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R
RNeuroimaging group analyses are used to relate inter-subject signal differences observed in brain imaging with

behavioral or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity
of current voxel-based analysis schemes may however lead to non-reproducible results. We introduce a new
approach to overcome the limitations of standard methods, in which active voxels are detected according to
a consensus on several random parcellations of the brain images, while a permutation test controls the false
positive risk. Both on synthetic and real data, this approach shows higher sensitivity, better accuracy and higher
reproducibility than state-of-the-art methods. In a neuroimaging–genetic application, we find that it succeeds in
detecting a significant association between a genetic variant next to the COMT gene and the BOLD signal in the
left thalamus for a functional Magnetic Resonance Imaging contrast associated with incorrect responses of the
subjects from a Stop Signal Task protocol.

© 2013 Elsevier Inc. All rights reserved.
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Analysis of brain images acquired on a group of subjects makes it
possible to draw inferences on regionally-specific anatomical properties
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of the brain, or its functional organization. The major difficulty with
such studies lies in the inter-subject variability of brain shape and
vasculature. In functional studies, a task-related variability of subject
performance is also observed. The standard-analytic approach is to
register and normalize the data in a common reference space. However
a perfect voxel-to-voxel correspondence cannot be attained, and the
impact of anatomical variability is tentatively reduced by smoothing
(Frackowiak et al., 2003). This problem holds for any statistical test, in-
cluding those associatedwithmultivariate procedures. In the absence of
ground truth, choosing the best procedure to analyze the data is a chal-
lenging problem. Practitioners as well as methodologists tend to prefer
based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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models that maximize the sensitivity of a test under a given control for
false detections. The level of sensitivity conditional to this control is in-
deed informative on the usefulness of a model.

Classic statistical tests for neuroimaging

The reference approach in neuroimaging is to fit and test a model
at each voxel (univariate voxelwise method), but the large number of
tests performed yields a multiple comparison problem. The statistical
significance of the voxel intensity test can be correctedwith various sta-
tistical procedures. First, Bonferroni correction consists in adjusting the
significance threshold by dividing it by the number of tests performed.
This approach is known to be conservative, especially when non-
independent tests are involved, which is the case of neighboring voxels
in neuroimaging. Another approach consists in a permutation test to
perform a family-wise correction of the p-values (Nichols and Holmes,
2002). Although computationally costly, this method has been shown
to yield more sensitive results than studies involving Bonferroni-
corrected experiments (Petersson et al., 1999). A good compromise be-
tween computation cost and sensitivity can be found in analytic correc-
tions based on Random Field Theory (RFT), in which the smoothness of
the images is estimated (Worsley et al., 1992). However, this approach
requires both high threshold and data smoothness to be really effective
(Hayasaka et al., 2004).

Another widely used method is a test on cluster size, which aims
to detect spatially extended effects (Friston et al., 1993; Poline and
Mazoyer, 1993; Roland et al., 1993). The statistical significance of the
size of an activation cluster can be obtained with theoretical corrections
based on the RFT (Hayasaka et al., 2004;Worsley et al., 1996b) orwith a
permutation test (Holmes et al., 1996; Nichols and Holmes, 2002).
Cluster-size tests tend to be more sensitive than voxel-intensity tests,
especially when the signal is spatially extended (Friston et al., 1996;
Moorhead et al., 2005; Poline et al., 1997), at the expense of a strong sta-
tistical control on all the voxels within such clusters. This approach
however suffers from several drawbacks. First, such a procedure is in-
trinsically unstable and its result depends strongly on an arbitrary
cluster-forming threshold (Friston et al., 1996). The threshold-free
cluster enhancement (TFCE) addresses this issue, by avoiding the
choice of an explicit, fixed threshold (Salimi-Khorshidi et al., 2011;
Smith and Nichols, 2009) but leads to other arbitrary choices: the
TFCE statistic mixes cluster-extent and cluster-intensity measures in
proportions that can be defined by the user. More generally, tests
that combine cluster size and voxel intensity have been proposed
(Hayasaka and Nichols, 2004; Poline et al., 1997). Second, the correla-
tion between neighboring voxels varies across brain images, which
makes detection difficult where the local smoothness is low. Combin-
ing permutations and RFT to adjust for spatially-varying smoothness
leads to more sensitive procedures (Hayasaka et al., 2004; Salimi-
Khorshidi et al., 2011). A more complete discussion of the limitations
and comparisons of these techniques can be found in (Moorhead
et al., 2005; Petersson et al., 1999).

