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Lindblad theory of dynamical decoherence of quantum-dot excitons
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We use the Bloch-Redfield-Wangsness theory to calculate the effects of acoustic phonons in coherent control
experiments where quantum-dot excitons are driven by shaped laser pulses. This theory yields a generalized
Lindblad equation for the density operator of the dot, with time-dependent damping and decoherence due to
phonon transitions between the instantaneous dressed states. It captures similar physics to the form recently
applied to Rabi oscillation experiments [Ramsay et al., Phys. Rev. Lett. 104, 017402 (2010)] but guarantees
positivity of the density operator. At sufficiently low temperatures, it gives results equivalent to those of fully
non-Markovian approaches [Lüker et al., Phys. Rev. B 85, 121302 (2012)] but is significantly simpler to simulate.
Several applications of this theory are discussed. We apply it to adiabatic rapid passage experiments and show
how the pulses can be shaped to maximize the probability of creating a single exciton using a frequency-swept
laser pulse. We also use this theory to propose and analyze methods to determine the phonon density of states
experimentally, i.e., phonon spectroscopy, by exploring the dependence of the effective damping rates on the
driving field.
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I. INTRODUCTION

Controlled manipulation of coherent quantum systems is
a crucial requirement for quantum information technologies,
can be exploited in ultrafast switches, and may allow the
exploration of exotic regimes of quantum dynamics. An impor-
tant example among solid-state systems is that of excitons in
quantum dots,1 which provide discrete atomic-like transitions
that can be manipulated using optical pulses. These transitions
have been demonstrated experimentally to correspond to two-
level systems for which resonant optical excitation induces
Rabi oscillations.2,3 Thus, under pulsed excitation, the number
of excitons created oscillates with the pulse area: a pulse of
the correct duration and intensity creates exactly one exciton
in the quantum dot, while other pulses create superpositions
of one- and no-exciton states. Frequency-swept laser pulses
have also been used to create single excitons in quantum dots,
implementing the protocol of adiabatic rapid passage (ARP)
and allowing state manipulation in a way that is robust against
fluctuations in the coupling strengths and transition energies
of the dots.4–7

A theoretical description of such coherent control experi-
ments must capture both the dynamics of the driven quantum
dot and the scattering and decoherence introduced by the
interaction between the dot and its environment. In particular,
the coupling to acoustic phonons leads to dephasing of the
Rabi oscillations8 and limits the inversion in ARP.4,5,9,10 (Optic
phonons could play a role in ARP with very intense, very short
pulses11 where the energy scales are comparable to the optic
phonon energies, but we do not consider this regime here.)
The standard theoretical approach12 involves second-order
perturbation theory in the phonon coupling, leading to an
equation of motion for the reduced density operator of the dot.
This equation involves an integral over all previous states of the
dot, capturing the memory effects due to the finite bandwidth
and response time of the environment.

A frequently used approach to treating this type of non-
Markovian equation of motion is a form of the Markov

approximation that reduces the equation to a time-local
equation, with the effects of the phonons appearing as
a constant Lindblad form describing dephasing. Such an
equation would be valid under the assumption that the response
time of the environment is the shortest time scale in the
problem. This approximation, however, is generally incorrect
for quantum dot excitons.13–15 It predicts that the environment
induces transitions independently of the state of the dot,
in contradiction to experiments in which the driving field
changes the dephasing. Such dynamical excitation-dependent
dephasing has, however, been successfully described by more
sophisticated approaches. These include numerically exact
path integral methods9,10,14,16 (quasiadiabatic propagator path
integral, QUAPI), systematic expansions in exciton-phonon
correlations9,10,17 up to fourth order and including memory
effects, and time-local approximations8,15,18–20 allowing for
some of the memory effects neglected in the simplest form
of Born-Markov approximation. These time-local approxima-
tions improve on the simplest Born-Markov approximation by
calculating the decay rates arising from system-bath coupling
making use of the actual system Hamiltonian, including driv-
ing. This same point, of using the actual system Hamiltonian
rather than a noninteracting approximation, is also crucial in
describing the correct equilibrium state of strongly coupled
systems, as discussed in Ref. 21.

When there is strong coupling to phonons but weak driving
of the dot, accurate results can be found by making a polaron
transformation,19 so that coupling to phonons appears in the
driving term; one may then treat the driving term in the Born
approximation and derive effective excitation/de-excitation
rates depending on the detuning of the drive and the phonon
density of states, accounting for multiphonon excitations. Such
an approach can also be extended to cavity-QED situations13

with the driving replaced by a coupling to a cavity. It has
also been used to study the fluorescence of a driven quantum
dot, coupled to a cavity.22–25 However, the treatment of the
driving within the Born approximation limits the validity of
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this approach to weak driving. Alternatively, one may view this
as a statement that at strong driving, the dot state changes too
rapidly for the phonons to follow, and so the polaron picture
breaks down. This has been extensively studied recently16,19

using a variational polaron transformation.26 The variational
approach can reproduce the exact results of the path integral
across a range of driving strengths. In the limit of strong
driving and experimentally relevant dot-phonon couplings,
McCutcheon et al.16 show that the time-local approaches
discussed above8,15,18–20 become increasingly accurate, as
strong driving breaks the polaron picture and relatively weak
dot-phonon coupling (at low temperatures) allows both a
Markovian approximation and the neglect of multiphonon
effects.

