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Initielization of a Barotropic Limited-Area Model

using the

Laplace Transform Technique

The Laplace trensform technique of initielization devsloped in Lynch
(1984) Is used to initielize the data for & barotroplc forecesting model over a
limited area. The model is described end the numerical formulation of the
initializetion technique s presented. The Iinitlslization is successful in
suppressing high-frequency oscillations during the eerly forecast hours. It has
negligible effect upon the resulting 24 hour forecast.

A veriation of the linearizaetion, wherein the Coriolis parameter is
held constant, is investigated. It is found that the fields which result after a
single nonlinear iteration of the modified scheme are almost identical to those
resulting from the more general scheme. Since the horizontal verisbles are
soperable In the simplified cese, the modified scheme Is considerably more
economical to run.
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1. Introduction

Initislization for limited-area models is & topic of considerable
current interest. The nonlinear normal mode method (Machenhauer, 1977; Baer,
1977) provides a very effective method of defining initial conditions for global
and hemispheric models. Adaptation of this method for limited-erea models
poses serious difficulties: it is difficult to determine sppropriste normal
modes, aespecially if the horizontsl variebles do not separate, and to aliow for
- general boundary conditions. An alternative method, which uses & modified
inversion formula for the Laplace transform, was proposed by Lynch (1984) and
was shown to be effective in controlling high-frequency oscillations in a simple

one-dimensional model with periodic boundery conditions.

In the present study the new initialization method will be spplied in a
more realistic context: we consider a one-level version of the operational
forecasting model (LAPEM) used in the Irish Meteorologicel Service (see Box 1).
The primitive equations which govern the flow reduce to a system isomorphic to
the shallow water equations; they have linear solutions of both the low
frequency rotationsl end high frequency gravity-inertia weve types. The
forecast is performed over a limited ares covering Europe, the North RAtlantic
and Eastern Canade (see e.g. Figure 2). In this study the boundary conditions
are held constant, elthough there is no difficulty in principle to incorporaté
time-varying boundary conditions. The initisl data for the model is taken from
the standerd 500 mb anslysis. Since this analysis normally contains spuriously
large gravity-weve components. the resulting forecast exhibits lerge amplitude
high frequency oscillations during the esrly forecest hours. These oscillations
are graduslly dissipated by a light diffusive damping which is applied nesr the
boundaries of the forecest ares. (R model option to apply divergence damping

(Sadourny, 1975) over the entire area is not used in the present study).
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To control the initial spurious oscillations the analysis (et 500mb) is
initialized using the Laplece transform method. The forecast from the balanced
initial fields evolves very smoothly, without any initial shock or subsequent
large oscillations. In the specific case considered, the enalysis for 00Z on 22nd
November, 1982, the RMS (root-mean-square) difference between the original
and balanced analysis is about 10 metres, with a maximum difference of less
then 40 metres. The RMS difference in wind speed is about 2% metres/second.
The 24 hour forecasts resulting from the two analyses are virtually identical:
the maximum differences in height and wind are 4 metres end ¥ metre/second.
Thus, the initislization process does not affect the final forecast, but it
controls the high frequency oscillations by removing spuriously large

gravity-wave components from the analysis.

Since gravity waves are ultimately dissipated by the in-built demping
of the model, the quality of forecasts is neither enhanced nor impaired by the
initielization process. However, the absence of noise in the early forgcast
hours means that short-range forecasts may be used as preliminary fields in a
data assimilation cycle. It is also hoped that properly balanced initial fields will
ensble us to use longer timesteps in the semi-Lagrangian advection scheme of

the operstional model.



2. Uutling of theMethad

A description of the theoretical basis of the Laplece transform
technique of initializetion can be found in Lynch (1984) and only an outline is
given here. We wish to adjust the initial conditions X" to ensure the slow

evolution of a system whose state X(t) is governed by the vector equation

0..,0.
o>

+ LX + NX) =0 (1)

where L is a constant lingar operator and N is a nonlinger vector function. The
technique daeveloped in Lynch (1984) may l_:ae summarised as follows: let Xi be
the nth estimate of the bslenced initial conditions; we approximats the
nonlingar term by N(X?’), assumed constant; then, the next estimate of the

trensformed salution is given by

=< >

= s TIXS = N(XSY/8) (2)
where | 18 the identity matrix and s the verisble in the Laplece trensform. The
next estimate of the initlal conditions is then given by

0 * e 1 o

X, =£ (X3 2 g7 Pu Koy(or-0s (3
where the contour L' in the s-plane is a circle of radius » centred at the
origin. The value of 7 is chosen to lie between the low frequencies (which we
wish to preserve) and the high frequencies (which we wish to eliminate).

