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In i t ia l i za t ion  o f  a Ba ro t rop i c  Limited-Area Model 

using the 

Laplace T rans fo rm  Technique 

The Laplace transform technique o f  initialization developed in Lynch 

(1984) is used t o  initialize the data f o r  a barotropic forecasting model over a 

limited area. The model is described and the numerical formulation of the 

initialization technique is presented. The initialization is successful in 

suppressing high-frequency oscillations during the early forecast hours. It has 

negligible e f f e c t  upon the resulting 24 hour forecast. 

A variation o f  the linearization, wherein the Coriolis parameter is 

held constant. is investigated. It is found tha t  the fields which result  a f t e r  a 

single nonllnear i terat ion o f  the modified scheme are almost identical t o  those 

resulting f rom the more general scheme. Since the horizontal variables are 

separable in the simplified case, the modified scheme is considerably more 

economical t o  run. 
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1 .  Introduction 

Initialization for  limited-area models is a topic o f  considerable 

current  interest.  The nonlinear normal mode method (Machenhauer . 1977; Baer . 
1977) provides a very ef fect ive method o f  defining initial conditions f o r  global 

and hemispheric models. Adaptation o f  this method f o r  limited-area models 

poses serious diff icult ies: i t  is  d i f f icu l t  t o  determine appropriate normal 

modes, especially if the horizontal variables do not  separate, and t o  allow f o r  

general boundary conditions. An alternative method. which uses a modified 

inversion formula f o r  the Laplace transform, was proposed by Lynch (1984) and 

was shown t o  be effect ive in controlling high-frequency oscillations in a simple 

one-dimensional model wi th  periodic boundary conditions. 

In the present study the new initialization method will be applied in a 

more realistic context: we consider a one-level version o f  the operational 

forecasting model (LAPEM) used in the Ir ish Meteorological Service (see Box 1 )  

The primit ive equations which govern the flow reduce t o  a system isomorphic t o  

the shallow water equations; they have linear solutions o f  both the low 

frequency rotational and high frequency gravity-inertia wave types. The 

forecast is performed over a limited area covering Europe, the North Atlantic 

and Eastern Canada (see 8.9. Figure 2 ) .  In this study the boundary conditions 

are held constant, although there is no di f f icul ty in principle t o  incorporate 

time-varying boundary conditions. The initial data f o r  the model is taken f rom 

the standard 500 mb analysis. Since this analysis normally contains spuriously 

large gravity-wave components. the resulting forecast exhibits large amplitude 

high frequency oscillations during the early forecast hours. These oscillations 

are gradually dissipated by a light diffusive damping which is applied near the 

boundaries o f  the forecast area. (A model option t o  apply divergence damping 

(Sadourny, 1975) over the ent i re area is no t  used in the present study). 
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To control the initial spurious oscillations the ak lys is  ( a t  500mb) i s  

initialized using the Laplace transform method. The forecast f rom the balanced 

initial fields evolves very smoothly. without any initial shock or subsequent 

large oscillations. In the specific case considered, the analysis f o r  002 on 22nd 

November. 1982, the RMS (root-mean-square) difference between the original 

and balanced analysis is about 10 metres, with a maximum difference o f  less 

than 40 metres. The RMS difference in wind speed is about 21 metres/second. 

The 24 hour forecasts resulting from the two analyses are virtually identical: 

the maximum differences in height and wind are 4 metres and 1 metre/second. 

Thus, the initialization process does not a f f e c t  the final forecast, but  i t  

controls the high frequency oscillations by removing spuriously large 

gravity-wave components from the analysis. 

Since gravity waves are ultimately dissipated by the in-built damping 

o f  the model, the quality o f  forecasts is neither enhanced nor impaired by the 

initialization process. However, the absence o f  noise in the early forecast 

hours means tha t  short-range forecasts may be used as preliminary fields in a 

data assimilation cycle. It is also hoped tha t  properly balanced initial fields will 

enable us t o  use longer timesteps in the semi-Lagrangian advection scheme o f  

the operational model. 



