
U.D.C. 551. 509. 313 

METEOROLOGICAL SERVICE 

TECHNICAL NOTE No. 45 

INlTlALlZATlON USING LAPLACE TRANSFORMS 

BY 
PETER LYNCH, M.Sc., Ph. D. 

GLASNEVIN HILL, DUBLIN 9 

JANUARY 1984 
Price; •’2.20 



INITIALIZATION USING LAPLACE TRANSFORMS 
BY 

PETER LYNCH 

Irish Meteorological Sorvico 
JANWIRY. 1984 

Clbstrect. The initialization of limited area models is complicated by the 
difficulty of determining the linear normal modes and of allowing for general 

boundary conditions. A new method of initialization is devlsod. which &ms not 
require explicit knowledge of the normal modes. The method is based on a 
filtering procedure which uses a modified lnvorse Lsplace t m f o r m .  The 

efficacy of the method is demonstrated by application to a one dimensional 
model. and the rationale for application to  a general forecasting model is 
discussed. The method is closely related to  the nonlinear normal mode method 

of initialization. 
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1. Review o f  lnitializstlon Methods 

1 - 1 The Whys and Wherefores 

Consider a tide-gauga in open water. The gauge will measure the slow 

changes between low and high water, which have periods of about twelve 

hours. It will also register the changes due t o  sea and swell, whlch have 

periods o f  less than a minute, but whose amplitude may equal or exceed the 

tidal range. Clearly, the instantaneous readings o f  the gauge cannot be used 

fo r  tidal analysis until the 'noise' due to  the short-period waves has been 

removed in some way. The problem arises because the water level is governed 

by processes with widely differing time-scales. 

The primitive equations used for  numerical weather prediction also 

have solutions with different time-scales. The solutions of meteorological 

significance are low frequency. rotational motions with phase speeds of the 

order o f  ten metres per second. and small divergence. There are also very 

fast  gravity inertia wave solutions. with phase speeds of hundreds o f  metres 

per second and large divergence; these do not interact strongly with the 

rotational motions, and a m  generally regarded as noise. 

A subtle state of balance exists in the atmosphere between the wind 

and pressure fields, ensuring that the gravity inertia waves have much smaller 

amplitude than the rotational part o f  the flow. However, when we make a 

forecast starting from anelysed mass and wind fields large high frequency 

oscillations occur; these are due t o  slight imbalances in the initial data 

resulting from observational and other errors and from Imperfections in the 

forecast model. 

Figure 1.1 shows a trace o f  the surface pressure a t  Ocean Weather 

Ship 'Charlie' ( ~ 2 . 5 ~ ~ .  35.5'~) for  the 12 hour period starting a t  002. 17 Jan. 

1984. The forecast pressure a t  a nearby point f o r  the same period is also 

shown. Clearly, the forecast has unrealistic high frequency oscillations with 

amplitudes o f  several mbar. These are due to  a lack o f  balance In the initial 

fields resulting in the presence of spuriously large gravity waves. 



Figure 1 .l: ( A )  Observed surface pressure a t  Ocean Weather Ship 'Charlie' 

(52.5'~. 3 5 . 5 ' ~ )  for the 12 hour period from 002. 17 Jan 1984. (0) 
Forecast surface pressure a t  a nearby point (51 '~ .  3 7 ' ~ )  for the same 
period. 



One o f  the long-standing problems in numerical weather prediction has 

been t o  overcome the problems associated w i th  high frequency motions. The 

principal goal o f  initialization is t o  d e f h  the init ial fields in such a Way that 

the gravity inertia waves remain small throughout the forecast. If this is n o t  

done the spurious oscillations which occur in the forecast can lead t o  various 

problems, as outlined below. 

