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Rbstract. The Iinitislizetion of limited eres models Is complicated by the
difficulty of determining the linear normel modes and of allowing for general
boundery condltions. A new method of initislizetion ls devised, which does not
require expliclt knowledge of the normal modes. The method Is besed on e
filtering procedure which uses & modified inverse Leplace transform. The
efficacy of the method is demonstreted by applicetion to a one dimensional
model, end the rstionale for applicetion to a genersl forecesting model is
discussed. The method is closely related to the nonlineer normel mode method
of Initializetion.
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1. Raview of Initislizetion Methods

1-1 The Whys end Whereforss

Consider e tide-gauge In open water. The gauge will measura the slow
chenges between low end high water, which have periods of sbout twelve
hours. It will elso register the changes due to sea and swell, which have
periods of less then a minute. Eut whose amplitude may. equal or exceed the
tidal renge. Clearly, the instenteneous readings of the geuge cennot be used
for tidal anelysis until the ‘noise’ due to the short-period waves has been
removed in some wey. The problem sarises beceuse the weter level is governed
by processes with widely differing time-scsles.

The primitive squations used for numerical weather prediction slso
have solutions with different time-sceles. The solutions of meteorological
significence ere low frequency, rotetionel motions with phase speeds of the
order of ten metres per second, and small divergence. There are also very
fest gravity Inertie wave solutions, with phese speeds of hundreds of metres
~per second and lerge divergence; these do not interact strongly with the
rotationsl motions, end ere generslly regarded ss noiss.

A subtle state of belance exists in the atmosphere between the wind
and pressure fields, ensuring thet the gravity inertie weves have much smaller
amplitude then the rotstional pert of the flow. However, when we make e
forecast sterting from enslysed mess and wind fislds large high frequency
oscillations 'occur: tﬁese are due to slight Imbelences in the initlel data
resulting from observational and other errors and from imperfections in the
forecast model.

Figure 1-1 shows a trace of the surface pressure at Oceen Weather
Ship *Cherlle’ (52.5°N, 35.5°W) for the 12 hour period starting at 00Z, 17 Jen,
1984. The forecest pressure at & nesrby point for the seme period is also
shown. Clesrly, the forecest hes unrealistic high frequency oscillations with
amplitudes of several mbsr. These ere dus to a fack of balenf:e in the Initisl

fields resulting in the presence of spuriously lerge gravity waves.
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Figure 1.1: (A) Observed surface pressure st Ocean Westher Ship 'Cherlie’
(52.5°N, 35.5°W) for the 12 hour pericd from 00Z, 17 Jen 1984. (B}

Forecast surface pressure at a nesrby point (51°N, 37°W) for the seme
period.



One of the long-stending problems in numericel weather prediction has
been to overcome the prablems associsted with high frequency motions. The
principal gosl of initielizstion is to define the initial fields in such & way that
the gravity inertis waves remsin smell throughout the forecast. If this Is not
done the spurious oscillations which occur in the forecest can leed to verious
problems, as outlined below.

(i) Dsta-fssimilation: When an objective enslysis is performed new
observations are checked agsinst a preliminary field which is normelly a short
range forecast. If this is nolsy, due to the presence of unrealistically lerge
gravity inertie weves, good observations may be rejected or erronecus ones
accepted. The resulting degraded enalysis deteriorates the ensuing forecast,
and the situstion worsens as the data assimilation cycle continues.

(ii) Precipitation: Since the gravity inertie waves have large
divergence they give rise to unrealistic vertical velocity fields. Since the
moisture field depends crucially on vertical motions, hopelessly Ineccurste
precipitstion forecests cen result if the gravity inertia weves sere not
controlled.

(ili) Advection: The advection process, whereby momentum, senergy
and moisture are carried slong in the flow by the velocity fislds, is crucisl to
the dynemics of the large scele, low freguency meteorological mations. Since
this is a slow process, e long timestep should be adequste to represent it
accuretely. However, if the velocity fislds ere corrupted by large gravity
inartia weves the use of long timesteps mey result in unacceptable smoothing
or distortion of the meteorologicel fields. Thus, although, for example,
saemi-Lagrangian advection schemgs provide an unconditionslly stable method of
integrating the advection process, permitting unrestricted timesteps, their
maximum benefits sppesr to be dependent upon proper initislization of the

fialds.