2. Outline o f  the Metho3 

A description o f  the theoretical basis o f  the Laplace t ransform 

technique o f  initialization can be found in Lynch (1984) and only an outline is 

given here. We wish t o  adjust the initial conditions X' t o  ensure the slow 

evolution o f  a system whose s ta te  X ( t )  is governed by the vector equation 

where L is a constant linear operator and N is a nonlinear vector function. The 

0 technique developed in Lynch (1984) may be summarised as follows: le t  X, be 

the n t h  estlmete o f  the balanced initial conditions; we approximate the 
0 nonlinear term by N(X,), assumed constant: then, the next estimate o f  the 

transformed solution is given by 

where I is the identity matrix and s the variable in the Laplace transform. The 

next estlmate o f  the initial conditions is then given by 

where the contour C' in the s-plane is a circle o f  radius r centred a t  the 

origin. The value o f  Y is chosen t o  lie between the low frequencies (which we 

wish t o  preserve) and the high frequencies (which we wish t o  eliminate). 

Normally only one nonlinear i terat ion is required in the case o f  a one-level 

model. 

The contour C* is approximated by an inscribed polygon and the 

integral in (3 )  is calculated by evaluating the integrand a t  the centre, so, o f  
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each side Asn and forming a sum as follows 

R constant c has Laplace transform c/s. It is straightforward to  

show that the approximation ( 4 )  with j ( s )  =c/s overestimates c by a factor 

where N 1s the order of the polygon. This is significant for  small N, so we 

therefore correct the sum in (4 )  by divlding by K. This gives excellent results 

with as f e w  as eight points around C* (an octagon). 

- 
When the original function f(t) is real we have ?(z) =?($I  and it is 

easy to 6h0w that. 

where ImI.1 is the Imaginary pert and C, is the upper half of c'. traversed 

anti-clockwise. Since the dependent variables X ( t )  are real in the present 

problem, the use o f  (5) halves the work required, and only four evaluations of 

the transformed function on C, are needed t o  give satisfactory results. 



3. Oescription of the Forecastinq -~odel .  

The model used in this study is essentially a onelevel version o f  the 

operational forecasting model of the Irish Meteorological Service. For the 

purposes o f  lnitiellzation the governing equations are nondimensionalized using 

length- and time-scales a and (20)-'. The geopotentlal is split into a mean 

part, 8 ,  and a devlation therefrom. Q'. The equations can then be written in 

the form 

where dx = c o q  dA, dy = d$ and 6 = (20a)~/8. The nonlinear terms N,. Nu and 

NV have been collected on the rlght hand side; all other notation 1s conventional. 

The equations are Integrated over a limited area with a transformed 

latitude/longitude coordinate system: the North Pole of the transformed grid is 

a t  30'~. 150'~, obtained by rotating the geographic grid through A0 = -30' about 

the geographic polar axis and then through +o=600 In the plane o f  ~ O ~ W - ~ S O ~ E .  

In the transformed ( A , $ )  coordinates the Corlolis parameter is of the form 

and is thus a function of both coordinates o f  the new system. This seriously 

complicates the linear analysis by making the horizontal variables non-separable. 



7 

- - 

The integration area is spanned by 01x51 gridpoints, with geopotential 

and winds being specified a t  alternate intersections of a 1•‹x10 mesh (9rakawa 

E-grid). Thus, the grid spacing between like points is 157km a t  the model 

equator. The timestep is fixed a t  A t  =450s f o r  both advection and adjustment 

terms; this ensures the stability o f  the gravity waves. P split expl ic~t method 

is used t o  integrate the equations: the advection is handled using a 

multiply-upstream seml-LagrangIan scheme wi th biquadratic interpolat~on (Bates 

and McDonald, 1982); a forward-backward scheme is used f o r  the gravity wave 

terms and a trapezoidal (pseudo-)implicit scheme f o r  the Coriolis te rms 

(Mesinger and Qrakawa. 1976). The treatment o f  divergence in the continuity 

equation prevents the occurence o f  two-grid-interval noise. 

The variables on the outermost boundary line are held constant and 

those on the f i r s t  Inner line are evaluated a t  each timestep by linear 

interpolation from the four surrounding points. Bilinear interpolation is also 

used f o r  tho Lagrangian advection scheme on the next three lines, which 

results in some damping. In addition, llght diffusive damping Is applied over the 

f ive outermost lines o f  the grid. Divergence damping (Sadourny, 1975) is 

optionally applied over the entire area; It is not  used in this study. 
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4. Numerical Formulation o f  the lnitiali&on Method 

