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1. Introduction

Since the conjectures regarding the vacuum structure of open string theory were made

by Sen [1], [2], considerable interest has been devoted to its verification as well as study

of the consequences. The studies of [3], [4], [5] demonstrated that the approach based

on background independent open string field theory of [6], [7] can be very effective in

addressing the question of tachyon condensation since one can find the exact expression

for the string field theory action order by order in a derivative expansion of space-time

fields. In this standard way of treating the low energy lagrangian, the exact answer already

in the two derivative approximation provides important information and allows one to

demonstrate the validity of Sen’s conjectures.1 Further generalizations were considered in

[9], [10] for the case of a constant B-field and in [11] for the case of superstrings.

According to the Sen’s conjectures for the open bosonic string theory, the process of

tachyon condensation leads to a new vacuum state which doesn’t contain any open string

states. It is naturally identified with the perturbative vacuum of the closed bosonic string

theory. This gives the convincing support to the idea that the perturbation theories of open

and closed strings are expansions in some background independent universal theory around

the different vacua.

We would like to propose a further explanation of the connection between open and

closed strings, guided by the symmetries of string theory. It turns out that in the process

of learning how the electro-magnetic field disappears as a result of tachyon condensation in

the approach of background independent open string field theory, we come to an important

understanding regarding the properties of string theory in general: the connection between

the two vacua is a close relative of the standard Higgs description of two types of vacua in

the theory of an abelian gauge field coupled to a complex scalar field. The perturbative

vacuum of the closed strings plays the role of the invariant vacuum, and the perturbative

vacuum of the open strings is the vacuum with the spontaneously broken symmetry.

In the vacuum with the spontaneously broken symmetry the open string tachyon is

similar to the absolute value of the complex scalar field in the field theory example, and

the role of the phase is played by the other fields in the open string spectrum. In this

analogy the gauge transformations of the open string fields are similar to the identification

1 It is very interesting to note that in [8], motivated by rather different ideas, the same tachyon

lagrangian, both in the bosonic and superstring case, was proposed as a toy model that mimics

the expected properties of tachyon condensation.
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of the angular variable θ ∼ θ + 2π. This is the manifestation of the particular choice of

the coordinates and not of the topology of the configuration space. As the consequence,

for the other coordinates (e.g. natural variables in the closed string theory) there is no

trace of these open string gauge symmetries. This serves as the explanation of the absence

of the open string gauge fields after tachyon condensation. We note that the tachyon

potential in open string field theory is very different from the standard field theory example

V (φ) = (|φ|2 − η2)2. In particular the vacuum with the spontaneously broken symmetry

is unstable. Thus the perturbative expansion around the symmetric vacua is in terms

of closed string degrees of freedom. The other degrees of freedom are suppressed in the

symmetric vacuum by the infinite effective mass. From the point of view of the closed

string theory world-sheets, these hidden degrees of freedom correspond to non-smooth

world-sheet deformations.

The main suggestion we make in this paper is closely related to the search for closed

strings inside the field theory of open strings; this has been a challenge for many years (see

e.g. [12]) and more evidence has occurred recently [13] in the view of developments related

to D-branes and Matrix Theory [14].2 Note also that a related qualitative picture of the

disappearance of the open string gauge fields and the emergence of the closed strings was

presented in [15] and [16].

In section 2 we consider the truncated version of the open/closed string theory (the

approximation we use is rather close to the considerations in [17]). We demonstrate that

the process of the tachyon condensation closely follows the Higgs mechanism in the theory

of a U(1)-gauge field interacting with a complex scalar (of course with an appropriate

map between fields of abelian Higgs model and truncated string field theory). Based on

this analogy we give a qualitative picture of the new vacuum. The considerations of this

section suggests that one should think about the Higgs phenomena taking place in the

space of loops instead of space-time (when all stringy modes are included). If the gauge

bundles over the space-time play a prominent role in the usual quantum theories of fields,

the proper analogs in the theory of strings are gerbes with 2-connections. Thus we suggest

2 It has been proposed in [13] (based on several evidences extracted from Matrix Stings on

D1 brane in IR limit) that in background independent open string field theory (D9 or D25) there

should exist a solitonic solution corresponding to fundamental, Nambu-Goto, closed string and

thus open string field theory can serve as the definition of full, self-consistent theory of interacting

open and closed strings.
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that the basic mechanism behind the open/closed string transformation is, in the nutshell,

the Higgs phenomenon for gerbes.