(i) Data-Assimilation: When an objective analysis is performed new 

observations are checked against a preliminary field whlch is normally a s h o r t  

range forecast. If this is noisy, due t o  the presence o f  unrealistically large 

gravity inertia waves, good observations may be rejected or  erroneous ones 

accepted. The resulting degraded analysis deteriorates the ensuing forecast.  

and the situation worsens as the data assimilation cycle continues. 

(ii) Precipitation: Since the gravity inertia waves have large 

divergence they give r ise t o  unrealistic vertical velocity fields. Since the  

moisture field depends crucially on vertical motions. hopelessly inaccurate 

precipitation forecasts can result  if the gravity inertia waves are no t  

controlled. 

(ili) Advection: The advection process, whereby momentum, energy 

and moisture are carried along in the flow by the velocity fields. is crucial to  

the dynamics o f  the large scale, low frequency meteorological motions. Since 

this is a slow process, a long timestep should be adequate t o  represent it 

accurately. However, if the velocity fields are corrupted by large gravi ty 

Inertia waves the use o f  long timesteps may result  in unacceptable smoothing 

or distortion o f  the meteorological fields. Thus, although, f o r  example. 

semi-Lagrangian advection schemes provlde an unconditionally stable method o f  

integrating the advection process. permitt ing unrestricted timesteps. their 

maximum benefits appear t o  be dependent upon proper initialization o f  the 

fields. 

1.2 Some Initialization Methods 

In the early days o f  numerical weather prediction forecasts were 

made using governing equations which were modified in such a way tha t  they 



f l l tered out gravity inertia waves altogether. Therefore, the initialization 

problem did not arise. However. the approximations made in deriving the 

filtered equations are not always valid, and the primitive equations are now 

generally used. 

The f i r s t  e f fo r ts  t o  control the high frequency motions consisted o f  

defining various diagnostic relationships between the mass and wind fields: the 

geostrophic relation; the linear balance equation; the nonlinear balance equation 

(Hlnkelmann. 1951; Charney. 1955; Phillips, 1960). These statlc hltialization 

methods reduce the noise to  varying degrees, but are unsatisfactory for  a 

number o f  reasons: they discard useful observational information: the fields 

must be modified artificially for  reasons o f  mathematical expediency; the 

remaining noise is sti l l  a problem. 

A method of analysis based on a variational technique was developed 

by Sasaki (1958). This method permitted mutual adjustment between the mass 

and wind fields subject to  some constraint, such as that they satisfy the 

balance equation. The method has been extended in various ways, and applied to  

the initialization problem with partial success in supressing the gravity wave 

noise. 

An alternative approach to  balancing the fields is t o  use the forecast 

model t o  integrate in a foreward-backward cycle with a damping time-scheme 

(Miyakoda and Moyer. 1968). This is known as dynamic inltlallzation. It has not 

been found t o  be very satisfactory: it damps the meteorological modes along 

with the noise: it is computationally expensive; no irreversible processes can be 

included because o f  the backward integrations. 

Recently, methods of initialization based upon the linear normal modes 

o f  the forecast model have been proposed. The f i r s t  approach was t o  analyse 

the initial conditions into their slow rotational and fast  gravity inertia 

components and to  set t o  zero the coefficients of the latter (Dickinson and 

Williamson. 1972). This was partially successful but because of the nonlinearity 

of the equations the high frequency modes are rapidly re-excited (Figure 

1 -2(a)). A more sophisticated approach is t o  set the initial rate o f  change of 

the fast  modes to  zero: this method is called nonlinear normal mode 
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Figure 1.2: ( A )  Surface pressure traces a t  a particular gridpoint as forecast 

by the ECMWF model with no initialization (solid) and linear initialization 

(dashed). (8) Pressure traces for no initialization (solid) and nonlinear 

initialization (dashed). [After Tomperton and Williamson. 19791 



initialization ( h e r ,  1977; Machenhauer, 1977). It has been found to  be superior 

t o  the simpler, linear method (Figure 1.2(b)), and is currently regarded as the 

most satisfactory initialization method, despite certain disadvantages. The 

method has been reviewed comprehensively by Oaley (1901). 