For a one-dimensional model the application o f  the Laplace transform 

technique was straightforward (Lynch. 1984). For the present barotropic model 

the s ta te  vector X ( t )  contains some 6000 elements. Thus, the matrices 

M(s) = (sl+L) are enormous, and impossible t o  invert numerically, so the 

problem must be formulated t o  produce matrices o f  manageable size, 

The Laplace transform o f  equations (6)-(8) may be wr i t ten  

A A 0 A 
sQ + (I/c)[ul + = 0 - N, 

A A A A 

s u -  fv + Ox = u O - N U  

A 
where Q denotes the Laplace transform of 0, etc. We discretise the domain 

and replace spatial derlvatlves by centred differences in the usual way. For the 

forecasting model the staggered grid is indexed by specifying I and J ,  where I 

is the grid-number in the x-direction and J numbers each pair o f  horizontal 

rows (see Figure la) .  To keep the matrices f o r  the initialization scheme as 

small as possible i t  is convenient t o  re-label the grid by specifying M. the 

number o f  each t r ip let  o f  values (8, u, v) ,  and the row number N (see Figure 

Ib).  Furthermore, since there are fewer points in the North-south than in the 

East-west direction, it is advantageous t o  assemble the vectors appearing 

below f rom columns (constant I )  o f  the original grid. 

The values o f  0, u and v on a single ' row'  o f  the re-labled grid are 

collected in the vector 



Figure la: Specification of the E -gr id  fo r  the forecasting model. In this case 
there are in total 9 x 7 points so that I Max : 9 and J Max = 4. 
Geopotential and winds are given at alternate points: geopotential points 
are marked by dots and winds by crosses. 

Figure lb: Specification of the3MN grid' used in the initialization. I t  may ;oinc.~de 
with the E-grid, or (as  in this case) be rotated through 90. 
Here I Turn = 1, M Max = ( J  Max) -1 and N Max = I Max. 
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and the transformed vector Xn is defined in a similar manner. Because o f  the 

grid staggering, some boundary points are included in Xn. We assume tha t  these 

are constant and tha t  points adjacent t o  the boundaries are defined by 

interpolation from the surrounding points. Thus, f o r  example, we have 

which transform t o  give the following relations 

Similar relations hold f o r  the geopotential on the ' r ight  hand side'. and f o r  the 

velocity components on and near the boundary. 

The system (9141 1 )  may now be wr i t t en  in the form o f  a s e t  o f  

matrix equations 

where R n .  B n  and C are block-tridiagonal matrices whose elements depend upon 

the coefficients o f  the equations and O n  is a column vector o f  initial values 

plus transformed nonlinear terms. The lateral  boundary values U, n, unn, s t c .  

also occur in the vector O n .  The forms o f  the matrices are given in fippendix 

C. 
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Lindzen and Kuo (1969) have described a reliable direct method f o r  

solving systems o f  the form ( 1 2 ) .  We introduce a set  o f  intermediate matrices 

and vectors, a  and p ,, such tha t  

& 

When (13) is used t o  eliminate X  from ( 1 2 )  a solution f o r  a ,  and B n  Is 

apparent in the form 

where M = ( R n a n - l + B n ) .  The boundary conditions f o r  n =-I  are used t o  obtain 

a l l  4 and f rom ( 14 ) - (15 )  we then get a n ,  p n .  The boundary conditions a t  
fi A 

n =  N give us X,, and the solution X n  is then obtainod from ( 1 3 ) .  The cruclal 

point is tha t  the vatr ices M n  are independent o f  the boundary values and o f  

the forcing terms; therefore, they can be calculated once f o r  d l  and stored 

on disk. The main computational e f f o r t  Is then in the matrix multiplications in 

( 1 4 )  and ( 1 5 ) ;  the sparse nature o f  An and Cn can be used t o  reduce this 

e f f o r t ,  

The f i r s t  (linear) step in the initialization is performed a f t e r  sett ing 
'-1 the nonlinear terms in On t o  zero. The system ( 1 2 )  is solved f o r  X n ( s )  and this 

is inverted on the modified contour C' t o  give x:, the linearly initialized fields. 

The nonlinear terms are evaluated either directly f rom these fields or  by 

making a single timestep forecast. They are incorporated in the forcing vector 

On and the initializatlon cycle is repeated as o f ten  as required. In the case o f  8 

barotropic model a single nonlinear i terat ion is normally suff ic ient f o r  

convergence. 