1-2 Seme Initislizetion Methods
In the eerly days of numerical weather prediction forecests were

made using governing equations which were modified in such a way that they



filtered out grevity Inertia waves sltogether. Therefors, the Iinitialization
problem did not arise. However, the approximations meade in deriving the
filtered equstions ere not always velid, and the primitive equetions are now
generally used.

The first efforts to control the high frequency motions consisted of
defining verious dlagnostic relationships between the mess and wind fields: the
geostrophic relation; the lineer balance equation; the nonlineer balance equation
(Hinkelmenn, 1951; Charney, 1955; Phillips, 1960). These static Initislizetion
methods reduce the noise to varying degrees, but ere unsatisfectory for e
number of reasons: they discard useful observetionel informetion; the fields
must be modified ertificielly for reesons of mathematicel expediency; the
remaining noise is still a problem.

A method of anslysis besed on a veristionel technique wes developed
by Seseki (1958). This method permitted mutuel adjustment between the mass
and wind flelds subject to some constreint, such es that they sstisfy the
balance equstion. The method has been extended In various ways, and epplied to
the initializetion problem with pertiel success in supressing the gravity wave
nolse.

fAn slternative approach to balancing the flelds is to use the forecast
model to integraete in e forewsrd-backward cycle with 8 demping time-schems
(Miyskoda and Moyer, 1968). This Is known as dynamic Initializetion. |t hes not
been found to be very satisfactory: it demps the meteorsclogicel modes slong
with the noise; It is computationslly expensive; no Irrevarsible processes cen be
included because of the beckwerd integrations.

Recently, methods of initielizetion based upon the linear normel modas
of the forecast model have been proposed. The first spproech wes to anslyse
the initial conditions into their slow rotational end fest grevity inertia
components and to set to zero the coefficients of the letter (Dickinson end
Williamson, 1972). This was partially successful but beceuse of the nonlinearity
of the equetions the high frequency modes ere rapidly re-excited (Figure
1-2(a)). A more sophisticeted approsach is to set the initial rete of change of

the fest modss to zero; this method is celled nonlinesr normsl mode
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Figure 1.2: (R) Surfece pressura traces et o perticular gridpoint es forscast
by the ECMWF model with no initislization (solid} and lineer Initializetion
(deshed). (B) Pressure traces for no Initiellzation (solid) and nonlinear
Initiallzatlon (dashed). [After Temperton and Williemson, 1979]



initislization (Baer, 1977; Machenhsuer, 1977). It hes been found to be superior
to the simpler, linear method (Figure 1-2(b}), and is currently regsrded ss the
most satisfactory initialization method, despite certain disedventages. The
methad has been reviewed comprehensively by Daley {1981).

Rnother recently proposed scheme is the bounded derivative method
(Kreiss, 1979, 1980; Browning et al., 1980}. If the evolution of the flelds is
slow then their time derivatives of severel orders must be small. This condition
is used to derive diegnostic relationships betwean the veriebles. The method is
thus en extension of the clessical static initislizetion methods described sbove
(and sppeers to have the seme defects). R comperison between the nonlinear
normal mode end bounded derlvetive methods in e simple context hes been mede

by Kaesshara (1982}.

1-3 The Situstion with Regerd to Limited Ares Modelling

To epply the nonlinesr normal mode method we must know the linear
normal modes of the model eguations. for & global domain this is no perticuler
problem: the equations cen be linesrized in such a way that the spatial varisble
dependencies are seperable and the horizontel boundery conditions ere those of
periodicity or regulerity of the solution. The vertical! structure equation is
easily solved for simple mean tempersture profiles.

For foracasts over & limited ares the situstion is dramstically
different. Here the dependent verisbles ere specified on the boundery of the
forecest domeain and sere allowed to vary in time. It is difficult, if not
impossible, to define the normal modes in @ completely general wey. If the area
Is of en irreguler shape the horizontal varisbles mey not be separable.
Non-separability slso results if the Corlolis psrameter is e function of both
verisbles, es in the case of & rotated lstitude/longitude grid whose poles are
not on the earth’s axis.

Some progress has been made recently In adapting the normal mode
epproach to limited srea modelling. Briere (1982) hes applied the method to s
fine-mesh model in certesian coordinates with constant boundsry conditions.

