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Abstract: The phenomenon of internal conical diffraction has been
studied extensively for the case of laser beams with Gaussian intensity
profiles incident along an optic axis of a biaxial material. This work presents
experimental images for a top-hat input beam and offers a theoretical model
which successfully describes the conically diffracted intensity profile, which
is observed to differ qualitatively from the Gaussian case. The far-field
evolution of the beam is predicted to be particularly interesting with a very
intricate structure, and this is confirmed experimentally.
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1. Introduction

Conical diffraction was first predicted by William Rowan Hamilton of Trinity College Dublin
in 1882 [1]. As part of his extensive work on mathematical optics, he predicted that a light
ray incident along an optic axis of a biaxial medium would be transformed into a hollow cone
of light inside the material. If the material was cut such that the entrance and exit faces were
parallel to each other and orthogonal to an optic axis, then the light would emerge as a hol-
low cylinder. This prediction was experimentally confirmed later that year by Humphrey Lloyd
using the biaxial material arragonite. Hamilton’s consideration was that of a refractive phe-
nomenon and led to the term ‘conical refraction’. It was not until the development of the theory
by Belsky and Khapalyuk [2], which considered diffraction in a paraxial wave-theory model,
that the nomenclature was switched to ‘conical diffraction’. This model was later reformulated
by Berry [3] and remains a highly accurate description of the phenomenon; notably present in
the model is the Poggendorff dark ring, a narrow region of zero intensity between two bright
rings, which is absent from Hamilton’s treatment. It is for this reason that we will refer to the
phenomenon as ‘conical diffraction’.

Conical diffraction has been extensively studied using an input laser beam [4–7]. Such beams
are approximately Gaussian, and so the models describing conical diffraction often assume
an input Gaussian beam. Even in cases where broad sources were used to produce the phe-
nomenon, it was important to use a spatial filter to form a spatially coherent beam which was
approximately Gaussian in the focal image plane in order for the established theory to remain
valid [8]. In this paper we consider another type of input beam, namely a ‘top-hat’ beam, and
demonstrate how it exhibits interesting intensity profiles beyond the crystal with a rich beam
evolution structure. Although the first observation of conical diffraction by Lloyd used a pinhole
in front of arragonite, thus resulting in a top-hat beam, since then it appears no experimental im-
ages have been produced with this beam profile. We present experimental images of conically
diffracted beams produced using a top-hat source which are qualitatively different from those
produced using a Gaussian source, in particular featuring a narrow ring of high intensity and a
wedge-shaped structure with a rapid drop in intensity at the beam edge. This novel and unusual
beam shape could find applications in areas such as optical trapping [9, 10], laser etching, and
high NA direct write photolithography.

2. Theory

Conical diffraction is an optical phenomenon observed in biaxial materials, which have three
principal refractive indices n1 < n2 < n3. Light incident along one of the two optic axes in such
a material undergoes internal conical diffraction and spreads out as a hollow cone with semi
angle

A = 1
2 arctan

[
n2

2

√(
n−2

1 −n−2
2

)(
n−2

2 −n−2
3

)]
. (1)

The geometrical optics description of this may be found in [11] and [12]. For many biaxial
materials A is small, on the order of 10−2 rad, and hence a paraxial approximation may be used
to determine the radius of the ring of light as it emerges from such a material of length l:

R0 =
l
2

sin(2A)
cos(2A)

=
l
2

tan(2A)≈ Al. (2)
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A rigorous examination of the validity of this paraxial approximation when modelling conical
diffraction is shown in [13]. The biaxial material used in the experiments presented in this paper
is KGd(WO4)2 whose principal refractive indices have been determined by Pujol et al. [14]. For
light at 632.8 nm the values are calculated to be n1 = 2.0109, n2 = 2.0414, and n3 = 2.0950.

In order to develop a theory which describes conical diffraction it is useful to first define
some dimensionless beam parameters following the notation used by Berry and Jeffrey [13]:

ρ0 ≡ Al
w

=
R0

w
, ρ ≡ R

w
, ζ ≡ l+(z− l)n2

n2k0w2 =
Z

n2k0w2 , (3)

where k0 = 2π/λ , R is measured along the radius of the beam with R = 0 at the centre of the
beam, and z is measured along the propagation direction of the beam with z = 0 at the location
of the focused image of the source in the absence of the crystal. The terms in these equations
may be seen in Fig. 1. While these parameters are defined for Gaussian beams with a 1/e
intensity radius of w, they are also useful for top-hat beams where w has been defined to be the
radius of the beam. When ζ = 0 the conically diffracted rings are most sharply defined and this
location is known as the focal image plane (FIP). Letting ζ = 0 in Eq. (3) yields the location
zFIP of the FIP measured from z = 0:

zFIP = l(1−1/n2). (4)

� �
FIP� = 0
�

�
2�

� 1 − 1�2
Optic axis direction

Biaxial crystal

Incident
beam � = 0

�0 = �� = �	0� = 0

Fig. 1. A light beam undergoing conical diffraction within a biaxial material. This diagram
is a two-dimensional slice taken along the plane where R = 0.