The fact that the B field absorbs the gauge field in the Higgs mechanism, familiar from

supergravity theories, was know from early days of string theory [18], and in the context

of Born-Infeld action [19] (for some early studies of tachyon condensation see [20]). The

appearance of the gauge group SU(N) instead of U(N) in the AdS/CFT correspondence

[21] possibly has the same origin.

It is well known that the separation of closed string and open string degrees of freedom

is rather ambiguous. The inclusion of the singular interactions in the open string theory

gives the closed string states in the loop expansion. On the other hand, one could use

the smooth open string vertices at the cost of explicit introduction of closed string fields.

We claim: after tachyon is properly included in the picture and when it condenses, the

coordinates with explicit closed strings become more appropriate and closed strings appear

as dynamical variables. We conjecture that all open string fields (except tachyon) are

“angle” variables and correspond to gauge parameters for corresponding closed string fields.

In section 3 we begin to analyze this interpretation directly in the sigma model ap-

proach. The transformation of the open strings (2d surfaces with boundaries) to the closed

strings (2d surfaces without boundaries) is a ”geometric” one and this leads us to believe

that the sigma model approach could provide the basic insight into the question of the

disappearance of open strings. In the new vacuum, the condensate of the tachyon zero

mode becomes infinite, and due to the general prefactor e−RT0 for each open string loop,

forbids a non-zero boundary on the world-sheet.3 In this section we discuss the connection

between these two vacua in terms of the 2d quantum theory on the world-sheet and find

the picture of spontaneous symmetry breaking similar to the one discussed in section 2.

In order to gain more information in section 4 we use the open/closed string field

theory due to Zwiebach [22] to verify the off-shell connection between open string fields

and closed string gauge parameters.

In the Appendix we discuss two important questions regarding the role of the choice

of the proper coordinates in the background independent open string field theory action.

To conclude this introduction we would like to mention that the question: what is

exactly the space of boundary field theories in 2d? seems to be of the fundamental impor-

tance in the open/closed string relation.4 In this notes we give just first steps towards the

possible answer.

3 Related question was asked by S. Shenker and we thank him for sharing it with us.
4 This question have been raised by E. Witten over the years since [6], [7].
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2. Stringy Higgs mechanism: target-space approach

In order to study the role of higher spin fields in the process of tachyon condensation we

start with the truncated field content in the open/closed string theory. Thus we consider

the metric G, two-form gauge field B, open string U(1) gauge field A and open string

tachyon T .

Let us remark that in general the inclusion of the full spectrum of open and closed

strings in the action leads to the over-counting of the degrees of freedom and their contri-

butions to amplitudes. But here we are looking at the truncated open string theory and

this consideration is legitimate.

In background independent open string field theory we start from the world-sheet

theory defined on the disk with the operator e−
∫

dθ(T+AdX+...) inserted on the boundary

(we assume that ghosts decouple). This operator is invariant under open string gauge

transformations A → A + dΛ and global shifts A → A + const. The space-time action for

these fields has the form (see the Appendix for the choice of the parameterization):

S(G, B, A, T ) = Sclosed(G, B)+

∫
d26X

√
G(e−T (1+T )+e−T ||dT ||2+1

4
e−T ||B−dA||2+· · ·)

(2.1)

One shall note the obvious gauge invariance of the action:

B → B + da (2.2)

A → A + a (2.3)

where a is 1-form gauge parameter. Global symmetry corresponds to constant a.

We can consider two situations: closed string modes are fixed (non-dynamical) back-

grounds and closed string modes are dynamical. As it follows from the tachyon potential,

in both cases we have two types of the vacua in the theory. At the open string perturbative

vacuum, T = 0, A = 0, we have the tachyon of finite mass and therefore this vacuum is

unstable. In the theory of only open strings we also have the massless gauge field A. When

we make the closed string modes dynamical (which is not necessary at the moment) - in

this vacuum the gauge invariance (2.2), (2.3) allows to put A to be zero and we are left

with the tachyon and mass term for the field B.

