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Max Margules and his Tendency Equation

Peter Lynch

The paper appearing below in translation was published in the Boltzmann
Festschrift in 1904. In this short paper, originally entitled Uber die Beziehung
zwischen Barometerschwankungen und Kontinuitdtsgleichung, Margules ex-
amines the relationship between the continuity equation and changes in sur-
face pressure. He concludes that any attempt to derive a reliable estimate
of synoptic-scale changes in pressure, using the continuity equation alone, is
doomed to failure.

1 Margules’ Tendency Paper

Margules begins with the hydrostatic approximation that the pressure at a
point is determined by the mass of air above that point (his Assumption
(A)). Then the surface pressure is given by pg = [ gudz, where p is the
density. He introduces vertically averaged velocities, which we may define as

Po Po

sy= L : _1
U= i udp; b= 55 ) vdp.

He then integrates the continuity equation from the earth’s surface, assumed
flat, to a height h. If h is assumed large, we arrive at his equation (2) which
may be written

P+ Vo0 =0, 1)

- where U = (u,v) is the vertically averaged horizontal velocity vector. We
note that this is equivalent to the more familiar form

a Po
3?;—0+/0 V-Vdp=0, (2)
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where V is the horizontal velocity. This is the familiar tendency equation,
which we may justifiably call Margules’ Equation (Wallace and Hobbs, 1977).

The tendency equation gives us a means of calculating changes in the
surface pressure, given the vertical distribution of the wind velocity V. The
central result of Margules (1904) is that this procedure is fraught with dif-
ficulty. He cites, as motivation for his study, earlier publications of Exner
and Trabert which addressed the problem of predicting pressure changes over
a day with a view to forecasting the weather. He demonstrates that, if an
accurate pressure tendency is to be obtained, the winds must be known to
a precision quite beyond what is practically feasible. The ineluctable con-
clusion is that Margules’ Equation alone does not provide a useful means of
calculating synoptic pressure changes.

Margules considers various simple cases in which the tendency equation
can be easily solved for changes in pressure. We give one example here, based
on his special case (21). Let us consider uniform zonal flow in a channel

— - = — — = =
vV

We assume that the velocity V = 10ms™? is constant with height and that
the surface pressure is uniform, pg = 10° Pa. Clearly, the divergence vanishes
identically, so the tendency equation implies that the pressure remains con-
stant. Now let us assume that the velocity is measured at two points, one
150 km downstream from the other. If the observation at the first point over-
estimates the true value by 10%, we obtain V; = 11ms ! and V, = 10ms™

e T .
V; =11 ms™! oo -Ae=150km ————— Vy=10ms™!

Such a magnitude of the error is typical of realistic observations. We next es-
timate the divergence in the box between the two points by a finite difference
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ratio:

. NAV_ —1ms_1 — -6 .—1
Vo Vm R = s — = —6.67x 1070 s

But now Margules’ Equation (2) gives, for the tendency,

I = V-V = 0.667Pas!

so the pressure in the box should rise by two-thirds of a Pascal every second.
Perhaps this seems a small value, but recall the song from The Pajama Game:
Seven and a half cents doesn’t buy a heck-of-a-lot,
Seven and a half cents doesn’t mean a thing.
But give it to me every hour, forty hours of every week,
That’s enough for me to be livin’ like a king.
If this tendency is sustained over a long period, the resulting pressure rise is
dramatic:

0.667 Pa s~ = 144 hPa in 6 hours! (3)

The implication is clear: if we apply the tendency equation over a synoptic
period, the resulting pressure change may be utterly unrealistic.

Astute readers will be reminded of Richardson’s calculated pressure
change, of 145 hPa in six hours, almost identical to the value in (3). Richard-
son (1922) used Margules’ Tendency Equation, in the form

%p?o=—9/wV-Mdez0,
[¢]

to obtain this value, so it is hardly surprising that his forecast was unrealistic.

