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Abstract

Background: frailty is an important geriatric syndrome linked to increased mortality, morbidity and falls risk.

Methods: a total of 399 community-dwelling older adults were assessed using Fried’s frailty phenotype and the timed up and
g0 (TUG) test. Tests were quantified using shank-mounted inertial sensors. We report a regression-based method for assess-
ment of frailty using inertial sensor data obtained during TUG. For comparison, frailty was also assessed using the same
method based on grip strength and manual TUG time.

Results: using inertial sensor data, participants were classified as frail or non-frail with mean accuracy of 75.20% (stratified by
gender). Using TUG time alone, frailty status was classified correctly with mean classification accuracy of 71.82%. Similarly,
using grip strength alone, the frailty status was classified correctly with mean classification accuracy of 77.65%. Stratifying
sensor data by gender yielded significantly (p<<0.05) increased accuracy in classifying frailty when compared with equivalent
manual TUG time-based models.

Conclusion: results suggest that a simple protocol involving assessment using a well-known mobility test (Timed Up and Go

(TUQG)) and inertial sensors can be a fast and effective means of automatic, non-expert assessment of frailty.
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Introduction

In recent years, the concept of frailty in older adults has
emerged as an important geriatric syndrome [1-3]. Although
frailty is a recognisable and common phenomenon in ageing,
it is also a rather nebulous concept, making it difficult to ac-
curately define and diagnose. It is a multi-factorial condition,
influenced by the combination of a person’s physical, psycho-
logical and social health. Fried ¢ a/ [3] showed that the
‘frailty phenotype’ has statistically significant predictive asso-
ciation with five important health outcomes which are:
death, first hospitalisation, first fall, worsening activities of
daily living disability and worsening mobility. These findings
have been confirmed in other populations [1, 4]. However,
manual application of Frailty scales can be time consuming
and may require clinical expertise for interpretation.

Prompt and accurate identification of a person’s frailty
state could allow effective multi-factorial intervention which
has been shown to improve health outcomes [5].

The Timed Up and Go (TUG) test [0, 7] is a standard mo-

bility assessment, the time taken to complete the test has been
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shown to be a strong predictor of frailty [8] and is commonly
used for assessing risk of falls in older adults. Recent research
has investigated using inertial sensors for quantitative evaluation
of movement. A number of recent studies have employed iner-
tial sensors for quantitative gait analysis [9, 10] and to quantify
movement in the TUG test [11, 12]. Higashi ez a/. [13] employed
body-worn gyroscopes to evaluate movement in hemiplegic
patients with pathological gait while performing the TUG test.
Salarian et al. [12] showed that an instrumented TUG was both
a reliable and sensitive method for quantifying gait and mobility
in Parkinson’s disease patients. Similarly, Weiss ¢ a/ [11] used
body-worn accelerometers to quantify the gait of Parkinson’s
disease patients during the TUG test. Martinez-Ramirez [14]
used accelerometers duting a standing balance tasks to examine
the utility of parameters derived using a wavelet based algo-
rithm to discriminate between frail, pre-frail and robust partici-
pants. To date, automated classification of frailty using inertial
sensors has not been investigated.

The present study investigates a fast method for automat-
ic, quantitative assessment of the frailty state of a patient
based on a simple protocol employing body-worn inertial
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sensors. The value of frailty assessment is in early interven-
tion (based on targeted risk factors) and prevention of
decline. Methodologies which can be applied at population
level rather than requiring highly skilled application would be
of particular utility. A system that would allow non-expert,
objective assessment of frailty, coupled with an assessment
of mobility, could be of significant clinical benefit.

Data set

Participants

A convenience sample of 479 (138 M, 341 F) community-
dwelling older adults were recruited for a wider study on
ageing, conducted in the TRIL clinic, St James hospital,
Dublin, Ireland. The inclusion criteria were persons aged
60 and over, who were able to walk independently with or
without walking aid, cognitively intact (Mini-Mental State
Exam >18 [15, 16]) and able to provide informed consent.
Ethical approval was received from the local ethics
committee.

Clinical assessment

FEach participant received a comprehensive geriatric assess-
ment [17], which included tests of visual acuity (Binocular
LogMar) and visual contrast sensitivity (Pelli-Robson test),
maximum grip strength and blood pressure, to check for
orthostatic hypotension (defined as orthostatic SBP drop >20
mmHg). Each participants balance and mobility was evaluated
using the TUG test and also the Berg balance scale (BBS)
[18]. The results of these assessments along with demographic
characteristics are tabulated in Table 1.