Another recently proposed scheme is the bounded derivative method 

(Kreiss. 1979. 1900: Browning e t  al., 1900). If the evolution of the fields is 

slow then their time derivatives of several orders must be small. This condition 

is used t o  derive diagnostic relationships between the variables. The method is 

thus an extension o f  the classical static initialization methods described above 

(and appears to  have the same defects). A comparison between the nonlinear 

normal mode and bounded derivative methods In a simple context has been made 

by Kasahara (1902). 

1 - 3  The Situation with Regard t o  Limited Rrea Modelling 

To apply the nonlinear normal mode method we must know the linear 

normal modes o f  the model equations. For a global domaln this Is no particular 

problem: the equations can be linearized in such a way that the spatlal variable 

dependencies are separable and the horizontal boundary conditions are those of 

periodicity or regularity o f  the solution. The vertical structure equation is 

easily solved for  simple mean temperature profiles. 

For forecasts over a limited area the sltuation Is dramatically 

different. Here the dependent variables are specified on the boundary o f  the 

forecast domaln and are allowed t o  vary in time. It is difficult, if not 

impossible, to  define the normal modes in a completely general way. If the area 

Is of an irregular shape the horizontal variables may not be separable. 

Non-separability also results if the Coriolis parameter is a function of both 

variables, as in the case o f  a rotated latitude/longitude grid whose poles are 

not on the earth's axis. 

Some progress has been made recently in adapting the normal mode 

approach t o  limited area modelling. Briere (1902) has applied the method t o  a 

fine-mesh model in cartesian coordinates with constant boundary condltlons. 

Bijlsma and Hafkenscheid (1903) have Incorporated the effects of sphericlty. 



and their method apparently allows fo r  variable boundary conditions (although 

the results they show seem to hold the boundary values constant). Both 

applications have been successful in reducing the noise in short range 

forecasts. However, in each case it has been necessary to  make simplifying 

assumptions in order to  derive tha linear normal modes: the analysis has been 

done with a constant Coriolis parameter. It is not obvious if these assumptions 

can be relaxed. Nor Is it obvious whether or not they have a degrading ef fect  

on the specification of the initial fields. Ballish (1979) has demonstrated that  

failure to  include the pdterm in the derivation of the linear normal modes may 

lead t o  noise problems. Thus, a totally satisfactory resolution o f  the problem 

of initialization for  limited area models is sti l l  outstanding. 

1 - 4  Novel *roach: The Lsplece Transform Technique 

In this report the following qusstion is addressed: Given a nonlinear 

prediction model. how can the initial conditions be specified in such a way that 

no compmmnt o f  the flow will evolve with high frequency gravity inertia type 

timescales? A general technlque is developed which provides the answer t o  this 

question. The technlque Involves the use o f  a filtering method based on a 

modification o f  the inversion formula f o r  the Laplace transform. This f i l ter  is 

used in en iterative procedure which is applied t o  a general nonlinear system 

with multiple timescales. Provided the procedure converges, the result is a 

function which (1) satisfies the system equations and (ii) evolves slowly in 

time. The initial value of this function provides the answer to  the question 

posed above. 

The practical implementation o f  the procedure necessitates some 

approximations (a) t o  reduce the computetional e f f o r t  and (b) t o  avoid 

numerical instabilities essoclated with tho Laplace transform inversion. If the 

nonlinear terms are small (a necessary condition for convergence anyway, and 

true for  atmospheric motions) these approximations are quite acceptable. and 

lead t o  a simple initialization procedure. The procedure is seen t o  bear a close 

relationship t o  the linear and nonlinear normal mode initialization methods. R 

point of vital practical importance Is that the new technlque does not require 



knowledge o f  the linear normal modes o f  the system. Thus, it can be applied 

more generally than the previously proposed methods. 