In this paper, we consider situations where a dot is strongly
driven and with experimentally relevant (i.e., relatively weak)
dot-phonon couplings. We discuss the application of the
Bloch-Redfield-Wangsness27,28 (BRW) theory, widely used
to describe nuclear spin relaxation, to coherent control ex-
periments on excitons in quantum dots. It is similar to the
simplest Born-Markov approximation but allows the time
scale set by the inverse level spacing of the Hamiltonian to
be smaller than the response time of the environment. We
use this theory to derive a generalized Lindblad form for the
phonon-induced damping in which the transition operators
connect the time-dependent eigenstates of the dot, with the
expected perturbative transition rates [see Eq. (7)]. This differs
from the simplest Lindblad form mentioned above, which
is often applied to quantum dots, in which the transition
operators do not necessarily connect eigenstates. Furthermore,
in contrast to the forms obtained by some other time-local
approximations,15,18 it guarantees the positivity of the density
operator and so can be used across a wider variety of pulse
shapes and temperatures. We focus on the application to
determining the effects of phonons for adiabatic rapid passage
in quantum dots and show that the results are similar to those
recently obtained from the correlation expansion at fourth
order.9,10 That method includes all memory effects of the
environment and allows for some phonon correlations and
is known to be accurate9,10,29,30 for the parameters relevant
here (since it agrees with the exact path-integral results). Thus
Eq. (7) provides a simple picture of the effects of dephasing and
a lightweight computational approach for modeling dephasing
in quantum dots. As a further application of this theory,
we use it to demonstrate the feasibility of measuring the
phonon spectra and distribution functions, by exploiting
the driving-field dependence of the effective damping rates.
We propose and analyze two forms of such spectroscopy, one
based on a generalization of the ARP experiment and one based
on the response to off-resonant continuous-wave excitation.

These Markovian approximations are appropriate for strong
driving; at weak driving (a limit which is avoided in the
remainder of this paper), differences arise from the exact
solution of the independent boson model (IBM). For infinites-
imal driving, the independent boson model can be analytically
solved31,32 by finding the linear absorption spectrum about
the undriven state: A(ω) ∝

∫
dte−iωt exp[ϕ(t) − ϕ(0)],ϕ(t) =∫

dωeiωt nB(ω)J (ω)/ω2. For the realistic phonon spectral
function J (ω) considered in this paper [see Eq. (3)],
the exact absorption spectrum consists of an unbroadened

zero-phonon line (ZPL) and sidebands associated with one
or many phonon events. At 4 K (the temperature considered
for pulse optimization below), the ZPL contains 86% of the
spectral weight. If the Markovian approach we use is applied
in the limit of weak driving (outside the range of validity
as discussed above), it predicts only the ZPL and misses the
small phonon sidebands. The origin of this discrepancy (at 4
K) is, however, not a consequence of multiphonon effects [one
may safely expand the expression for A(ω) to linear order
in J (ω)] but of the Markov approximation. The origin of
this discrepancy is as discussed in Refs. 33–36; Markovian
approaches sample the bath at a frequency dependent on the
system Hamiltonian, while absorption spectra depend on the
bath response at the probe frequency. In the limit of vanishing
driving, the Markovian approximation, as discussed below,
produces no linewidth, hence it matches only the dominant
ZPL part of the exact solution. For any nonzero driving (i.e.,
beyond linear response), the Markovian approach produces
a nonzero linewidth, however, there is no analytic solution
of the IBM for finite driving. Thus to test our theory in this
regime requires comparison to numerical approaches; such a
comparison to existing9 numerical results is, indeed, given
below, and the match is seen to be very good (better than the
match for vanishing driving), that is, as to be expected given
the central point of recent work8,15,16,19 on “excitation induced
dephasing”, the presence of strong driving strongly affects the
effective dephasing and dissipation rates, and the behavior at
vanishing driving does not control how the system responds at
strong driving.

The remainder of this paper is structured as follows. In
Sec. II, we outline the derivation of the equation of motion
for a driven quantum dot interacting with acoustic phonons.
In Sec. III, we present the predictions of this equation for
the inversion (exciton occupation) obtained in ARP, discuss
how this process may be optimized in the presence of
phonon-induced dephasing, and explain why the dephasing
can in some circumstances improve the final inversion. In
Sec. IV, we outline the application to phonon spectroscopy.
In Sec. V, we discuss further the relationship between the
positivity-preserving Lindblad form [see Eq. (7)], obtained
here, and the generally positivity-violating precursor to this
form [see Eq. (4)], which is sometimes used directly.15,18 We
present numerical results showing the failure of this latter
approximation in the case of ARP pulses. In Sec. VI, we
summarize our conclusions. Finally, the Appendix provides
details of the derivation of Eq. (7).

II. EQUATIONS OF MOTION

In this section, we present the derivation of the secularized
(Lindblad) form of the equation of motion for the reduced
density matrix ρ(t). Our approach initially follows the same
steps as in Refs. 15 and 18. However, in order to produce
an approach that preserves positivity of the density matrix
throughout the range of validity of perturbation theory, we
must additionally secularize the resulting equations.37,38 For
completeness, we include in this paper also the steps that
follow Refs. 15 and 18. In this section, we outline the main
steps of the derivation, and present further details in the
Appendix.
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We consider a single quantum dot, driven close to one
of its discrete transition frequencies by a laser pulse with a
time-dependent amplitude and frequency. For simplicity, we
assume that the excitation is circularly polarized, so that only
one of the exciton spin states is relevant and we may neglect the
formation of biexcitons. Thus we model the dot as a two-level
system, which may be in the ground |0⟩ or the one-exciton |X⟩
state. The Hamiltonian may be expressed, using pseudospin-
1/2 operators s, as (h̄ = 1)

Hdot = $(t)sz − %(t)sx, (1)

in the rotating-wave approximation and in a frame rotating
at the instantaneous driving frequency ω(t). Here, $(t) =
E0 − ω(t) is the detuning between the transition energy E0
and the instantaneous driving frequency. %(t) is the time-
dependent Rabi frequency, corresponding to the amplitude
of the driving pulse. s = σ/2, where the Pauli operator σz =
|X⟩⟨X| − |0⟩⟨0| describes the occupation of the exciton state,
while σx = |X⟩⟨0| + |0⟩⟨X| = s+ + s− describes the electric
dipole moment of the transition. We refer to sz = σz/2 as the
inversion.

