
Two Exercises in Simple Regression 

R. C . G E A R Y 

^ V m L E the two exercises are independent in that they purport to answer 
separate questions, methodologically they are very similar. They both compare 
the efficiency of different methods of estimation of parameters by the familiar 
method of ratio F of variances of estimate, stochastically decisive, under very 
general conditions, when number of observations T tends towards infinity. It 
happens that variance formulae in the two parts are formally identical, namely 
var b (1.13) and var b2 (2.10); also var b' (1.14) and var bx (2.6), for reasons which, 
no doubt, will be evident. 

1. S H O U L D R E G R E S S I O N I N T I M E S E R I E S B E C O M P U T E D U S I N G 
O R I G I N A L D A T A O R T H E I R D E L T A S ? 

All practitioners are aware that least squares regression equations in economic 
time series are likely to produce r's very near unity because during the regression 
period (e.g. post-war) all series tend to have the same trend. Such high correlations 
can never be regarded ex post as indicating relationship except when there are 
good theoretical reasons for suspecting relationship, e.g. between income and 
consumption. To establish short term relationship two practices are common: 

(ii) Introduce time t as an indvar. 

(ii) Instead of using the original variables (in simple regression say Y , and X,) 
use A Y , and AX„ with AY, = Y,-Y,^. 

Both procedures have the effect of eliminating trend t. With (i) indvars would 
be X, and t. The coefficient of X, would be exactly that which would be found 
between the residuals of Y, and X, after regression on (. 

In what follows we deal only with (ii). It will'suffice to confine attention to 
simple (i.e. two-variable) regression. 

Models 
Let the model be— • 

Y, = a+pX,+u,, t r 1, 2,.. . ., T. (1.1) 
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where the error term u, is regular (i.e., for all t, Eu, = o, EM, 8 = a2 '.'Eu,u, (t' # t)='o). 
Then, if b be the regression estimate of j8, with x, = X,—X,— 

b = P+Zxtutl2x\ (1.2) 

so that Eb = fi with variance—; 

var b = E{b-fSf = <T*px,\ t (1.3) 

classical results, of course; The A version of (1.1) is— 

' . y V = | 3 X ' , + « ' „ f = 2 , 3 , . . . , T, • (1.4) 

where V', = A Y , = Y , ~ Y ( _ i , etc. There'are now (T— i) terms. The error term 
is, however, no longer regular since obviously Eu';u= —a 2 , not zero. 

Also EM' (

2 = 20K 

Maximum Likelihood 
•If (1.4) (with an additional relation from (1.1), say = a + SXi+Uu.to make T 

relations in all) are both solved by maximum likelihood (ML) the estimates from 
a given realisation of a and /3 will be identical. In fact,'if the probability element of 
the vector u is— , 

• . . f(Ui, U2,. . ., UT)ndut " - , (l.5) 

the M L solution is found as the values of the parameters (e.g: a, )3) which maximise 
f, regarding the ut i n / as functions of the parameters and the data (e.g. as given 
by (1.1). I f in (1.5) we make the linear transformation (in matrix form)— 

u ' = A u , . (1.6) 

' ' " • . ' • . ' » - • • * 
where prime on left is not transpose and A is any non-singular square matrix 
with pre-determined numericalelements, (1.5) transforms into—< 

I A - 1 I g(u\, u\, . . ., u'T)ndu'„ (1.7) 

where g is the function/after the transformation. Since in (1.7) the absolute value 
of the determinant, namely | A - 1 | , is a constant (i.e. independent of the 
parameters), the problem of the "maximisation o f / a n d g are identical and the 



maximising values of the parameters the same. In our particular application the 
matrix A is— 

LS Regression Applied to Delta Version (1.4) 
Invariably, however, when the regression problem is deltaized the assumption 

is made that the error term u't is regular, which assumption amounts to a wrong 
specification if the basic model is (1.1). Usually a constant term is added, which* 
would indeed by formally consistent with the model— 

' Yt = <x+pXt+yt+u„ 

' • . • • ' ". (T-9) 
i.e. as at (i) in the opening paragraph. 

When (1.4) is regarded as a problem in least squares the estimate b' of j3 is— 

b' = EX'1Y'tjSX'\ 

= p+2(xt-xtL1)(u,-ut-1)l2:(xt-xt-iy (1.10) 

so that b' is still an unbiased estimate of /J, i.e., Eb' = fi. 
Its variance— • 

var b' = 2o-2(Zx\-2:x'tx't-i)l(Zx'2

t),>1 (1.11) 
1 

recalling that X't — Xt— X , _ ! = xt—x,-x = x't and that now the Z's on the 
right have (T—i) or (T— 2) terms. 