There is no reason to believe that Richardson was aware of Margules’ pa-
per; certainly, he makes no reference to it in his book. Its contents were sum-
marized by Exner in his textbook Dynamische Meteorologie, which Richard-
son does cite, but without explicit reference to the relevant section. Since this
book was published in 1917, Richardson could not have seen it until his return
to Britain after the First World War, and after his trial forecast had been
completed. Richardson ascribed the difficulties with his predicted tendency
to spurious values of divergence arising from errors in the wind observations.
* This explanation, while incomplete, is consistent with the analysis of Mar-
gules. Had Richardson been aware at an earlier stage of Margules’ results,
he might well have decided not to proceed with his trial forecast, or sought
a radically different approach (Platzman, 1967).
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On the final page of his short paper, Margules investigated pressure
changes due solely to vertical motion. He considered a column of air ex-
tending from the surface to a fixed height ~ and assumed that all horizontal
fluxes vanished. He found that a persistent downward velocity of 1¢ms™!
at 10km — roughly, tropopause height — would cause a pressure drop of
I mm Hg at that height, or about 8 hPa in six hours. Thus, small persis-
tent vertical velocities can result in large pressure changes. In general, there
are both horizontal and vertical fluxes and it is impossible to determine the
vertical velocity from the continuity equation alone.

2 Max Margules (1856—1920)

Many outstanding scientists were active in meteorological studies in Austria
in the period 1890-1925, and great progress was made in dynamic and syn-
optic meteorology and in climatology during this time. Amongst the most
important members of this ‘Vienna School’ were Julius Hann, Josef Pernter,
Wilhelm Trabert, Felix Exner, Wilhelm Schmidt, Heinrich Ficker, Albert De-
fant and, of course, Max Margules. The Austrian Central Institute for Mete-
orology and Geodynamics (ZAMG) recently celebrated its 150th anniversary,
in conjunction with which a beautiful book has been produced {Hammerl,
et al., 2001) containing contributions on the work of the Vienna School and
on the many scientists who worked there (see Davies, 2001; Fortak, 2001;
Pichler, 2001).

Margules, one of the founders of dynamical meteorology, was unquestion-
ably a brilliant theoretician, the true value of whose work was adequately
appreciated only after his death. The present biographical sketch is based on
Khrgian (1959), Kutzbach (1979) and Gold (1920), and on several articles
in Hammer] (2001). Margules was born in the town of Brody, in western
Ukraine, in 1856. He studied mathematics and physics at Vienna University,
and among his teachers was Ludwig Boltzmann.! After a two-year spell as a
Volunteer at the Meteorological Institute in Vienna, Margules went to Berlin
University in 1879. He returned to Vienna University the following year as
a lecturer in physics. In 1882 he rejoined the Meteorological Institute as an
Assistant, and continued to work there for 24 years.

!Indeed, the paper appearing below was first published in the Festschrift on the cccasion
of Boltzmann’s 60th birthday.
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Margules studied the diurnal and semi-diurnal variations in atmospheric
pressure due to solar radiative forcing, analyzing the Laplace tidal equa-
tions and deriving two species of solutions, which he called ‘Wellen erster
Art’ and ‘Wellen zweiter Art’ {Margules, 1893). This was the first identi-
fication of the distinct types of waves now known as inertia-gravity waves
and rotational waves. This work, soon followed by Hough's closely related
but independent study (Hough, 1898), foreshadowed the studies of atmo-
spheric planetary waves some thirty vears later and its full significance was
appreciated only after the insights of Rossby (1939) and Haurwitz (1940).

Margules turned next to the study of the source of energy of storms. He
demonstrated that the available potential energy associated with horizontal
temperature contrasts within a cyclone was, if converted to kinetic energy,
sufficient to explain the observed winds. In the course of this work, he de-
rived an expression for the slope of inclination of the boundary between two
air masses, a formula which bears his name and is occasionally found in
modern textbooks. On the basis of observations carried out at Vienna and
Bratislava on 3 December, 1899, Margules showed that surfaces of separa-
tion between distinct air masses actually exist in the atmosphere (Kutzbach,
1979). This work overturned the convective theory of cyclones and adum-
brated the frontal theory which emerged about a decade later.