We focus on the effects of acoustic phonons, which are the
dominant dephasing mechanism in recent Rabi flopping15,18

and ARP experiments.4,5,9,10 They couple to the dot via the
deformation potential coupling,

Hc = sz

∑

q

(gqbq + g∗
qb

†
q), (2)

where q labels the phonon wave vectors, bq (b†q) is a
phonon annihilation (creation) operator, and gq is the coupling
constant. The phonon effects are controlled by the phonon
spectral density, J (ω) =

∑
q |gq |2δ(ω − ωq). We take the

model used in Ref. 15 for a GaAs/InGaAs quantum dot,

J (ω) = h̄A

πkB

ω3e−ω2/ω2
c , (3)

with similar parameters A = 11.2 fs K−1, h̄ωc = 2 meV. In
Eq. (3), the low-frequency behavior J (ω) ∝ ω3 arises from
the coupling and density of states for acoustic phonons, while
the high-frequency cutoff at ωc arises from the size of the
dot; confined excitons do not couple effectively to phonons of
wavelengths smaller than the confinement.

In the limit that $(t) and %(t) vary slowly with time, we
may treat them effectively as constants and use the approach
discussed in Refs. 15 and 18, so that the effect of the acoustic
phonons can be found by transforming to the interaction
picture and using the Born-Markov approximation there. This
requires that the interaction picture density operator ρ̃(t) is
approximately constant over the correlation time of the phonon
bath (∼1/ωc), so that ρ̃(t ′) ≃ ρ̃(t) on the right-hand side of
Eq. (A4). Equivalently, this means that the bath density of
states should be flat over the effective linewidth of the system,
as illustrated in Fig. 1. Such an approximation is valid as long
as neither the decay rate nor sweep rates ($̇/$,%̇/%) are
too high, as both contribute to the effective linewidth. Note
that applying the Born-Markov approximation directly in the
Schrödinger picture requires additionally that the density of
states is flat on the scale set by the position of the line, i.e., the
energy scale of the Hamiltonian, and this is not the case here.

 0  2  4  6  8

Frequency ω (1/ps)

J(ω)/J0

FIG. 1. (Color online) Illustration of time scales required for
validity of (time-dependent) Markov approximation, shown in the
frequency domain. Solid red line shows the frequency-dependent
decay rate, illustrated by the phonon spectral function J (ω). At
low temperatures and slow driving (dashed line), the linewidth is
sufficiently small that the decay rate does not vary significantly
across the linewidth (bath correlation time is short compared to
decay time). At higher temperatures or faster driving, the linewidth
grows (dot-dashed line) so that the decay rate does vary (decay time
or sweep time become comparable to bath correlation time). The
lineshapes illustrated are the Lorentzians corresponding to transition
rates T −1

1 = 0.2 and 1.0 ps−1, which may be compared with Fig. 2.

It is convenient to introduce rotated spin operators r = Rs,
with R a rotation by angle tan−1 %/$ around the y axis, so that
the instantaneous system Hamiltonian becomes Hdot = )rz

where ) =
√

%2 + $2 is the dressed-state splitting. For the
acoustic phonon coupling considered here, this yields (see
Appendix for further details)

˙̃ρ = −PQρ̃ + Qρ̃P + P ρ̃Q† − ρ̃Q†P, (4)

where P and Q are time-dependent operators of the form

P (t) = $

)
rz + %

2)
(r+ei)t + r−e−i)t ), (5)

Q(t) =
∫

dνJ (ν)
∫ t

dt ′P (t ′)

× [(nν + 1)e−iν(t−t ′) + nνe
iν(t−t ′)], (6)

and nν is the phonon occupation function at frequency ν. After
undoing the transformation to the interaction picture, this gives
the density matrix equation form corresponding to the results
in Ref. 18.

This equation is not of Lindblad form, and consequently, it
can lead to density matrix evolution that violates positivity. For
the relatively short pulses in Refs. 15 and 18, one may readily
check that this is not a problem. However, for our application to
ARP pulses, positivity violation can occur at late times under
conditions where the perturbative approximations required for
Born-Markov remain valid; this is discussed further in Sec. V.

This issue of positivity violation was discussed extensively
in, e.g., Ref. 37, where it was shown that there exists more
than one form of Markovian density matrix equation that
faithfully represent the infinitesimal increment of the full
density matrix evolution in the Markovian (perturbative)
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limit. However, although these different forms are equivalent
regarding infinitesimal time steps, those equations that are
not of Lindblad form do not conserve positivity. A Lindblad
form can nonetheless be derived by averaging so as to remove
the rapidly oscillating terms in Eq. (4)—such a procedure,
known as secularization, yields a Lindblad form that in the
perturbative limit is equally valid to Eq. (4). Further details
are presented in the Appendix. After transforming back to the
Schrödinger picture, the result is

ρ̇ = −[γa(%,$)/2](r−r+ρ + ρr−r+ − 2r+ρr−)

− [γe(%,$)/2](r+r−ρ + ρr+r− − 2r−ρr+)

− i[rz,ρ]$E(%,$) − i[Hdot,ρ], (7)

where we have made explicit the time dependence of the
decay rates due to the dependence on the slow variation
of the parameters %(t) and $(t). This is a time-dependent
generalization of the standard form27 obtained from the
secularized Born-Markov approximation in the interaction
picture, as used in some related contexts.39,40 In addition to
now preserving positivity, it makes explicit the origin and
nature of decay terms; the damping appears as a Lindblad
form describing transitions between the instantaneous dressed
states, with the phonon absorption and emission rates

γa = 2
(

%

2)

)2

πJ ())n()), (8)

γe = 2
(

%

2)

)2

πJ ())[n()) + 1]. (9)