Normally only one nonlinear iteration is required in the case of a one-level

model.

The contour C is approximeted by an inscribed polygon and the

intagral in (3) is calculated by eveluating the integrand at the centre, s , of



each side As_and forming a sum as follows

N
Sﬁt' }(s)-ds & z f(s )-bs . (4}

ne]

A constent ¢ hes Leplace trensform c/s. It s straightforward to

show thet the epproximation (4) with f(s) =¢/s overestimates ¢ by & factor
k = tan(a/N) / (x/N)

where N is the order of the polygon. This is significant for small N, so we
therefore correct the sum In (4) by dividing by «. This gives excellent results

with as few as aight points around € (an octogon).

—r

When the original function ftt) is real we have F(3)=f(s) and it is

easy to show that

]-, é S . ]'
e fls)ds = —f
2x1 c T )¢

where Iml:] 1s the Imaginary pert end C, is the upper helf of c*, treversed

ImEf(s) ds] (5
}

anti-clockwise. Since the dependent veriables' X(t) ere ree!l in ths present
problem, the use of (5) helves the work required, and only four evalustions of

the trensformed function on l:I are needed to give satisfactory results.



3._Description of the Forecesting Model.

The model used in this study is essentially & ons-level version of the
operstional forecesting model of the Irish Meteorologicel Service. For the
purposes of Initielization the governing eduatlons ere nondimensionalized using
length- and timg-scalss & and (200", The geopotential is split into a mean
part, 8, end a davistion therefrom, §'. The equations cen then be written in

the form

Q. ey = -, (6)
Y- B -y, N
%E s fu s g% = - N, ' (8)

where dx= cospdr, dy= op end €=(202)%/8. T™hae nonlineer terms Ng» N, and

N, have been collected on the right hand side; ell other notstion is conventionel.

The equations sre integrated over a limited srea with a transformed
latitude/longitude coordinats system: the North Pole of the transformed grid is
at 30°N, 150%, obtsined by rotsting the geographic grid through A0=—3U° about
the geographlc polar axis and then through ¢u=60° in thé plane of 30°W-150%.

In the trensformed (A,$) coordinstes the Coriolis parameter is of the form

f = [ (cosg Ising + (sing,)cosA cosg ]

and is thus 8 function of both coordinates of the new system. This seriously

complicatas the lineer snelysis by msking the horizontal varisbles non-separable.



The ;ngegfatibn ares Is spanﬁéd by BIXSIgrtdpolnts, with geopotential
and winds being specified at slternste intersections of a 1%1° mesh (Arakawe
E-grid}. Thus, the grid spacing between like points is 157km at the model
equator. The timestep is fixed at At =450s for both edvection and adjustment
terms; this ensures the stebility of the gravity weves. R split explicit method
is used to integrate the equations: the advection is hendled using &
multlply-upstream semi-Lagrengien scheme with biquadratic interpolation (Bates
and McDonald, 1982); e forward-backward scheme is used for the gravity wave
terms end @ trepezoidel (pseudo-)implicit scheme for the Coriclis terms
(Mesinger and Arakawa, 1976). The trestment of divergence in the continuity

equation prevents the occurence of two-grid-intervel noise.

The veriables on the outermost boundery fine are held constant and
those on the Ffirst inner [ine are evalusted at ocach timestep by linear
interpolation from the four surrounding points. Bilinger Iinterpolation is also
used for the Lagrenglan advection echeme on the next three lings, which
results in some demping. In addition, light diffusive demping is applied over the
five outermost lines of the grid. BDivergence damping (Sedourny, 1975) is

optionally applled over the entire erea; it Is not used in this study.



4, Numerical Formulation of the Initialization Method.

For a one-dimensional model the application of the Laplace transform
technique was straightforwerd (Lynch, 1984). For the present barotropic model
the state vector X{t) conteins some 6000 elements. Thus, the matrices
M(s) = (sl+L) are enormous, and Iimpossible to Iinvert numericslly, so the

problem must be formuleted to produce matrices of managesble size.