Margules was an introverted and lonely man, who never married and
worked in isolation, not collaborating with other scientists. His published
work was often abstruse and inaccessible and as a result was undervalued. It
is fair to say that he was far ahead of his time. Felix Exner, a friend and col-
league was one of the few who understood and appreciated Margules research.
Margules was disappointed and disillusioned at the lack of recognition of his
work and retired from the Meteorological Institute in 1906, aged only fifty,
on a modest pension. After retirement he turned his back on meteorology
and spent his energy exclusively on chemical studies. His last meteorological
publication (Margules, 1906) opened with the surprisingly personal remark
“Circumstances, on which I cannot elaborate here, compel me to write down
this paper and supplement in haste, and to bid farewell to meteorology”
(Fortak, 2001).

In a moving appreciation of Margules shortly after his death, Exner (1920)
wrote that Austria had lost an outstanding scientist and that, taking a broad
perspective, Margules could be accurately described as one of the first ever
theoretical meteorologists. His altogether tragic fate greatly saddened Exner,
who described him as one of the loneliest men he had ever known. Gold wrote
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in an obituary (1920) that “meteorology lost him some fifteen years ago, and
is forever the poorer for a loss which one feels might and ought to have been
prevented”. However, Exner and other colleagues had tried their best to
prevent this loss, making repeated offers of help, which Margules resolutely
resisted. The value of his pension was severely eroded during the First World
War so that his 400 crowns per month was worth about one Euro, insufficient
for more than the most meagre survival. He was awarded the Hann Medal
by the Austrian Meteorological Society in 1919 but declined the honorarium
which accompanied it, with the stoical comment “I would accept the offer if
it could be of help but, as things stand, the Institute could put the money to
better use” (Hammerl, et ol., 2001, page 134). Margules died of starvation
just one year later.

In 1987 the computer building of ZAMG was completely renovated and
named Max-Margules-Haus. This is most appropriate: Margules’ 1904 pa-
per played an important rble in helping us to understand the problems of
numerically integrating the primitive equations used in numerical weather
prediction today. In his day, Margules considered that any attempt to pre-
dict the evolution of atmospheric flow, that is, to forecast the weather, was
premature and indeed futile. He was quoted by Exner as saying that forecast-
ing was “immoral and damaging to the character of a meteorologist”. The
paper appearing in translation here gives some insight into why Margules
held this view.
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On the Relationship between Barometric
Variations and the Continuity Equation

Max Margules
Vienna.

Translated by Klara Finkele and Peter Lynch

We denote by pp and pp, the pressure at two points in a vertical line, at the
surface and at height h. We assume that the pressure difference, whether the
air is in motion or stationary, is given by

h
(A) p=po—pn=f gudz,
0

where p is density at height z. Because of the short distance, we assume that
the acceleration due to gravity g is constant (Assumption B) and also that
the earth’s surface is an z-y plane (Assumption C).

The continuity equation is written

" O Bww) | w) | )
ot Ox dy Oz

=0

(where u, v are the horizontal velocity components, w the vertical velocity
component and ¢ the time). Multiplying by ¢ dz and vertical integration from
the surface to height h, and introducing the quantities u, v defined by

h h
pu:/ gpudz, pb=/ grvdz,
0 0
we obtain the equation for the temporal variation of p:

+ gupwp = 0.

8
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This holds for all A. For very large height h we introduce the assumptions
(D) pn=0, (E)  ppw, =0.

Then p = pp is the pressure at the surface, and u, b are the average horizontal
wind components in a column of unit area at location (z,y) at time ¢. The
average is formed by weighting (u,v) at every level in the column with the
density at that level. It follows that

9po | Opou) | O(pov)
() o " ar T oy

=0,

an equation of the same form as the continuity equation for horizontal motion.
It can also be written as
(2*) _QEQ — _ia(pﬂ ) cén)
ot n  ds
where

¢ is the resultant of u and v [actually, the magnitude of (u, v)!

s 1is the curve whose tangent is, at every point, in the direction of ¢
[actually, the direction of {(u,v)] at time ¢

én  is the [infinitesimal] normal distance between s and a specific
neighboring curve s’ of the same type.