These rates are shown in Fig. 2 for the spectral function (3).
In addition, Eq. (7) includes a phonon Lamb shift (see

Fig. 3): the energy splitting of the dressed states is now
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FIG. 2. (Color online) Phonon absorption (top) and emission
(bottom) rates, Eqs. (8) and (9), respectively, divided by the squared
ratio of Rabi splitting to dressed-state energy splitting, %2/)2, as
a function of the dressed-state energy splitting ) =

√
%2 + $2; for

resonant driving $ = 0 and the scaling is one.
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FIG. 3. (Color online) Phonon-induced change in the dressed-
state splitting $E [see Eq. (10)] divided by the squared ratio of
Rabi splitting to dressed-state energy splitting, i.e., $E/(%2/)2),
as a function of the dressed-state energy splitting ). Curves are
temperatures 1 (solid), 10 (dashed), and 50 K (dot-dashed).

) + $E with

$E = −
(

%

2)

)2

2)

∫
J (ν) coth(ν/2kT )

ν2 − )2
dν. (10)

Figure 2 may be used to establish the validity of Eq. (7), by
comparing the decay rates with the extent of their frequency
dependence. We see that at the highest temperatures, the shown
peak damping rates, and therefore the linewidths, can become
a significant fraction of the width of the spectral function, as
illustrated in Fig. 1. In this regime, the Markovian approxima-
tion that ρ̃(t) varies slowly on the time scale 1/ωc breaks down,
and a quantitative analysis requires the solution of a nonlocal
equation.9,10 However, as can be seen from the linewidths in
Fig. 1, we expect qualitatively reasonable results over much of
the parameter regimes shown, and the approximations should
be quantitatively accurate in the low-temperature regime,
below 20 K, typical of most coherent control experiments. We
note that the Markov approximation amounts to approximating
the spectral function with its constant value at the dressed
frequency ). At high temperatures, the damping at any one
splitting will sample a finite range of the spectral function,
so that we expect a weaker dependence of the effective
linewidth on the energy splittings than indicated here, as well
as non-Lorentzian emission lines. Similarly, we expect the
Markov approximation to overestimate the Lamb shift and its
frequency dependence at high temperatures.

As well as becoming invalid at high temperatures, where
the effective linewidth becomes large due to scattering, the
approximations used above also fail if the time dependence
of the parameters $(t) and %(t) becomes too strong. This is
due to the finite bandwidth 1/τchirp ∼ $̇/$ arising from the
time dependence of the parameters. Alternatively, one may
understand this as arising from the fact that for small enough
τchirp, the bath correlation time no longer is the shortest time
scale in the problem.

The density matrix evolution described above is a complete
description of the time evolution of the system. In some cases,
it can be useful to write this in an alternative representation, by
considering the time evolution of the components of the Bloch
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vector, which we write here for completeness:

ṡx = − %

2)
(γa − γe) −

[
$2 + 2%2

2)2
(γa + γe)

]
sx

−$sy + $%

2)2
(γa + γe)sz,

ṡy = $sx − (γa + γe)sy/2 + %sz, (11)

ṡz = $

2)
(γa − γe) + $%

2)2
(γa + γe)sx − %sy

−
[

2$2 + %2

2)2
(γa + γe)

]
sz.

Note that here we have neglected the small Lamb shift.

III. INVERSION IN ARP

The above results apply in general to any time-dependent
pulse sequence. We can in particular consider pulses corre-
sponding to adiabatic rapid passage in which the detuning $(t)
is swept smoothly through zero with the intention of creating
a one-exciton state. Under such a pulse, there is an avoided
crossing between the zero- and one-exciton states of Eq. (1),
generated by the driving field. We aim to adiabatically follow a
single energy level, thus evolving from the initial ground state
to the one exciton state. Acoustic phonon effects in this process
have already been explicitly considered in Refs. 9 and 10, for
fixed-bandwidth pulses of the form

$(t) = − at(
a2 + τ 4

0

) ,

(12)

%(t) = -0√
2π

√
a2 + τ 4

0

exp

[

−
t2τ 2

0

2
(
a2 + τ 4

0

)
]

,

where -0 is the area of the bandwidth-limited pulse before
the chirp is applied, and a is the spectral chirp.41 The results
obtained from Eq. (7) for this form of pulse, plotted on a
similar scale to those in Fig. 2 of Ref. 9, are shown in Fig. 4. As
expected from the discussion above, the results are very similar
at low temperatures and slow sweep rates, where the conditions
for the Born-Markov approximation are well satisfied.

As discussed in Ref. 9, the asymmetry about the line
a = 0 at low temperatures arises because absorption processes
can be neglected γa ≪ γe for T ≪ ωc, and as is clear from
Eq. (7), emission can only occur when the dot is in the
higher-energy dressed state. For a < 0, the ARP protocol
attempts to follow this higher-energy dressed state, so that the
process is susceptible to phonon emission, whereas for a > 0
it is not. The simplicity of Eq. (7) allows one to further see
that for the range plotted, the values of )(t = 0) = %(t = 0)
lie below the peak of scattering rates (see Fig. 2), hence the
decrease of inversion with increasing pulse area visible within
Fig. 4. For larger pulse areas, the central value of ) can exceed
this peak (at -0 ≈ 6π for a = 0) and inversion then increases
with pulse area.

