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The objective of this study was to investigate how joint specific biomechanical loading influences the functional
development and phenotypic stability of cartilage grafts engineered in vitro using stem/progenitor cells isolated
from different source tissues. Porcine bone marrow derived multipotent stromal cells (BMSCs) and infrapatellar
fat pad derived multipotent stromal cells (FPSCs) were seeded in agarose hydrogels and cultured in
chondrogenic medium, while simultaneously subjected to 10 MPa of cyclic hydrostatic pressure (HP). To
mimic the endochondral phenotype observed in vivo with cartilaginous tissues engineered using BMSCs, the
culture media was additionally supplemented with hypertrophic factors, while the loss of phenotype observed
in vivo with FPSCs was induced by withdrawing transforming growth factor (TGF)-f3 from the media. The
application of HP was found to enhance the functional development of cartilaginous tissues engineered using
both BMSCs and FPSCs. In addition, HP was found to suppress calcification of tissues engineered using BMSCs
cultured in chondrogenic conditions and acted to maintain a chondrogenic phenotype in cartilaginous grafts
engineered using FPSCs. The results of this study point to the importance of in vivo specific mechanical cues for
determining the terminal phenotype of chondrogenically primed multipotent stromal cells. Furthermore,
demonstrating that stem or progenitor cells will appropriately differentiate in response to such biophysical cues

might also be considered as an additional functional assay for evaluating their therapeutic potential.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Articular cartilage possesses a limited capacity for self-repair.
Current clinical therapies for cartilage defect repair such as
autologous chondrocyte implantation suffer from significant draw-
backs, such as donor site morbidity and dedifferentiation of
chondrocytes during monolayer expansion. Mesenchymal stem
cells possess the ability to proliferate extensively ex vivo whilst
maintaining their multipotent differentiation capabilities (Bruder
et al.,, 1997; Kadiyala et al., 1997) and can be induced to differ-
entiate towards a chondrogenic lineage (Caplan, 1991; Johnstone
et al, 1998; Mackay et al., 1998; Pittenger et al., 1999; Sheehy
et al., 2012a; Vinardell et al., 2012b), making them an attractive
alternative cell type for cartilage repair strategies. Multipotent
cells can be isolated from numerous different tissues. There are,
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however, significant differences in their properties depending on
cell source, with joint tissue derived stem cells having a gene
expression profile closer to that of chondrocytes when compared
to extra-articular tissue derived stem cells (Segawa et al., 2009).
There is also evidence to suggest that joint tissue derived multi-
potent stromal cells, such as those isolated from the infrapatellar
fat pad (IFP) or synovium, may possess a superior chondrogenic
potential to those derived from alternative sources (Sakaguchi
et al., 2005; Vinardell et al., 2012b). In spite of this, the in vivo
phenotypic stability of cartilaginous tissues engineered using such
cells, irrespective of their origin, is by no means assured (De Bari
et al., 2004; Pelttari et al., 2006; Hennig et al., 2007; Dickhut et al.,
2008). Previous studies have shown that following in vivo sub-
cutaneous implantation, IFP derived multipotent stromal cells
(FPSCs) tend to undergo fibrous dedifferentiation or resorption,
as evidenced by increased collagen type I and reduced sulphated
glycosaminoglycan (sGAG) content, whereas bone marrow derived
multipotent stromal cells (BMSCs) tend to follow an endochondral
pathway, with increased mineralisation and vascularisation of the
engineered tissue (Pelttari et al,, 2006; Vinardell et al., 2012b).
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This highlights the potential challenges associated with using any
such cell type for successfully regenerating articular cartilage.