Maximum grip strength (Ibs) (taken as the maximum of the
left and right hand grip strength) was used as a reference
measute of frailty [19]. Values were measured using a handheld
dynamometer (Baseline® Hydraulic Hand Dynamometers,
NexGen Ergonomics Inc., Quebec, Canada).

Table |. Clinical data for cohort

Variable Robust Pre-frail Frail

N (M/F) 61/123 47/138 7/23

Age (years)* 71.38 + 6.69 74.95 +7.41 78.17+6.18
Height (cm)a’b 166.77 £ 8.76 162.41 £9.20 160.00 £ 6.86
Weight (kg) 74.04 £ 13.40 72.43 +14.82 68.79 £ 13.18
Binocular L()gl\fara’b 0.11 £0.15 0.16 £0.17 0.23+0.23
Contrast Sens™* 1.63+£0.19 1.56 £ 0.21 1.55+0.16
Max grip (lbs)"’b 64.81 + 20.58 45.98 +17.29 36.91 £10.55
TUG time (S)a‘h’c 8.63 £1.79 11.02 £3.63 17.37 £ 4.48
BBS*>< 54.41 + 2.63 51.34 £ 5.14 43.29 £5.25

Bonferroni post hoc analysis is also reported. Data are reported as mean £ SD.
BBS refers to Berg balance scale [18], Contrast Sen. refers to the Pelli-Robson
contrast sensitivity test.

“Statistically significant differences (P < 0.05), test using one-way ANOVA.
bSignjﬁcantly different from Robust cohort.

“Significantly different from pre-frail cohort.

Frailty assessed using inertial sensors and TUG

Method

Frailty model

The Fried frailty formulation defined frailty as a syndrome in
which three or more of the following criteria are present:

* unintentional weight loss

* self-reported exhaustion

* weakness (as measured by grip strength)
* slow walking speed

* low physical activity

Participants were then categorised into three classes:
robust, pre-frail and frail based on the five frailty criteria out-
lined above. A participant was classed as frail if they met three
or more of the criteria listed above. Participants meeting one
or two ctiteria wete classed as pre-frail according to the modi-
fied Fried criteria used by NiMhaolain ez a/. [20)].

Sensor data acquisition

The participant was asked to perform the TUG test [6], as fast
as was safely possible, by getting up from a standard chair (46
cm high seat, 65 cm arm rests), walking three metres, turning
at a designated spot, returning to the seat and sitting down.
The time taken to complete the task was also recorded by the
clinician using a stopwatch. The time was measured from the
moment the clinician says ‘go’ to the moment the participant
sits back on the chair (referred to hereafter as the manual
TUG time). The task was demonstrated to each participant
and participants were given time to familiarise themselves with
the test. Participants completed the TUG once but were
allowed to repeat the test if they did not complete the first one
correctly. In order to quantify movement, kinematic data for
each participant were acquited using two witeless body-worn
inertial sensors (SHIMMER, Dublin, Ireland), which were
attached by a research nurse, using elasticised bandages, to the
mid-point of each anterior shank (shin) [21]. Each sensor con-
tained a tri-axial accelerometer and a tri-axial gyroscope and
sampled at 102.4 Hz. Sensors were calibrated using a standard
method [22]. The raw gyroscope signal was low pass filtered
with zero-phase 2nd order Butterworth filter with a 20 Hz
corner frequency. All analysis was performed offline in Matlab
version 7.11 (Natick, VA, USA).

Sensor data analysis

The mobility of each participant performing the TUG test
was evaluated using a previously reported method for quanti-
tative assessment of movement during the TUG test [21, 23].
Features were calculated from the angular velocity signals
obtained from the tri-axial gyroscope sensors mounted on
each shank. The 44 sensor-derived features can be grouped
into four categories: temporal gait parameters, spatial gait
parameters, tri-axial angular velocity parameters and turn
parameters. Clinical parameters were included in analysis (see
Table 1). Coefficient of variation features were transformed
using a log-transform to ensure a more normal distribution.
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All features were then normalised to have zero mean and
unity standard deviation.

Statistical analysis

A one-way analysis of variance (ANOVA) was used to test for
differences in each clinical parameter between robust, pre-frail
and frail classes (Table 1). Bonferroni post hoc analysis was pet-
formed to examine differences between each of the classes.