A. Optimization of ARP

The relatively lightweight effort of simulating Eq. (7)
allows one to rapidly investigate the effects of other potential
pulse shapes and ARP protocols beyond that in Eq. (12). In
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FIG. 4. (Color online) Final exciton occupation probability fol-
lowing an ARP pulse of the form given in Eq. (12), calculated using
the time-dependent Lindblad form given in Eq. (7). Calculated using
τ0 = 2 ps, at temperatures 1 (a), 20 (b) and 50 K (c), for direct
comparison with Fig. 2 of Ref. 9. For low temperatures and slow
sweeps, the results are very similar; for larger temperatures and higher
chirp rates, the limited Markov approximation used in deriving Eq. (7)
becomes invalid.

the absence of decay, the question of how the final excited
state population can be optimized for a given pulse area has
been extensively studied by Guérin et al.42 By considering
the leading order nonadiabatic effects, they showed that these
were minimized in the case where )(t) was independent of
time. This implies that in the limit of large pulse areas (deep in
the adiabatic regime), maximum excitation should be reached
when the chirp rate is adjusted to match this condition.

The time dependence of $ and % given in Eq. (12) cannot
achieve a time-independent ). Instead, other pulse shapes need
to be considered, such as

$(t) = −$0 tanh
(

t

τ

)
, %(t) = %0 sech

(
t

τ

)
, (13)

which have a pulse area - when %0 = -/τ . As discussed
by Guérin et al.,42 the optimum condition %0 = $0 arises
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FIG. 5. Final exciton occupation probability for the sech pulse
[see Eq. (13)] with %0 = -/τ and $0 = ατ for τ = 6 ps at a
temperature 4 K. The gray scale and contour labels show log10(1 −
P ), where P is the final occupation probability. Insets show the
case without phonon induced dephasing, as in Ref. 42, on the same
gray scale (from −2 to 0, left inset) and on a gray scale with a
larger range (from −10 to 0, right inset). Main panel shows the
effects of dynamical dephasing on the same pulse shape. Dashed line
indicates the condition %0 = $0, which gives the optimal transfer in
the absence of dephasing.

from the convergence of lines originating from the maxima
of the Rabi oscillations. This is shown in the inset of Fig. 5.
However, although such pulses are optimal in the isolated case,
the differences in excitation near this line are exponentially
small and entirely dwarfed by the effects of phonon induced
dephasing. In the presence of dephasing, not only are the sharp,
exponentially small features washed out, but the optimum
chirp rate $0/τ moves to significantly larger values, due to
the reduction of the dephasing rate at large ).

B. Thermalization enhanced inversion

The discussion of the effects of acoustic phonons so far
has been in terms of their reducing the final state inversion
as compared to near-perfect inversion achieved deep in the
adiabatic regime. There exists, however, a significant range
of experimental conditions for which coupling to phonons
can instead enhance the final state inversion. This effect has
recently been discussed by Reiter et al.10 in the context of
compensating for detuning of quantum dots. Even in the
absence of detuning, coupling to phonons can enhance the
final state inversion. An increase in the efficiency of adiabatic
transfer due to damping processes has also recently been
reported for a many-boson model.43

Figure 6 illustrates this potential enhancement by showing
how the final inversion is affected if the decay rates are rescaled
by a factor q, i.e., J (ω) → qJ (ω), considering a pulse shape:

% = %0 sech
(

t

τ

)
, $ = −αt. (14)

For a wide range of parameters - and α the dependence on
q is nonmonotonic: small coupling to phonons decreases the
inversion, but further increase in coupling then increases final
inversion. This nonmonotonic behavior [shown in Fig. 6(a)]
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FIG. 6. (Color online) Dependence of inversion on strength of
phonon coupling in ARP. (a) indicates how for a specific value of
α and %0, there is a nonmonotonic dependence of inversion upon
phonon coupling. (b) Time evolution of sz at two values of q,
relative to its ideal value for adiabatically following the dressed
states. (c) Maps where nonmonotonic dependence on q arises. This
is determined by two quantities: the gray scale indicates the value of
Max0<q<2(dsz/dq), and the solid red line is the boundary where this is
zero. The blue dashed line indicates where dsz/dq|q=0 = 0. Between
these lines, nonmonotonic dependence as seen in (a) occurs. The
magenta cross indicates the conditions used for (a) and (b). T = 4 K,
τ = 5.68 ps.

exists throughout the region between the solid and dashed
lines in Fig. 6(c). For large chirp rates and weak pulses, the
inversion without coupling to phonons is already poor, and
coupling to phonons increases the inversion; this corresponds
to the behavior above the dashed line in Fig. 6(c).

The origin of this enhancement at large q can be understood
by considering that for large q, the quantum dot state will
come to thermal equilibrium with the phonon bath. Since the
coupling to phonons depends on the prefactor q(%/))2, the
coupling to phonons will eventually switch off as % → 0.
However, the larger the value of q, the later this switch
off occurs, and so the longer the system maintains thermal
equilibrium with phonons. As the detuning $ continues to
increase at late times, the inversion of this equilibrated state
therefore increases with increasing q.

IV. PHONON SPECTROSCOPY

A second application of the relative simplicity of Eq. (7) is
to see how the phonon density of states can be recovered from
spectroscopy using an appropriately designed pulse sequence.
This would, in principle, allow direct experimental confirma-
tion of the model phonon coupling J (ω) ∝ ω3 exp(−ω2/ω2

c ) as
widely used8,15,18 in modeling quantum dots. In the following,
we present and compare two approaches to this, based on either
short-time or long-time behavior, incorporating spontaneous
decay in the long-time process.
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A. Modified ARP protocol

The short-time approach uses a modified version of an ARP-
like pulse sequence. We consider an ARP protocol divided
into pieces, so that the sweep of $(t) is interrupted by a wait
period Tw at a value $w before completing the ARP sweep.
The initial and final sweeps serve to map between initial or
final eigenstates of sz and eigenstates of rz during the wait
period. The final inversion depends on the effect of the phonons
during the wait time, sampling the phonon density of states at
a frequency )w =

√
$2

w + %2
w. During this wait time, Eq. (7)

reduces to ṗ↓ = −γap↓ + γep↑,ṗ↑ = γap↓ − γep↑ in terms
of the diagonal elements in the r basis. The deviation from
inversion of the final state after a given wait time Tw is thus
given by

1
2

− sz ≃ γa,e

γa + γe

[1 − e−(γa+γe)Tw ], (15)

where γa,e = γa,e(%w,$w), the numerator of the right-hand
side is γa for a forward sweep ($ decreasing with time),
and γe for a reverse sweep ($ increasing with time). For
long wait times, the excitations reach thermal equilibrium
with the phonon bath, as expected21 and so sz becomes
independent of the phonon density of states. For short wait
times (γa + γe)Tw ≪ 1, one finds 1

2 − sz ≃ γa,e(%w,$w)Tw,
thus by varying %w one can directly map out the damping
rate.