The Laplace transform of equations (6)-(B) may be written

A ~ ~ A
0 + (1/)ly, + (vcoep),1 = ¢° - N, (9)
(-1 % Y
, ~ " ~ 0 A
su- gv+ 0 = ud-N - (10)
A ~ » 0 A
gv + fu + Gy = v - N (11

where.a denotes the Laplace transform of 0, etc. We discretise the domaln
and replece spetial derlvatives by centred differences in the usual way. For the
foracasting model the staggered grid is indexed by specifying [ and J, where |
ls the grid-number in the x-direction and J numbers sach pair of horizontai
rows (ses Figure la). To keep the matrices for the initislizetion schame as
small as possible it is convenient to re-lebel the grid by specifying M, the
number of each triplet of values (0, u, v), and the row number N (see Figure
Ib). Furthermore, since there are fewer points in the North-south then in the
Eest-west direction, it is sadvantegeous to assemble the vectors appearing

below from columns (constant I) of the original grid.

The velues of 0, u and v on a single 'row’ of the re-laebled grid ere

collected in the vector



J=JMax @¢—n—@— o F—————H—@

1= Yy 3 4 S 6 7 ] 9 =1 Max

Figure 1a: Speuflcahon of the E - grid for the forecasting model. In this case
there are in total 9x7 points so that I Max = 9 and J Max =&,
Geopotential and winds are given at alternate points: geopotential points
are marked by dots and winds by crosses.

M= 1 2 _ 3 = M Max

Figure 1b: Specification of the 'MN grid’ used in the initialization. It may cmnctde
with the E-grid, or {as in this case} be rotated through 907
Here I Turn =1, M Max = (J Max) -1 and N Max = I Max,
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X = (mtn‘u Hn'uﬁn'vr“ln

n ln'vln'

~

and the trensformed vector X is defined in @ similer manner. Beceuse of the
grid staggering, some boundary points are included in X . We essume that these
are constant end that points adjacent to the boundaries are defined by
interpolation from the surrounding points. Thus, for example, we have

¢ =0

1,2n-1

5. - L sb. ) =0

.20 4 72,2n1 2,2n+1

which transform to give the following relations

~ 0
0 a1 = 9420
* ~ _ § ~ ~ _ i _ _L 0 0
P (L AR PR R NP L\ SRR L F PR

Similar relations hold for the geopotentisl on the 'right hand side', and for the

velocity components on and near the boundery.

The system (9)-(i11) may now be written in the form of a set of

matrix equations
ARX ~ +BX +CX =D (12)

where R , B and L =are block-tridiagonal matrices whose elements depend upon
the coefficients of the equetions and B is & column vector of initial values

plus transformed nonlinear terms. The lateral boundary values u, , Uy v tc.

In

slso occur in the vector 0, The forms of the matrices are given In Appendix

C.



Lindzen and Kuo (1949} have described a relisble direct method for
solving systems of the form (12). We introduce a set of intermedieate matrices

and vectors, & _and g , such that
1 y]

>
|

®

>

‘B (13)

n n n+t

When (13) is used to eliminate in_ from (12) a solution for & ond B is

1
apperent in the form

- M 7'c (14)
n n

o
L

g, = -MOYTRE D) (15)
where M_=(A ¢ .+8 ). The boundary conditions for n=-1 are used to obtain
a,, B, and from (14)-(18) we then get & ., g . The boundary conditions et
n=N give us QN and the solution in is then obtained from (13}. The cruclal
point is that the matrices M are independent of the boundery valuss and of
the forcing terms; therefore, they cen be calculeted once for alf and stored
on disk. The main computational effort Is then in the mstrix multiplications in

(14) and (15); the sparse nature of A and C  cen be used to reduce this

effort.

The first (linear) step in the initializetion is performed efter setting
the nonlinear terms in l.'ln to zero. The system (12) is solved for il(s) and this
is inverted on the modified contour C° to give XE:, the lineerly initialized Ffields.
The nonlinear terms are evaluated either directly from these fields or by
making a single timestep forecast. They are incorporated in the forcing vector
0, ond the initialization cycle is repeated as often as required. In the case of s
barotropic model a single nonlingar iteration is normally sufficient for

convergence.