TRBLE' 

Root-mean-square (and maximum) changes t o  the geopotential height 

and wind fields due t o  each iteration o f  the initialization. and t o  the linear and 

f i r s t  nonlinear iterations combined. 

r m s  16.9 2.56 2.68 

LIN 

(mar) (77.5) (15.33) (12.72) 

rms 10.9 0-23 0.11 

NL I 

(max) (46.9) ( 0.85) ( 0.32) 

rms  0.5 0.02 0.02 

NL2 

(max) ( 1.9) ( 0.12) ( 0.09) 

LIN rms  9 - 5  2.53 2.64 
+ 

NL 1 (max) (30.8) (15.32) (12-70) 



5. Results 

Several tes t  runs have been made with varying grid resolutions and 

other parameter values. The results described below are for  the 500mb analysis 
0 0 

valid a t  the initial time 002 on 22nd November 1982. The grid resolution is 1 x l  

(E-grid). The cut-off  frequency f o r  the inversion integral (3)  is chosen by 

sett ing Y = 0.5; this corresponds t o  eliminating all components wi th period less 

than 24 hours. The inversion contour is approximated by a regular octagon - 
thus, only four points are needed t o  integrate over the upper semi-clrcle. With 

the K-correction described In Section 2 this is found t o  provide sufficient 

accuracy. One linear and one non-linear i terat ion o f  the initialization procedure 

are applied; it is found tha t  the changes due t o  a second nonlinear i terat ion 

are very small (presumably fur ther  iterations would be needed in the baroclinic 

case where the equivalent depths are progressively smaller). The nonlinear 

terms may be evaluated directly within the initialization or  by making a single 

timestep forecast o f  the model. In the present case it was found t o  be 

simpler t o  calculate them directly. The vectors Xn were assembled f rom vertical 

columns o f  values on the model grid (Figure 1). The size o f  the matrices is 

thus 75x75 as against 120x120 f o r  horizontal sorting. Boundary values were held 

constant in all cases. 

In Table 1 we show the RMS changes (and maximum changes) t o  the 

geopotential height and wind fields due t o  each i terat ion o f  the initialization and 

t o  the linear and f i r s t  non-linear iterations combined. The changes o f  the 

height field are quite large f o r  the linear (LIN) and f i r s t  non-linear (NLl) 

i terations; the overall change due t o  the two (LIN+NLl) is somewhat less. The 

winds change markedly during the linear step but very l i t t l e  thereaf ter .  In all 

cases there is hardly any change due t o  the second non-linear i terat ion (NL2); 

therefore. the results presented below r e f e r  t o  the case o f  a single non-linear 

i terat ion (LIN+NLl). 



Fiqure 2: (a) Original 500mb analysis valid a t  002, 22nd November, 1982; (b),  
(c) 12 and 24 hour forecasts starting from this analysis; (d) Initialized minus 

original analysis: (el, ( f )  differences a t  12 and 24 hours between forecasts 

from original and initialized analyses. 



TABLE 2 

Root-mean-square (and maximum) differences in the geopotential 

helght and wlnd flelds between the orlginal and initialized flelds (NLl m i n u s  NIL) 

and between the 12 and 24 hour forecasts resulting from these fields. 

rms 

HH+12 

rms 1.0 0-11 0.09 

HH+24 

( m a )  ( +4,1) ( -0.55) ( +0.37) 
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Figure 2(a) shows the initial 500mb height analysis and 2(b) and Z(c)  

are the HH.12 and HH+24 hour forecasts resulting f rom this analysis. In Fiaure 

2(d) we show the changes t o  the height field due t o  the initisiizatior 

(LIN+NLl). and 2(e) and 2 ( f )  show the differences. a t  12 and 24 hours, 

between the forecasts s tar t ing f rom the t w o  analyses (initialized minus 

original). The changes t o  the analysis, and also a f t e r  12 hours, are quite 

significant. The similarity between the t w o  24. hour forecasts Is remarkable: 

the maximum height difference i s  only 4 meters, and f o r  prectical purposes the 

forecasts are identical. Further results are presented in Table 2, and they 

confirm the convergence between the t w o  forecasts. 

The e f f e c t  of initialization on the evolution o f  the flow is indicated 

by several diagnostics. In Figure 3 we show the geopotentlal a t  e central point 

(1=37. J=9) resulting from the Initial fields and e f t e r  linear and non-linear 

inltiallzation. The rsductlon o f  the lnltial oscllletions in the linear case (LIN) is 

dramatic, and the evolution a f t e r  NLI is very smooth. Similar graphs o f  the 

evolution o f  the divergence ( a t  the same central point) tel l  much the same 

story: the dlvergence fluctuates wildly if the initial fields are out o f  balance 

(Figure 4); this fluctuation is controlled by initialization. 