The tendency of py depends on the spatial difference of ¢, dn and py along
the curve s. The influence of each individual factor is as follows:

o)
po and on spatially constant on s : (21) % = “pg"é'g’
06
po and ¢ spatially constant on s : (22) % = —% - ~§-§'-
0 d
¢ and dn spatially constant on s : (23) /A

a s

Following the assumption (2;), the s-lines are parallel and coincide lo-
cally with the surface isobars, or they are in an area of uniform pressure.



10 Max Margules

To determine the value of d¢/@s which occurs under typical changes of pres-
sure, we postulate that the barometer rises by 1 mm in one hour and fix
po = 760 mm Hg; then

@ N 13}90 _ 1 1
ds 760 3600s

py Ot

= —3.65 x 107"s7 !,

and with ds = 10°m we get dc = —0.04 ms™!. If the resulting velocity at a
point on the s-line is greater by 0.04 m/s than at a point 100 km downstream
on the same s-line and the gradient is constant, then the barometric pressure
increases along the whole distance by 1 mm per hour.

(At the same time, the velocity of the wind can vary from 0 to 40ms™!,
from different directions, at different heights. How accurate must the wind
conditions be known if the continuity equation is used to determine if the
barometer is going to rise or fall.) [Margules poses a question here—without
a question-mark—Dbut provides no answer.

Eqn. (2;) determines the pressure tendency which is caused by the di-
vergence of s-lines at constant ¢ in an area of uniform pressure. It can be

written as
L10p | (1m\|_ _da
mot |- \onas /|~ ‘on

were « denotes the angle between a given direction on the plane and the
tangent on s. Using the above equation and setting ¢ == 1ms™! and dn =
1km, it follows that da = —1.26’ [minutes of arc corresponding to do =
—3.65 x 10~* radians]

Eqgn. (23) holds for parallel s-lines and with ¢ constant along every s-line.
The resul‘ting velocity can be a function of the parameters of the family of
s-lines [i.e., can vary from one s-line to another]. A pressure change occurs
where the direction of ¢ is different from that of the isobar at the surface;
because of the difference in py, the incoming and outgoing air ‘masses in 6n,
én’ [i.e., normals between s and s' at two different points] are different. If ¢
is constant in time, then (23) has the general integral

po = f(s— <)

and if, in addition, ¢ assumes the same value in the entire region, there is a
parallel displacement of the isobaric system in the s-direction with velocity
¢. Similar displacements occur which do not necessarily require that ¢ be
constant
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The pressure tendency at the surface is completely determined if pg, u
and v are known as functions of position; however, u and v are not uniquely
determined by pg and Opo/0t. For every family of [curves] s;, one can select a
¢; so that along every curve [the product] py-c;-dn; is contant; this component
gives no contribution to dpy/0t [see (2*)]. If the continuity equation alone
is used, then all non-contributing components of ¢ to the pressure tendency
can be neglected. [For example,] the expression (5/py)c is such a component,
where p denotes constant pressure (say, standard pressure), corresponding to
parallel displacement with constant ¢. The same displacement of the isobars
as obtained above with (23) is also obtained from (2*) with parallel s [curves],

with the resulting velocity
d=c (1 - 2) i
Do

The velocity distribution is now similar to that of a travelling wave: motion
opposite to the propagation direction at locations of low pressure, and motion
in the same direction as propagation at locations of high pressure; and ¢’ is
small compared to the propagation velocity c¢. The same displacement of the
isobar system can also be produced in infinitely many different ways.

It is not expected that the continuity equation by itself can lead far. The
motivation for collecting these considerations was given by two publications!
which attempted to find a connection between this equation and certain
hypotheses so that one could predict the pressure fluctuations or the weather
during a day. This depends very much on the hypotheses, which are not
discussed here.

Of the assumptions introduced above, (B) and (C) are for convenience
only, and they could be disregarded. Assumption (A) has the following im-
plication: It is very probable? that the static pressure difference does not
deviate more than 1 mm Hg from the true value py ~ pn, even at the largest
height difference; at least, not persisting for a [full] day. The changes of py
or p often reach 10 to 20 mm Hg at the same time. Considering large [scale]
changes, (A) can be assumed to be reasonably accurate. Assumptions (D)
and (E) can be omitted if one confines attention to Equation (1). In this
~ case, however, a large portion of the changes in p are caused by inflow and
outflow of air at the upper surface.