1
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TABLE 1

Root-mean-square (and maximum) changes to the geopotential height
and wind fields due to each iteration of the initialization, and to the linear end
first nonlinsar itarations combined.

z u v
(m) (m/s) {m/s)
rms 16-9 2:56 268
LIN
{max} (77-5) (15-33) ’ {(12:72)
rms 10-9 0-23 0-11
NL1
(max) (46-3) ( 0-85) ( 0-32)
rms 0-5 0-02 0-02
NL2
(max) ' (1-9) ( 0:12) ( 0-09}
LIN rms 9-5 2-53 2-64

NL1 (max) (38-9) (15-32} (12-78)




5. Results

Seversl test runs heve been made with varying grid resolutions and
other paramster vslues. The results described below are for the 500mb analysis
velid at the initial time D02 on 22nd November 1982. The grid resolution is 1°1°
(E-grid). The cut-off frequency for the Inversion integral {3) is chosen by
setting »=0-5; this corresponds to eliminating all components with period less
than 24 hours. The Inversion contour is approximated by a reguler octagon —
thus, only four points are needed to integrate over the upper semi-circle. With
the «-correction described in Section 2 this is found to provids sufficient
accuracy. One lineer and one non-lineer iteration of the initlalization procedure
are appliad: it Is found thet the changes due to @ second nonlinesr iteration
erg very small (presumsbly further iterations would be needed in the beroclinic
case where the squivalent depths sre progressively smaller}. The nonlinear
terms mey be ovslusted directly within the Initialization or by msking e single
timestep forecest of the model. In the present cese it wes found to be
simpler to calculate them directly. The vectors X were sssembled from verticel
columns of values on the model grid (Figure 1). The size of the matrices is
thus 75%75 as against 120X120 for horizontal sorting. Boundary values were held

constant in all cases.

In Table 1 we show the RMS changes (and maximum changes) to the
geopotential height and wind fields due to each iteration of the initislization and
to the linear and first non-linear iterations combined. The changes of the
height field are quite large for the linear (LIN) and first non-linear (NL1}
iterations; the overall change due to the two (LIN*NL1) is somewhat less. The
winds change markedly during the linear step but very little thereafter. In all
cases there is herdly any change due to the second non-linear iterstion (NL2);
therefore, the results presented below refer to the case of a single non-linear

iteration (LIN+NL1).

13
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Figure 2: (e) Original 500 mb enelysis valid st 00Z, 22nd November, 1982: (b,
(c) 12 and 24 hour forecasts starting from this snalysis; (d) Initialized minus
original analysis; (e), (f) differences at 12 and 24 hours between forecasts

from original and initislized enalyses.
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TABLE 2

Root-mean-square (end maximum} differences In the geopotential
height and wind fields between the original and initislized flelds (NL1 minus NIL)
and between the 12 and 24 hour forecssts resulting from these flsids,

z u v
(m) (m/s) {m/s)
rms 9-5 2-5% 2:64
HH+00 ‘
{max) {+38-9) (-15-32) (+12-78)
rms 61 0-25 0-21
HH+12
{(max) (-22-3) { -0-97) ( -0-78)
rms 1-0 0-11 G-09
HH+24

(max) ( +4-1) ( -0-55) ¢ +0-31
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Figure 2(a} shows the lnltlaiSUUmb heirght arnaifrsiis“ andIZ(Ib) an;j.;é(c)
are the HH+12 and HH+24 hour forecests resulting from this snalysis. In Figure
2(d) we show the chenges to the height field due to the initislization
(LIN*NL1), and 2(e) and 2(f) show the differences, st 12 and 24 hours,
between the forecasts starting from the two analyses (initislized minus
originel). The changes to the enalysis, and salso after 12 hours, are quite
significant. The similerity between the two 24. hour forecasts is remarkable:
the maximum height difference is only 4 meters, and for practical purposes the
forecasts are Identical. Further results are presented in Table 2, and they

confirm the convergence between the two forecasts.

The effect of initislizetion on the evoiution of the flow is indicated
by several diagnostics, In Figur-e'3 we show the geopotentisl at & central point
(I=37, J=9) resulting from the initlel fieids end after lineer and non-lingar
initielization. The reduction of the initiel oscillstions in the (ineer cese (LIN) is
dramatic, and the aevolution efter NL1 is very smooth. Similer graphs of the
evolution of the divergence (et the ssme central point) tell much the seme
story: the divergence fluctuates wildly if the initial fields are out of balance

(Figure 4); this fluctuation is controlled by inltielization.

The RﬁS divergence and global mesn divergent kinetic energy give good
overall measures of the noise in the evolution of the flow. The effects of the
initielizetion upon these quantities sre shown In Figures 5 and 6. In both cases
there s a drematic reduction of the noise in the foreacst when the fields are

initially balanced.

All the above diagnostics confirm that the initielization (LIN+NL1} is
successful in removing spurious oscilletions from the sarly forecast and results
in a noise-free evolution of the flow. The remarkable agreement between the
24 hour forecasts before end after (Figure 2(f)) demonstrates that the
process is doing precisely whet is required: removing high-frequency gravity

waves without perturbing the development of the mstaeorological fiow.
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first 12 hours of the forecast starting from uninitielized flelds (solid), linearly
initialized flelds (dashed) and nonlinearly initialized fislds (dotted).
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nonlinearly Initleltzed fields (dotted).