When a beam with electric displacement field profile D0(ρ) enters a biaxial material along
the optic axis it is conically diffracted. If the beam is radially symmetric and circularly polarised
(or unpolarised), the equations describing this transformation are [3]

B0(ρ ,ρ0,ζ ) =
∫ ∞

0
dκ κ a(κ)exp

(− 1
2 iζ κ2)J0(κρ)cos(κρ0) , (5)

B1(ρ ,ρ0,ζ ) =
∫ ∞

0
dκ κ a(κ)exp

(− 1
2 iζ κ2)J1(κρ)sin(κρ0) , (6)

where Jν(x) is the ν th order Bessel function of the first kind and a(κ) is the Fourier transform
of the input profile D0(ρ) given by

a(κ) =
∫ ∞

0
dρ ρD0(ρ)J0(κρ). (7)
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The intensity distribution after the crystal is then given by [3]

I(ρ ,ρ0,ζ ) = |B0(ρ ,ρ0,ζ )|2 + |B1(ρ ,ρ0,ζ )|2. (8)

The electric displacement field profile of a Gaussian beam can be expressed, in terms of the
beam parameters shown in Eq. (3), as

D0G(ρ) = exp
(−ρ2/2

)
. (9)

The corresponding intensity profile is plotted in Fig. 2(a). Using Eq. (7) the Fourier transform
of a Gaussian beam is

aG(κ) = exp
(−κ2/2

)
. (10)

Top-hat beam electric displacement field profiles are given by

D0T (ρ) = Θ(1−ρ), (11)

where Θ(x) is the unit step function defined by

Θ(x)≡
{

0, x < 0

1, x ≥ 0
. (12)

The top-hat intensity profile is plotted in Fig. 2(b). The corresponding Fourier transform of a
top-hat beam is then obtained using Eq. (7):

aT (κ) = J1(κ)/κ . (13)
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Fig. 2. Plot (a) is a Gaussian intensity profile calculated using the electric displacement
field given by Eq. (9). The value w is the 1/e radius of the beam. Plot (b) shows a top-hat
profile calculated using the electric displacement field given by Eq. (11). The red dots in
(b) show a profile, taken from an experimental image, of the beam used in the experiments
which demonstrates a reasonably good approximation of a top-hat beam.

The Fourier transforms of the two input profiles given by Eqs. (10) and (13) may now be
substituted in Eqs. (5) and (6) to give the intensity profiles in the focal image plane using
Eq. (8) with ζ = 0. These profiles are plotted in Fig. 3. The use of a top-hat input beam is
predicted to produce a strikingly different profile from the case of using a Gaussian input beam.
Most notable in Fig. 3(b) is the presence of a singularity and a wedge-shaped feature with an
instantaneous diminution, as predicted by Berry [3].
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Fig. 3. Intensity profiles at the FIP generated using Eq. (8) in the case of (a) a Gaussian
input beam, as given by Eq. (9), and (b) a top-hat input beam, as given by Eq. (11).

3. Fine structure of the radial intensity profile at the FIP

The intriguing intensity profile predicted to occur for a top-hat input beam as seen in Fig. 3(b)
merits closer examination. The singularity cannot of course be infinite in reality, but what we
actually observe is still of interest and should be quantified. In order to study this profile in
fine detail the experimental apparatus shown in Fig. 4 was used. A Helium-Neon (HeNe) laser
beam with a peak emission at 632.8 nm was directed onto a 100 µm diameter pinhole. Since
the radius of the laser beam was of the order of millimetres, the 100 µm pinhole acted to cut off
enough of the beam to generate a top-hat profile. A 22 mm long slab of KGd(WO4)2 was placed
as close as possible to the pinhole and the crystal was aligned so that the beam propagated along
an optic axis. A biconvex lens of focal length f = 3 cm was placed u = 3.11 cm after the FIP
where ζ = 0. This location occurs inside the crystal as can be found using Eq. (4). The image
of the FIP was formed 86 cm after the lens, where a colour charge-coupled device (CCD) of
pixel size 4.65 µm was placed to record the profiles generated. The magnification produced by
the lens was calculated to be m = |v/u| = 28 which was sufficient to almost fill the CCD chip
with the entire singularity and wedge structure. The unmagnified FIP radius was determined to
be R0 = 360±10 µm which corresponds to ρ0 = 7.2 when using a pinhole with a 50 µm radius.
Note that this value differs from the predicted value of R0 = 430 µm obtained using Eq. (2), a
discrepancy which is discussed in more detail in [8].