The feasability o f  the Laplace transform technique is demonstrated 

by application t o  a simple one-dimensional model similar t o  tha t  used by Baer 

(1977). A model run, start ing from geostrophically balanced initial conditions. 

results in large amplitude, high frequency oscillations. These oscillations are 

most clearly seen in the evolution o f  the divergent kinetic energy. Application 

o f  the f i r s t  approximant o f  the new technique (equivalent t o  linear normal 

mode initialization) reduces this noise considerably, but  some small oscillations 

remain. The nonlinear procedure, wi th just one iteration, leads t o  virtually 

to ta l  extinction o f  the noise. These results are in complete agreement wi th 

those obtained by Baer (1977) with his technique, and demonstrate tha t  the 

present method is an effective means o f  controlling the bigh frequency 

oscillations in this simple primitive equation model. 

The application o f  the technique in the context o f  a general baroclinic 

(limited area o r  global) primitive equation model is discussed. The proposed 

method IS essentially the same as tha t  used in the case o f  normal mode 

initialization: the vertical and horizontal structures are separated, and tbe 

horizontal s t ruc ture  functions are initialized separately f o r  each vertical mode 

or  equivalent depth. The technique would appear t o  be as flexible as normal 

mode methods in i t s  ability t o  handle orography, model physics, etc .  It is more 

flexible insofar as it can also be applied t o  a limited area model, where the 

horizontal variables need not be separable, where the boundary conditions may 

vary in time and where the linear normal modes are unknown 



2. Theoretical Discussion. 

We consider the following question: given a nonlinear system with 

multiple timescales, how can the initial conditions be specified in such a way 

that the rapidly varying components o f  the solution are completely supressed 

fo r  all time? We formulate a general procedure which, given convergence. 

provides a solution satisfying the original nonlinear equation and evolving slowly 

in time. It is shown how this procedure may be applied in an approximate form 

t o  specify initial conditions which guarantee a slowly evolving solution. 

2.1 Filtering w i t h  Laplace Transforms 

Consider a function f(t) with components of various frequencies 

Suppose we wish to  isolate that par t  of f which varies with frequency les? 

than v. Knowing the expansion ( 1  1, it is trivial t o  set an equal t o  zero 

whenever o n  v ;  the remaining components provide the solution. Now suppose 

that f(t) is unknown but that i t s  Laplace transform is given by 

The filtering of f can again be done by setting an = 0 when lonl > v .  and 

inverting the sum of the remaining terms. 

Next, suppose we know j ( s )  to  be of the form (2) but do not know 

the precise values (an.on). The original function f(t) may be obtained from the 

inverse transform 

where C is a line parallel to  the imaginary axis and t o  the right of ell 



S - plane 

Figure 2.1: Contours in the s~plane used for  the regular and modified inverse 

Laplace transform. The value of  7 is chosen t o  separate the rotational 

frequencies ( v R )  and the gravity wave frequencies ( v G ) .  



singularities of i. The contribution t o  this integral from the pole of i ( s )  a t  

i on  is just anexp(iont). Without knowing (anson), we can st i l l  eliminate all 

components with frequencies greater than 7 by changing the contour C in ( 3 )  

to  a circle C* of  radius 7 centred a t  the origin of the s-plane (see Figure 

2 , l ) :  

The function fz is just the sum of the components resulting from those poles 

which fall within c* ,  1.8. the components with frequency less than r .  This is 

exactly what is required. Thus, knowledge of the transformed function on the 

contour C* is sufficient to  perform the desired filtering. 

2.2 Separation o f  Scales in e General Nonlinear System 

Consider a system whose state a t  time t is specified by the vector 

X ( t ) .  For example. X might comprise the values o f  the dependent variables a t  

all the gridpoints of a forecast model. We assume that the evolution of X is 

governed by a nonlinear equation o f  the form 

where L is a constant linear operator and N is a nonlinear vector function of 

X.  If the system is in the state Xo a t  t SO then the Laplace transform o f  this 

equation may be writ ten 

where we define the matrix M = M(s) = ( s 1 + L 1,  with i the identity matrix. 