6. R Simplified Lineerization

The development of the present method of initislizetion was guided by
an intuitive feeling thet It is important to include the full varistion of the
Coriolis paremeter (the g-effect) in the linearized equetions. Ballish (1979)
showed, In the context of & one-dimensionel model, that the omisslon of the
p-terms from the elgenvector snelysis leeds to lerger oscillations than If they
arg Inciuded. It seemed likely that this would aiso be true for a more general

model. The question is examined below.

The initiallzation procedure wes modified in the following way: The
Corlolle paramater-_f occuring In the lineer terms of equetions (7) and (B) wes
replaced by its meen value f;, end its varistion was eccounted for by including
the factors -(f-f4}v and +(f-fo)u in the nonlineer terms N, end N of these
equetions. Thus, the nonlinger equations to be solved ere unchenged, but they

are split into linger and nonlineer parts in e different way.

The difference batween the original (f=f(a,4)) end simplified (f=f,,
constent) Initlalizetion schemes cen be seen from Figure 7. In Figure 7(e) we
show the difference in the 500mb enslyses resulting from the original end
simplified schemes after finear Initlalizetion. Since the linesr equations used In
the two cases differ, it is hardly surprising thet the two anelyses differ by
as much as 30 metres, with an RMS difference of 10 metres. In contrast to
this, Figure 7(b) shows that after a single nonlinesr iterstion the two schemes
produce very similer analyses: the maximum difference is 16 metres. and the
RMS difference only 0-5 metres. The maximum difference in the corresponding
wind enalyses is only 0-14 metres/second. For practical purposes the two
anslyses ere identical. The nolse profiles produced by the forecasts from the

two enalyses are indistinguishable.

2
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Initialized S00 mb snelyses resulting from the

Figure T: Difference between the

ialization and

original and simplified (f constant) schemes, (8) after lingar init

(b} after one nonlingar iteration.



The simplified scheme gives results equivelent to the original method,
and results in linearized equstions in which separation of the horizontal
variables obtains. It is therefore possible with this scheme to develop @ more
efficient initializetion procedure. FfFurthermore, the amount of disk storege

should be considersbly reduced.

It seems highly probeable thet the equivelence of the two methods wili
also hold in the cese of & baroclinic model. However, the geogrsphical extent of
the enalysis ares must be teken into account. It is not cleer how importent
the Inclusion of the g-terms in the lineer equetions may become If the aree

extends to or straddles the equator. This guestion will be addressed elsewhere.

23
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L. _Summery,

The Laplace transform technique hes been spplied in the context of
one-level limited-sree model. The resuits heve shown that the method is capsble
of removing spurious gravity-wave noise without having eny adverse affact on
the resulting forecast. There do not eppesr to be eny problems assoclated with

the bounderigs.

The simplificetion of the linearization, in which the Coriclis parameter
is teken es constent, is found to produce results which are almost identicel to
those obteined with the more generel scheme. This fect may sellow us to

develop & more efficient procedure for operational purposes.

it is intended to extend the Initialization method for epplication to
the operational beroclinic model with verigble boundery conditions. The
separation of vertical structure cen be done in exactly the same way as for
the nonlineer normal mode method (see, e.g., Kesshara and Puri, 1981). The

results of this work wlll be reported in a future Technical Note,
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,,,,, e U APPENDIX R e e i
The Relstionship between the Laplace Transform Technigue
and

Nonlinear Normel Mode Initialization.

Suppose thet the linear normal modes of the system governed by
equation (1) are known and that they span the space .I Then X may be
expressed as 8 sum of these modes and L becomes a diagonal matrix A:

A = diag(ag'az'lg' ree ) = (ﬂt'AT)
where the eigenfrequencies are arranged in order of ascending absolute value

and split into slow modes (A*) and fast modes (AT). We cen define projection
operstors onto the slow and fast subspsces of X (see g.g. Halmos, 1958):

X - v Lol - X alt
AP VS RN ER A R S R I N AR

and separete the solution into slow and fast perts:

X = PX+pPix =

If the nonlinear terms ere decomposed in the seme way
N " xh
NG = PN+ PIN = I
Nt xh
wa can separate the system (1} into slow and fast perts:

. (A1)

]
=)