Bijlsma and Hafkenscheid (1983) have incorporated the effects of sphericity,



and their method spperently sllows for veriable boundary conditions {(although
the results they show seem to hold the boundaery vslues constant). Both
applicetions have been successful in reducing the noise in short range
forecasts. However, in each case it has been necessary to make simplifying
assumptions in order to derive the lineer normal modes: the anealysis has been
done with a constant Coriolis parameter. It is not obvious if these sssumptions
cen be relaxed. Nor is It obvious whether or not they have e degrading effect
on the specification of the initial fields. Bsllish (1979) hes demonstreted thet
failure to include the p<term in the derivetion of the lineer normal modés may
lead to noise problems. Thus, a totslly satisfactory resolution of the problem

of initializetion for limited sree modeis is still outstanding.

1-4 A Novel Approach: The Laplece Transform Technique

In this report the following question is sddressed: Given a nonlinear
prediction model, how cen the initisl conditions be specified in such & way that
no component of the flow will evolve with high frequency gravity inertia type
timescales? A general technique is dsveloped which provides the enswer to this
question. The technique involves the use of @ filtering method based on o
modificetion of the inversion formula for the Laplece trensform. This filter is
used In en iterstive procedure which is applied to e general nonlinesr system
with multiple timesceles. Provided the procedure converges, the result is a
function which (i) satisfies the system equstions and (ii} evolves siowly in
time. The Initisl velue of this function provides the answer to the question
posed sbove.

The practical implementation of the procedure necessitates some
approximations {(e) to reduce the computstionsl effort and (b) to avoid
numerical instabilities associeted with the Laplace transform inversion. If the
nonlinear terms are small (e necessery condition for convergence enyway, and
true for stmospheric motions} these epproximstions are quite acceptseble, end
lead to s simple initialization procedure. The procedure is seen to bear e close
reletionship to the linear and nonlinear normal mode initialization mathods. A

point of vitel practicel importence is thet the new technique does not regquire



knowledge of the lingar normai moaes of the system. ThUS,. it can be spplied
more generally then. the prevrously proposed methods

The feasability of the Leplece trensform techmque is demonstrated
by spplication to a simple one-dimensional model similar to that used by Baer
(1971). A model run, starting from geost.rophircally bslanced lnitfal conditions,
results in large emplitude, high frequsncy oscilla‘tlons.‘rThesre oscilletions are
most clearly seen in the evolution of-‘ the divergent kinetic esnergy. Rpplication
of the first epproximent of the r;ew_ technique (equivalent £o lineer normal
mode initialization) reduces this noise conéiderably. but sorﬁa small t.;ascillations
remain. Tha nonlinaari procedure, with just one iteration, leads tp virtually
total extinction of the noise. These rasults are in complete 'ag-reément with
those obtained by Beer (1977) with his technique, and demonstrate that thas
present method is an effective means of controlling ti;le High frequency
oscillations in this simple primitive equation model. | o

The application of the technique in the context of a general baroclinic
{limited erea or globsl) primitive equation mode! is discussed. The proposed
method is esssntialiy the seme .as thet used in the cese of .r"ror'n"ual mode
initializétion: the vértlcal and horizonta! structures are seperated, and the
horizontal structure functions are lmtlallzed seperately For each vertical mode
or equivelent depth. The technique would appsar to be ss flexible as normal
mode methods in its ability to hendle orogrephy, model physics,_ etc. It is more
flaxible insofer es it cen also be applied to a ‘iimitéd arga model, where the
horizontal variebles need not be sepersble, where the boundsry conditions may

vary in time and where the linear normal modes are unknown.



2. Theoreticel Discussion.

We considar the following question: given @ nonlineer system with
multiple timescales, how cen the initial conditions be specified in such a way
thet the repidly verying components of the solution sre completely supressed
for ell time? We formulate s general procedurs which, given convergence,
provides a solution sstisfying the original nonlinear equetion end evolving slowly
in time. It is shown how this procedure may be applied in en approximete form

to specify initial conditions which guarantee & slowly evolving solution.