FIP
CCD

Biconvex
lens

HeNe laser 
beam

Pinhole

vu

Biaxial crystal

Fig. 4. The experimental setup used to study the fine structure of the beam profile in the
FIP which is imaged onto the CCD. The values of u and v can be adjusted independently
to give the image a desired magnification.

An example of the images recorded using this apparatus is shown in Fig. 5. Both images are
taken at the FIP, with Fig. 5(b) demonstrating the observed profile when using a top-hat input
beam. Figure 5(a) is an image generated using a Gaussian input beam as reported by Darcy et
al. [8].
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(a) (b)

Fig. 5. (a) An experimental image of the conically diffracted Gaussian beam in the FIP. The
structure is distinct from that formed when using a top-hat input beam as seen in (b). The
radius of the Poggendorff dark ring in image (b) was determined to be 360±10 µm. Both
images are 0.8 mm × 0.8 mm.

In practice the range over which Eqs. (5) and (6) are integrated is not infinite, rather the exper-
imental apparatus will introduce constraints on these values [15] with the maximum contribu-
tion κmax being the maximum transverse wavevector component reaching the imaging device.
Consider an iris of radius Rlim centred on the conically diffracted beam and placed a distance
ziris from the entrance face of the crystal, as seen in Fig. 6. The maximum transverse wavevector
component κmax passing through this iris is then

κmax ≡ n2k0wsin

[
arctan

(
Rlim

ziris

)]
. (14)

� �
�

2�
Optic axis direction

Biaxial crystal

Incident
beam �����

���� � = 0α

Fig. 6. The maximum transmissible transverse wavevector component κmax is determined
by the radius of the iris Rlim and its position ziris. This transverse wavevector is given by
κmax = n2k0wsinα where α = arctan(Rlim/ziris).

This is effectively a low-pass spatial filter effect, cutting off higher transverse wavevector
components reaching the imaging device while retaining lower components. The smallest iris
in the system shown in Fig. 4 is the crystal itself which has a limiting radius of Rlim = 1.5 mm.
Since the beam is free to propagate transversely in the crystal until it emerges, the value of ziris

is simply the length of the crystal, 22 mm. Using these values in Eq. (14) gives κmax = 69 which
was subsequently used in Eq. (8) to generate the plot shown in Fig. 7(a). This is compared with
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the observed intensity profile obtained by averaging several radial profiles and shows very good
agreement. The rapid oscillations of the profile for 0.9 ≤ ρ/ρ0 ≤ 1.1 are somewhat smoothed
out in the experimental profile due to the effect of this averaging.

A variable iris was then inserted between the crystal and the biconvex lens, a distance of
ziris = 40 mm from the entrance face of the crystal. When the iris was at its minimum setting, the
limiting radius was Rlim = 0.75 mm which is smaller than the radius of the crystal, and so using
Eq. (14) we find κmax = 19. Equation (8) was subsequently used to calculate the theoretical
intensity profile shown in Fig. 7(b), compared with the experimentally observed profile, again
showing very good agreement. The inner ring is less intense than the case with no iris as seen
in Fig. 7(a), and it is also broader. The oscillations of the wedge-shaped feature have become
more pronounced with longer periods than in Fig. 7(a).
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Fig. 7. (a) Comparison of the observed intensity profile (red dots) with the theoretical pro-
file (solid blue) where κmax = 69. (b) Comparison of the observed intensity profile (red
dots) with the theoretical profile (solid blue) where κmax = 19 corresponding to an iris of
diameter 1.5 mm present before the imaging lens in Fig. 4.
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4. Far-field propagation

The conically diffracted beam evolves as it propagates beyond the focal image plane. This
evolution has been examined in the case of a Gaussian input profile [5, 16]. In this case the
rings which form at the FIP spread out as ζ increases and eventually the inner ring converges
to produce a high intensity region in the centre of the beam ρ = 0 known as the ‘axial spike’.
When ρ0 � 1, the peak intensity of this axial spike occurs at ζ ≈ ρ0

√
2/3. A theoretical plot

of the evolution over the range 0 ≤ ζ ≤ 10 is shown in Fig. 8 generated using Eq. (8) with
ρ0 = 7.2 and a(κ) given by Eq. (10).