Spatial models for group analysis in neuroimaging

Spatial models try to overcome the lack of correspondence between
individual images at the voxel level. The most straightforward and
widely used technique consists of smoothing the data to increase the
overlap between subject-specific activated regions (Worsley et al.,
1996a). In the literature, several approaches propose more elaborate
techniques to model the noise in neuroimaging, like Markov Random
Fields (Ou et al., 2010), wavelet decomposition (Ville et al., 2004), spa-
tial decomposition or topographic methods (Flandin and Penny, 2007;
Friston and Penny, 2003) and anatomically informed models (Keller
et al., 2009). These techniques are not widely used probably because
they are computationally costly and not always well-suited for analysis
of a group of subjects. A popular approach consists of working with
Please cite this article as: Da Mota, B., et al., Randomized parcellatio
j.neuroimage.2013.11.012
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subject-specific Regions of Interest (ROIs), that can be defined in a
way that accommodates inter-subject variability (Nieto-Castanon
et al., 2003). The main limitation of such an approach (Bohland et al.,
2009) is that there is no widely accepted standard for partitioning the
brain, especially for the neocortex. Data-driven parcellation was pro-
posed by Thirion et al. (2006) to overcome this limitation: they improve
the sensitivity of random effect analysis by considering parcels defined
at the group level.

Neuroimaging–genetic studies

While most studies investigate the difference of activity between
groups or the level of activity within a population, neuroimaging
studies are often concerned by testing the effect of exogeneous vari-
ables on imaging target variables, and there is increasing interest
in the joint study of neuroimaging and genetics to improve under-
standing of both normal and pathological variability of the brain orga-
nization. Single nucleotide polymorphisms (SNPs) are the most
common genetic variants used in such studies: They are numerous
and represent approximately 90% of the genetic between-subject vari-
ability (Collins et al., 1998). Voxel intensity and cluster size methods
have been used for genome-wide association studies (GWAS) (Stein
et al., 2010), but the multiple comparison problem does not permit
finding significant results, despite efforts to estimate the effective
number of tests (Gao et al., 2010) or by running computationally
expensive, but accurate permutation tests (Da Mota et al., 2012). Re-
cently, important efforts have been done to design more sophisticated
multivariate methods (Floch et al., 2012; Kohannim et al., 2011;
Vounou et al., 2010), the results of which are more difficult to inter-
pret; another alternative is to work at the gene level instead of SNPs
(Ge et al., 2012; Hibar et al., 2011).

The randomized parcellation approach

The parcellationmodel (Thirion et al., 2006) has several advantages:
(i) it is a simple and easily interpretable method, (ii) by reducing the
number of descriptors, it reduces the multiple comparisons problem,
and (iii) the choice of the parcellation algorithm can lead to parcels
adapted to the local smoothness. But parcellations, when considered
as spatial functions, highly depend on the data used to construct them
and the choice of the number of parcels. In general, a parcellation de-
fined in a given context might not be a good descriptor in a slightly
different context, ormay generalize poorly to new subjects. This implies
a lack of reproducibility of the results across subgroups, as illustrated
later in Fig. 7. The weakness of this approach is the large impact of a
parcellation scheme that cannot be optimized easily for the sake of sta-
tistical inference; it may thus fail to detect effects in poorly segmented
regions. We propose to solve this issue by using several randomized
parcellations (Bühlmann et al., 2012; Varoquaux et al., 2012) generated
using resampling methods (bootstrap) and average the corresponding
statistical decisions. Replacing an estimator such as parcel-level infer-
ence bymeans of bootstrap estimates is known to stabilize it; a fortunate
consequence is that the reproducibility of the results (across subgroups
of subjects) is improved. Formally, this can be understood as handling
the parcellation as a hidden variable that needs to be integrated out in
order to obtain the posterior distribution of statistical values. The final
decision is taken with regard to the stability of the detection of a voxel
(Alexander and Lange, 2011;Meinshausen and Bühlmann, 2010) across
parcellations, compared to the null hypothesis distribution obtained by
a permutation test.