It appears that the open string tachyon potential has another vacuum for the infinite

value of the tachyon field T = ∞ (in addition there are many soliton solutions correspond-

ing to the lower D-branes but we will not discuss them here). In the new variables:

Σ = e−
1

2
T (2.4)
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it is at Σ = 0 (unstable vacuum is at Σ = 1) and:

S(G, B, A, Σ) = Sclosed(G, B)+

∫
d26X

√
G(Σ2(1−2 log Σ)+4||dΣ||2+1

4
Σ2||B−dA||2+· · ·)

(2.5)

Around the critical point Σ = 0 from corresponding potential in (2.5) we conclude

that the square of mass for Σ-field (“tachyon”) is positive and infinite. According to Sen

this should be the vacuum corresponding to the theory of the closed strings. Note that

the kinetic term for the gauge field A multiplies zero, Σ2, at this point and thus the gauge

field is not well defined at this vacuum.

Last expression (2.5) immediately suggests the analogy with the quantum field theory

textbook Lagrangian:

S(Φ,A) =

∫
dX(

1

g2
F (A)2 + |dΦ − iAΦ|2 + λ(|Φ|2 − |Φ0|2)2) (2.6)

with gauge transformations:

A → A + dχ (2.7)

Φ → eiχΦ (2.8)

that are analogous to (2.2), (2.3). Here we have the abelian gauge field A interacting with

the complex scalar field Φ and as an example the forth order polynomial potential.

In order to make the connection to string theory lagrangian (2.5) we allow ourselves

to briefly review the properties of (2.6) in the variables similar to (2.5):

Φ(X) = eiφ(X)H(X) (2.9)

The action (2.6) is:

S(H, φ,A) =

∫
dX(

1

g2
F (A)2 + H2|dφ −A|2 + |dH|2 + λ(H2 − H2

0 )2) (2.10)

In the new coordinates, φ is identified under the shift transformation:

φ → φ + 2π (2.11)

The appearance of the field identification (2.11) is not the manifestation of the non-trivial

topology of the configuration space, but it is the artifact of the choice of the special
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coordinate system. For instance in terms of two scalar fields X, Y (Φ = X + iY ) there is

no condition like (2.11).

In these variables the gauge transformations are exactly like for string theory case

(2.2), (2.3):

A → A + dχ (2.12)

φ → φ + χ (2.13)

The stable vacuum Φ = Φ0 is not invariant under phase-shift - it is stable and non-

symmetric. When gauge field A is background field, we have massive scalar H and massless

scalar - phase φ. When A is dynamical - we can set the angular variable to zero by gauge

transformations and we get massive H and massive gauge field A.

There is also unstable but symmetric vacuum - Φ = 0. In radial variables for back-

ground gauge field A we have tachyonic field H and the phase field φ is ill-defined since

its kinetic term multiplies zero expectation value of H-field. This is the manifestation of

the fact that these variables are not well defined at this point and one should use another

(non-singular) parameterization (e.g in terms of X and Y ). At the same time, when gauge

field becomes dynamical we can perfectly live with angular variables; the angular field φ

is a gauge parameter for A - we get massive tachyonic field H plus massless gauge field A.

This is how field theory abelian Higgs mechanism looks in angular coordinates.

The analogy between (2.10) and (2.5) is quite obvious. We can “map” the variables

as:

Σ → H (2.14)

A → φ (2.15)

B → A (2.16)

The description of open string theory in terms of the fields Σ, A in (2.5) is similar to the

description of abelian field theory in terms of matter fields H, φ. Closed string mode B

is related to gauge field A. The tachyon (more exactly the field Σ) plays the role of the

”radial” component of the complex scalar field and the gauge field is the analog of the

”angular” variable. The gauge field A shifts under the gauge transformation (2.3) similar

to the φ in the previous considerations. It is interesting that the usual gauge transformation

of A is the full analog of the shift symmetry (2.11).
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The analogy described above taught us the following: we can study the trun-

cated string theory system around the vacuum (T = 0, Σ = 1), A = 0 (unstable and

non-symmetric) and the corresponding situation in abelian Higgs model is stable/non-

symmetric vacuum. Otherwise, if we study the string theory around the new vacuum at

Σ = 0 which is invariant with respect to closed string symmetry (2.2) (“stable”/symmetric

vacuum) - it is similar to the symmetric point in the configurations space of the abelian

gauge field theory example (unstable/symmetric). But from the field theory considerations

we know that the description of the fluctuations around symmetric vacuum configuration

in terms of the ”angular” type variables and fixed background field A is totally inappropri-

ate and one should use the different parameterization of the fields (for example cartesian).