If the nonlinear terms in (6) are ignored the transformed solution is 

just 



Inverting this we recover the solution X ( t ) .  Suppose we are interested only in 

the slowly evolving part of X,  i.e. that part which oscillates with frequency 

less than r .  Then we may apply the operator L* t o  obtain 

This wi l l  have the desired property. Alternatively, if we define 

and use this as the initial state, the linear evolution of 

contain only low frequency components. 

(9) 

the system wi l l  again 

If ~ ' ( 0 )  is used as the initial state for  the nonlinear equations (5) 

the high frequency components will be re-excited immediately by the nonlinear 

term N(X). We wish t o  avoid this happening by modifying the initial state. We 
.. 

can solve ( 6 )  for  X by an iterative procedure analogous t o  that used by 

Machenhauer (1977). We assume that the nonlinear terms are small and take as 

the f i rs t  approximant the linear solution 

The f i r s t  estimate of the slowly varying solution is then 

When this is known the nonlinear term NI=.~(x;) can be obtained and i t s  

transform evaluated. Further approximations are given by the iterative 

procedure 



Suppose the procodwe converges: than we can w r i b  

which. when inverted. shows that tho vector x . 4 :  hss the following 

proportles: (a) it satisfies the o r i g l ~ l  equation (5): (b) It contains only 

slowly evolving components. This is exactly tho solution which was desired. We 

note in passing that. if L-' Is used instoed o f  L* above. the full solution t o  

the nonlinear problem is obtained. 

2-3 Application to  initlelization 

The procsdure developed abow ie difficult to apply in practice f o r  

two reasons. First, it involves the calculation o f  tho L a p l e  transform o f  the 

nonlinear term a t  each iteration, which implies a formidable ammount of work. 

Second, the Laplace transform is notoriously diff icult to invert numerically. 

because o f  the factor exp(st): this also applies to the modified inverse 
* 

trensform. 1 . We circumvent theso problems by assuming that the nonlinear 

term varies so slowly that it may be considered constant and its transform 

approximated by 

Furthermore. since we are Interested in the approprlato initial values t o  use. 

the operator L* need only be evaluated a t  time t - 0 .  The approximate 

procedure is outlined below: 

First  qproxlmmt: 



The final itorstion o f  equation (20) gives us the requid initial conditions. In 

practice it is found that one or two i h t l m o  are sufficient roduco the 

amplitude o f  tho hlgh frequency components to a negligible level. Noto that  the 

matrix M may be pre-calculated. inwr tod md s t o d  f o r  a sot o f  values of s 

lying on c': thus. the method is d l y  economical. 

2.4 Relationship t o  h r m e l  Mode dnltlailzetlon 

From the deflnltion (4) o f  tho modified lnwrso Laplsco transform. it 

is clear that  the f i r s t  epproximant in the &ow tochniqw is equivalent to 

linear normal mode initiallrstion. That is. application o f  (16). (17) with an 

appropriate value o f  7 has tho same e f fec t  as spectral resolution into normal 

modes followad by removal o f  all modes wlth frequency grsater then 7. Note 

that if the equations have boon linesrid shout a gonorel moan flow G=G(+.Z) 

i t s  ef fects are fe l t  by the linear normal mod&. Tho elgonvaluos may be 

complex and there may be a continuous spectrum in tho case o f  a varying mean 

flow. 

The full nonlinear technique yields a solution which evolves slowly for 

all time. The essential approximation in tho practical implementation of the 

method is the assumption that the nonlinear terms evolve so slowly that they 

may be approximated by their initial values (see equetlon (15)). This is the 

same as the assumption made by Machenhauer (1977) (see his equations (14). 

