assigned a higher prior probability. Also trajectories of a 
shorter length and constant velocity are assigned a higher prior probability. Using this 
factorization the likelihood term P (Zt|Mt, L t,M t−1, L t−1) is conditionally depended on the 
change in map and localization. This in turn allows a solution to the problem of determining if the 
current appearance information corresponds to a previously unexplored location. On a conceptual 
level, the current appearance information is only determined to correspond to a new location if it 
is not similar in appearance to a previously explored location where the act of traversing to that 
location does not adversely increase the complexity of the network and/or involve a complex 
trajectory.

A quantitative evaluation of the proposed SLAM solution was performed on the New Col-

lege Dataset. Precision and recall values with respect to loop closure detection were used to 
quantify performance. Results achieved were very positive and actually outperformed current 
state of the art methods (Cummins and Newman, 2008).
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Abstract

In pixel-based digital image watermarking, the number of pixels in the payload (i.e.
secret pixels) image is one of the main concerns. In most cases, the payload image is con-
verted to a lower dimensional compressed signal to reduce the number of pixels. However
the reconstruction from the compressed signal to the payload image is a challenging task.
The sparse representation technique suggests that a small set of values from a sparsified
image is enough to reconstruct the original image. The aim of this short paper is to analyse
the sparse representation and reconstruction of the payload image.

Keywords: Image watermarking, L1-Minimization, Sparse representation.

1 Introduction

A sparse representation of a signal is successfully applied in different applications such as radar
systems, medical imaging, speech compression and image compression [Baraniuk, 2007]. The
sparse representation based compression and reconstruction are explained as follows: Let
x = [x1, ..., xN ]T be the column vector that presents the N values of an image column. We
assume that x is a sparse vector and the projection basis Φ = [ΦT

1 , ...,Φ
T
M ]T is an M × N

matrix, where M ≪ N . Thus, a compressed vector can be defined as y = Φx, where
y = [y1, ..., yM ]T , see Figure 1(a). Here the system y = Φx is under-determined (i.e. M <
N ) thus the solution can be obtained by solving the optimization problem [Baraniuk, 2007],
x̂ = argmin

x
||x||1 subject to y = Φx, where ||.||1 denotes the ℓ1-norm. This problem is of-

ten known as Basis Pursuit (BP) and can be solved in polynomial time [Chen et al., 1998]. As
soon as the signal x is estimated as x̂, the original signal x can be reconstructed as x̃ = ΦTx̂
with small distortion between x and x̂. In general, the image itself is not sparse. There-
fore the sparsifying basis Ψ such as Haar Wavelets (HW), Discrete Cosine Transform (DCT),
Hadamard Transform (HT) and Slant Transform (ST) can be applied to sparsify the signal, see
Figure 1(b).

Figure 1: Sparse representation process.

However it is important to choose an appropriate projection basis and sparsifying basis. The
sparsifying basis needs to be incoherent with the projection basis. Coherence (µ) is the measure
of the highest correlation between any two elements of the projection basis and sparsifying
basis. The variable µ is given by [Candes, 2006]: µ(Φ,Ψ) =

√
N max

1≤j,k≤N
| < ϕj , ψk > |.
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In general, if Φ and Ψ have many correlated elements, coherence is high, otherwise it is
low. For optimal reconstruction, the system works best with a Ψ that has low coherence with
Φ and the µ within [1,

√
N ]. In the next section, the optimal sparsifying basis and projection

basis are analysed.

1.1 Learning optimal projection basis and sparsifying basis

In this learning, a M ×N random matrix whose entries are independent normal variables with
mean 0 and variance 1

M (i.e. Φ ∼ N(0, 1
M )) is chosen as a projection basis and HW, DCT, HT

and ST are chosen as sparsifying basis. Table 1 shows the calculated values of µ.

Table 1: Calculated µ values using M = 64 and N = 128.
HT DCT HW ST

M ×N random matrix, Φ ∼ N(0, 1
M ) 5.07 4.40 3.23 3.11

For the optimal solution the value µ should be within [1,
√
128]. It shows that HT, DCT,

HW and ST are suitable sparsifying bases but ST outperformed the rest. The next section shows
the reconstruction results from the compressed signals.

2 Image reconstruction

A grayscale Lena image of size 128 × 128 is considered as the payload. The payload is con-
verted to size of M × N compressed signals using projection and sparsifying bases. The
reconstructed payloads from compressed signals using M = 64 and 96 are shown in Figure 2.
From the results, it can be seen that ST and HW performed well during reconstruction.