The RMS divergence and global mean divergent kinetic energy give good 

overall measures o f  the noise in the evolution o f  the flow. The e f fec ts  o f  the 

initialization upon these quantities are shown In Figures 5 and 6 .  In both cases 

there is a dramatic reduction o f  the noise in the foreacst when the fields are 

initially balanced. 

A l l  the above diagnostics confirm tha t  the initialization (LIN+NLI ) is 

successful in removing spurious osclilations f rom tho early forecast and results 

in a noise-free evolution o f  the f low. The remarkable agreement between the 

24 hour forecasts before and a f t e r  (Figure 2 ( f ) )  demonstrates tha t  the 

process is doing precisely what is required: removing high-frequency gravity 

waves without perturbing the development o f  the meteorological f low. 
... 
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5 -1 Fiquro 5 :  Root-moan-square divorgonce (units 110 s l for tho f irst  12 hours 
of tho forecast starting from uninitlalizod fields (solid) and nonlinearly 
initlalizod fields (dottodl . 



2 -2 Figure 6: Root-mean-square divergent kinetic energy per unit mess (m s for 
the flrst 12 hours of the forecast starting from uninltlallzed flelds (solid) and 
nonlinearly lnitlellzed fields (dotted). 



The development o f  the present method o f  initialization was guided by 

an intuitive feeling that it is important to  include the full variation of the 

Coriolis parameter (the ,9-effect) in the linearized equations. Baliish (1979) 

showed, in tho context of a one-dimonslonal model, that the omission of the 

p-terms from the elgenvector analysis leads t o  larger oscillations than if they 

are included. It seemed likely that this would also be true for  a more general 

modal. The question is examined below. 

The initialization procedure was modified in the following way: The 

Coriolis parameter f occuring in the linoar terms of equatlons (7) and (0) was 

replacod by i t s  mean value f o p  and i t s  variation was accounted for  by including 

the factors -(f-fo)v and +(f-fo)u In the nonlinear terms NU end N, of these 

oquatlons. Thus, tho nonlinoar oquations t o  be solvod aro unchanged, but they 

are split into linear and nonlinear parts In a different way. 

The difference between the original (f = f ( A  .+I)  and simplified (f = fo. 

constant) initialization schemes can be soon from Figure 7. In Figure 7(a) we 

show the difference in the 500mb analyses resultlng from the original and 

simplified schemes a f te r  linear initialization. Since the linear equations used in 

the two cases differ. it is hardly surprlsing that the two analyses differ by 

as much as 30 metres, with an RMS difference o f  10 metres. In contrast to  

this, Figure 7(b) shows that a f ter  a single nonlinear iteration the two schemes 

produce very similar analyses: the maximum difference is 1.6 metres. and the 

RNS difference only 0-5  metres. The maximum difference in the corresponding 

wind analyses is only 0.14 metres/second. For practical purposes the two 

analyses are identical. The noise profiles produced by the forecasts from the 

two analyses are indistinguishable. 



Figure 7: Difference between the initialized 500mb analyses resulting from the 

original and simplified (f constant) schemes, (a) a f t e r  h e a r  initialization and 
(b) af ter  one nonlinear iteration. 
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The simplified scheme gives results equivalent to  the original method. 

and results in linearized equations in which separation of the horizontal 

variables obtains. It is therefore possible with this scheme t o  develop a more 

efficient initialization procedure. Furthermore, the amount of disk storage 

should be considerably reduced. 

It seems highly probable that the equivalence of the two methods will 

also hold in the case of a baroclinic model. However, the geographical extent o f  

the analysis area must be taken into account. It is not clear how important 

the inclusion of the @-terms in the llnear equations may become if the area 

extends to  or straddles the equator. This question wi l l  be addressed elsewhere. 



7. Summary. 

The Laplace transform technique has been applied in the context o f  a 

one-level limited-area model. The results have shown tha t  the method is capable 

o f  removing spurious gravity-wave noise without having any adverse a f f e c t  on 

the resulting forecast. There do not appear t o  be any problems associated with 

the boundaries. 

The slrnplification o f  the linearization. in which the Coriolls parameter 

is taken as constant, is found t o  produce results which are almost identical t o  

those obtained w i th  the more general scheme. This f a c t  may allow us t o  

develop a more eff ic ient procedure f o r  operational purposes. 

It is intended t o  extend the initialization method f o r  application t o  

the operational baroclinic model with variable boundary conditions. The 

separation o f  vertical s t ruc ture  can be done in exactly the same way as f o r  

the nonlinear normal mode method (see, e.9.. Kasahara and Puri, 1981 1. The 

results o f  this work will be reported in a fu tu re  Technical Note. 