Within the orthotopic environment of a full thickness cartilage
defect, it has been demonstrated that hypertrophy of implanted
multipotent stromal cells (MSCs) is restricted to a region of the
regenerating tissue close to the bone, demonstrating that in vivo
signalling molecules and biomechanical stimuli play a key role in
regulating the chondrogenic phenotypic (Steck et al., 2009). Identifying
how such in vivo specific environmental cues regulate the terminal
phenotype of MSCs may play a key role in realising their full
therapeutic potential. Mechanical signals, such as hydrostatic pressure
(HP), are a key component of the in vivo joint environment and have
been shown to play a significant role in regulating the chondrogenic
differentiation of mesenchymal stem cells. Previous studies have
shown varying and occasionally conflicting results (Parkkinen et al.,
1993; Carver and Heath, 1999; Suh et al., 1999; Carver and Heath,
2000; Jortikka et al., 2000; Smith et al, 2000, 2005; Hu and
Athanasiou, 2006; Finger et al, 2007; Ogawa et al, 2009; Meyer
et al,, 2011; Liu et al, 2012; Maxson and Burg, 2012; Puetzer et al.,
2012; Safshekan et al, 2012; Steward et al., 2012; Vinardell et al.,
2012a; Steward et al,, 2013), but it would appear that the application
of physiological levels (3-10 MPa) of intermittent HP can enhance
proteoglygan and collagen synthesis and upregulate aggrecan and
collagen I mRNA expression in chondrocytes and stem/progenitor
cells isolated from bone marrow, synovial tissues and adipose tissues.
There is also evidence to suggest that dynamic HP can act to stabilise
the phenotype of chondrogenically primed joint tissue derived MSCs
(Vinardell et al., 2012a). A better understanding of how mechanical
loading influences terminal differentiation of different tissue-specific
MSCs should facilitate efforts to tissue engineer phenotypically stable
cartilaginous grafts using such cells.

While an extensive body of work exists comparing the biochemi-
cally driven differentiation of MSCs isolated from different tissues, little
is known about how these unique cell populations will respond to
biophysical stimuli. The objective of this study was to compare how
chondrogenically primed BMSCs and FPSCs respond to the application
of physiological levels of HP. In particular, we were interested in
determining how such joint-specific biomechanical loading influences
the stability and functional development of cartilage grafts engineered
using cells from both sources. Our hypothesis was that the application
of cyclic HP will (i) enhance the functional development of cartilage
tissues engineered using both BMSCs and FPSCs, (ii) reduce hyper-
trophic differentiation and endochondral ossification of cartilaginous
grafts engineered using BMSCs and (iii) stabilise and maintain the
chondrogenic phenotype in cartilaginous grafts engineered using
FPSCs. To mimic the endochondral phenotype observed in tissues
engineered using BMSCs, the culture media was supplemented with
hypertrophic factors (Sheehy et al., 2012b) and the constructs were
simultaneously subjected to 10 MPa of cyclic HP. To mimic the fibrous
dedifferentiation observed in tissues engineered using FPSCs, the
chondrogenic growth factor transforming growth factor (TGF)-f33
was withdrawn from the culture medium (Vinardell et al, 2012b)
and again constructs were subjected to 10 MPa of cyclic HP. In this
way, it was possible to mimic how physiological loading can impact
the phenotypic stability of tissue engineered cartilaginous grafts using
a well-controlled in vitro model.

2. Methods
2.1. Agarose gel constructs fabrication and culture

BMSC and FPSCs were isolated and expanded as described in the Supple-
mentary material section. Both cell types were mixed with 4% agarose (Type VII;
Sigma-Aldrich, Ireland) at a ratio of 1:1 at ~40 °C to yield a final gel concentration
of 2% at a density of 20 million cells/mL. The agarose-cell constructs (@5 x 3 mm)
were encapsulated within an acellular agarose block (as described below) and

maintained in a chemically defined chondrogenic medium consisting of high
glucose DMEM supplemented with 100 U/mL penicillin/streptomycin (both from
Gibco), 100 mg/mL sodium pyruvate, 40 mg/mL i-proline, 50 mg/mL tr-ascorbic
acid-2-phosphate, 1.5 mg/mL bovine serum albumin, 1 x insulin-transferrin-sele-
nium, 100 nM dexamethasone (all Sigma-Aldrich) and 10 ng/mL of transforming
growth factor-f3 (TGF-f3, ProSpec-Tany TechnoGene, Ltd.). On day 21, selected
BMSC groups were exposed to hypertrophic medium for 14 days, by changing
the following parameters: TGF-P3 was withdrawn from the medium, which
was then supplemented with 1 nM i-thyroxine (Sigma-Aldrich) and 20 pg ml~!
B-glycerophosphate (Sigma-Aldrich), and the level of dexamethasone was reduced
to 1 nM. Also, on day 21, additional FPSC groups were maintained in chondrogenic
medium (as described above) without TGF-33 for 14 days. Constructs were allowed
to equilibrate overnight before the initiation of hydrostatic pressure.