(15)). It would thus appear that the method proposed here is closely related 

to  that o f  Machenhauer. Tho formal reletionship betwoon the present method 

and those o f  Machenhauer and o f  Bsor and Trlbbia (1977) will be considered 

elsewhere. 



3. ADDlication t o  a One-dimensional Model 

3 1 Formulation o f  the Method 

In order t o  test  the feasability o f  the Laplace transform method in 

the simplest context it has been used t o  initialize the data for a 

one-dimensional model. The model is similar t o  that used by Beer (1977) and a 

full description is given in Lynch (1984). The basic equations are 

Here x is distance eastward. t is time, u =S*u' is the zonal velocity with G 

the constant mean windspeed, v the northward velocity, and 0*+0' the 

geopotential. The vorticity and divergence ere < =vx and 6 lux.  The Coriolis 

parameter f end i t s  meridional dsrivitive p are assumed constant. 

The above system is easily shown t o  have normal mode solutions of 

two kinds: the slow Rossby waves haw frequencies given approximately by 

where k =  (2dL.1 is the wavenumber and L the wavelength. They have small but 

nonzero divergsnce. There are also fast  gravity inertia waves whose 

approximate frequencies are 

These divergent waves travel in both directions. For typical parameter values 

the two wave types are clearly disthguished by the magnitudes o f  thelr 



frequencies. 

Energy equations are derived in the usual manner (see e.g. Pediosky. 

1979). The rate of change o f  eddy kinetic plus available potential energy is 

given by 

Clearly, if the mean flow vanishes (fi41=U) the total eddy energy remains 

constant. The eddy kinetic energy can be split into contributions due t o  the 

rotational and divergent motions: 

The values o f  these are calculated a t  each timestep and give valuable 

information about the dynamics o f  the motion being considered. 

In order t o  clarify the relative msgnltude o f  the various terms in 

the equations of motion it is convenient t o  nondimensionalize the equations by 

defining characteristic scales f o r  length, time d velocity. It is also 

convenient numerically t o  have the principal terms o f  order unity. We introduce 

length and velocity scales L and V and scaie time by and geopotential by 

fLV. We define some nondimensional combinations: 

Here Ro is the Rossby number; R is a measure o f  the importance o f  the 
B 

,9-effect. determinsd by the scale of the motion: RF is the reciprocal o f  the 

Froude number, and relates the length scaie o f  the motion t o  the Rossby radius 

o f  deformation. h- 4 @ / f  The equations o f  motion. (21). (22) and (23). may 

now be writ ten in nondimensional form 



The relationship between the velocities (u.v) and the prognostic 

variables ((.6) suggests that we specify them a t  alternate points of a grid 

staggered in space. The velocities are specified a t  'half-points' and the 

vorticity, divergence and geopotential a t  'whole-points': 

Quantities not available directly are obtained by averaging. We define some 

finite difference operators in the usual way: 

A consistent (spatial) f inite difference approximation t o  the equations may now 

be writ ten as follows: 

A l l  dependent quantities are assumed t o  have period (N-Ax). The state o f  the 

system a t  any time is completely defined by the vector 



We assume in the following that the mean flow uo vanishes; this assumption is 

made t o  simplify the discussion and can easily be relaxed. 

From the initial velocities end geopotential we assemble the vector 

0 0 
where lm = (vm:- um:)/~x and similarly for 6m . The equations (a), (29) and 

(30) are now Laplace-transformed t o  give 

, ~ 
. . . . . . ~ .. 

A 

(The Leplacs transform o f  f i s  denoted by f). T o  cast this system into matrix 
, . . :. . I .~ .. . .  ? .  - , :. ~ ' .  

form let  us define some 33-mat rice.^ as follows: . ... . .  . . 
~; ,. : . . . .  .:. . . (. :. -:. . J , ,  . :. . . 

. . 