- - APPENDIX A - - 

The Relationship between the Laplace Transform Tecbniwe 

and 

Nonlinear Normal Mode lnitlalization. 

Suppose tha t  the linear normal modes o f  the system governed by 

equation ( 1 )  are known and that  they span the space x. Then X may be 

expressed as a suw of  ihese modes and L becomes a diagonal matrix h: 

where the eigenfrequencies are arranged in order o f  ascending absolute value 
t and split into slow modes ( h a )  and f a s t  modes ( A  1. We can define projection 

operators onto the slow and f a s t  subspaces o f  X (see 8.9. Halmos, 1958 ) :  

and separate the solution into slow and fas t  parts:  

If the nonlinear terms are decomposed in the same way 

we can separate the system ( 1 )  into slow and f a s t  par ts :  

The initialization is i terated by using equation (2). which here becomes 

Using partial f ract ions t o  split the diagonal elements we can wr i te  the watrix 

inversion: 



Equation (A2) can then be wr i t ten  in the f o r m  

To get the new initial conditions we apply t' ( a t  t =O) t o  (A4). Since the 

matrices are diagonal, the components can be considered individually. For slow 

modes [ A  1 < 7 ,  the c u t o f f  frequency, and all the terms in (Q4) contribute t o  

the solution. A f te r  cancellation we find 

Thus. the coefficients o f  the slow modes remain unchanged. For the f a s t  

modes I A l  >-r and the terms in (R4) involving (sic A)-' contribute nothing t o  the 

integral 2%. Thus, we have 

This is precisely the i terat ive solution o f  the equation 

which is obtained by sett ing it = O  in ( A l l .  Equations (AS) and (Ab) show the 

equivalence between the Laplace transform technique and the nonlinear normal 

mode method as formulated by Machenhauer ( 1  977). 



Appendix B: Outline o f  the Proqram FILTER 

A br ie f  description o f  the computer implementation o f  the  

initialization scheme is given here (extensive comments are also t o  be found in 

the code). The main program is called FILTER and the source version is in the  

f i le FILTER.EZ0. The global variables and arrays are in COMMON blocks defined in 

FILTER.COM. Control o f  the flow o f  computations is through the card f i le  

FILTER.CDS and output messages and diagnostics go t o  FILTER.LPT. The fields t o  

be initialized are in HINTRP.(B)IN and the balanced fields are wr i t ten  in the same 

format  t o  HINTRP.OUT. 

The program runs in one o f  two modes determined by the LOGICAL 

variable MODEL: i f  MODEL is .TRUE. the nonlinear terms are obtained by running 

the forecast model (TRIAL) f o r  one timestep. In this case each i terat ion o f  the  

initialization involves a separate run o f  the program FILTER, and these runs 

alternate wi th one-step runs o f  TRIAL. If MODEL is .FALSE. the nonlinear terms 

are calculated directly within FILTER, and several i terations can be made in the 

same run. 

The flow o f  computations is outlined below. 

( 1  GETPAR reads the control cards, sets up the parameters f o r  the flow o f  

computations and defines various constants and variables. 

(2) GETICS opens the input f i le HINTRP.(B)IN and reads in the mass and wind 

fields. If MODEL is .TRUE. and LINEAR is .FALSE. the forecast fields 

a f t e r  one timestep are also read in. All fields are then 

nondimensionalised. 

(3)  GETBCS extracts boundary values f rom the fields and stores them in 

vectors (it i s  not  required in the current version). 

( 4 )  SHUFLE rearranges the dependent variables FI(IM. JM) , U(IM, JM) and 

V(IM.JM), which are stored in the zig-zag array form used in the 

model. into vectors o f  initial valued stored in XO(MMAX.NMAX). The 

vectors consist o f  values in horizontal o r  vertical rows o f  the 

original grid, depending on the value o f  ITURN (0 or  1 ) .  The Coriolis 

parameter and trigonometric factors are also shuffled t o  the MN 

grid. 