'Felix M. Exner, Sitzungsber. d. k. Akad. d. Wissensch. zu Wien. 111. p. 707. 1902;

W. Trabert, Meteorolog. Zeitschr. 38, p. 231. 1803.
2A. Sprung, Lehrb. d. Meteorologie, p. 160. Hamburg, 1885.
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Assuming that the change is caused by vertical motion only, then

10
HaWp = ___p

got’

and a rise of p by 1 mm Hg/hour corresponds to?

10p 10333 1 \
it - = _(.00378 kgm™~2s7!.
[ g ot } 760 3600 Bm e

At the heights of 10, 20 [and] 30 kin, the density is
0.42, 0.089, 0.0067 kgm™*;
then wy has the values
—0.009, —0.042, -0.56 ms™",

which are small downward velocities.

Large changes in p are caused by persistent small differences in horizontal
air inflow or outflow, and also by small values of the vertical component of
velocity. The effect of these two [factors] can be cancelled in different ways
to produce an unchanged p; from the continuity equation alone, it is not
possible to determine if rising or sinking air motion will occur.

In equation (1) it is assumed that steady distributed sources and sinks
occur only at the upper boundary surface. If air (water vapour) leaves the
lower surface or is absorbed, then the appropriate term has to be added.
If condensation of vapour takes place, then there are sinks within the air
mass too, and a term must be added to the left hand side of equation (1) to
account for the weight of condensed mass in the unit column between 0 and
h per unit time. ‘

(Submitted 26 September, 1903)

3[Margules does not explain the origin of the factor 10333 here. We recall that
% X 760 = 1013.33 is an excellent approximation to the pressure in hectoPascals corre-
sponding to 760 mm Hg. Taking the acceleration of gravity to be g = 9.8066 ms™2, we

find that 100 x 1013.33/g = 10333 kgm™%]
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74. Uber die Béziehung zwischen
Barometerschwankungen und Kontinuititsgleichung.

Von Max Margules in Wien.

. Wir bezeichnen mit p; p, den Luftdruck in zwei Punkten
der Vertikalen am Boden und in der Hohe 4, nehmen an,
daB die Differenz in bewegter gleichwie in ruhender Luft ge-
geben ist durch . .

A
(4) P=Po-'ph=.fgua’z,
' 0

worin p die Dichte in der Hshe z bedeutet. Der Kiirze wegen
setzen wir die Schwerebeschleunigung ¢ konstant (Annahme B)
und betrathten den Boden als Ebene zy (Annahme O).

‘Aus der Kontinuitiitsgleichung :

Op , Bluw) | d(uy) |, dluw)
3—t‘"+695 +6‘y+6x =0

(¢, v horizontale Geschwindigkeitskomponenten, w vertikale,
t Zeit) erhilt man, wenn man den Faktor gdz beifigh und
iiber das Hobenintervall o bis A integriert; ferner u, v einfithrt,
durch die Definitionsgleichungen * '

B _ ® .
vuéfgu_udz, pb=fswvdz
0 : 0

die Gleichung far die zeifliche Anderung von p

8 8 A(pb
1 “g? + '——gp;) + ,gpz',j + g o, = 0:

Dies gilt allgemein fiir jedes A -Fir eine sehr groBe
Hohe wollen wir die Annahmen einfiihren A
D) pa=0,  (B) puwy=0.
Dann ist p=p, der Druck am Boden, u, b sind die
mittleren horizontalen Geschwindigkeitskomponenten in der

13
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586 o M. Morgules.

_Einheitss'ai.ule im Ort 2y zur Zeit & Das Mittel ist derart ge-

' bildet; daB die w, v jeder Schicht der S#ule mit dem Gewicht

derselben Schicht genommen sind. Hs folgt
(2) T apo + B(Pou) + a(all";b) _0
eine Glemhung von detselben Form wie die Kontinuitits-
gleichung der ehenen Bewegung. Man kann dafir auch
schreiben, wenn o

¢ die Resultante von u, b isf,

s eine Kurve, deren Tangente im Sinn des wachsenden
Bogens 'in jedem Punkte die Richtung des ¢ gur Zeit ¢
angibt,

dn das Normalensticlk zwxschen s uncl einer bestimmien
Nachharkurve s* derselhen Art .