2.2. Application of hydrostatic pressure

Cell seeded agarose constructs were encapsulated, evenly spaced, in an agarose
block to improve homogeneity of oxygen and nutrient availability and to provide
protection from handling damage when the constructs were being placed into and
out of the HP bioreactor. Constructs were then inserted into heat-sealed, gas-
permeable, water-tight, sterile bags (EVO120, Quest Biomedical, UK) with 4 mL of
medium per construct and the air was removed via a needle free port. Cyclic HP
was applied via a water filled, custom-made bioreactor within a 37 °C incubator as
described previously (Meyer et al., 2011). The sealed bags exposed to HP were
placed into the pressure vessel, while the free swelling controls were placed into an
open water bath next to the pressure vessel. HP was applied at an amplitude of
10 MPa and a frequency of 1 Hz for a duration of 4 h per day, 5 days per week for
5 weeks. The bags were returned to a culture incubator (37 °C, 5% CO,) between
loading periods and suspended separately in an upright position for homogenous
gas transfer. Media changes were performed twice weekly via the needle free port.

2.3. Mechanical, histological and biochemical assessment of tissues

The mechanical properties of the engineered constructs were determined as
described previously (Buckley and Kelly, 2012). Stress relaxation tests were
performed to determine the equilibrium modulus of the tissue, which consisted
of a ramp and hold cycle, with a ramp displacement of 1 pm/s until 10% strain was
obtained and then maintained until equilibrium was reached. Dynamic tests, which
involved applying a cyclic strain of 1% at a frequency of 1 Hz, were performed
immediately after the stress relaxation cycle to determine the dynamic modulus of
the tissue. Constructs were also analysed biochemically to determine their DNA,
sulfated glycosaminoglycan (sGAG), collagen and calcium content. Sections were
stained with Alcian Blue for sGAG, Picro-sirius Red for collagen and Alizarin Red for
mineral deposition, while the localised deposition of collagen types I and Il was
identified through immunohistochemistry. See Supplementary material section for
further details of biochemical and histological assays/methodologies.

24. Experimental design

To test our hypotheses, three studies were performed. In study 1, BMSC and FPSC
seeded constructs were cultured in chondrogenic medium for 5 weeks. In study 2, BMSC
constructs were cultured in chondrogenic medium for 3 weeks, followed by 2 weeks
culture in hypertrophic medium. In study 3, FPSC constructs were cultured in chondro-
genic medium containing TGF-B3 for 3 weeks, followed by 2 weeks culture in
chondrogenic medium in the presence or absence of TGF-B3. All study groups consisted
of a hydrostatically loaded group (HP) and a free-swelling unloaded control (FS).

2.5. Statistical analysis

All statistical analyses were carried out using Minitab 15.1. Results are reported
as mean + standard deviation. Groups were analysed using a general linear model
for analysis of variance. Tukey's test was used to compare conditions. Significance
was accepted at a level of P < 0.05.

3. Results

3.1. Dynamic hydrostatic pressure enhances the functional
development of cartilage tissue engineered using both BMSCs
and FPSCs

BMSC and FPSC seeded constructs were cultured for 5 weeks in
chondrogenic medium in the presence or absence of HP. The
application of HP had no effect on the DNA content of either
BMSC or FPSC seeded constructs (data not shown). HP significantly
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enhanced sGAG accumulation in both BMSC (P < 0.0001) and FPSC
(P<0.0006) seeded hydrogels (Fig. 1a and b), but only increased
collagen accumulation in BMSC seeded constructs (P < 0.0001,
Fig. 1c and d). Histological staining (Fig. 1e) revealed a high degree
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of spatial symmetry in ECM deposition for all groups. Alcian Blue
staining revealed greater sGAG accumulation in the pericellular
region of BMSC constructs (Fig. 1e). sGAG accumulation was more
diffuse in FPSC seeded constructs and, at the tissue level, more
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Fig. 1. Dynamic hydrostatic pressure enhances the accumulation of cartilage specific ECM in both BMSC and FPSC constructs when cultured in chondrogenic medium for
5 weeks, as shown by biochemical analyses (a-d) and histological/immunohistological staining (e). *, ~ Denote statistical significance vs. free swelling group of similar cell
type and vs. FPSCs under similar loading conditions respectively (P < 0.002).
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localised to the peripheral region of the engineered tissue. For
both cell types, application of HP led to more intense Alcian Blue
staining, with more intense Picrosirius Red staining observed in
BMSC constructs. While HP had little influence on collagen type [
deposition, collagen type Il accumulation was enhanced through-
out BMSC constructs when exposed to HP. Although FPSC con-
structs followed a similar trend, staining for collagen Il was less
intense than BMSC seeded constructs. Increases in cartilage
specific ECM accumulation were accompanied by improvements
in the functional properties of both BMSC and FPSC derived grafts,
as evidenced by significantly increased equilibrium and dynamic
moduli following application of hydrostatic pressure (Fig. 2).