(5) GETMAT constructs the matrices An, En and Cn which express the 

discretization o f  equation (12). An and Cn are sparse, with a t  

most one nonzero element per row, and are stored as vectors 

(end values are se t  in KMTXSL. etc.  ) .  En is defined f o r  each point 

on the inversion contour C* (IS-loop) and f o r  each row o f  the grid 

(N-loop). The inverse o f  the matr ix Mn=(Rn~_,+Bn) is then 

calculated and wr i t ten  t o  a disk f i le FILTER.DE2. If REPEAT is 



~~ ~ - 

.TRUE. ths disk f i le is already available and no matrix inversions 

are necessary, 
(6) SOLVER is the routine which actually solves the system (12 ) .  The method o f  

Lindzen and Kuo (1969) is used: an upward sweep through the grid 

is made t o  define ,the intermediate quantities % and pn. followed 

by a downward sweep t o  get the (transformed) solution 

XHAT(M,N). This is done f o r  each point on the inversion contour 

and the values are then used t o  calculate the inversion integral 

(4 ) .  The values are then moved t o  the solution array X(N.N) and 

the correction fac tor  w (see equation following ( 3 ) )  is applied. The 

r ight  hand side forcing terms are obtained by calling RHSIDE. If 

LINEAR is .FALSE. the nonlinear terms are calculated by the 

routines GETNL ( i f  MODEL is .TRUE.) o r  NONLIN (if MODEL is 

.FRLSE . ) . 
(7) SHUFLE is called again t o  rearrange the fields into the format  o f  the model 

grid. 

(8) OUTPUT redimsnsionalizes the initialized fields; and wr i tes them t o  the output 

f i le HINTRP.OUT. Various maps are plotted i f  required, diagnostics 

are printed and stat is t ics o f  the changes due t o  the initialization 

are calculated and printed. 



fl~oendix C: Form o f  the Matrices in Equation (12). 

Because o f  the gr id staggering, the matrices II,. B,, and Cn occuring 

in Equation (12) have somewhat d i f fer ing forms f o r  odd and even values o f  n .  

For simplicity o f  description we give their  forms here in the case V = 3; tbus, 

they are 9x9 matrices. The generalization t o  larger M is obvious: the central  

r ow  o f  blocks is repeated as o f t en  as necessary. shi f ted each time three 

columns t o  the r ight.  

The matrices Rn and C,, are sparse, with a t  most one nonzero 

element ~ s r  row. We define certain quantities which depend upon whether t he  

MN-grid is  unrotated or rotated: in the former case we have d , . n = ~ ~ ~ $ n ~ A A ,  

dn = A$. c,. = 1 and c, = cos#, while in the l e t t e r  case we have dm. = A$. 

dm.,, = COS$~.-AA, cm. = CO*,,, and C, = 1, where m'is equal t o  (2m-1) o r  2m 

according as n is odd o r  even. For odd n the matrix A,, then takes the form:  

where ox-s/4,  am,= c,,,/(cnedmn) and a;,= l / d i ,  For even n the matr ix A, 
takes the alternative fo rm 

where now 2m replaces (2m-1) and (2rn.1) replaces 2m in the definition of am" 

and a!,,. 



The matrices Cn are formally identical provided tha t  we redefine 
= - 

'rnn 
'n-1 /(cnbdmn) and sin= -l/dmn. Note tha t .  apart  f row the G-elements, An 

and Cn are real; thus, thay may be stored as real vectors and the G-elements 

allowed f o r  explicitly when they are used in calculations (in the procedures 

K.MTXSL. KMTXSR and KVCXSL) . 

The matrices B, also have t w o  forms, depending upon the pari ty o f  

n. We define bm,n-cos~rn.+,/(~~rn,dm,n) and b:= l/dm., and the matr ix En can be 

wri t ten, in the case o f  odd n. In the form 

and, in the case o f  even n, in the fo rm 

. , ~ 

. . . 

. . .  
s bn . 
' S '  

* - S 

P l isting o f  the subroutine GETMFIT, which defines the matrices An, Bn and C,,, is 

given below. 



C 
C CONSTRUCT THL Mk'1'RICk:S A, t( HND C UlIICd LXYRESS 
C THL UIbCHETILATIUId IjF THE LUUATIUNS. 
C CALCULATE TllL ALFA AkD IdVERSE I4ATHICt.S AND WRl'fE 
C THC LATTLK TU UISK.  
c A ANU C UTJ NUT IItXJENL UN S; THEY ARE CAIICULA'CEU LJNLY ONCE 
C ANU nELD I N  COME. dATRIX IIIVERSIONS I R E  UllNE ONLY Uti THK 
C ~ ' I M S T  RUN AN0 STtJRCD flh DISK.  MATRIX H I S  NUT NF.EI'lEI1 O N  
C HEPEPT RUNI. 
r 

hMAXMl = NUAX-I 
NMAXMZ = NMAX-2 

C GET THE SL'AHSE MATWICES A AIrU C. +:ACH HAS AT MOST ONE 
C NOhZtRU ELEYkNT PEii HOW, AlW THEY ARE STUHEII H Y  ROWS 
C AND F(lH LACH DUI16LY IN'CERIUR LINE 
C EDGE VALOES ARE ALLUwED FUR 1 N  KMTXSL, 61~C. 