Now, we shall note that latter problem in abelian Higgs model is removed by choosing

the correct coordinates, and by dynamical gauge field A. If we go back to string theory

example it seems that angular variables are forced on us from the beginning in truncated

open/close string system and in case of fixed closed string background there is no possibil-

ity to introduce the analog of local cartesian coordinates X, Y since the analog of absolute

value of Φ = H (which is Σ) and phase factor φ (which is A) carry different space-time

spin. At the same time we can introduce non-local string field theory wave-function

Ψ(X(σ)) = e−
∫

(T (X(σ)+A(X)dX(σ)+···)dσ (2.17)

which may be considered as the formal analog of the complex scalar field Φ and the 2-form

B field gives the natural connection on the space of these functionals (this means that we

now need to include all fields and all derivatives in space-time lagrangian which becomes the

lagrangian in loop space). Thus we conclude that in the truncated string model it is forced

to use non-local string field variable and assume that closed string modes are dynamical.

The latter is an important conclusion since what has been claimed is that there is a new

branch in open string field theory where the only dynamical degrees of freedom are closed

strings. Two branches are connected by new, stable, closed string vacuum Σ = 0.

All this support the idea that at the new vacuum of the string theory there is no open

string states in the spectrum and we have the theory of the closed strings instead.

It is interesting to note that the string field theory wave function (2.17) is closely

related to cubic CS open string field theory coordinates (see [3]). Let us remember that

in [3] the following relation between tachyon modes in sigma-model and cubic CS string

field theory coordinates was proposed: consider world-sheet path integral for the disk
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topology and divide the disk into two equal parts with first half carrying the fixed boundary

condition X(z, z̄)|∂D = X∗(σ) and on second half the operator (2.17) inserted. For tachyon

zero modes this leads to the relation:

e−
1

2
T0 = 1 + TCS

0 (2.18)

We see that the cubic CS string field theory expansion is built around the vacuum corre-

sponding to TCS
0 = 0. One can use the conformal transformation in order to map the disk

to “1/3 of pizza” - with 120o angle segment and glue three such wave-functions in order to

get familiar cubic term in CS action which now becomes the disk partition function with

functional (2.17) inserted on the boundary (second term in the background independent

action S = −βi∂iZ + Z); as far as the β-function term in the action - it is obviously ob-

tained from the kinetic term ΨQΨ of CS cubic action (for the appropriate regularisation

in sigma model).

3. World-sheet considerations

Now we would like to understand the above picture in terms of world-sheet sigma

model. Consider the perturbation series expansion in the string theory with open strings.

We should sum up the contributions from the arbitrary genus surfaces with arbitrary

number of the holes. The contribution of each surface is given by the 2d functional integral

over the fields with Neumann boundary conditions (“partition function”) which has the

expansion:

ZTotal =
∑
h,n

1

n!
g2h−2+nZΣg,n

(3.1)

We will mainly be interested in the contributions of the open string loops and thus

restrict ourselves by the genus zero surfaces.

Z∗ =
∑

n

1

n!
gn−2ZΣ0,n

(3.2)

This expansion may be interpreted as the closed string partition function in the

”shifted” background. Being not very precise one could say that there is an operator

in 2D theory such that its insertion in the correlator simulates the appearance of the hole
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on the world-sheet. If we denote this operator VH then the partition function (3.2) may

be formally written as an “effective action” for the closed string in some new background:

Z∗ =
∑

n

1

n!
< VH

n >=< eVH > (3.3)

The addition of this operator to the world-sheet action deforms the vacuum of the

closed string theory to the new vacuum where the world-sheets with holes are possible.

This operator may be described explicitly. Consider Hilbert space of states of the

quantum fields defined on the circle of the radius R in the first quantized closed string

theory. The vacuum state is define in terms of the annihilation operators in the standard

way:

αi
n|vac >= 0 (3.4)

Geometrically it means that this vacuum state is induced by the functional integral over

the disk. This state is invariant under various symmetries. For instance it is invariant

under the gauge transformation of the 2-form field B → B + da which will be important

in the following consideration. The perturbative expansion around this vacuum is given

in terms of the standard closed string modes. Corresponding operators are given by the

polynomials over creation operators (up to the momentum factor eipiX
i

).