2-1 Filtering with Leplace Trensforms

Consider & function f{t) with components of various frequencies

Flt) = Sanexp(wnt) (n

=)
Suppose we wish to isoleta thet part of f which veries with frequency less
than r. Knowing the expension (1), it is trivisl to set & equal to zero
whenever |0 | >7; the remsining components provide the solution. Now suppose

that f(t) is unknown but that its Leplece transform is given by

s = ; 8,/ (s-ta ) (2)
The filtering of f cen egain be dona by setting & =0 when le | >7. and
inverting the sum of the remeining terms.
Next, suppose we know }(s) to be of the form (2) but do not know
the precise velues (s .0 ). The originel function f(t) may be obtained from the
inverse transform

=1

~ ‘i st ~
s = LNy - —f o™ f(s)-ds (3)
21 J ¢

whaere C is e line perellel to the imaginary exis end to the right of sll
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Figure 2.1: Contours in the s<plene used for the reguler and modified inverse
Laplece trensform. The velue of 7 is chosen to separats the rotationsl

frequencies (v,) end the grevity weve frequencies (v.).



singulerities of } The contribution to this integrel from the pole of }(s) at

io_ is just o expliv t). Without knowing (e .0 )., we cen still eliminate ali
n n n

components with frequencies greater then » by chenging the contour C in (3)

to & circle C* of redius » centred st the origin of the s-plene (see Figure

2:-1):

%

OISR S I ~2—,‘,—1-95c, 6™ f(s)-ds @

The function f~ is just the sum of the components resulting from those poles
which fall within C*, i.e. the components with frequency less then 7. This is
exactly what is required. Thus, knowledge of the trensformed function on the

contour C is sufficient to perform the desired filtering.

2-2 Separation of Sceles in & General Nonlinesr System

Consider a system whose state at time t is specified by the vector
X(t). For example, X might comprise the velues of the dependent variables at
all the gridpoints of a forecest model. We assume that the evolution of X is

governed by @ nonlinear equation of the form

+ LX +« NX)» =0 (5

a.[n.
[aa v

where L is @ constent linear operstor and N is & nonlinesr vector function of
X. If the systam is in the state X; at t =0 then the Leplace transform of this

equation may be written
MX » N = X (e
where we define the matrix M=M(s)=(sl+L), with | the identity matrix.
If the nonlineer terms in (6) are ignored the trensformed solution is

just

Ty . N

>
(]

4

>

1
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Inverting this we recover the solution X(t). Supposs we ere interested only in
the slowly evolving pert of X, i.e. that pert which oscillates with frequency

less than ». Then we mey apply the operetor L" to obtain

x"(t) = L eX(s1) (@)
This will have the desired property. Riternstively, if we define

X0 = LK) | g (9

end use this as the initial stete, the linear evolution of the system will again
contein only low frequency components.

If X*(0) is used es the initial state for the nonlinear squations (5)
the high freguency components will be re-excited immediatsly by the nonlineer
term N(X). We wish to evoid this happening by modifying the initiel stete. We
cen solve (6) for X by an iterative procedure enslogous to that used by
Macherhauer (1977). We sssume that the nonlinear terms ere small and teke es

the first spproximant the linear solution
" -1
X, = M X (10

The first estimate of the slowly varying solution is then

' o= L' (1
When this is known the nonlinear term N, =-N(X:) can be obtsined and its
transform evelusted. Further sapproximetions are given by the iterstive
procedurs

Xy = M'DXa(@-N] (12)

n+]

% L B
X, o® LX) (13)



Suppose the procedure converges: then we cen write

X = M-I ;0 X" = L) (14)
[- -] oD L] on - -

which, when inverted, shows thet the vector X' =X_ hes the following
properties: {e) it satisfies the original eql;atlon (S); (b} it contains only
slowly evolving components. This is exectly the solution which wes desired. We
note In passing thet, If L' is used insteed of L® sbove, the full solution to

the nonlinear problem is obteined.