A multivariate problem: the detection of outliers

The benefits of the randomized parcellation approach can also be ob-
served in multivariate analysis procedures, such as predictive modeling
(Varoquaux et al., 2012) or outlier detection. In this work, we focus on
n based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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the latter: neuroimaging datasets often contain atypical observations;
such outliers can result from acquisition-related issues (Hutton et al.,
2002), bad imageprocessing (Wu et al., 1997), or they canmerely be ex-
treme examples of the high variability observed in the population.
Because of the high dimensionality of neuroimaging data, screening
the data is very time consuming, and becomes prohibitive with large
cohort studies. Covariance-based outlier detection methods have
been proposed to perform statistically-controlled inclusion of subjects
in neuroimaging studies (Fritsch et al., 2012) and yield a good detection
accuracy. These methods rely on prior reduction of the data dimen-
sion which is obtained by taking signal averages within predefined
brain parcels. As a consequence, the results depend on a fixed brain
parcellation and are unstable. Randomization might thus improve
the procedure.

Outline

In “Materials andmethods”, we introducemethodological prerequi-
sites and we describe the randomized parcellation approach. In
“Experiments”, we provide the description of the experiments used to as-
sess the performances of our procedure. We evaluate our approach on
simulations and on real fMRI data for the randomeffect analysis problem.
Then,we illustrate the interest of the approach for neuroimaging–genetic
studies, on a gene candidate (COMT) which is widely investigated in
the context of brain diseases. Finally, we show that this technique is
suitable for detecting outliers in neuroimaging data, thus extending
the application scope of randomized parcellations to multivariate
analysis procedures. In “Results”, we report the results of the experi-
ments and finally we discuss different aspects and choices that can in-
fluence the method performance.

Materials and methods

Statistical modeling for group studies

Neuroimaging studies are often designed to test the effect of miscel-
laneous variables on imaging target variables. For a study involving n
subjects, neuroscientists generally consider the following model:

Y ¼ Xβ þ �;

where Y is a n × p matrix representing the signal of n subjects de-
scribed each by p descriptors (e.g. voxels or parcels of an fMRI contrast
image) and X is the n × (q1 + q2) set of q1 explanatory variables, a
predefined linear combination of which is to be tested for a non-zero
effect, and q2 covariables that explain some portion of the signal but
are not to be tested for an effect. β are the coefficients of the model
to be estimated, and � is some Gaussian noise. Variables in X can be
of any type (genetic, artificial, behavioral, experimental…). A standard
univariate analysis technique consists in fitting p Ordinary Least Square
(OLS) regressions, one for each column of Y, as a target variable, and
each time perform a non-zero significance test on the cTβ quantity,
where c∈ℝq1þq2 is the contrast vector that defines the linear combina-
tion of the variables to be tested. This test involves the estimated coef-
ficients of the model β̂ and the noise estimate σ̂ to compute a standard
t- or F-statistic.

Parcellation and Ward algorithm

In functional neuroimaging, brain atlases are often used to provide
a low-dimensional representation of the data by considering signal
averages within groups of voxels (regions of interest). If those groups
of voxels do not overlap and every voxel belongs to one group,
the term parcel is employed, and the atlas is called a parcellation.
In this work, we restrict ourselves to working with parcellations,
although our methodology could be applied to any kind of brain
Please cite this article as: Da Mota, B., et al., Randomized parcellation
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partition (set of ROIs). We construct parcellations from the images
that we work on, because this data-driven approach better takes into
account the unknown spatial data structure. Following (Michel et al.,
2012; Varoquaux et al., 2012), we use spatially-constrained Ward
hierarchical clustering (Ward, 1963) to cluster the voxels in K parcels,
yielding what we will refer to as a K-parcellation. This approach cre-
ates a hierarchy of parcels represented as a tree. The root of the tree
is the unique parcel that gathers all the voxels, the leaves being the
parcels with only one voxel. When merging two clusters, the Ward
criterion chooses the cluster that produces a supra-cluster with mini-
mal variance. Any cut of the tree corresponds to a unique parcellation.
This algorithm has several advantages: (i) It captures well local corre-
lations into spatial clusters, (ii) efficient implementations exist
(Pedregosa et al., 2011), and (iii) obtained parcellations are invariant
by permutation of the subjects and sign of the input data. A gives a
formal description of Ward's clustering algorithm. We also show
some examples of parcellations and discuss the geometric properties
of the parcels.