We assemble these into the periodic, block tri-diagonal matrix o f  order 3N: 



The system of equations (31 - ( 3 3 )  may now be written in the form 

.. 
Here the nonlinear terms have been collectsd into N, which is a transformed 

nonlinear vector function of the state vector X ,  Equation (34) is formally 

identical t o  equation ( 6 )  in section 2-2 and the method of initialization 

described there can now be applied t o  the present model. 

3  - 2 Computational Results 

A number o f  model runs were carried out, with various parameter 

values and initial conditions. For all runs described here the nondimensional 

numbers had the following values: 

7 The channel length was L C 1 0  m . .  where NxAx6L with NXC20 and Ax=500km.  
5 

One day forecasts were o f  duration NTAt  4 0  see. ('27.0 hours) where 

NTslOOO and A t  = 100 sec. Fln Adams-Bashforth timestepping scheme was used. 

For the glven parameters the maximum Rossby wave frequency and minimum 

gav i ty  wave frequency cen be calculated, and have the (nondimensional) values: 

Flny value of 7 lying between these values should serve to  separate the 

timescales. The value r =  1 was chosen; the matrices M(s) were calculated for 
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Figure 3.1: Evolution of tho geopotontlal for a me dey forecast starting from: 
(A)  Goostrophic initial winds (NIL); (0) Linearly initialized fields (LIN). 



Figure 3.2: Ewlution of the mnal wind for a one day forecast starting from: 

(A)  Geostrophic initial winds (NIL); (0) Linearly initialized fields (LIN). 



24 points evenly s p d  around tho unit circle. 

Tho initial conditions were d o f i d  by setting 

where the phases +# were chosen randomly, and deriving the geostrophic winds 

We consider three different cases of initialization as follows: 

NIL: No Initialization Goostruphic IC's as above 

LIN: Linear lnitiellzation IC's from (17) 

NLI: Nonlinear Initialization K 's  from (20). ono iteration. 

Tho final values o f  the v and 0 fields were very similar In all three 

cases. Howevor. without initialization ( N U  tho time evolutian a t  a central 

point had small. high frequency fluctuations suporimposed M tho slow 

development. With linesr initialization (UN) those disappoarod. The evolution of 

0 is shown in Figwo 3.1 for tho two cases. The zonal wind field evolved noisily 

before. but smoothly a f te r  inltializstion (Figure 3-21. The divergence field 

behaved in a similar manor (not shown). 

Since tho gravity waws have rdativoly large divergence, we would 

expect the divergont kinetic onagy t o  be a gwd indicator o f  their presence 

(Beer. 1977). !n figure 3.3 tho divergent energy, K as a function of time is 

shown for  tho case o f  geostropt~k initial winds (NIL) and linear initialization 

(UN). The oscillations in K are extremely largo beforo initialization: the linear 
I 

hitlalizstion reduces them &amatically. but does not remove them completely. 

Figuro 3 X b )  is reproduced in figure 3.4(a) with a much expanded vertical 

scale. The gravity oscillation remaining after linear initialization (UN) are clear 

to sea. In figure 3.4(b) we show tho evolution o f  KI. on the same scale. af ter  

a single nonlinear iteration o f  the lnitializatim (W). The gravity wave noise is 



Figure 3.3: Plot of the divergent kinetic energy versus time starting from: ( A )  
Geostrophic Initial winds (NIL); (B) Linearly initialized fields (LDO. 



Figure 3.4: Plot of the divergent kinetic energy versus time starting from: (R) 
Linearly initialized fields (LIN): (0) Nonlinearly i.nltialized fields. one 

. . . . . . . .  .- . . - . , , , ~ . ~, 
% 

nqlinesr iteration (NU):' . , .  
. . 



almost completely eliminetod. This result is in full apa8mmt with the results 

o f  Bow (1977) for his mnlinecr mrmai mode method. md demonstrates tho 

effoctivenoss of tho promnt method in dealing with the problem o f  high 

frequency oscillations. 