.We apply the foregoing theory first to two particular cases, then asymptotically 
to a more general case. 

Case 1 . 
Let X, — t(t = 1 , 2 , . . . , T ) , the very common equi-spaced indvar case. Then— 

Zx2, = T ( T 2 - i ) / i 2 ( . _ , (1.12), 

and, from.(1.3),— _ ' ' . * ' ' u ' ! 

• var t='i2ff 2 /r(T 2 - i ) . . : ! (1.13): 



All the x't are unity, so that, from ( i . n ) , — 

var &' = 2a2l(T-i)\ (1.14) 

so that, if the efficiency F of 6' in relation to 6 = var 6/var 6',— 

- F - 6 ( r - i ) / r ( r + i ) ( I . I 5 ) 

The methods are equally efficient (E = 1) for T — 2, 3. Thereafter the efficiency 
of b' diminishes rapidly, in fact approximately as 6/ T. 

Case 2 • •-' ' 
Often we notice a tendency for the indvar values'to cluster near the median 

so that our second constructed example will illustrate this. Let there be 2 T obser
vations so that X , is— 1 ' - - * 

— T 2 , - ( T - i ) 2 , . . ., ~2\ i 2 , i 2 , 22, . . ., ( T - i ) 2 , T 2 . 

Using the sum St of the fourth powers of the natural numbers 1,2,..., T, namely 

. v s,= r(r+i)(2T+i)(3r2+3r-i)/3o,-J - (1.16) 

we find from (1.3)— 

var 6 - i5<72/r(T+i)(2T+i)(3r2+3r-i) (1.17) 

having noted that X = o so that X , =± xt. , -J . -
As regards var b', the sequence x't is— - , 

27-i, 2 T - 1 , :.., 5,3; 2,3,5v • •, 2T-3, 2T-1, 

(2T—1) terms in all, so that, after some elementary algebra, and using (1.11),— 

• v a i - 6 ' = i8<72(4r2—6)/(8T3-2r+6)2 ' (1.18) 

and efficiency F of estimate b' iŝ — 

L F='5(8,r3-2T+6)2/6r(r+i)(2r+i)(3T2+3r-i)(4r2-6), ( I . I 9 ) 

tending to 5/18 T, when T is large. W e recall, however, that for this Case 2, 
number of observations is not T , but 2T*= T ' , say, whence limiting value of F 
is 20/9 T ' , in comparison with 6/T" for Case 1. In the more typical Case 2 the 
efficiency of the delta procedure estimate b' (in relation to b) is even worse than 
in Case 1. Both are very bad.' 



A Remark • ' 
The variances of l> given by (1.13) and (1.17) are notO(T' _ 1 ) as in classical theory. 

In fact, in the foregoing expose no regard was paid to orders of magnitude. This 
would have been achieved by multiplying all the indvar values as given by KT~* 
in Case 1 and by K T - 2 in Case 2, where K is independent of T. This treatment 
would render both estimates of var h' of order 0(T" 0 ), an ordinary magnitude. 
Using L S with the deltas the estimates h' are no longer consistent, as not tending 
to j3 as T tends to infinity. The values of F at (1.15) and (1.19) would not be 
affected. 

The General Polynomial Case 
In Cases 1 and 2 X, was represented by polynomials of degree 1* and 2 in t. 

Suppose, more generally, that X, is a polynomial of degree k in t. Then UX, 
is 0 ( T k + 1 ) . Using this formula on (1.3), we find var b is 0 ( r - 2 k - x ) . With reference 
to (1.11), A X , = x't is a polynomial of degree (fe—i),in t. The denominator is 
[OCT 2*- 1)] 2 = 0 ( T 4 k - 2 ) . As to the numerator, the term [x'2

t-x',x't _ a ) is a poly-, 
nomial of degree (2k—3) in t, so that its S is 0 ( T < 2 k " 2 ) . Hence var b' is 
0 ( T 2 k - 2 ) / O T 4 k - 2 ) = 0 ( T - 2 k ) . Then F = var 6/var b' = O j T " 1 ) as in Cases 1 and 
2. I f dimensional multipliers of the indvars KT~k be "introduced to render 
var& = 0 ( T ~ 1 ) as it should, var b[ is O ( T 0 ) , an ordinary magnitude so that, as T 
tends to infinity b' does not tend in probability to fi. 