(2%) . 8p_ L 8(m-cdn)

Die zelthche Anderung des po hingt ab von den Ortlichen
Unterschieden der ¢, dn, p, lings der Linie s. Den Finflu
jedes einzelnen Falktors kann man leicht angeben: -

Wenn lings s ortlich konstant sind

d g
Py und dn (&) % = —Poﬁ .
P ued ¢ . (2) Bp,, - ?f: %575
Yoo omden - @) "’;;v_— e,

Nach den Voraussetzungen von (2,) sind die s-Linien
parallel und fallen in der Nihe des Beobachtungsortes mit
den Isobaren am Boden zusammen, oder sie liegen in einem
Gebiet gleichen Druckes. Um den Wert d¢/8s zu bestimmen,
der bei Druckanderungen nicht zu seltener Art einfritt, postu-

- YHeren wir, daB das Barometer vm 1 mm in der Stunde steigh

und setzen p, = 760 mm Hg, dann isf

aC__--“,I 1- _ —7 -1
ar = W.gamﬂ--lo_.8,65,(59(5 )

. ds=10"m gesetzt gibt de= — 0,04 m.sec™™ Wenn die

resultierende Geschwindigkeit in einem Punkte der s-Linie
bestindig um 0,04 m/sec groBer ist, als in einem 100 k.

'~ stromabwirts entfernten Punkt derselben Linie und der Abfill
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glemhma,ﬁlg, steigt das ‘Barometer auf der ganzen Strecke um -

1 mm in der Stunde.

(In derselben Zeit kann die Geschwindigkeit des Windes von
verschiedener Richtung, in verschiedenen Héhen 0 bis 40 m/sec
betragen. Wie genau miiBte man den Zustand kennen, um
aus der Kontinuitdtsgleichung anzugeben, ob in der nichsten
Stunde das Barometer steigen oder fallen wird)

(2,) gibt die zeitliche ])ruckanderung an, die durch Diver-
genz der s-Linien bei konstantem ¢ in einem Gebiete gleichen
Druckes eintrith, Man kaon dafiir auch schreiben

_1m CEN de

3 T “an
wenn o den Winkel zw1schen einer festen Richtung in der
Hbene und der Tangente an s bezeichnet. Mit dem Postulat
wie oben und mit ¢ =1 mfsec erhilt man fir dz =1 km,
dw = — 1,26 Minnten,

(25) gilt fiir parallele s-Linien und lings jeder s konstantes c.

Dabei kann die resnltierende Geschmd.lgkmt eine Funktion
des Parameters der s-Schar sein. Druckéinderung tritt ein,
wo die Richtung des ¢ von der Isobare am Boden abweicht;
wegen der Unterschiede von p, sind die bei dn, d»' ein- und
austretenden Luitmassen verschieden. Wenn ¢ zeitlich koxn-
stant ist, hat (2) das allgemeine Integral
. Po=[ls —¢3)

und wenn noch ¢ im ganzen Gebiet den gleichen Wert hat,
bedeutet das eine Parallelverschiebung des Isobarensystems in
der s-Richfung mit der' Geschwindigkeit ¢. Ahpliche Ver-
schiebungen komihen vor; sie miissen nicht notwendig; durch
konstantes ¢ entstehen. :

Die zeifliche Druckinderung am Boden ist vollstand1g
bestimmt, ‘Wenn man pg, u, ¢ als Funktionen des Ortes kennt;
u, b sind aber auws p, wad dp,/d¢ nicht emdeutlg sbzuleiten.
Zu einer s-Schar 188t sich das zugehbrige ¢, so wihlen, daB
léngs Jecler Rurve p,. ¢;-dn, konstant ist; das gibt keinen