A logistic regression model with interaction terms
included was used to evaluate frailty, using a data set contain-
ing the sensor-derived features detailed above, combined
with gender, age, height and weight. The features included in
each model were selected using a cross-validated sequential
forward feature selection procedure. Models were then evalu-
ated using a separate repeated cross-fold validation, with
10-fold and 10 repetitions. Frailty was considered as a binary
classification problem; grouping participants listed as frail
and pre-frail together into one frail class and compating this
to a non-frail (robust) class. The output of this model was an
estimate of the frailty category (frail/non-frail). This esti-
mated frailty category was then compared with the true
frailty category (as defined using modified Fried criteria) to
yield an estimate of the accuracy in classifying each partici-
pant according to frailty category. A number of different clas-
sifier configurations and feature sets were investigated. Data
were stratified by gender as well as considered in a single
model. Regression models based only on the maximum grip
strength or the manual TUG time for each participant were
also generated to provide a reference method for quantitative
assessment of frailty. As with the inertial sensor method,
maximum grip strength and TUG time data were stratified
by gender as well as considered in a single model.

The classification accuracy (Acc) is defined as the percent-
age of participants correctly identified by the system as frail or
non-frail. The sensitivity (Sens) is defined as the percentage of
each class (frail or non-frail) correctly classified as such by the
algorithm. The predictivity value (Pred) is defined as the
proportion of participants, classified as a given class by the al-
gorithm, who were correctly classified. The classifier perform-
ance measures wete then taken as the mean of each measure
across all folds and repetitions, providing an unbiased, low
variance estimate of classification performance. 95% confi-
dence intervals (95% CI) were also calculated for each classi-
fier performance metric. A two-sided #test was used to
determine if the classification results obtained were significant-
ly (P < 0.05) more accurate than those obtained using only the
TUG time or maximum grip strength.

Results

Problems with data acquisition during the initial assessment,
including sensor/software failure and human error led to
sensor data for a number of participants being excluded. It
should be noted that the observed errors were in no way
related to the outcome of interest and arose due to operation-
al issues at the start of the study. Sensor data for 399 of 479
(83.33%) participants were then included in the final analysis
(115 males, 284 females see Tables 2 and 3).

Thirty participants were categorised as frail, 185 as
pre-frail and 184 as robust using the Pried frailty criteria.
Grouping the participants as frail or non-frail gave 184
non-frail and 215 participants categorised as frail. The mean
age of the cohort at the time of initial evaluation was
73.6 £ 7.3 years, while the mean height and weight were
1642192 cm and 729+ 14.1 kg, respectively. Clinical

Table 2. Cross-validated results for logistic regression models developed using: inertial sensor parameters obtained during the
TUG test (left panel); maximum grip strength (centre panel); TUG time

Inertial sensor Max grip

TUG time

Pred (%) Acc (%) Sens (%) Pred (%)

Acc (%)  Sens (%) Pred (%) Acc (%)  Sens (%)
Non-frail Frail ~ Non-frail Frail Non-frail
All 72.88 74.33 71.66  69.69 76.95 66.93 54.96
Male 78.09 84.00 71.60  78.07 81.52  76.83 76.83
Female 72.30 70.10 74.00 68.12 7715  78.47 70.33
Mean 75.20 77.05 72.80  73.09 79.34  77.65 73.58

Frail  Non-frail Frail Non-frail Frail  Non-frail Frail

77.09  67.69 67.20  72.09 72.02 72.15  68.97 75.60
76.70  80.29 76.80  73.97 83.50 63.23 7295 80.64
84.66  78.44 7941 69.76 63.52 74.54  66.12 73.12
80.68  79.36 78.11  71.87 73.51 68.89  69.53 76.88

Participants were classified using a binaty definition of frailty. Classification accuracy (Acc) is defined as the percentage of participants correctly identified by the

system as frail or non-frail. Sensitivity (Sens) is defined as the percentage of each class (frail or non-frail) correctly classified as such by the algorithm. The predictivity

value (Pred) is defined as the proportion of participants, classified as a given class by the algorithm, who were correctly classified.