Figure 2: Payload reconstruction: Φ of size M ×N and (HT, DCT, HW, ST) of size N ×N .

3 Conclusion

The sparse representation based compression and reconstruction of an image is analysed. Based
on the µ values and the reconstruction results, it can be concluded that the Slant, Haar sparsify-
ing bases and the projection basis Φ ∼ N(0, 1

M ) performed well on reconstruction. Therefore,
instead of the payload image, the compressed signals can be used in image watermarking.
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Abstract 
 
Gait analysis is the process of analysing individual’s walk for the purpose of 

individual identification. The human gait not only produces distinctive gait 
silhouettes that can uniquely identify the person but also reflects individual’s 
physical and health conditions. In a clinical setting gait analysis is typically 
used to detect problems in individual’s gait and to plan healthcare accordingly. 

In biometrics the term ageing usually refers to the gradual degradation in 
system performance caused by changes in the biometric features suffered by 
the individual’s trait in long-term. This short paper gives a brief overview of 
how gait biometric features can be used in the analysis of the gradual drift 
occurring in an ageing individual.  

 
Keywords: Behavioural biometrics, Gait analysis, and Ageing. 
 
 
1 Introduction 
 
Gait is a behavioural biometric that can be used to uniquely identify an individual. The use of gait 
analytics can range beyond the general trend of biometric identifications. The following sub-
sections provide an overview of gait analysis. 
 
1.1  Gait Analysis 

The human walk, also referred to as the human gait, is a periodic movement of the body that 
involves repetitive motions (Figure 1) [1]. A normal gait cycle can be divided into different gait 
phases.  The analysis of these phases can define the functional status of different types of motions 
observed for an individual. 

 
Figure 1: Periodic movement of swinging limbs [1]. 

1.2  Ageing and Biometrics 

A biometric is a measurable characteristic of an individual. Biometric features have been robustly 
used to build recognition systems that can characterise individuals and recognise them based on the 
unique features extracted. For such systems, performance is a major issue and one of the most 
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commonly reported issues that can degrade system performance is ageing [2]. With ageing 
biometric features tend to degrade long-term and thus the initial biometric template taken for an 
individual can differ significantly from the individuals initial biometric samples. Thus, ageing can 
be considered as a special case of intra-class variability where the individual’s own samples differ 
over time due to inherent transformations caused by body changes or behaviour. 

It is necessary to consider the ageing factor in the determination of the time period over 
which the individual’s features are consistent. Analysing long-term biometric data can be useful in 
predicting the gradual degradation that occurs [2]. In previous research ageing has been studied 
from a clinical perspective but ageing has rarely been analysed from a biometric perspective [3]. In 
addition, most of the previous research studies have discussed physical biometrics, such as face and 
finger modality, to analyse the performance of face and fingerprint recognition systems 
respectively. In this short paper the analysis of gait behavioural biometrics are proposed for the 
study of ageing and for the performance of biometric systems.  

2 Gait Features in Ageing Measurement 

Normal aging changes and health problems frequently show themselves as a decline in the 
functional status of older adults [4]. Body language information such as gait [5] can be useful 
aspects to analyse to monitor this deterioration. Each individual has a unique walking style which 
they usually adhere to during their normal walk. Based on this concept it is then possible to create a 
different gait profile which distinguishes one individual from another in addition to their own 
previous template. 

The variations occurring in the individual can be analysed by studying the individuals’ 
stance position. Double stance (which occurs when the individuals two feet are on the ground) 
increases with age: from 18% of a total gait cycle in young individuals to approximately 26% in 
healthy individuals [6]. The learned pattern can provide useful insight into an individual’s health 
and ageing condition. An Ageing Coefficient (AC) can be defined and a possible approach to 
“ageing detection” protocol can then be followed as described below: 

1. Set a suitable AC threshold (∂AC) depending on the level of ageing allowed.
2. With every new access of gait features estimate the last best known gait features mean and

variance.
3. Compare the variation of the mean and variance between the old and new set of features.
4. If ∂AC is exceeded, apply suitable feature template update.

The selected value of ∂AC will depend on the different application settings. 

3 Conclusion 

The proposed gait analysis can be used in addition to or in conjunction with existing analysis for 
assessing performance of biometric systems with ageing. The technique can also be used to identify 
various abnormalities in the subject's gait, potentially suggesting injury, sickness, or simply the 
formation of poor behavioural habits. 
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