The initielizetion is iterated by using equation (2}, which here becomes

X, = (sl+07 XD - N /6] (A2)

n+1

Using partial frections to split the diagons! elements we can write the matrix

inversion:
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Equation (B2) can then be written in the form

X, = (sl+n X0 AN ]

n+]

AN /s (A4)

To get the new Initiel conditions we spply {37 (st t=0) to (A4). Since the
matrices are diagonal, the components can be considered individuslly. For slow
mades |Al <7, the cutoff freguency, and all the terms in (A4) contribute to
the solution. After cencellstion we find

L

X () = X (0) (RS)

m

Thus, the coefficients of the slow modes remain unchanged. For the fast
modes |Al > and the terms in (B4) involving (si+A)" contribute nothing to the
integral ,C'. Thus, we havs

xt @ = - ah's (A6)
This is precisely the iterative solution of the equation

afxt - wtadxh = o
which is obtained by setting ).(T=0 in (A1), Equations (A5) and (A6} show the

equivelence betwsen the Laplece transform technique and the nonlineer normal
mode msthod as formulated by Machenhauer (1977).



Appendix B: Outline of the Progrem FILTER

R brief description of the computer implementation of the
initializetion scheme is given here (extensive comments are also to be found in
the code). The main program is celled FILTER end the source version is in the
file FILTER.E20. The global veriables and arrays are in COMMON blocks defined in
FILTER.COM. Control of the fiow of computastions is through the cerd Ffile
FILTER.CDS and output messages and diagnostics go to FILTER.LPT. The fields to
be initislized are in HINTRP.{(B)IN and the balanced fields are written in the same
format to HINTRP.OUT.

The progrsm runs in one of two modes determined by the LOGICAL
variable MODEL: if MODEL is .TRUE. the nonlinear terms are obtained by running
the forecest model (TRIAL) for one timestep. In this case each iterstion of the
initialization involves a separats run of the program FILTER, and these runs
alternste with one-step runs of TRIAL. [f MODEL is .FALSE. the noniineer terms
are caiculated directly within FILTER, and several iterations can be made in the

same run.

The flow of computations is outlined below.

(1) GETPAR reads the control cards, sets up the parameters for the flow of
computations and defines various constants and variabies.

(2) GETICS opens the input file HINTRP.(B)IN end reeds in the mess and wind
fields. If MODEL is .TRUE. and LINEAR is .FALSE. the forecest fields
after one timestep ere also read in. All fields sre then
nondimensionalised.

(3) GETBCS extracts boundery velugs from the fields and stores them in
vectors (it is not required in the current version).

(4) SHUFLE reerranges the dependent varisbles FI(IM,IJM), U(IM,IM) and
V(IM,IM}, which are stored in the zig-zag array form used in the
model, into vectors of initiel valued stored in XO(MMAX,NMRAX). The
vectors consist of values in horizontal or vertical rows of the
original grid, depending on the velue of ITURN (0 or 1). The Coriolis
peremeter end trigonometric factors sre also shuffled to the MN
grid. ’

(5) GETMAT constructs the matrices A, B and [ which express the
discretization of equation (12). R end € ere sperse, with et
most one nonzero element per row, end ere stored as vectors
(end values are set in KMTXSL, etc.). B_is defined for each point
on the inversion contour €' (IS-loop} end for each row of the grid
(N-loop). The inverse of the matrix M _=(Ra +B) is then
caiculated and written to a disk file FILTER.DE2. If REPEAT is
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.TRUE. the disk file is already available and no matrix inversions
are necessary.

{6) SOLVER is the routine which actually solves the system (12). The method of
Lindzen and Kuo (1969) is used. an upward sweep through the grid
is made to define the intermediate gquantities a and g . followed
by & downwerd sweep to get the (transformed) solution
XHAT(M,N). This is done for each point on the inversion contour
end the values are then used to calculste the inversion integral
(4). The vslues sre then moved to the solution array X(M,N) end
the correction factor « (see equation following (3)) is applied. The
right hend side forcing terms are obtained by celling RHSIDE. If
LINEAR is .FRLSE. the nonlineer terms are calculated by the
routines GETNL (if MODEL is .TRUE.) or NONLIN (if MODEL is
JFALSE.).

(7) SHUFLE is called agein to rearrsnge the fields into the format of the modai
grid.

{8) OUTPUT redimensionalizes the initislized Fields.‘ and writes them to the output
file HINTRP.OUT. Verious meps are plotted if required, diagnostics
arg printed and statistics of the chenges due to the initislization
are celculsted and printed.