Consequence of Assumption of u' ( Regular 
Suppose, on the contrary, that in (1.4) u't by the Durbin-Watson d or Geary x 

tests, can be regarded as regular, variance a 2 , what are the implications for T, ? 
Clearly— ' 

Y, = <X+J8X( + H, (1.20) 

but H, can no longer be regarded as regular, since it is heteroskedastic. In fact-—•' 

u,—-^ u't, (1.21) 

so that var ut — to2. Such a situation would be unusual, though error variance, 
in practice, tends to increase with indvar value. More unusual still would be the 
Durbin-Watson d approaching the small value of approximately 2/ T because of 
the high degree of autocorrelation between the residues ut* Let us, nevertheless, 

*It must be confessed that violent contrasts between values of if using original and delta versions 
in simple regression have not been encountered in practice. Perhaps this point is worthy of further 
examination. 



follow it through, wrongly assuming that ]8 can be estimated by b", using L S 
regression. Then - , . ' > 

, -. b" = ZYt(Xt-X)jZ{X-Xi) , t . ' (1 .22) 

which, on substitution from (1.20),.becomes 

; . / - ,. . b" r $+Zutxt\Zx\, . ... (1.23) 

so that Eh" = /3. However— 

var b" = cr2( Z to2 )̂-2 Z tx, Z • x ( ( ) / (^x 2

( ) 2 >a 2 

which seems to be an 'ordinary magnitude, i.e. (OT°):'we have little interest in 
establishing this firmly. I f this is true than b' does not tend in probability towards /? »• 
even when T tends towards infinity. . • f* 

Even if we satisfyourselves as to the homoskedacity and non-autoregression of 
residuals in A X , and AY,' regression^ i.e. that utis regular, we should realise'the 
oddity of these' assumptions for the relationship between the original data X , ' 
Y, . At present decision whether to use the original'data or their deltas seems 
largely a matter of whim or instinct, which is not good enough. Both cannot be 
right and criteria should be used in making a choice. 

An Example: , ; 
With X , gross national expenditure and Y, money (annual average) 1949-1965 

( T = 17) the regression coefficient b for Y, on X , is 0*2640 with E S E (estimated 
standard error) 0-00552, r = -997, while for the deltas b' = 0-1891 with 
E S E = 0*0730, r = -8i (i5d.£, P<-ooi). The efficiency of b' as an estimate of 
the theoretical jS is only .0057. b is incomparably better than b' as an estimate of |3. 

O n the other hand if one's objective is the estimation of AY, from AX, (perhaps 
for forecasting) it is better to use the regression with b' than that from Y, on Xt, 
deriving the calculated A Y , c ex post from the Y , c . O n the same data as above the 
values of the criterion of goodness-of-fit-£(A Y , — A Y , C ) 2 are 345 and 448 respec
tively, so that the delta regression, despite its inferior estimate of b' yields a 
substantially better calculated value of A Y , . 

But the efficient e'stimatio'n of the increments A Y , is in conflict with the efficient 
estimationrof Y, . W e mean'that • 

••-> v • ;. • •* •>•-.:; -i . • • • • ; 

where A Y , ' c have to be estimated by delta regression is less efficient as an estimate 
of Ytc than is the value calculated from the direct Y, on X , regression by the 

(1.24) 



residual sum squaresH(Y, — Ytc)2 test. This is obvious since the direct Y, regression 
by definition minimises this expression. •••>-

Conclusion - -
Estimation of coefficients by L S regression from delta regression will usually be 

highly inefficient. The hypothesis of residual regularity in the delta form of model 
is bizarre for its implication with regard to the error term of relation between 
absolute values. If, however this regularity can be regarded as tenable the delta 
regression can be used efficiently only for estimating the increments A Y, and not 
the Y, themselves. • 

There is no reason why these conclusions, based on simple regression, should 
not apply to multivariate regression or to models of several equations. 

Our professional consciences may be uneasy about those very high correlations 
in the original data. It is certainly consoling to find a satisfactory correlation 
between the deltas of the data since thereby we can be reasonably sure that the 
original high correlation was not due solely to the fact that each was closely 
related to time trend t. This is a role for the deltas. Better still to regress on X , 
and t together and to find a significant coefficient for X , . I f ( is also significant 
(and the residual non-autoregressed) we have a reasonable forecasting equation. 

A point to assuage our tortured consciences. I f the indvars we know are all 
strongly correlated with time trend t, it is plausible to assume that those we don't 
know have the same property. The indvar t may in a certain measure act as a 
proxy for these, instead of requiring the error term to carry all the brunt. Time 
trend t may be a more respectable indvar than we customarily think. I f t has a 
significant coefficient residual error variance will be reduced by its inclusion. Too 
large residual errors are the main bugbear of forecasting formulae. 