In order to extract the phonon density of states with some
accuracy, the pulse sequence must be carefully chosen. At low
temperatures, γa ≪ γe, and so spectroscopy using the forward
sweep is hard to achieve—the reduction in inversion is tiny for
times Tw such that Tw(γa + γe) ! 1 and tends to be dwarfed
by effects of nonadiabaticity. Using a “reverse” ARP pulse
produces a clearer signal. However, in order to have the signal
dominated by the waiting time, it is necessary for the wait time
to be longer than the sweep, and the sweep to be sufficiently
slow for all values of %w. For this to be compatible with
Twγe ! 1, it is helpful to choose $w ̸= 0 so that the rate γe

is suppressed by a factor (%w/)w)2 < 1. Combining these
considerations, the pulse sequence

$(t) = $w + $0

[
tanh

(
t + t$

τ$

)
+ tanh

(
t − t$

τ$

)]
,

(16)

%(t) = −%w

2

[
tanh

(
t + t%

τ%

)
− tanh

(
t − t%

τ%

)]

gives the results shown in Fig. 7 with parameter values given
in the figure caption.

There is a reasonable match between the prediction of
Eq. (15) for decay during the wait time and the actual inversion,
but the match is not perfect due to the effects of phonons
during the initial and final sweep, as well as some remaining
degree of nonadiabaticity (at small %w). Nonetheless, one may
invert Eq. (15) in order to extract the phonon density of states
from the measured inversion, and the result of this procedure
is shown as the dot-dashed line in the inset of Fig. 8. The
reasonable agreement confirms that for such a pulse the final
inversion contains sufficient information to extract the phonon
density-of-states; in practice, one might include corrections to
Eq. (15) by comparing an experiment directly to Eq. (7).
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FIG. 7. (Color online) Phonon spectroscopy using divided
ARP pulse. Main figure: deviation from inversion following
the protocol in Eq. (16) (solid), compared with the approxi-
mation of Eq. (15) (dashed line), plotted by varying %w . In-
set: time dependence of $(t) (solid) and %(t) (dashed), with
parameters $w = 2 ps−1, $0 = −10 ps−1, t$ = Tw/2 = 3 ps,τ$ =
1.2 ps, t% = 15 ps, τ% = 5 ps, and T = 4 K.

B. Steady state of driven open system

An alternate approach to reconstructing the phonon density
of states arises by considering the long-time behavior, allowing
for both spontaneous decay as well as coupling to acoustic
phonons, i.e.,

ρ̇ → ρ̇ + (κ/2)(s+s−ρ + ρs+s− − 2s−ρs+). (17)

Equivalently, such loss modifies the equations for the Bloch
vector components as follows:

d

dt

⎛

⎝
sx

sy

sz

⎞

⎠ → d

dt

⎛

⎝
sx

sy

sz

⎞

⎠ + κ

⎛

⎝
sx/2
sy/2

sz + 1/2

⎞

⎠ . (18)

In particular, we consider the long-time behavior under a
constant driving, %(t) = %0,$(t) = $0. In this case, the long-
time behavior should be understood as a steady state arising
from the balance of coupling to the phonon reservoir and the
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FIG. 8. (Color online) Steady-state value of sz with driving at % =
0.1 ps−1, with a spontaneous decay rate of κ = 2 ns−1, as a function
of the detuning, at T = 20 K. (Inset) Comparison of actual phonon
density of states J (ω) with the values reconstructed by inverting
Eq. (19) and from the modified ARP approach, inverting Eq. (15)
(parameters for modified ARP as in Fig. 7).
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decay due to coupling to a photon reservoir. The pumping term
% is necessary only in order to enable the phonon coupling
to create and destroy excitations of the quantum dot. In the
absence of spontaneous decay terms (no photon reservoir),
the steady state would trivially be the thermal equilibrium of
the system Hamiltonian, due to equilibration with the phonon
reservoir. In this case, the phonon density of states does not
appear, and only the phonon temperature matters. However,
the coupling to the photon reservoir drives the system into a
nonthermal steady state in which the balance of spontaneous
decay rate and phonon coupling determines the state. One may
then read out the phonon density of states from the steady-state
inversion achieved.

In the limit of small decays, i.e., κ,γa,γe ≪ %,$, one
may analytically solve the equations for the Bloch vector
components, given in Eqs. (11) and (18), by expanding the
steady-state equations with respect to the decay rates. In the
limit of vanishing decay terms κ,γa,γe → 0, it is clear that
the steady state of Eq. (11) requires $sx + %sz = 0,sy = 0.
Then, including the decay terms to first order, one finds sy ∼
O(κ,γa,γe), and so one may continue to use sx = −(%/$)sz as
the solution of ṡy = 0 up to order O(κ2,γ 2

a ,γ 2
e ). Using this, the

remaining two equations ṡx,z = 0 can be solved by eliminating
sy , to give

sz = −$2κ + )$(γa − γe)
(%2 + 2$2)κ + 2)2(γa + γe)

. (19)

As anticipated, this expression involves the ratio of phonon and
spontaneous decay terms. In the limit κ → 0, one recovers
the thermal equilibrium result so that sz = (−$/2))(γe −
γa)/(γa + γe) in which case the phonon density of states
cancels, and no information about the phonon bath (other than
temperature) appears in sz. However, for κ ̸= 0, the steady state
depends on the ratio of γ a/κ,γ e/κ , and this in turn allows the
phonon density of states to be extracted from the final state.