" Flb_éendix C Fo}m of 7the Natrices in Equat-i-o-t-'f (12)

Because of the grid staggering, the matrices A . 8 and C occuring
in Equation (12) hsve somewhst differing forms for odd and even velues of n.
For simplicity of description we give their forms here in the case M=3; thus,
thay are M9 matrices. The gengrslization to larger M Is obvious: ths central
row of blocks is repested ss often es necessery, shifted egach time three
columns to the right. '

The matrices B and L are sparse, with at most one nonzero
element per row. We define certain quentities which depend upon whether the
MN-grid is unrotated or rotated: in the former case we have dm, n=cos¢n-A;\.
d =8¢, c .=1 end ¢ =cosg, while in the lstter case we have d ,=4¢,
dm,n=cos¢m,-m. cm,=cos¢;n,, and c,=1, where m’ s equal to (2m-1) or Z2m
according as n Is odd or even. For odd n the matrix A then takes the form:

L

where o=-s/4, 8 _ =c ./(ced ) and a! =1/d) . For even n the matrix A

1]
takes the alternative form

where now 2m repleces (2m-1) and (2m+1) replaces 2m in the definition of &
and al .



The matrices { ara formelly identical provided thet we redefine
8 .,="C,,/{ced ) and 8 =-1/d__. Note that. apert from the s-elements, R
and Cn are real; thus, they may be stored as real vectors and the c-elements
allowed for explicitly when they ere used in calculations (in the procedures

KMTXSL, KMTXSR and KVCXSL).

The metrices B elso heve two forms, depending upon the parity of

n. We define bm,n=cos¢m.ﬂ/(ecm.dm,n) and b;=l/dm,n and the matrix Bn con be

written, in the case of odd n, in the form

s
s
3
_bmn- s bmn
< b s-f b -
J s
-bn 8 n
: s
and, In the case of even n, in the form
cr— ' p——
S » N . L3 » - -’ r
-b) s -f b
- f S
—bmn‘ s bmn
—}y? - y .,
b, s -f b,
F s
. s
s
s

R listing of the subroutine GETMAT, which defines the matrices R , B and C , is
given below.
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511

512
520

500

C = o=

9501

[2XeXy]

SUBRUUTINE GuTdAY

CUNSTRUCYT THE MATRICES Ay B AND C WILICH LXPRESS

THE DISCHETIZATION OF THE EQUATIONS,

CALCULATE THE ALFA AMD TIAVERSE MATRICES ANp WRITE

THE LATTER TU DISK,

A aNu C LD NUT DEPENL UN §; THEY ARE CALCULATED UNLY ONCE
AND HELD IN COKE, MATRIX [NVERSIONS ARE wLUNE ONLY UM THE
FIRST HUN AHOD STURED NN DISK, MATRIX B IS NOT NEEDED OUN
KEPEAT RUNS,

INCLUDE 'FILTER,COH*

TYPE BbB3
FORMAT (/! GETAART  t/7)
MMaXM1 NMAX=]

NMAXMZ = NMAX=2
GET THE SPARSE MATHICES A AND C, FACH HAS AT MOST UNE
NONZERO ELEMENT PER ROW, AP THEY ARE STUKED RY RUWS
AND FOR EACH DUUBLY jiNTERJUR LINE
EDGE VALUES ARE ALLUWED FUR 1¥ KMTXSL., EIC,

DO 500 N=3,NMAXM2

NEVEN = (N/72)%2

CSwPl = COSH{n+1)
CSn = COSH(N )
CSNM1 = CNaN(N=1)}

20 520 M=1,MMAX
M3 = 3a(H=1)#+1
M2 = 2ZaM=]
JF(NEVEN.Ed,¥) MZ = 28M
COSZ = COSM(M2)#{SN
CSm = COSM(ML+Y)
IF(M.EW,] +AND  NEVEN,NE,N) GO TD 512
IF(M, kw1 «AND NEVEN EQG,N) GU TO 511
IF(M,EU.HMAX (AND.HEVEN KW, N) GO TO 512
C(M3  ,N) = RE#CSNPL1/(COSZ#DELN)
A(MI ,nN) = =REXCSNMI/(COSZ#DELN)
CONTINUE
IF{M,Ey, MMAX ,AND ,NEVEN HE,H) GO TO 12
C{MI+2,01) = 1.,/CCSH#DELN)
A{M3+2,N) = =1,/(CSM*DELN)
CONTINUE
CONTINUE