11.5

1

0.5

0

-0.5

-1

-1.5 0    2    4    6    8    10ζ

ρ/
ρ 0

Fig. 8. Theoretical plot of the far-field evolution of a conically diffracted Gaussian beam
generated using Eq. (8).

The propagation of a conically diffracted top-hat beam beyond the FIP was examined using
the experimental arrangement in Fig. 9. A HeNe laser beam was directed onto a 100 µm di-
ameter pinhole and a biconvex lens of focal length f = 10 cm was placed a distance u = 20
cm after the pinhole. This produced an unmagnified image of the pinhole a distance v = 20 cm
after the lens. The profile of the laser beam at this point z = 0 approximated a top-hat very well
as shown by the red dots in Fig. 2(b). When a 22 mm long slab of KGd(WO4)2 was inserted
into the beam between the lens and z = 0, the FIP occurred outside the crystal as determined
by Eq. (4). A CCD with a pixel size of 6 µm was mounted on a rail allowing movement in the
ζ direction.

FIP

CCD
on rail

Biconvex
lensHeNe laser 

beam

Pinhole

vu

Biaxial crystal

z=0

Fig. 9. The experimental setup used to study how the conically diffracted top-hat beam
evolves in space. The pinhole is imaged using a biconvex lens of focal length f to a point
z = 0 beyond the crystal, thus using Eq. (4) the FIP occurs outside the crystal at a distance
v+ l (1−1/n2) from the lens. z increases in the direction of beam propagation, and hence
so do Z and ζ as given by Eq. (3).

The system was used to record a series of images beginning at ζ = 0 and moving away from
the crystal in 1 mm increments to Z = 8 cm corresponding to ζ = 2.8. The images were then
stitched together using numerical interpolation software which allowed the beam propagation
to be viewed from the side. The resultant intensity profile is shown in Fig. 10(b). A theoretical
profile was generated to show how the beam evolves in this region using Eq. (8) with a(κ) given

#207174 - $15.00 USD Received 25 Feb 2014; revised 27 Apr 2014; accepted 28 Apr 2014; published 2 May 2014
(C) 2014 OSA 5 May 2014 | Vol. 22,  No. 9 | DOI:10.1364/OE.22.011290 | OPTICS EXPRESS  11297



by Eq. (13). The theoretical profile is shown in Fig. 10(a). There is good agreement between
theory and experiment and the presence of the predicted oscillatory axial spike is obvious; a
feature which does not occur for the Gaussian input beam as seen in Fig. 8.
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0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

Fig. 10. Comparison of the theoretical evolution of the beam (a) with the observed evolution
(b) in the case of a 50 µm radius top-hat beam. Image (b) was generated by stitching
together a series of images taken at 1 mm increments in the direction of beam propagation.

The unusual structure of the evolution was examined more closely by generating a log plot of
the intensity as shown in Fig. 11. It becomes apparent that the structure is very complex, with
many rings of light which converge as the beam propagates. Indeed it appears that there are a
multitude of intensity maxima where the rings converge along the ρ = 0 line for 0 < ζ < 0.4
which appear and disappear over extremely short distances.

1.5
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0.5

0

-0.5

-1

-1.50  0.2  0.4  1.6  1.8  6.0  6.2  6.4ζ

ρ/
ρ 0

Fig. 11. A logarithmic plot of the far-field evolution of a conically diffracted top-hat beam,
calculated using Eq. (8), in order to show the very complicated and intricate structure of
the beam. It also demonstrates how the oscillating lobes along the ρ = 0 line are formed
from many converging rings.