Table 3. Mean classification accuracies (95% confidence intervals) for the inertial sensor, TUG time and max grip frailty

classifier models

78.09 (75.67-80.52)

Inertial sensor (%o)
TUG time (%)
Max grip (%0)

72.88 (71.57-74.18)
72.09 (70.64-73.55)
66.93 (65.60-68.26)

73.97 (71.65-76.29)
76.83 (74.52-79.15)

Female Mean (M/F)
72.30 (70.54-74.07) 75.20
69.76 (68.12-71.41) 71.87
78.47 (77.03-79.91) 77.65

408

¥T0zZ ‘/T Jequieides uo uligng abe|jo Al e /Bio'sfeuinolp.ioxobuele//:dny wouy papeojumoq


http://ageing.oxfordjournals.org/

information for the cohort from the clinical assessment is
detailed in Table 1. Statistically significant differences across
the three frailty categories were observed in a number of the
clinical parameters (age, height, binocular logMAR, contrast
sensitivity, max grip, TUG and BBS).

Combining the frail and pre-frail classes into a single Frail
class reduces the problem to a binary classification problem.
Using inertial sensor data applied to a single regression
model the mean cross-validated classification accuracy was
72.88% (95% CI: 71.57-74.18%) while models stratified by
gender (male: 78.09% (95% CIL: 75.67-80.52%), female:
72.30%, (95% CI: 70.54-74.07%) produced a mean classifica-
tion accuracy of 75.20%). Inclusion of eyesight parameters into
the inertial sensor models did not improve results significantly.

Models using only maximum grip strength or the TUG
time produced classification accuracies of 66.93% (95% CI:
65.60-68.26%) and 72.09% (95% CI: 70.64-73.55%), re-
spectively. When stratified by gender, maximum grip strength
and manual TUG time produced mean classification accur-
acies of 77.65% (male: 76.83% (95% CI: 74.52-79.15%),
female: 78.47% (95% CI: 77.03-79.91%)) and 71.82%
(male: 73.97% (95% CI: 71.65-76.29%), female: 69.76%
(95% CI: 68.12-71.41%)), respectively.

When stratified by gender, logistic regression models
based on the sensor data were found to be significantly more
accurate (P <0.05) than the manual TUG time. Maximum
grip strength was not found to be significantly more accurate
than the sensor based model for females but was found to
be significantly more accurate for males. Table 2 reports clas-
sification results for sensor data-based models, along with
results for models obtained using only the maximum grip
strength or the TUG time for each participant.

The combined male and female regression model con-
tained max X-axis angular velocity (deg/s) and the TUG
time (s). The male data model contained the maximum
Y-axis angular velocity (deg/s) and the TUG time (s). The
female data model contained single support (%), minimum
Z-axis angular velocity (deg/s) and the TUG time. A defin-

ition of the included variables can be found elsewhere [21].

Discussion

We report a method for assessing the clinical phenotype of
trailty using body-worn inertial sensors and the TUG test. The
TUG is a simple, widely accepted test of mobility. The inertial
sensors used are small, lightweight and can be easily applied by
non-experts in a supervised clinical setting. Due to the neces-
sity for correct orientation of the sensors on the shank and the
need to ensure the sensors are charged between sessions, un-
supervised use by the patient may not be feasible.

We found that a model classifying participants according
to two frailty categoties (frail and non-frail) yielded a mean
cross-validated classification accuracy of 72.88%. Stratifying
the inertial sensor data by gender to produce separate male
and female regression models yielded improved results
(75.20%).

Frailty assessed using inertial sensors and TUG

Maximum grip strength and TUG time were found to be
very strong independent predictors of frailty which is in broad
agreement with the literature [8, 19, 24]. Grip strength is used
by the Fried frailty formulation as a surrogate for ‘weakness’
so this result is not surprising, Similarly, slow walking speed
(gait velocity) as used in the Fried definition of frailty can be
related to TUG time which have both been linked with falls,
frailty and cognitive decline [25-27]. Regression models
with maximum grip strength and TUG time as the only pre-
dictors were less accurate in assessing frailty than the inertial
sensor based method. However, when maximum grip strength
data were stratified by gender (as per the Fried frailty formula-
tion), the resulting regression models were more accurate in
classifying frailty category. Stratifying sensor data by gender
yielded significantly increased accuracy in classifying frailty
when compared with manual TUG time-based models.
Results suggest that inertial sensor methods may have utility
in automatic quantitative assessment of frailty in a clinical
environment.