2-3 Application to Initislizetion

The procedure doveloped sbove is difficult to apply in practice for
two reesons. First, it involves the celculstion of the Leplace transform of the
nonlinear term st cach iteration, which implies & formidable ammount of work.
Second, the Leplace transform Is notoriously difficuit to invert numerically,

because of the factor exp(st); this also spplies to the modified inverse

trensform, L°. We circumvent these problems by essuming thet the nonlinear

term veries so slowly thet it mey be considered constent end its transform
approximeted by

~ x
N, = NX(0))/s (15)
Furthermore, since we are Interested in the eppropriate Inltisl velues to use,
the operstor L' need only be evalueted st time t=0. The epproximste
procedure is outlined below:
First epproximent: ii - M Xo- (16)

* ¥ .o
O = LX) | g an

iterstive procedure: ﬁn - H(X:(U))ls (18}

13
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hod e ] '- ""
X - M [X“(O)-ﬂn] an

1
] s
X (0 = LX g 20

The finel iterstion of equstion (20) gives ue the required Initisl conditions. In
practice it Is found thet one or two iterations are sufficlent to reduce the
amplitude of the high frequency componants to & negligible level. Note that the
matrix M may be pre—calculat.od‘. inverted and stored for e set of valuas of s
lying on C*; thus, the method is reasonsbly economics!.

2-4 Relatlonship to Normsl Mode Initielizetion

From the definition (4) of the modified inverse Leplece transform, it
is clear that the f‘lrst spproximant in the sbove technique is equivelent to
linear normsl mode initialization. That Is. aﬁpllcetlon of (16), (17) with en
appropriate valug of v hes the same effect es spectral resolution into normel
modes followed by removal of all modes with frequency greeter then . Note
that If the equations have been lincarized about e generel mean flow U=i(¢.Z)
its offects sre felt by the lincer normsl modes. The eigenvalues may be
complex snd there mey be s continuous spectrum In the cese of a varying mean
flow. .

The full nonlineer technique yields a solution which evolvaes slowly for
oll time. The essentiel epproximestion in the praétlcal implementetion of the
method is the assumption thst tho nonlinesr terms evolve so slowly that they
may be epproximsted by their Initlel velues (see equetion (15)). This is the
same as the essumption made by Machenheuer (1977) (see his equetlons (14),
(15)). I’ would thus eppesr thet the method proposed here Is closely releted
to that of Machenheuer. The formal relstionship between the present method
and those of Mechenhsuer and of Beer and Tribbia (1977) will be considered

alsewhere.



3. Application to e One-dimensional Model

3:1 Formulation of the Method

In order to test the fessebility of the Leplace trensform method in
the simplest context it hes been wused to Initielize the dete for 2
one-dimensionel model. The modei Is similer to that used by Beer (1977) and e
full description is given in Lynch (1984). The besic equations ere

Lt () +p5+pv = 0 (21

6, + W8 ~fL+pu + 8 =0 @
0 + (ub), - fiv+B = 0 (23)

Here x is distance eastwerd, t is time, u=T+y’ is the zonsl vslocity with G
the constent meen windspeed, v the northward velocity, and $=P+8' the
geopotentiel. The vorticity and divergence ere {=v_and 6=u_. The Coriolis
paremeter f and its meridional derivitive g are assumed constent.

The above system is eassily shown to have normel mode solutions of

two kinds: the slow Rossby waves have frequencies given spproximstely by
v = - (8K 1+F )

where k= (2x/L) is the wavenumber and L the wevelength. They have small but

nonzero divergence. There are also fest gravity inertia waves whose

approximate frequencies are

v = s (§K57)

These divergent waves travel in both directions. For typical perameter valuss

the two wave types ere cieerly distinguished by the magnitudes of their
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frequencies.
Energy equatlons are derived in the usual menner (see e.g. Pediosky,
1979). The rate of change of eddy kinetic plus availsble potentisl energy is

given by
A [iptw?®eeapr?] dx = - [ [pvistwze® 1@ | & 20
dt P P P 3y

Clesrly, If the meen flow vanishes (G’ifﬂ) the total eddy energy remains
constent. The eddy kinetic anergy cen be split into contributions due to the

rotationsl and divergent motions:
K=K +K i K, o= f *lrpvzﬁ dx ; K = j 'lrpu‘zi dx.
¥ X Y X ,

The values of these ere celculated st esch timestep end give valusble
information about the dynamics of the motion being considered.

In order to clerify the relative megnitude of the various terms in
the equations of motion it is convenient to nondimensionalize the equations by
defining characteristic sceles for length, time and Véiocii:y; It is also
convenlent numerically to have the brlnclpal terms of .nrder .unity. He int;"oduce
length end velocity sceles L end V and scale time by ,t’"l and geopotential by

fLV. We define some nondimensional combinetions:
= 2 2
Ro = (V/fL) ; Rp = (BL/f) ~ (L/8) i R, =-0/(fL)" = (L/L).