In open string diagrams one chooses Neumann boundary conditions - the normal

derivative of the fields on the boundary should vanish. This is very different from the

previous case and doesn’t correspond to the vacuum state induced by the integral over the

disk. Thus in this case we have the real hole on the string world sheet. The vanishing

normal derivative is equivalent to the condition:

∂σX i
L(σ) = ∂σX i

R(σ) (3.5)

Here X i
L,R are restrictions on the boundary of the chiral and antichiral components of the

scalar fields. The corresponding condition on the open string vacuum state may be con-

veniently written in terms of the canonical momentum variables P i
n = 1

2

∫
dσ(∂σX i

L(σ) −
∂σX i

R(σ)) as:

P i
n|open >= 0 (3.6)

The transformation between two states is a standard Bogolubov transformation with

some operator:

|open >= UH |vac > (3.7)
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UH = e
1

2
A(α,α) (3.8)

where A(α, α) is a bi-linear form on the creation and annihilation operators. Its explicit

expression is not important at the moment.

The corresponding wave function:

Ψ(X(σ)) =< X(σ)|open > (3.9)

may be considered as the classical solution of the closed string theory corresponding to the

open string vacuum. To get the corresponding sigma model vertex operator we should recall

that the additional moduli of conformal structure appears when we consider the surface

with the cut disk instead of the puncture. This additional parameter may be identified

with the radius of the disk and the corresponding vertex is naturally one- differential that

should be integrated over this parameter to get the ’hole cutting operator” that we are

looking for:

VH =

∫
dRUH(R) (3.10)

This description uses the explicit parameterization of the moduli space of conformal

structures. One could propose the invariant definition of this operator which does not use

the explicit parameterization. Consider the contour L on the 2d surface and let VL be the

operator which force the fields in the functional integral to have zero normal derivative on

the contour L. The the coordinate independent analog of (3.10) would be given by the

integral over the contours:

V inv
H =

∫
dLVh(L) (3.11)

Perturbations around this vacuum are quite different from the closed string states and

may be naturally described in terms of open string states. Note also that this new vacuum

is not invariant with respect the symmetries of the closed string vacuum. In particular the

gauge symmetry of the B field does not leave it invariant. This leads to the conclusion

that in this new vacuum we have the spontaneous breaking of the symmetry and thus some

kind of Higgs type effect.

The coordinates in the vicinity of this new vacuum, as usual, have a flavor of the

radial coordinates. There are degrees of freedom connected with the symmetries of the

theory. The most obvious example is the open string abelian gauge field which is in a sense

one of the parameters of the closed string gauge (BRST) transformations. These fields are

10



similar to the angular variables. In particular they are defined up to some identification.

In the case of the standard angular variable it is the identification:

θ ∼ θ + 2π (3.12)

while in the case of the gauge fields it is a gauge transformation:

A ∼ A + dφ (3.13)

Obviously this gauge symmetry is an artifact of the parameterization and shows up

only around the non-trivial vacuum.

The role of the radial coordinates plays the open string tachyon which is invariant

with respect to the closed string gauge transformations. In the open string vacuum the

expectation value of every ”radial” variable is non-zero and it is tempting to conclude that

the operator (3.11) is just the open string constant tachyon operator.

The presented picture rises the following question. In the previous section we have

argued that the open string states become infinitely massive in the closed string vacuum.

But here we move in the opposite direction and looking for the open strings in terms of

perturbative closed string theory. We believe that the answer is in the subtleties of the

short-distance description of the world-sheet. The open string modes which are infinitely

massive in the closed string vacuum are responsible for the non-smooth deformations of

the world-sheets and thus are formally absent (have infinite mass) in the perturbative first

quantized closed string states. The insertion of the hole cutting operator just change the

space of states drastically and the new degrees of freedom are brought about. Note in

connection with this the whole question of open/closed string transformation is known to

be deeply related with short-distance behaviour of the world-sheet QFT (see e.g. [23]).

Let us remark that the description of the open string vacuum in terms of the sum-

mation over the surfaces is not quite appropriate. We are looking at the theory in the

”shifted” vacuum (open strings) using basically the description in terms of world-sheets

natural for another vacuum (closed strings).

What is the right framework for the expansion around open string vacuum is not quite

clear. The only hint we have is the AdS/CFT correspondence where we are looking at the

regime when VH operator dominates in the action [24]

One could consider these two vacua from another point of view. Consider the open

string theory in the background of the constant open string tachyon mode T = T0. The
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2d theory is not conformal due to the term on the boundary. This boundary term would

give the factor for each boundary:

Z ∼ e−RT0 (3.14)

where R is the length of the boundary.