The main advantage of the present method over that
reported by Fried ef al. [3] is that the present method is fast
and automated. In the Fried ¢/ 4/ formulation, continuous
variables (i.e. grip strength, walking speed and physical activ-
ity) need to be retrospectively dichotomised using a variety of
stratifications. This requires considerable statistical expertise
and also a reference sample, both of which are not always
available in a primary care setting. A number of the subcom-
ponents of the Fried scale are derived from longer question-
naires (e.g. Center for Epidemiologic Studies Depression
Scale [28] and the Minnesota Leisure Time activity question-
naire [29]) which can be time consuming. Additionally, the
quantitative mobility assessment provided by the present
method may provide insight into specific mobility impait-
ments that may be associated with frailty.

A limitation of the present study is the small number of
participants (IN = 30) categorised as ‘frail’. To increase the
statistical power, the pre-frail and frail categories were com-
bined to produce two classes: frail and non-frail. Given a
larger cohort, it may be possible to create robust multi-class
statistical models that can reliably classify participants into
each of the three frailty classes. A large proportion of the
present cohort were self-referred which could indicate differ-
ences when compared with cohorts of hospital in-patients or
nursing home residents. Every effort was made to ensure the
statistical models used in the present study were generalised
across the study population, differences may exist when com-
pared with the general population given the relatively robust
nature of the study population.

Martinez-Ramirez ¢ al. [14] found that measures derived
from accelerometers during a standing balance task could
discriminate between the three frailty classes as defined by
Fried et /. [3] but did not provide a means to automatically
classify participants according to frailty class. Authors [14]
reported that inertial sensors methods may be able to distin-
guish between robust and frail, and robust and pre-frail sub-
jects. However, they suggest that such methods did not seem
to be useful for distinguishing between pre-frail and frail
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participants. It can certainly be argued that the ability to dis-
tinguish between the robust and pre-frail classes is the most
clinically useful, especially in the context of preventing frailty
given that pre-frail is a clinically reversible stage when intet-
vention would be most useful.

Key points

* Frailty is an important geriatric syndrome linked to
increased mortality, morbidity and falls risk.

* A cohort of 399 community-dwelling older adults were
assessed using Fried’s frailty phenotype and the TUG test,
movement was quantified using shank-mounted inertial
sensors.

* A regression-based method classified patticipants as frail or
non-frail with mean accuracy of 75.20% (stratified by
gender). Using TUG time alone, frailty status was classified
correctly with mean classification accuracy of 71.82%.

* A simple protocol using the TUG and inertial sensors can
be a fast and effective means of automatic, non-expert as-
sessment of frailty.

Supplementary data

Supplementary data mentioned in the text are available to
subscribers in .Age and Ageing online.
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Male sex and vascular risk factors affect cystatin
C-derived renal function in older people without
diabetes or overt vascular disease
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Abstract

Background/objectives: to explote the effect of ageing on renal function with cystatin C as the marker of glomerular filtra-
tion rate (GFR) in the general population without vascular disease or diabetes.

Design: a cross-sectional analysis of a healthy subset from the Good Aging in Skane-cohort study representative of the
Swedish general population.

Subjects: 1252 participants without vascular disease and diabetes (43.9% men) of whom 203 were over 80 years old were
included from the original cohort of 2931.

Methods: plasma cystatin C and plasma creatinine were used as markers for GFR. Estimated GFR (eGFR) was calculated
with three chronic kidney disease epidemiology collaboration (CKD-EPI) formulas involving cystatin C, creatinine or both.
Results: the median for plasma cystatin C was 0.93 mg/1 (60-69 years old), 1.04 (70-79 years old) and 1.24 (80+ years old).
The difference in mg/1 between the 5th and 95th petcentile was 0.46, 0.62 and 0.90 for these age groups. Male sex increased
the age effect on plasma cystatin C levels with 0.004 mg/1/year (P = 0.03), adjusted for vascular risk factors. Smoking, lower
HDL and higher diastolic blood pressute were associated with higher cystatin C levels. 54.7% (CKD-EPI creatinine) to 73.9%
(CKD-EPI cystatin C) of the 80+ had an eGFR < 60 ml/min/1.73 m”.

Conclusion: non-diabetics without overt vascular disease exhibit an age related but heterogeneous decline in renal function.
The ageing effect is more pronounced in men. At least half of healthy 80+ years old could be expected to have at least CKD
Stage 3 with eGFR < 60 ml/min/1.73 m>.
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