Here Ro is the Rossby number; Rp is @ messure of the importance of the
p-effect, determined by the scale of the motion; R is the reciprocal of the
Froude number, end relstes the length scale of the motion to the Rossby radius
of deformation, LR-Ji/f. The equations of motion, (21}, (22) and (23), may

now be written in nondimensional form

Z, *+ Rolup), + &+ Ry =0 (25)
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& + Ro(ué}x -+ Rpu' + &u = 0 (26)

’t + Ro(u‘)x - Rouov + Rré =0 2n

The relationship between the velocities (u,v)} and the prognostic
veriables ([,6) suggests thet we specify them at slternste points of & grid
steggered in space. The velocities are specified at ‘“helf-points® end the

vorticity, divergance and geopotential at “whole-paints”:

Un—* vm-l' cvm ' 6m ' om umﬂi' vm*—i gmﬂ '6m*l N om*l
M N LY 0
[, J [a) v
m-=+ m m+¥ m+1

Ouentities not evailable directly sre obteined by averaging. We define some

finite difference o_per‘ators in the usual way:
(q,), = (q .9,/ i (ﬁ;) = #{q,_.*q..;)

A consistent (spatisl) finite difference approximetion to the equstions mey now

be written as follows:

3 o —

3t WVl * (Up)y * RVY = —Roluv)) ), (20)

i) Ty . = - e

ﬁ'f(um)x - {vm}x + Rp(u m) Ou = =Ro({u ux)m):IL (29)
(30

a — —
é—wm) - Rouo(vm)+ RF(urn)x = -Ro({ubd )m)x

All dependent quantities ere assumed to have period (N-Ax)}. The stete of the

system at any time is complotely defined by the vector

X = (u*.v*,ml. .um_*,vm_*.@m. .uH.vH,OHJ
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We assume in the following that the maan flow u, venishes; this assumption is
made to simplify the discussion and can easily be relaxed.
From the initiel velocities and geopotential we assemble the vector

0.0 .0 0.0,0 0 0.0
T UL LR SEL AL A

ey~ Uo3)/8x and simllerly for 6°. The equations (28), (29 end

where ;: = {y

(33) are now Leplace=trensformed to give

~ ~ . 0 —
slv ), + (u) + Rytv) = 2 - L{Ro((u vx)m)x} (31)
. ~ ~ g;_ » _ u
su,), = (v.) + Rui)+ 8, = 6 - L{Ro(Cu @) ), ] 32
s8) +RW) = 8°-L{R(WT) ) } (33)
oo M F Somo % - m . REEDEEE A ac . B Ll S

(The Leplace transform of s is denoted by}) To cast this system into matrix

form let us dofine some 313-metrices as follows:
S o A T L
D - 1/8x (~s/Bx+4R,) -2/8s°
0 = -Rix s
; _(_s_/AxﬂRp) /8x S L
Ro= | - i)
0 RFIAx 0
0 0 0
L = 0 0 1784
0 0 0

We sssemble these into the periodic, block tri-<diagonel metrix of order 3N:



D RO - L -

LD R - 0

M= 0L D --- 0
LR 0O -~ D -

The system of equations (31) — (33) mey now be written in the form
MX = X, N0 (34)

Here the nonlinear terms have bsen collected into FI. which is a transformed
nonlinear vector function of the state vector X. Equetion (34) is formally
identical to equation (6) in section 2-2 and the method of initiellzation

described there can now be applied to the present model.