Sovorel other model IWIS confirmed tho efficacy o f  tho method in 

controlling tho gav i ty  wave noise. A number o f  ton dey (I$-.) f-ts 

showed that there is no tendency for tho noise to retun ddng this poriod. 

In all cases tho convergence was very rapid. with l i t t le change a f t o r  

the first nonlinear iteration. A small residue o f  noise is not removed by 

further itoratims; prosumebly. ttds residua i s  associstad with tho 

approximation (15). Modification of (15) t o  dlow N(X) to vary l i d y  in tlmo 

did not lead to any significant improvement. However. the residue i s  too smdl 

t o  ceuso any prsctil problems. 



4. Princi~les o f  b l i c e t i o n  t o  a General Forocastincl Model 

The epplication o f  the Laplace t m s f o r m  technique to a one 

dimensional model was straightforward. For a general barocllnic mo&l the state 

vector mlght contain. typically. about ten thousend elements. Tho lnvorsion o f  

tho resulting gigantic matrices M(s) is an almost impossible tesk on 

present-day computers. Therefore, the problem must be formulated so ss t o  

produce matrlces o f  managesblo size. 

Let us assume that initial fields are required for a limited area 

model with vertical coordlnato aip/p,, where ps is tho surfare prossuro. Tho 

vertical etructuro can be separated out if we linearize about a m o t i o n l ~  

state with mean temperature 7 4 a ) .  To perform tho sopemtion we introduce 

a now dependent variable, P=@'+R~ lnps. whore @ is tho perturbation 

goopotontial (see, e.g., Kasahera end Puri, 1981). If tho model hcm K levols. 

tho vortical structure equation yields K eigonvalues. or equivalent depths. and K 

corresponding oigenfmctions, ?,.(ak). For each equivalent depth, tho horizontal 

structure is governed by a set o f  three equations for u. v d P which are o f  

the form o f  the Laplace tidal equations. 

For global and many limited area models the horlmntai structure is 

sopsrable into dependencies upon longitude A end latitude +. Howevor. for a 

transformed longitudo/latitudo grid, whose poles are removed from tho earth's 

axis. the Coriolis parameter is a function o f  both horizontal variables. x and y. 

end soparation o f  variables no Iongar obtains. We mi&r a method o f  applying 

the Laplaw transform initialization tochnlque In this case. 

Tho Laplace transform of tho horizontal equations (for a given 

equivalent depth. 0, may be written: 



(where E -420a )~ /g~ ) .  L i t  the domain be 'discretized in& 11 j points and 

derivatives approximated by f i n i t e  differehces in the usual way. For simplicity. 

we consider a non-staggered grid wheke'all $i+tgno&.ic. v&iables arb specified a t  
*. * ,  .. 

all gridpoints. The values of u. v and P & a  singL row (excluding endypoints) 

are assembled in a vector 

* * 
where uit=u(x y ). etc. The 'system (35) may n& be writ ten formally as 

1' I 

Where R I. El. C,  and 0 are tridiagcmi matrices and a column vector whose 
I 

elements depend upon the values o f  the coefficients o f  the equation. The 

lateral boundary values ul u,~. etc. occur in the: vector O ' 

I ' 
Lindzen and Kw (1969) have described a reliable direct method f o r  

solving systems o f  the form (36). W e  iritroduce a s e t o f  internkdiate matrices 
, . .  - . 

and vectors. aI and pi. 'sukh that' 
. . . . . . , 

When (37) Is used t o  eliminate ikl from (3%) a solution for a ,  and p is 
J 

sppsent in the form 

W h e r e  tl (Rfil+Bl). The bomdary conditions for j = 1 are used t o  obtain a l .  

p1 and from i38) we then get el. pi. The buundwy conditions a t  j = J  gtve us 
A 5 and the solution XIl i s  obtained from (37). The crucial point is that  the 

matrices al are indspsndent o f  the boundary values and of the forcing terms; 
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