CONTINUE

IF(REPEAT) RETURN

OPEN THE DISK FILES FOK STURING THE INVERSE MATRICES

IRASIZ = MIMAX#MIMAX#2 _

UPEN(UNIT=IDATA,DEVICE='SCR', ACCESS=tRANLOM ' , MUDES 'BINARY ',
RECURD SIZE=IRKSIZ,FILES*FILTER.DEZ')

LOUP FOR EACH VALVE UF §
LG 10000 IS=1,ns
TYPE 9501,1S8
FURMAT(' S VALUE ISt ',14)
SMID = ( S(IS=1)+5(I8) ) / 2,
88 = Smlb

LOUP FUR EACH INTERIOR LINE, CALCULATING THE
MATRICES B(N), =aLFA(N) AND THE INVERSE., STORE THE INVERSE,



— ALEACL) IS TDENTICALLY ZERO SINCE THE s0TTUN B.C.

C DOES NUT INVOLVE ANY DERIVATIVES
CALL ZEROKA(UMATL,MAXM3, MAXMI)
B0 650 N=2,NMAXM]
NCOPY = N
TYPE #,N
NEVEN = (N/2)%2

C GET THE MATKRIX B

CALL ZERUKA(B,MAXM3, MAZAMI)

CSN = COSNIN)

L0 810 M=, MHMAL
H3 = 3I(N=11+1
M2 = Z¥Metg
IJF(REVEN,EUG,N) M2 = 2#M
COBZ = CUSM(M2Z)®CSN
CORR = COR(M,N)

B(m3 ,M3 ) = 8§

LF(N,EW,2,0R N, EQ NMAXML Y} GU TD 601}
IF(M,EQ,1 ) GO TD eUl B.C,
IF (M Ed . BMAX, AND, NEVENL,EW.N) GO TO 601 ¢ 1.C,
B(M3  ,MI+1l) = +HE#CUSM{MZ+1)/(CUSZ¥DELM)

B(MI  ,M3=2) = ~RE#CUSM(M2=1)/(COSADELR)

601 B(M3+1,Mi*1) = 58
IF(N ER,2,0R N, EU_NMAXM] ) GO TO 6U2

IF(M, EQ,.1 «AND NEVEN,NE,N) GU TO 602 ! B&,C,
IF(M,EQ.MMAX ) GO TN 602 | B4,C,
BIM3I+LI, M3 =1 .7 (CSN*LELNR)

S(M3+1,M43+2) =CHRR

IF(M,EQ,MNAX) GO TU 602 ! BRING BOUNDARY TERM T0 RHS
B(MI+1,M3+3) = 1,/7(CSNeDELM)

602 B{M3+2,M3+2) = S5
LF{R,Ed,2,UR N EU.NMAXM1 ) GU T} 803
1F(M,EQ,1 +AND,NEVEN,NE ,K) GO TO 603. ! B,C,
IF(M.EG,MAAX ) GO TO 603 ¢ B.C.
B(M3I+2,M3+1) = CORR
C
603 CONTINUE
610 CONTINUE
C
M GET THE INVERSE MATRIX M(N) AND STORE IT
C #id iR BEd BENARE 0OF HEAVY COMPUTATION HEE RS ERE REE HRE SRS
Cc LEFT=MULTIPLY =ALFA(N=1) BY A(N)
CALL KMTXSLCACL1,N),QMAT1,QMATZ, MHAX, M3IMAX, NCUPY,NMAX, SS)
C TAKE AWAY FROM MATRIX B(N}
CALL KMTSUB(B,UMATZ,QMATL,M3MAX, MIMAX)
C INVERT TOU GET THE MATRIX M(N)
CALL KMTINV(WMAT1,UMATZ,M3MAX,MIMAX)
C wRITE QUT M(M) TO DISK FUR USE LATER
ARECHNO = (15=1)%(MNMAX=2) + (HW=})
WRITECIDATA'IRECNKO) uMAT2
C RIGRT=MULTLIPLY M(N) bY CI(N) 1D GET =ALFA(N)
CALL KMTXSR{C(1,N),QMAT2,QMAT], MMAX, M3IMAX, NCOPY ,NMAX,S55)
C Mg #48 BEE REE HER RER BEE FER BER RER RRE BFE KBS AT GRE SBE NEE

C

550 CONTINUE

C

1000¢ CONTINUE

C : .

C . CLUSE THE FILE WiTH INVERSE MATRICES
CLUSE(UNIT=IDATA,bISPOSE='SAVE')

C
RETURN
END

[of 1 4% B 33 T RREEURR SRS BB SRR RS RS RESERRERE SRR SN NN
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