One may intuitively understand the presence of such converging rings to be a result of the
diffraction of a top-hat beam as it propagates, giving rise to many fringes, as opposed to a
Gaussian beam which remains Gaussian as it propagates. In order to explain the oscillatory
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nature of the axial spike in a more rigorous way, we must use the following stationary phase
approximation for the intensity of the conically diffracted beam at ρ = 0 taken from Jeffrey
[15]:

I (ρ = 0,ζ )≈ πρ2
0

2ζ 3

∣∣∣∣a
(

ρ0

ζ

)∣∣∣∣
2

. (15)

Using the Fourier transform of the top-hat beam aT (κ) as given in Eq. (13) gives

I(ρ = 0,ζ )≈ πρ2
0

2ζ 3

∣∣∣∣ ζ
ρ0

J1

(
ρ0

ζ

)∣∣∣∣
2

=
π
2ζ

∣∣∣∣J1

(
ρ0

ζ

)∣∣∣∣
2

. (16)

It will now be useful to use the following approximation for a ν th order Bessel function of the
first kind, which is valid when x � 1:

Jν (x)≈
√

2
πx

cos
(
x− π

4 − νπ
2

)
, x � 1, (17)

→ J1

(
ρ0

ζ

)
≈
√

2ζ
πρ0

cos

(
ρ0

ζ
− 3π

4

)
, ζ 	 ρ0. (18)

⇒ I(ρ = 0,ζ )≈ π
2ζ

2ζ
πρ0

cos2
(

ρ0

ζ
− 3π

4

)
=

1
ρ0

cos2
(

ρ0

ζ
− 3π

4

)
. (19)

The form of the expression obtained in Eq. (19) brings us to an interesting conclusion—since ζ
does not appear in the factor before the oscillatory cos2 term, the intensity of the maxima along
ρ = 0 is constant when ζ 	 ρ0. Furthermore, we may now find the extrema of the function by
taking the derivative and finding the values of ζ for which we get zero:

∂
∂ζ

I (ρ = 0,ζ ) =
2

ζ 2 cos

(
ρ0

ζ
+

π
4

)
sin

(
ρ0

ζ
+

π
4

)
= 0, (20)

⇒ ζ± =
ρ0

π
(
n± 1

4

) , n ∈ Z
+. (21)

A simple calculation taking the derivative of Eq. (20) shows that ζ− corresponds to local max-
ima, while ζ+ corresponds to local minima. Examining Eq. (21) reveals that as n → ∞ with
ζ → 0, the separation between adjacent ζ± values decreases at approximately the rate of 1/n2.
This means the intensity along ρ = 0 is an oscillatory function whose frequency increases
rapidly as ζ → 0. This feature suggests these beams may be used in super-resolution lens-
ing [17], where high transverse wavevector components generate the intensity maxima in the
region close to ζ = 0. Further work is anticipated in this potential application.

When ζ is of the order of ρ0, the approximation in Eq. (18) breaks down and instead we must
examine Eq. (16) to find that as ζ → ∞ the intensity along ρ = 0 trails off slowly to zero since
J1 (ρ0/∞) = J1 (0) = 0.

5. Conclusion

The structure of conically diffracted light was shown to depend sensitively on the profile of
the incoming beam with a very clear difference between the intensity distribution formed when
using a Gaussian input beam and when using a top-hat input beam. In particular, the interesting
beam profile predicted to occur at the FIP for a top-hat input beam was compared to experimen-
tal observations and found to match well when taking into account the physical limitations of
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the apparatus. The use of a variable iris to continuously vary the maximum transverse wavevec-
tor component of the beam allowed very fine control of the features of the intensity profile, such
as the width of the high-intensity inner ring, and the relative intensities of the inner ring and
the wedge-shaped feature. The evolution of such a beam beyond the FIP was simulated using
the theoretical model presented which yielded the unusual feature of an oscillating axial spike.
This evolution was then observed experimentally and found to match extremely well with the
prediction.

This unusual intensity profile may find applications in optical trapping since the strength
of a trap depends on the gradient of the intensity [18]. Since in theory the intensity of the
inner ring is limited by the apparatus being used, the use of high-quality components could
lead to a very stiff trap indeed. It may also be used to create microstructures with very sharp
features, or controlled using a variable iris as described in Section 3 to produce microstructures
with tunable feature quality. We also anticipate further work using white light top-hat beams
to generate novel polychromatic beam shapes, and to perform experiments in cascade conical
diffraction [19] and the generation of Bessel beams [20] in order to compare the results with
the case of conically diffracted Gaussian beams.

Acknowledgments

This work was supported by the Higher Education Authority under the PRTLI scheme, cy-
cle 5. We would also like to acknowledge funding from Science Foundation Ireland, award
09/SIRG/1592.

#207174 - $15.00 USD Received 25 Feb 2014; revised 27 Apr 2014; accepted 28 Apr 2014; published 2 May 2014
(C) 2014 OSA 5 May 2014 | Vol. 22,  No. 9 | DOI:10.1364/OE.22.011290 | OPTICS EXPRESS  11300