3.2. Dynamic hydrostatic pressure suppresses calcification
of cartilage grafts engineered using BMSCs

The application of HP resulted in significantly (P < 0.002) reduced
calcium deposition within BMSC seeded constructs maintained in
chondrogenic medium (Fig. 3a). This result was confirmed by Alizarin
Red staining (Fig. 3b), which showed dramatically reduced staining
in the constructs exposed to HP. Next, chondrogenically primed BM
constructs were cultured in the presence of hypertrophic factors
in order to accelerate the onset and progression of endochondral
ossification. No difference was observed in calcium content between
the loaded and FS constructs (Fig. 4a), with the addition of hyper-
trophic factors leading to a decrease in cell viability and a large
increase in calcium deposition on a per cell basis. Alizarin Red staining
(Fig. 4b), which was restricted to the peripheral region of these
constructs, appeared slightly less intense in the loaded constructs.

3.3. Dynamic hydrostatic pressure acts to maintain a chondrogenic
phenotype in cartilaginous grafts engineered using FPSCs

No evidence of calcium deposition was observed in cartilagi-
nous tissues engineered using FPSCs (data not shown). To mimic
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the fibrous dedifferentiation observed in cartilaginous grafts
engineered using FPSCs following subcutaneous implantation
(Vinardell et al., 2012b), constructs were cultured for 3 weeks in
chondrogenic medium containing TGF-3, followed by 2 weeks
where TGF-f3 was withdrawn from the culture media of half of
the groups, in the presence or absence of HP. The withdrawal of
TGF-P3 from FPSC seeded constructs after 3 weeks (FS-) had no
effect on the DNA content of the engineered tissues (Fig. 5a), when
compared to continuous TGF-f3 supplementation (FS). However,
TGF-B3 withdrawal resulted in a significant decrease in sGAG and
collagen deposition by week 5. Interestingly, in the absence of
TGF-B3, the application of hydrostatic pressure (HP-) partially
mitigated this reduction, with regards to sGAG synthesis, and
fully restored collagen levels to that observed in the non-loaded,
TGF-B3 supplemented constructs. Histological staining (Fig. 5b)
demonstrated greater levels of sGAG and collagen accumulation in
the loaded group when compared to the free swelling group, with
a more homogenous distribution of extracellular matrix (ECM)
throughout the construct.