3-2 Computationsi Results
R number of model runs were carried out, with various parameter
velues end initial corditions. For oll runs described here the nondimensional

numbers hed the following values:

-1 _ -1 -
fo =10 Rﬁ = 1.6x10 ° ; R, =-10.
The channel length was L=10"m., where NAx =L with N, =20 and Ax =500 km.
One dey forecests were of duration NTM. = Iﬂssec. (=27.8 hours} where
N, =1000 end At=i00sec. An Adams-Bashforth timestepping scheme wes used.
For the given parameters the maximum Rossby wave frequency and minimum

gravity wave frequency can be calculated, and have the (nondimensional) values:

I = 2.224.

min

v | = 0.203 ; [y

max 6

Any velue of 7 lying between these values should serve to seperate the

timescales. The value r=1 was chosen; the matrices M(s) were cslculated for
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Figure 3.1: Evolution of the geopotentlsl for & one day forecest sterting from:
(R) Geostrophic Initial winds (NIL): (B) Lineerly initlelized fields (LIN).
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24 points avenly spaced around the unit circle.
The initial conditions were defined by setting

0
0, = ﬁ cos [4(BfE) + 4]
where the pheses ¢y were chosen rendomly, and deriving the geostrophic winds

0

0
Vot )

m-1

mt = 0

- (O‘:'-O /Ax 3 u
We consider three different ceses of initializetion as follows:

NIL: = No Initiefizetion Geostrophic IC's as ebove

LIN:  Linear Initlslization iC's from (17
NLI: Nonlinear Initializetion IC's from (20}, one iterstion.

The final values of the v and § fields were very similar in all three
cases. However, without initielizetion (NIL)} the time evolution at a centrel
point hed small. high frequency fiuctustions superimposed on the slow
development. With lineer initislization (LIN) these disappeared. The evolution of
¢ is shown in Figure 3-1 for the two ceses. The zonel wind fisld evolved noisily
before, but smoothly sfter initlalization (Figure 3-2). The divergence field
beheved in a similer menner (not shown). |

Since the grevity waves have relatively large divergence, we would
expect the divergent kinetic energy to be a good indicator of their presence
(Baer, 1977). In figure 3-3 the divergent energy, K,» @s @ function of time is
shown for the case of geostrophic initiel winds (NL) and linear initlalization
(LIN). The oscliletions in Kl are extremely large before initielization; the linear
initislization reduces them dramsticelly, but does not remove them completely.
Figure 3-}b) Is reproduced In figure 3-4(e) with a much expanded vertical
scale. The gravity osciilation remaining after lineer initislizetion (LIN) ere clear
to ses. In figure 3-4(b) we show the evolution of K,» on the same scale, after

a single nonlinear iteration of the initislizetion (NLI). The gravity weve noise is
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elmost completely alimineted. This result is in full egreement with the results
of Beer (1977) for his nonlinear normal mode method, end demonstrates the
effactiveness of the present method in desling with the problem of high
frequency oscillations.

Several other model runs confirmed the efficacy of the method In
controlling the grevity wave noise. A number of ten dey (10%sec.) forecests
showed thet there is no tendency for the noise to return during this period.

In all ceses the convergence wes very rapid, with little change efter
the first nonlinear iteration. A small residue of noise is not removed by
further iterations; . presumebly, this residue is essociated with the
spproximation (15). Modification of (15) to allow N(X) to very linesrly in time
did not leed to sny significent improvement. Howaver, the residue is too small

. to ceuse any practics! problems.
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4. Principles of ication to & General Forecasting Model

The epplication of the Laplece trensform technique to s one
dimensionel model was straightforward. For a generel baroclinic model the stete

~vector might contain, typically, ebout ten thousend elements. The inversion of
“the resulting gigantic metrices M(s) Is en elmost impossible tesk on
- present-day computers. Therefore, the problem must be formulated so es to

produce metricas of menagesblo size.
Let us sssume that Initisl fields ere required for a limited eree

model with verticel coordinate o=p/p,, where p_ls the surfece pressure. The

" verticel structure cen be seperated out if we lineerize sbout a motionless
- “stete with meen temperature T=T(s). To perform the sepsretion we introduce
'8 new dependent varisble, P=0"+RTInp,, where #' is the perturbetion

geopotential (see, o.g., Kesshera end Puri, 1981). If the model hes K levels,

' the vertical structure equation yields K sigenvelues, or equivelent depths, end K
cor‘rospbnding eigenfunctions, .!r(a'k). For each equivelent depth, the horizontal

structure is governed by & set of three equetions for u, v end P which ere of

.t.he form of the Leplece tidel oQuatIons.