According to the sigma-model approach one should fix the conformal factor of the

metric and integrate over the moduli of conformal structure. At the solutions of the

equation of motions the answer does not depend on the choice of the conformal factor

due to conformal invariance and away from conformal point it can be compensated by

the field-redefinition. Thus we could fix the conformal factor as we want. Let us take

some boundary to be of unit length, then we have the overall damping factor of the string

amplitudes with the holes. Thus we may conclude that at the new vacuum T0 = ∞ and

there should not be any boundary at all.

In terms of above mentioned ”hole cutting” operator on could say that at the new

string vacuum T = ∞ the coefficient in front of this operator in the 2D action is zero.

Thus there are no holes and no open strings in this vacuum.

4. String Field Theory approach.

The connection of the open string fields with the parameters of the gauge transfor-

mations of the closed strings was important part of the arguments presented above. In

this section we test this connection in the framework of the open/closed string field theory

constructed by Zwiebach [22]. We will follow closely the notations of [22].

The basic structure used in this construction is Batalin-Vilkovisky (BV) algebra. This

structure make possible the correct quantization of the theory. Let Ψ and Φ be closed string

and open string wave functions. To define the structure of BV algebra one should define

the odd brackets coming from the odd symplectic form and ∆ operator acting on this

functionals. It was demonstrated in [22] that one could use the product structure on the

space of open and closed string functionals:

{A, B}o/c = {A, B}open + {A, B}closed (4.1)

The full action:

S(Φ, Ψ) = S(Φ)o + S(Ψ)c + S(Φ, Ψ)int (4.2)
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should satisfy the full quantum BV-equation:

h̄∆S +
1

2
{S, S} = 0 (4.3)

Now consider the classical properties of the BV geometry. The classical part of this

equation is:

{S, S} = 0 (4.4)

Given the odd symplectic structure on the space one has the algebra of symplectic trans-

formations leaving this symplectic structure invariant. Locally these transformations are

generated by the hamiltonian functions U :

δA = {A, U} (4.5)

In particular these transformations leave invariant the condition (4.4) and thus transforms

the action functional in the field theory into another one suitable for quantization. In

general it is not the gauge transformation of the theory because the action functional is

not necessary invariant. Gauge transformations are given by the hamiltonian functions of

the special form:

U = {f, S} (4.6)

where f is an arbitrary function. It is easy to verify that the invariance of the action

functional is the direct consequence of the equation (4.4).

The general structure of the action functional for the open/closed string theory may

be described as follows. The action functional for the open string has the form:

So(Φ) =
1

2
< Φ, QΦ > + < Φ3 > + < Φ4 > + · · · (4.7)

where the first term is the free open string action. It is the solution of the open string BV

equation (closed strings dropped out):

{So, So}o = 0 (4.8)

It defines the structure of A∞ algebra on the open string functionals.

Similarly, the closed string action has the form:

So(Ψ) =
1

2
< Ψ, QΨ > + < Ψ3 > + < Ψ4 > + · · · (4.9)
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and is the solution of the closed string BV equation:

{Sc, Sc}c = 0 (4.10)

(The L∞ structure on the closed strings.) The important point for our discussion is the

appearance of the following second term in the interaction part of the action:

S(Ψ, Φ)int =< Ψ > + < Ψ|Φ > + < Ψ|Φ2 > + · · · (4.11)

It was shown in [22] that this coupling between the close and open strings is essential

to get the integral over the full moduli space of conformal structures of the surfaces with

boundaries in the perturbative expansion of the string field theory.

Consider now the a gauge transformation with the following hamiltonian function:

U = {< η|Ψ >, S} (4.12)

where the η is the closed string ghost one state. Taking into account the expressions for

the parts of the action (4.7), (4.9), (4.11) we have

U = − < Qη|Ψ > + < η|Φ > + · · · (4.13)

Here dots are instead of various non-linear terms. Now it is obvious that the gauge

symmetry of the full open/closed string action has the form:

δΦ = {Φ, U} = (η)o + · · · (4.14)

δΨ = {Ψ, U} = −Qη + · · · (4.15)

We introduce the notation (η)o here to stress that it is the non-trivial projection of

the closed string sector to the open string sector.

¿From the transformations (4.14) and (4.15) we may conclude that there is the gauge

symmetry in the theory of open and closed strings which is the gauge transformation in

the closed string sector and the shift in the open string sector. The whole machinery of BV

formalism guarantees that this first order transformations could be correctly completed up

to the full non-linear symmetry of the theory.