Beitrag 2u 0p,/0¢ Man darf soweit dié Kontinuititsglei- -
chung allein gebraucht wird, alle fur die zeitliche Druckiinderung

unwirksamen Teile von ¢ weglassen. Bin solcher ist bei der
Parallelverschiebung durch konstantes ¢ der Axusdruck (5/p,) ¢,
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wenn 7 einen konstanten Druck bezeichnef, sagen wir den
normalen. Dieselbe Ortsverianderung der Isobaren wie zuvor
mit (2;) erhilt man auch bei parallelen s as (2% mit der
resultierenden (reschwindigkeit

c’=c(1—£)-
Do

Die Geschwindigkeitsverteilung ist jetzt dhnlich der in einer
fortschreitenden Welle, Bewegung gegen die Fortpflanzungs-
richtung in den Orten niedrigen Druckes mit der Fortpflanzung
in jenen hohen Druckes und ¢’ klein im Vergleich mit der
(Geschwindigkeit des Fortschreitens ¢. — Dieselbe Verschie-
bung des Isobarensystems kann noch auf unendlich viele andere
Arten entstehen.

Man erwartet nichf, daB die Kontmmtatsglemhung allein
weit fihrt. Den AnlaB, diese Erwigungen zusammenzustellen,
geben zwei Publikationen?), in denen der Versuch gemacht wird,
aus jener Gleichung in Verbindung mit gewissen Hypothesen
die in -einem Tage -stattfindende Druckinderung  bzw. das
im Laufe des Tages eintretende Watter vorauszusehen. Dabet
kommt es sehr auf die Hypothesen an, die hier nicht diskutiert
werden.

Von den Anpahmen, die oben eingefiihrt wurden, dienen
(B, C) nur zur Bequemhchkmt und sind entbehrlich. (&) ist
$0 gemeint: Es ist sehr wahrscheinlich?), daf die statische
Druckdifferenz von dem’ wahren Wert p, — p, um nicht mehr
als 1 mm Hg abweicht, ‘such bei dem groften Hohenunter-
schied; mindestens nicht andauernd wahrend eines Tages. Die
Anderungen von p, oder p erreichen nicht selten in der glemhen
Zeit 10 bis 20 mm Hg. Wenn man groBe Schwankungen be-
trachtet, kann man (A) als angenshert richtig benutzen.

(D) und (E) entfallen, wenn man bei der Gleichung (1)
bleibt. Dann wird sber das Ein- und Ausstromen der Luft

an der oberen Fliche einen groBen Teil der Schwankung

von p bewirken kSnnen.

1) Felix M. Exner, Sitzongsber. d. k. Akad. d. Wissensch. za Wien.
111, p. 707. 1902; W, Trahert Meteorolog. Zeitschr. 88, p. 281. 1903,
2} A, ‘Sprung, Lehrb. d. Meteorolog1e p- 160. Ha.mburg 1885.
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Nimmt man an, daB die Anderung durch die vertikale
Bewegung allein entsteht, so hat man

fur das Steigen von p um I mm Hp in der Stunde
10833 1.

T 3500' = —0,00378 {kg.m™?sec™¥).

In den Hohen von 10, 20, 30 km die Dichte
042, 0,089, 0,0067 (kg.m™9
gesetzt, erhilt man fir w, die Werte
— 0,009, —0,042, — 0.56 (m.sec™Y

Greschwindigkeiten abwirts von geringem Betrag.

GroBe Anderangen von p entstehen durch andauernde
Ideine Unterschiede der horizontalen Luftzufuhr und Abfuhr,
auch durch kleine Werte der vertikalen Komponente, Bei
ungeiindertem p kinnen die Wirkungen beidér sich auf ver-
schiedene Art aufheben; aus der Kontinuititsgleichung allein
158t sich gicht bestimmen, ob eine aufsteigende oder sinkende
Lufthewegung eintritt. ' '

Jn der Gleichung (1) sind stetig verteilte Queller und
Senker nur an der oberem Grenzfliche angenommen. Wenn
Luft (Dampf) am Boden austritt oder absorbiert wird, hat man
den beztiglichen Ausdruck hinzuzufigen. Findet Kondensation
des Dampfes statt, so gibt es Senken auch im Inmern der
Luftmasse, und der Gleichung (1) ist auf der linken Seite ein

7

Glied anzufiigen, welches das Gewicht der in der Zeiteinheit .

in der Einheitssiule zwischen 0 und % kondensierten*“Masse
angibt, '

{Eingegangen 26. September 1903.)
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