‘For globel and meny limited area models the horizontal structure is
separable into 'depo'rﬂencle's upon fongitude ‘A end latitude ¢. However, for e
transformed longitude/latitude grid, whose .polcs ere removed from the earth's

exis, the Coriclis perameter Is a function of both horizontel varisbles, x and y,

end separstion of veriebles no longer obteins. We consider & method of applying
the Leplace trensform Initialization technique In this cese.
The Laplace trensform of the horizontal equetions (for & given

‘equivelent depth. D, may be written:

_sv+fu+5-vo (35)
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(where e=~(2ﬂa)2/gﬂ)} Let the domein be ‘discretized ints I:J points end
derivatives spproximated by Finite differefices In the usuel way. For simplicity,
we consider ® non-staggered grid where all "p&%gh’os"ﬁic‘ veriables are specified st

all gridpoints. The valuas of U, v and P dn'a “single row (excludlng end-=points)
are assembled in a vector

)T WapvapPayp Y iy TR S TR TP

>

where ;q=a(xl.y]). ‘etc. The 'system (35) may now be written formally as

"~ ~ L.

AX, +BX +CX, =D D & LY
Where ﬂl. B " c jond D j are tridiagonel mﬁtrides and @ column vector whose
elements depend upon the velues of the coefficients of the equation. The
lateral boundary values v, . u . etc. occur In the vector D .
Lindzen and Kuo (1969) have described a relisble direct method for
solving systems of the form (36). We introduce & set of intermadiste matrices
‘and vectors, & andp.suchthat - :

”~

pT O e

» >

p! ‘ (33N

When (37) Is used to climinete X | from (36) o solution for &, and B is

1—1
spparent in the form

-]
L}

o 31
{ﬂ]) Cj
' &:(3))

n

ISP PR
g, Mp~ap,,D)

Where M =(R'g _,+B). The boundsry conditions for j=1 ere used to cbtein @,
B, sod from (38) we then get s, ﬁ’- The boundery conditions at j=J give us
X; end the solution X | is obtained from (37). The crucial point is thet the

metrices @, ore independent of the boundery values and of the forcing terms;
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therafora, they can be calculsted once for alf and stored.

The first step in the initislizetion is now performed. The operator
L™, with o suitebly chosen value of 7, Is spplied to X end the new initial valuss
are obtsined by inverting the verticel seperation of verlables

z 5
oo, - ; LX), | g8t

For linear initlelizetion these ere the required starting values.
The nonlinesr terms cen be celculetad using the new velues. Ususlly,
this is equivalent to performing & single modsl timestep. We then form the

combination
£ X*(0) - NOXTC0)) /e )

and perform the vertical ssperation of veriebles sgain (assuming for simplicity
that the eigenfunctions 9, sre orthogonel; see Kesshers and Shigshiss, 1983).
We can now calculste updeted values for the vector D}. in (36). The system
(36) is solved as before and the cycle repeated for the required number of
iterations. Note that the matrices s, do not change, so no further matrix
Inversion is required.

Since the operstor L’ is applied separately for esch vertical mode a
different wvalug of » (the cutoff frequency) can be chasen in each case.
Furthermore, not sl the vectical modes need be initialized.

Rithough the above method seems to bs computationally feasable,
there may be heavy storage requirements for the matrices e They are of
order 3{l-1) and there sre 1 of them for each of K vertical modes. Thus, if S
velues of s are chosen on the Inversion contour £ the total storage Is about
9ZIKS. Rssuming S=&I this is of the seme order as the requirement to store
the normal modes wher the horizontsl siructure is nonssperasble. Separability
reduces the requirement by a factor I.



5. Summery

The new method of initialization developed in this report has been seen to be
very effectivs in controlling the gravity weve noise in & one dimensional model.
The methodology for applying the method to a more general model has been
outlined. The method is closely related to the nonlingar normal mode method of
Machenhauer (1977), but hes the edventege that it does not require knowledge
of the model linear normel modes. This allows it to be applied in cases where
the horizontal structure of the lineer equetions is nonssparable.

The method sllows for incorporation of orography end model physics
in the same wey as the normal mode method. The boundery conditions mey be
specified in & completely general wey. The methad is computationslly feasable,
but hes heavy periphersl storage requirements in the nonseparable case (this is
also truas for the normal made approach).

It is Intendad that the Leplece trensform method be applied in the
context of en operstionsl beroclinic limited ares modsl. The results of this

application will be the subject of & future report.
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