At the end we would like to note that in the framework of [22] the arguments about

the suppressing the boundaries by the factor e−RT0 mentioned previously becomes well

defined. Just because all string vertexes used in [22] have stubs at the limit T0 → ∞
closed string part hopefully makes a leading contribution.
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5. On the possible generalizations

One could look at the tachyon in the closed string theory from the same perspective.

There should be a new ”conformal point” at T → ∞. At the new vacuum the 2d surfaces

are summed with the coefficient:

Z ∼ e−T0A (5.1)

where A is the area of the surface. Probably the same arguments lead to the conclusion

that 2d surfaces should shrink to the point and we leave with closed 3d surface (if any).

One could test these ideas in the case of analog of M-theory and ”little” string theories.

In the latter case we have 2-branes with the boundaries on the other branes. And the

condensation of the tachyon may lead to annihilation of these branes. 5
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6. Apendix

Here we would like to discuss some of the question of regularisation dependence (choice

of coordinates in the space of fields) for background independent open string field theory

lagrangian on the example of tachyon. The importance of the right choice of the coordinates

to have the metric on the fields of the canonical form was already stressed in the main part

of the text. Expansion of partition function in the derivatives of tachyon field and gauge

field was performed long ago in the original paper on sigma model approach in [26]. Here

we will more closely follow the line of the reasoning in [3]. We start with the description

of the coordinates, used in [3] for the derivation of the tachyon action up to two derivative

terms and then consider the generalization to the case of the abelian gauge fields. In this

5 In a sense this is an analog of [6] for closed strings - boundary of (2+1)d membrane; the

possibility that the closed string field theory could be constructed in analogous to [6] fashion via

the 3d surface with boundary was suggested long ago [25].
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approximation the general expressions for β-function an the partition function may be

written as follows:

βT (X) = a0(T ) + a1(T )∂T + a2(T )∂2T + a3(T )(∂T )2 + · · · (6.1)

Z =

∫
d26Xe−T (X)(1 + b(T )(∂T )2 + · · ·) (6.2)

To make considerations more simple we begin with natural coordinates in the sigma model

approach and find corresponding β and Z. In these coordinates the boundary action has

the form
∫

dσT (X).

It is rather obvious that zero mode of the tachyon enters in the partition function as

the overall prefactor e−T0 . Therefore we may infer that b(T ) = const, a0(T ) = T, a1 =

const, a2 = const, a3 = const and T0 enters the β-function as an additive term:

βT (T ) = T0 + (T0 − independent terms) (6.3)

The partition function and β-function for the quadratic profile T = a + u
4
X2 were

calculated in [6]. Using these explicit calculations we conclude that: a0(T ) = T, b = a1 =

a3 = 0, a2 = 2.

Substituting the β-function:

βT (T ) = T + 2∆T (6.4)

and partition function:

Z =

∫
d26Xe−T (X) (6.5)

in the basic equation:

S = −βi∂iZ + Z (6.6)

we have the following action:

S =

∫
dX26e−T [2(∂T )2 + (T + 1)] (6.7)

with the corresponding equations of motion:

e−T (T + 4∆T − 2(∂T )2) = 0 (6.8)

The equations of motion are related to the β-functions by the metric Gij on the space of

fields.
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∂iS = Gijβ
j (6.9)

Comparing (6.8) with the (6.4) we find:

G(δ1T, δ2T ) =

∫
dXe−T (δ1Tδ2T − 2(dδ1T )(dδ2T )) (6.10)

This metric is rather complex and not obviously is an expansion of some invertible

metric on the space of fields. Now we make a change of coordinates leading to more simple

form of the metric (note that these new coordinates were used in [3] in order to write down

the tachyon action exactly following the above line of reasoning).

We make this field redefinition in two steps.

First we consider the linear T -term. Note that T -linear term in β function is invariant

with respect to the scaling of the tachyon field (βi∂i is a vector field) while the linear part

of the equation of motions (or quadratic part of the action) is not.

Consider the new coordinates on the space of the tachyon configurations:

T → T − ∂2T (6.11)

We have the following expressions:

βT (X) = T + 2∆T (6.12)

Z(T ) =

∫
e−T (1 + (∂T )2 + · · ·) (6.13)

S =

∫
dXe−T (T + 1)((∂T )2 + 1) (6.14)

Obviously, in terms of [6] this is equivalent to different regularisation of the Green function

at coincident points.