As an application has shown, from our data alone we may be able to decide 
whether the original data or their deltas yield the more efficient estimates of the 
coefficients. . . . 

2. T H E R I G H T W A Y T O C A L C U L A T E R A T E O F C H A N G E I N 
E C O N O M I C T I M E S E R I E S « . • ! ' • 

Let the observations b e Z 1 , Z 2 , . . ., Z r over a period of "years" (or any other 
time unit) T. The usual method is to set— 

( i + r ) T - ' = Z ^ , (2.1) 

where ioor is the rate % per year, calculated by logarithms— 

l o g ( i + r y = ( l o g Z - l o g Z J / ( r - i ) , ; (2.2) 

r being then found from antilogs. 



An immediate objection to this method is that the calculation relies solely on 
the first and last observations (ignoring the remaining (T—2) observations) and 
either, or both, of these may be manifestly abnormal in relation to the remaining 
observations. Yet the procedure may find a kind of justification in the theory of 
averages because of the identity'— 

' . ' Z r / Z ^ ' ^ / Z j X Z . / Z , ) . v ; < Z r - i / 2 r - , ) ( Z r / Z r _ 1 ) , (2.3) 

the right side apparently taking all the individual changes into account, (i + r) 
being the geometric mean of the series. The answer is, of course, that one cannot 
say one has taken account of, say, Z 2 when, having brought it in, one proceeds 
to cancel it out. In blunt statistical terms this is usually a highly inefficient method 
of calculation of rate of change. 

Assuming that the true rate of change has been constant over all ^observations, 
a more efficient method of calculating it is to apply the classical linear regression 
model. Assume that the series Z , , apart from a disturbance term, can be represented 
by a model yeP*, jS now representing the instantaneous rate of increase, namely 

= r j at time t, /J being significantly different from zero. 

In log form, suitable for least squares regression treatment, the model then is— 

Y, = a + j 3 f + w „ ( = 1 , 2 T (2.4) 

where Y, — \o%eZt, a = log ey arid disturbances ut are assumed to be regular (i.e 
mean zero, homoskedastic-constant variance a 2 elements mutually uncorrelated). 
The model is approximately valid (at least enough so for the present purpose) 
for most Irish economic series in the postwar period. While there may be a 
tendency for disturbance variance to vary with the magnitude of the data (i.e. the 
disturbance may be heteroskedastic) this tendency is mitigated by using logs, as 
in our model. - » 

W e shall now compared the relative efficiency of the two methods of estimation 
of ft on stochastic lines, assuming that model (2.4) applies. The first estimate of 
j3, namely blt found by taking account only of the first and last terms, if— 

bl = (Yt-Y1)l(T-i) 

= / 3 + ( H r - W i ) / ( T - i ) , _ (2.5) 

from (2.4). Since E(bj) = jS, bt is an unbiased estimate .of ]8. Its variance is— 

var bx = E(bl-p)2 = 2 f f 2 / ( T - i ) 2 (2.6) 



The second estimate of p, i.e. the least squares regression estimate b2 from 
(2.4) is— 

ba = £{Yt- Y){t-l)jE(t-lf 

= p+ZUt(t-i)IZ(t-'t)? (2.7) 

= j8, so that b2 is an unbiased, estimate of/?. As is also well-known— 

var b2 = E(bt-PY = a2jE{t-if (2.8) 

Now, from the well-known formula for sum squares of first T natural numbers,— 

2(t-tf= r ( 7 * - i ) / i 2 . (2.9) 

Hence— 

var b2 = 12a2JT(T2 — 1). ( 2 - 1 0 ) 

The relative efficiency of estimate bx compared with that of b2 is defined as— 

F — var t 2 /var bx 

= 6 ( r - i ) / r ( T + o (2.n) 

from (2.6) and (2.10). Hence the estimates are equally efficient (i.e. F = 1) for 
T = 2, as they must be; more curiously also when T = 3. For large values of 
T, F is approximately 6/ T. 

Although one may have doubts about the validity of model (2.4) as correctly 
representing the series, the foregoing analysis is so decisive as to lead to the firm 
recommendation that the first method should never be used for the calculation 
of rate of change in non-trivial cases. An argument that the wrong method is 
easier to calculate has no force in this day and age. 

Economic and Social Research Institute, 
Dublin. 