Figure 8 shows how the phonon density of states can be
reconstructed by extracting the steady state for a fixed value of
%, and varying the pump detuning $. By inverting Eq. (19),
and assuming the phonon temperature is known, one may
extract the effective phonon density of states as shown in the
inset. The density of states reconstructed this way matches the
actual density of states used in the density matrix evolution
very closely. It may also be possible to use recently developed
variational approaches16 to extend such phonon spectroscopy
to more strongly coupled systems.

V. LINDBLAD VERSUS NON-LINDBLAD
APPROXIMATIONS

As mentioned above, the question of which approximate
Markovian density matrix equation best corresponds to a
given full density matrix equation was discussed extensively
by Dumcke and Spohn.37 The conclusion there is that in
the limit of short bath correlation times, there exist mul-
tiple approximate Markovian equations that have the same
order of validity, as defined by the limiting behavior of
∥ρapprox − ρfull∥ (where ∥ · · · ∥ is the trace norm) as the
coupling to the bath vanishes. In other words, there are several
approximations that give the same results for the short time
scales over which perturbation theory applies. These different

approximate Markovian equations differ in regard of whether
or not one averages over rapidly oscillating terms in the
interaction picture, explicitly eliminating terms that are in any
case negligible in the limit where perturbation theory applies.
Without such averaging, we reach Eq. (4), while averaging
leads instead to Eq. (7). However, positivity of the density
matrix is only preserved for the Lindblad form in Eq. (7), and
so Dumcke and Spohn37 conclude that only this approach is
correct.

In general, these rapidly oscillating time-dependent terms
give small changes in the density operator over small time
intervals. However, problems can arise when we use the
Markov approximation to join together many such small time
intervals, and evolve the density operator over long times. If
the time-dependent terms are not treated consistently with the
Markov approximation, it might lead to an unphysical growth
of these small corrections and potentially unphysical results.
Indeed, we note that retaining the rapidly oscillating terms
is formally inconsistent with the Markov approximation of
replacing ρ̃(t ′) → ρ̃(t) in Eq. (A4): this assumes that ρ̃(t ′)
varies more slowly than the remainder of the integrand, and in
particular more slowly than the time scale 1/).

It is often assumed that such a point is irrelevant as
small decay rates (as are required for validity of the Markov
approximation) imply that any possible violation of positivity
is negligible. However, for problems involving weak decay and
long time evolution, such as the current problem, positivity
violation can occur for Eq. (4) even in regimes where
the Markov approximation appears to be valid. This can
indeed lead to unphysical results, as shown, for example,
in Figs. 9 and 10. We note that for the Rabi oscillations
studied by Ramsay et al.,15 no positivity violation occurs for
the parameters used and the results of Eqs. (4) and (7) are
hardly distinguishable; indeed, these equations can give similar
results for ARP pulses, as can be seen by comparing Fig. 10
[which shows the results of the non-Lindblad Eq. (4)] to Fig. 4

 0.48

 0.49

 0.5

 0.51

 0.52

-60 -40 -20  0  20  40  60
-0.5

 0

 0.5

|s
| s z

Time (ps)

FIG. 9. (Color online) Comparison of the dynamics obtained
from the Lindblad [Eq. (7), dashed curves] and non-Lindblad [Eq. (4),
solid curves] forms of time-dependent Markovian approximations,
for the Gaussian ARP pulse, Eq. (12), with τ0 = 2 ps, T = 1 K,
a = 30 ps2, and -0 = 5π . For each approach, both the magnitude of
the pseudospin (Bloch) vector |s| (left axis) and inversion sz (right
axis) are shown. At this low temperature, as discussed above, the
Markov approximation holds reasonably well, yet the non-Lindblad
form leads to unphysical results |s|,|sz| > 0.5.
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FIG. 10. (Color online) Final exciton occupation probability
following an ARP pulse of the form given in Eq. (12), calculated
using the non-Lindblad form [see Eq. (4)], for comparison with the
results obtained from the Lindblad form [see Eq. (7)] shown in Fig. 4.
The parameters and scale are as in Fig. 4. The results are qualitatively
similar for many parameters. However, there is a significant region
in the top panel (white) where the density operator obtained from
Eq. (4) does not remain positive, and the results become unphysical.

[which shows the results of the Lindblad Eq. (7)]. Despite this
similarity for much of the parameter range, Eq. (7) is required
to produce valid results across the problems considered in the
current paper.

There have been suggestions that time-dependent density-
matrix equations, which are not of the Lindblad form,
such as those derived from the time-convolutionless (TCL)
approach,12 may in some cases ensure positivity.44 However,
Eq. (4) is essentially the result of the time-convolutionless
approach at second order (TCL2). The only difference is that
for TCL2, the lower limit on integrals over t ′ such as Eq. (6)
is t ′ = 0, rather than t ′ = −∞, corresponding to starting the
system at t = 0 in a factorized state. Even for time independent
$ and %, this means the coefficients in the density matrix
evolution become time dependent, but eventually decay toward
a steady-state value. As such, for the ARP pulse, as long as

the pulse duration is long compared to the bath correlation
time, these additional time dependencies die out, and TCL2
becomes equivalent to the positivity-violating form in Eq. (4).

