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Introduction 

What is peat? 
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Introduction 

How does peat behave under loading? 
 

•  Compared with mineral soils at similar water contents, peat 

has remarkably high strength;  

•  Extreme compressibility; e.g. specimens tested in drained 

triaxial compression may undergo up to 50% axial strain 

without shear failure occurring/reaching peak deviatoric 

stress (Adams, 1961); 

•  Significant secondary compression (creep); 

•  Fibrous nature introduces (strong) structural anisotropy; 

•  Fibrous peat has very high initial permeability which 

decreases dramatically under loading. 
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Constitutive Models Implemented for Peat 

The main focus of constitutive models implemented for peat 

has been on its time-dependent behaviour under 1D loading. 

Empirical Models Rheological Models 𝝈 − 𝝐 − 𝝈 − 𝝐  Models 

𝐶𝛼 𝐶𝑐  concept: 

Mesri & co-workers (1977; 

1979; 1985; 1987) 

Barden (1968); 

Berry & Poskitt (1972); 

Edil & co-workers (1984; 

1992; 1994) 

Yin & Graham’s (1989) EVP 

model (clay); 

den Haan (1996) abc model  
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Why thermodynamically consistent 

approach? 

• Constitutive models that violate thermodynamics cannot 

be used with any confidence in describing material 

behaviour, unless some rather particular and well-defined 

conditions apply (Houlsby & Puzrin, 2006).  

• Main advantage of embedding constitutive models in a 

thermodynamical framework is that they cannot produce 

thermodynamically unreasonable results. 

• The framework makes considerable use of potential 

functions that are closely related to variational and 

extremum principles. 

• Within this single framework, a number of competing 

models can be more readily compared.  
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Why hyperelastic model? 
 Analogue of the mechanical behaviour of peat with 

rubber and some bio-tissues. 

 Houlsby & Puzrin (2006) claim that a hyperelastic model 

is preferred in modelling the elastic behaviour of soils. 
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Volume Fraction Concept 
Assumptions  Biphasic material (solid matrix saturated with porewater) 

 Solid matrix and porewater (fluid) are considered to be 

intrinsically immiscible and incompressible. 

 The porous solid models the control space. Only the pore 

water contained in the pores can leave control space. 

 The solid and porewater constituents simultaneously 

present in every point. 

Formulation  

 

 

 

 

 

𝑩𝒔 

𝝏𝑩𝒔 

α(S, F) 
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Thermodynamically consistent approach 

Balance Principles: 
 

• Balance of mass  

 

• Balance of momentum 
 

• Balance of energy  

 

 

 

• Entropy inequality (2nd law of thermodynamics) 
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Isotropic Hyperelastic Model 

Strain measure 

t=0 t t+Δt 

E1, e1 

E2, e2 

E3, e3 

PF 

PS PS, PF 
PF 

PS 

XF 

XS x 

The laws of motion: 

𝒙 = 𝝌(𝑿𝑆, 𝑡)      and   𝒙 = 𝝌 𝑿𝐹 , 𝑡  

𝑿𝑆 = 𝝌−1 (𝒙, 𝑡)  and  𝑿𝐹 = 𝝌−1 (𝒙, 𝑡)  

𝑭𝑆 = 𝐺𝑟𝑎𝑑 𝑆𝒙 

𝐽𝑆 = 𝑑𝑒𝑡𝑭𝑆 =
𝑑Ω

𝑑Ω0
 

Deformation gradient: 

Right Cauchy-Green tensor: 𝑪 = 𝑭𝑇𝑭 
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Isotropic Hyperelastic Model 
Stress measure 

• Effective stresses for solid and porewater (fluid) phases in 
spatial configuration: 

 

 

• Assume dissipative stresses induced by the fluid viscosity 
are negligible, thus        = 0. 
 

• Pulling back these stress relations into a material description 
yields the 2nd Piola-Kirchhoff stresses: 

 

 
• Total stress: 
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Isotropic Hyperelastic Model 
• Free Helmholtz energy density function: 

 

 

 

 
• Coupled hydraulic and mechanical strain energy function 

obtained by adapting the Neo-Hookean law: 

 
• At small strains, 𝐶10 and 𝐷2 related to linear elastic 

Young’s modulus 𝐸 and Poisson’s ratio ν 
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Numerical implementation 

• The material model has been implemented using ABAQUS, 

with the coupled hydraulic and mechanical material model 

coded as a UMAT user-subroutine in Fortran. 
 

• A total Lagrangian description for a mixed u − p formulation 

(where u is the solid matrix deformation and p the 

porewater pressure) has been implemented. 
 

• At the time of writing the paper, the coded hyperelastic 

model is being validated against triaxial compression data 

for amorphous peat. 
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Conclusions & Recommendations 

• In this research, a thermodynamically consistent 

hyperelastic model adopted from the biomechanical field 

has been presented as a starting point towards a new 

approach for modelling peat. This model draws analogies 

between the properties/behaviour of peat and some bio-

tissues.  

 

• Due to the complexity of the nature of peat, further 

features (time-dependency, structural anisotropy, plasticity 

when extending to larger strains, etc.) will be added to the 

isotropic hyperelastic model presented.  
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