4. Discussion

Understanding how joint specific environmental factors regu-
late the phenotype of MSCs is central to developing novel cell
based therapies for cartilage regeneration. In this study, we
utilised a HP bioreactor to firstly elucidate how this stimulus can
be used to enhance the functional development of cartilage
constructs engineered using multipotent cells derived from differ-
ent tissue sources, and secondly, as a model system to understand
how joint specific environmental factors such as HP will regulate
phenotypic stability of such cartilage grafts. In agreement with
previous studies (Meyer et al., 2011), the application of HP was
found to enhance the mechanical functionality of cartilaginous
grafts engineered using BMSCs and, furthermore, to suppress the
inherent tendency of these tissues to mineralise and progress
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Fig. 2. Dynamic hydrostatic pressure enhances the functional properties of both BMSC and FPSC constructs when cultured in chondrogenic medium for 5 weeks.
* ~ Denote statistical significance vs. free swelling group of similar cell type and vs. FPSCs under similar loading conditions respectively (P < 0.002).
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Fig. 3. Dynamic hydrostatic pressure suppresses calcification of BMSC constructs when cultured in chondrogenic medium for 5 weeks, as shown by biochemical analysis of
calcium content of BMSC constructs (a) and Alizarin Red staining of BMSC constructs for calcium deposition (b). FS and HP indicate free swelling and loaded respectively.
* Denotes statistical significance vs. free swelling group of similar cell type (P < 0.002).
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Fig. 4. Dynamic hydrostatic pressure has no significant effect on calcification of BMSC constructs when cultured in chondrogenic medium for 3 weeks, followed by 2 weeks
culture in hypertrophic medium, as shown by biochemical analysis of calcium content of BMSC constructs (a) and Alizarin Red staining of BMSC constructs for calcium
deposition (b). FS and HP indicate free swelling and loaded respectively. Original image magnification is shown inset.
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along the endochondral route. In addition, HP would also appear
to play a role in maintaining the chondrogenic phenotype of FPSCs,
as indicated by the findings that, upon removal of TGF-p3, HP also
acted to enhance cartilage-specific extracellular matrix develop-
ment. These results suggest that cartilaginous tissues engineered
using either cell source have the ability to terminally differentiate
towards a stable chondrogenic phenotype within an environment
where the constructs are subjected to high magnitude cyclic HP.
This study adds to the growing body of literature pointing
to the beneficial effects of mechanical stimuli, which appear to
improve the functionality of cartilage grafts engineered using
MSCs. Articular cartilage is a multiphasic tissue, the solid phase
of which is composed predominately of a collagen (mainly type II)
fibrillar network (around 10-22% by wet weight) enmeshing
proteoglycan macromolecules (2-7% by wet weight) (Maroudas
et al., 1969; Muir et al.,, 1970; Bayliss and Ali, 1978; Inerot et al.,
1978; Maroudas et al., 1980; Zirn et al., 1984; Mow et al., 1992;
Rieppo et al,, 2009; Gannon et al., 2012). Previous studies have
demonstrated that the application of dynamic compression
(Huang et al.,, 2010; Bian et al., 2012; Thorpe et al.,, 2013) or
hydrostatic pressure (Miyanishi et al., 2006; Wagner et al., 2008;
Ogawa et al.,, 2009; Huang et al., 2010; Meyer et al., 2011; Correia
et al., 2012; Liu et al., 2012; Steward et al., 2012; Vinardell et al.,
2012a; Liu et al., 2013) can enhance the sGAG and collagen content
as well as the mechanical functionality of cartilage constructs

engineered using MSCs. However, these studies often fail to
produce cartilage grafts with mechanical functionality or ECM
content approaching that of native cartilage. It appears that the
efficacy of pre-implantation mechanical stimulation is dependent
on many variables, such as substrate stiffness (Steward et al., 2013,
in press), magnitude and duration of applied loading (Ikenoue
et al., 2003; Correia et al.,, 2012), time of initiation of loading
during culture period (Thorpe et al, 2010), cell donor source
(Meyer et al., 2011) and, as demonstrated in the current study,
the tissue source of MSCs. It remains to be determined how
mechanically functional a tissue needs to be to ensure regenera-
tion of hyaline tissue, although computational studies suggest
the likelihood of success will improve with increases in pre-
implantation functionality (Nagel and Kelly, 2013).

The mean equilibrium modulus of FPSC constructs was found
to be greater than that of BMSC constructs. This can be attributed,
at least in part, to the higher levels of sGAG accumulation (as a
percentage of wet weight) within FPSC constructs. The differences
in spatial matrix accumulation may also play a role in determining
the apparent mechanical properties of the engineered tissues
(Kelly and Prendergast, 2004; Khoshgoftar et al., 2012). Following
the application of HP, there was no difference in the dynamic
modulus of BMSC and FPSC constructs. This can be attributed
to the large increase in collagen deposition observed in BMSC
constructs following the application of HP. While the equilibrium
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modulus of engineered cartilage is known to be strongly correlated
to the sGAG content (Kelly et al., 2007; Vinardell et al., 2011), the
dynamic modulus also strongly depends on the functionality of
the collagen network, as it plays a key role in enabling the tissue to
generate fluid load support (Ateshian, 2009).