VI. CONCLUSIONS

In conclusion, we have shown how the Bloch-Redfield-
Wangsness theory may be used to derive a time-dependent
Lindblad form describing the dephasing of quantum-dot
excitons by acoustic phonons in the presence of a driving
laser field. We have outlined the application of this theory
to recent ARP experiments4,5 on single quantum dots and
predict, in agreement with numerical work,9 that phonons have
a pronounced effect on ARP even at cryogenic temperatures.
Their effect can, however, be almost eliminated by an appro-
priate choice of pulse shape. Furthermore, this pulse-shape
dependence could allow forms of phonon spectroscopy based
on ARP pulses or on off-resonant continuous-wave excitation.
More generally, our approach captures the physics of dy-
namical, excitation-controlled dephasing in which the driving
field changes the eigenspectrum of the dot, and hence the
decoherence and scattering rates. The resulting Lindblad form
is straightforward to simulate, gives qualitatively reasonable
results over wide parameter regimes, and is expected to be
quantitatively accurate at low temperatures for slow pulses.
It can be applied to a wide variety of pulse sequences,
and the approach is generalized to address a wide range of
problems relating to the decoherence of solid-state qubits,
such as the limitations on the creation of entangled states
in coupled quantum dots,45–49 the persistence of entanglement
in interacting solid-state systems, and the emission spectra of
solid-state qubits in the strong-coupling regime.50,51
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APPENDIX: DERIVATION OF SECULARIZED DENSITY
MATRIX EQUATION

This appendix provides further details of the derivation
of the time-dependent Markovian Lindblad form in Eq. (7).
Following the usual approach,12 working in the interaction
picture, the effects of the system-bath coupling on the system
density matrix can be included to second order by writing

˙̃ρ = −
∫ t

−∞
dt ′TrB[H̃c(t),[H̃c(t ′),ρ̃(t ′) ⊗ ρ̃B(0)]], (A1)

where tilde indicates the interaction picture, ρ̃B is the phonon
bath density matrix, and Hc is given in Eq. (2).

In the case that $ and % vary slowly with time, we
may effectively transform the coupling Hamiltonian to the
interaction picture by using the instantaneous eigenstates
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(dressed states) giving

Hc(t) = P (t)0(t)

= eitHdotsze
−itHdot

∑

q

(gqbqe
−iνq t + g∗

qb
†
qe

iνq ), (A2)

where νq is the phonon frequency. We transform to the
instantaneous dressed states, defining spin operators r = Rs,
with R a rotation by angle tan−1 %/$ around the y axis. Then
the coupling operators become

P (t) = $

)
rz + %

2)
(r+ei)t + r−e−i)t ), (A3)

where ) =
√

%2 + $2 is the splitting of the instantaneous
eigenstates and r± cause transitions between these states.

Note that for a time-dependent Hamiltonian, the true
interaction-picture form is obtained with a unitary trans-
formation involving a time-ordered exponential, U =
T e−i

∫ t
Hdot(t ′)dt ′ , and this operator is not generally approxi-

mated by the form in Eq. (A2). However, in the following, we
use the form in Eq. (A2) only to calculate the effects of phonons
on short time scales, tc ∼ 1/ωc, with the final equation for the
density matrix obtained by undoing this formal transformation.
Thus we expect that the Hamiltonian part of the dynamics is not
approximated in the result, while the dissipative part is correct
provided tcd$/dt,tcd%/dt ≪ ). These conditions are well
satisfied for the protocols considered in this paper.

With these forms of P (t) and 0(t), we may then follow the
normal steps of tracing over the phonon bath to give the system
density matrix equation:

˙̃ρ = −
∫

dνJ (ν)
∫ t

dt ′{[P (t)P (t ′)ρ̃(t ′) − P (t ′)ρ̃(t ′)P (t)]

× [(nν + 1)e−iν(t−t ′) + nνe
iν(t−t ′)]

− [P (t)ρ̃(t ′)P (t ′) − ρ̃(t ′)P (t ′)P (t)]

× [(nν + 1)eiν(t−t ′) + nνe
−iν(t−t ′)]}, (A4)

where nν is the thermal occupation of the phonons at frequency
ν. After performing the integrations over frequency, the
remaining integral contains factors that are sharply peaked
functions of t − t ′, decaying over a time scale 1/ωc. ρ̃(t ′),
$(t ′), and %(t ′) vary little over this time scale, and so may be
approximated by their values at t . However, P (t ′) may vary
over this time scale due to the time-dependence arising from
the transformation to the interaction picture. If we approximate
ρ̃(t ′) ≃ ρ̃(t) and perform no other steps, this leads to Eq. (4),
which as noted before, is not of Lindblad form.

Following Dumcke and Spohn,37 the corresponding Lind-
blad form arises by “secularizing” Eq. (A4). This corresponds
to averaging the above equation over a time short compared
to decay rates, but long compared to the time scales of the
system Hamiltonian—the fact that such a time scale exists is
implicit in the use of a perturbative (Born) approximation. We
start from Eq. (4), with P (t) as defined in Eq. (5), and writing
Q(t) in the generic form:

Q(t) = 1zrz + 1+r+ei)t + 1−r−e−i)t . (A5)

This follows directly from performing the integrals in Eq. (6),
and so 1z,1± are various frequency integrals over J (ν).
Multiplying P (t) and Q(t) and integrating over a time long
compared to 1/), only those terms with equal and opposite t
dependence will survive, i.e., those terms involving rzrz,r+r−
or r−r+. The secularized Eq. (4) thus becomes

˙̃ρ = $

)
(1z + 1∗

z ) (rzρ̃rz − ρ̃)

− %

2)
[1+ (r−r+ρ̃ − r+ρ̃r−) + 1∗

+ (ρ̃r−r+ − r+ρ̃r−)]

− %

2)
[1−(r+r−ρ̃ − r−ρ̃r+) + 1∗

−(ρ̃r+r− − r−ρ̃r+)].

The vanishing of the phonon density of states as ω → 0 ensures
that 1z + 1∗

z = 0, and the remaining terms take the form of
the Lindblad decay and phonon Lamb shift terms as given in
Eq. (7).
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