512 CONTLNUE 
5 2 0  CONTINUE 

5 0 0  CONTINUE 
c 

I F ( R E P E A T )  RETURN 
c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
C UPEB THE OISK F I L E S  FClh STURIhG THE INVERSE MATRICES 

l R L S I Z  = M3MAX*M3MAX+2 
UPEN(UNIT=IDATA,DE~ICE='SCR',ACCESS=~RAN~OM',MUVE='BINARY', 

X R6CURU SIZE=IHKSIZIFILE='F~LTER.DE~~) 
C 
C LDUP FOR EACd VALIIE UF S 

DO 1 0 0 0 0  I s = I , m S  
TYPE 9 5 0 1 , i S  

9501 FORHATI' S VALUE IS: 1 , 1 4 1  
s n m  = ( S ( I S - ~ ) + S ( I S )  1 I 2 ,  
SS = SMIU 

C 
C LOOP FUR EACH INTERXOR LINE,  CALCULATING THE 
C MATRICES R ( N ) ,  -nLFA(Nl  AND THC INVERSE. S T W E  THE INVERSE. 



C ALkA(l1 iS IUENTICALLY ZERO SINCE THE nnTTuEi R.C. 
32 c DOES NUT INVOLVE Anr DERIVATIV~.S - CLLL ZERUKA(UMATlrMAXM3,&AI:MS) 

C , . 
UO 650 N=2rNrlAXMl 

hCOPY = N 
TYPE *rN 

NEVEh = (t4/2)+2 
C 
C GET THE MATHIX B 

CALL ZERUKA(a,MAXM3rMAlM3) 
CSh = COSN(N1 
KIU b i o  r = i , w A x  

H3 = 3*(N-l1+1 
MZ s ZrM-1 
IF(NEVEN.EO.WI n2 = zrw 
COSZ = COSH(kZ)+CSN 
CDkR = COX(M,Nj 

B(W3+2,H3+21 = SS 
lF(N.EU.2.JR.N.EU.NMAXMI GO TI.) 603 
lF(M.EO.1 .AND.NEVEN.NE.YJ GU Tll 6 0 3  ! B.C. 
IF(M.E4.MNAX I GO TO 603 ! B.C. 
BCU3+2,M3+1) = CORR - 

603 COYTINUE 
610 CONTINUE 
I- - 
C GET THC lNYEHSP MATRIX M(N) AND STORE IT 
C +re +*+ rrr BEdARE UY nEAVx COMPUTATION rrr rr+ or+ rrr rrr *or 
C LEFT-MULTI?LY -ALFA(*-I) BY A(N) 

CALL KMTXSL(A(lrNlr!~MAT1~QMATZrMNAX~M3NAX~NCUPYvNMAX~SS) 
C TAKE AIAY FROM MATRIX t((N) 

CALL K M T S U ~ I B , Q M A T Z I U M A T I , N ~ M A X X M ~ M A X ~  
C INVERT TO GET THE MATRIX H(N) 

CALL KMTINV(U*ATlrOMATZ~Y3MAX~M3MAX) 
C dRITE OUT M(h1 TO bISR FUR USE LATER 

lREClO s (1s-l)*(NMAX-2) + tN-l1 
WRITE(IDATA'IRECN0) UMAT2 

C RIGHT-HULTIPLY M(N1 bY C(N) TO GET -Al,I'A(N) 
CALL K N T X S H ( C ( ~ ~ N I ~ O ~ A T ~ ~ ~ N A T ~ ~ M M A X ~ ~ ( ~ W A A I N C O P Y ~ N M A X ~ S S ~  

C re+ rrr rrr rrr rr* rrr rrr err rrr rcr ++r +or +*+ roc rrr rrr rrr 
C 
650 CONTINUE 
C 
IOU00 CONTLNUE 
" 
C 

C , CLOSE THL FILE 8lTH INVERSE MATRICES 
CLUSE(KINIT=IUATArUISPOSE=lSAYE'l 

C - 
RETURN 
END 

C**r*rr+*ro~**r*o*~C*****~~r*o*****o**o**oo******oo**+o+oo******** 



- 
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