Within full thickness cartilage defects, it has been demon-
strated that hypertrophy of implanted MSCs is restricted to a
region of the regenerating tissue close to the bone, suggesting that
biomechanical stimuli play a key role in determining the stability
of the chondrogenic phenotype (Steck et al., 2009). The results of
this study support this hypothesis, with the application of HP
found to dramatically reduce the mineralisation of BMSC con-
structs cultured in a chondro-inductive medium. This effect was
not observed, however, when constructs were maintained in
medium supplemented with hypertrophic factors. A possible
reason for this is that these factors may provide an unphysiologi-
cal, potent chemical cue that mechanical stimulation cannot
override. The in vivo mechanical environment is complex, and
MSCs will not only experience high levels of HP, but also shape
changing deformations as the tissue is subjected to tension and
compression during normal joint loading. Indeed, previous studies
in our lab and others have demonstrated that other such mechan-
ical cues, such as dynamic compression, can also suppress hyper-
trophy of MSCs (Bian et al., 2012; Thorpe et al., 2013). In addition
to mechanical loading, MSCs in the joint defect environment will
also experience other phenotype defining stimuli, such as hypoxic
conditions, which have also been shown to suppress hypertrophy
and endochondral ossification of chondrogenically primed MSCs
(Sheehy et al., 2012a). Understanding how MSCs integrate the
multiple mechanical and biochemical cues they will experience
in vivo and how these cues direct their phenotype is a central
challenge in the field of regenerative medicine.

The mechanism by which HP enhances cartilage-specific
matrix synthesis and suppresses hypertrophy of MSCs has not
yet been fully elucidated. According to the biphasic theory for
cartilage, the solid matrix of the tissue can be considered to be
intrinsically incompressible when loaded within the normal phy-
siologic range of pressures and, unlike with dynamic compression,
tissue deformation will be minimal under pure hydrostatic pres-
surisation (Bachrach et al, 1998). Because of this, alternative
mechanisms of HP mechanotransduction have been explored.
There is evidence to suggest that HP affects the cell membrane
ion channels (Browning et al., 1999), possibly via changes in the
conformations of the transmembrane proteins (Kornblatt and
Kornblatt, 2002). The resulting changes in intracellular ion con-
centrations can then, in turn, result in changes in cellular gene
expression and protein synthesis (Horowitz and Lau, 1988). Several
studies have also indicated that HP can trigger the release of
intracellular calcium stores (Browning et al., 2004; Mizuno, 2005),
but further investigation will be necessary to determine whether
such factors regulate the onset of hypertrophy in BMSCs. What has
been demonstrated is that a stiffer substrate promotes a more
endochondral phenotype in BMSCs (Bian et al., 2013). Since the
pericellular environment will become stiffer as ECM content
increases with time in culture, this may contribute to the devel-
opment of an endochondral phenotype in BMSC constructs. How-
ever, it has also been shown that HP can override the influence of a
stiffening microenvironment on chondrogenesis of MSCs (Steward
et al,, 2013), possibly by modulating changes to the cytoskeleton.
Taken together, these results raise the possibility that HP may act
to suppress a substrate stiffness mediated progression of hyper-
trophy in BMSCs, although further work is clearly required to
directly test this hypothesis.

In conclusion, the results of this study demonstrate that the
application of physiological levels of HP to cartilage grafts engi-
neered using different types of MSCs not only improves their

mechanical functionality, but also leads to the development of a
more stable cartilaginous phenotype. A better understanding of
stem cell mechanobiology should open up many exciting new
possibilities for the field of articular cartilage tissue engineering
and regenerative medicine. It may allow for the development of
in vitro bioreactor stimulation protocols to engineer not only more
mechanically functional grafts, but also tissues that are resistant to
hypertrophy and endochondral ossification. Perhaps more impor-
tantly, a more complete understanding of stem cell mechanobiol-
ogy may ultimately allow us to manipulate the in vivo mechanical
environment (for example, by modulating the mechanical proper-
ties of scaffolds/engineered tissues or through appropriate post-
operative rehabilitation regimes) to ensure such cells terminally
differentiate towards a desired phenotype upon implantation into
the body.
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