Now the linear terms in the equation of motion are proportional to the linear terms

in the β-function with the simple coefficient e−T . Note that it is obviously invertible for

finite T .

Finally consider the new coordinate T∗:

T∗ = T − (∂T )2 (6.15)
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In terms of the new coordinate we have (b = 0):

Z(T∗) =

∫
dXe−T∗(1 + · · ·) (6.16)

The corresponding β-function may be obtained from the condition of the invariance:

β(T (X))
δ

δT (X)
= β∗(T∗(X))

δ

δT∗(X)
(6.17)

and has the following form:

β∗(T∗) = T∗ + 2∆T∗ − (dT∗)
2 (6.18)

From this we obtain the final action (in the new coordinates T∗):

S =

∫
dXe−T∗ [(∂T∗)

2 + (T∗ + 1)] (6.19)

with the equations of motion:

∂

∂T∗

S(T∗) = e−T (T∗ + 2∆T∗ − (dT∗)
2) = e−T∗β(T∗) = 0 (6.20)

This is the form of the action given in [3].

Thus we have demonstrated that the action (6.19) is connected with the action (6.7)

by the field redefinition:

T → T − ∂2T + (∂T )2 + · · · (6.21)

and that in the variables (6.19) the metric which relates equations of motion and world-

sheet β-function has the simple form of multiplication by e−T∗ as opposed to the one for

(6.7).

Now let us include into the consideration the abelian gauge field. Using the same

approximation we consider the part of the lagrangian which depends polynomially on the

gauge field stress-tensor (up to second order) and does not depend on its derivatives. This

approximation is similar to taking into account the first two terms of the expansion of

Born-Infeld lagrangian.

At this approximation we have the following expressions for the partition function and

β-functions generalizing (6.1) and (6.5)

βT (X) = T + 2(T )∆T + c1(T )F 2 · · · (6.22)
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βA(X)ν = c2∂
µTFµν + · · · (6.23)

Z =

∫
d26Xe−T (X)(1 + c3(T )F 2 + · · ·) (6.24)

Analogously to the case of the pure tachyon we could deduce that ci’s are independent on

T .

Using the definition of the action functional (6.6) one has in the necessary approxi-

mation:

S(T, A) =

∫
dX26e−T ((T + 1) + 2(∂T )2 + (c1 + c3)F

2 + c3TF 2 + · · ·) (6.25)

with the corresponding equations of motion for the tachyon being:

δS

δT
= −T − 2∆T − c1F

2 − c3TF 2 + · · · (6.26)

Consider new tachyon field:

T ∗ = T + c3F
2 (6.27)

A∗ = A (6.28)

Taking into account the property of the covariance for the beta function:

βT ∂

∂T
+ βA ∂

∂A
= βT∗ ∂

∂T ∗
+ βA∗ ∂

∂A∗
(6.29)

we find that the new beta function is:

βT∗

(X) = −T ∗ − 2∆T ∗ + (c1 + c3)F
2 (6.30)

Thus, in the new coordinates the action and the equations of motion are:

S(T ∗, A∗) =

∫
dX26e−T∗

((T ∗ + 1) + 2(∂T )2 + (c1 + c3)F
2 + · · ·) (6.31)

δS

δT ∗
= −T ∗ − 2∆T ∗ − (c1 + c3)F

2 + · · · (6.32)

Combining (6.21), (6.27) and (6.28) we have the lagrangian:

S(T, A) =

∫
dX26e−T ((T + 1) + (∂T )2 + (c1 + c3)F

2 + · · ·) (6.33)
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The coefficients c1 = 0 and c3 = 1
4 obtained in the appropriate regularisation scheme could

be read off from the formula (3.22) in [27] (see also [9] and [10]). Covariantizing the action

with respect to diffeomorphisms and Bµν field gauge transformations we end up with the

following result:

S(T, A) =

∫
dX26

√
Ge−T ((T + 1) + ||dT ||2 +

1

4
||B − F ||2 + · · ·) (6.34)

One shall note that the choice of coordinates as in lagrangian (6.25) for c = 0, c3 = 1
4

would

lead to gauge field dependence through
∫

V (T )F 2 which is natural to expect since it is

second order term in expansion of Born-Infeld action replacing the metric in
∫

V (T )
√

G.

Our principle of choice of coordinates leads to (6.34) instead.
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