Randomized parcellation based inference

Randomized parcellation based inference (RPBI) performs several
standard analyses based on different parcellations and aggregates the
corresponding statistical decisions. Let P be a finite set of parcellations,
and V be the set of voxels under consideration. Given a voxel v and a
parcellation P, the parcel-based thresholding function θt is defined as:

θt v; Pð Þ ¼ 1 if F ΦP vð Þð Þ N t
0 otherwise

�
ð1Þ

where ΦP : V → P is a mapping function that associates each voxel
with a parcel from the parcellation P (∀v ∈ P(i), ΦP(v) = P(i)). For
a predefined test, F returns the F-statistic associated with the aver-
age signal of a given parcel (a t or other statistic is also possible).
Finally, the aggregating statistic at a voxel v is given by the counting
function Ct:

Ct v;Pð Þ ¼
X
P ∈ P

θt v; Pð Þ: ð2Þ

Ct v;Pð Þ represents the number of times the voxel vwas part of a parcel
associated with a statistical value larger than t across the folds of the
analysis conducted on the set of parcellations P. We set the parameter
t to ensure a Bonferroni-corrected control at p b 0.13 in each of the
parcel-level analyses. In practice, the results are weakly sensitive to
mild variations of t. In order to assess the significance of the counting
statistic at each voxel, we perform a permutation test, i.e. we tabulate
the distribution ofCt v;Pð Þunder the null hypothesis that there is no sig-
nificant correlation between the voxels' mean signal and the target
variable. Depending on the comparison to be performed, we switch
labels (comparison between groups) or we swap signs (testing that
the mean is non-zero). As a result, we get a voxel-wise p-value map
similar to a standard group analysis map (see Fig. 1). We obtain
family-wise error control by tabulating themaximal value across voxels
in the permutation procedure. The θt function can be replaced by any
function that is convexwith respect to t. In particular, the natural choice
θt(v,P) = F(ΦP(v)) yields similar results (not shown in the paper) but
its computation requires much more memory since the v → θt(v,P)
mapping and bootstrap averages are no longer sparse. An important
prerequisite for our approach is to generate several parcellations that
are different enough from each other to guarantee that the analysis
based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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Fig. 1.Overview of the randomized parcellation based inference framework on an example with few parcels. The variability of the parcel definition is used to obtain voxel-level statistics.
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conducted with each of those parcellations samples correctly the set of
regions that display some activation for the effect considered. One way
to achieve this is to take bootstrap samples of subjects and applyWard's
clustering algorithm to their contrast maps, to build brain parcellations
that best summarize the data subsamples, i.e. so that the parcel-level
mean signal summarizes the signal within each parcel, in each subject.
If enough subjects are used, all the parcellations offer a good represen-
tation of the whole dataset. It is important that the bootstrap scheme
generates parcellations with enough entropy (Varoquaux et al.,
2012). Spatial models try to address the problem of imperfect voxel-
to-voxel correspondence after coregistration of the subjects in the
same reference space. Our approach is clearly related to anisotropic
smoothing (Sol et al., 2001), in the sense that obtained parcels are
not spherical and in the aggregation of the signals of voxels in a
given parcel, certain directions are preferred. Unlike smoothing or spa-
tial modeling applied as a preprocessing, our statistical inference em-
beds the spatial modeling in the analysis and decreases the number
of tests and their dependencies. In addition to the expected increase
of sensitivity, the randomization of the parcellations ensures a better
reproducibility of the results, unlike inference on one fixed
parcellation. Last, the Ct v;Pð Þ statistic is reliable in the sense that is
does not depend on side effects such as the parcel size. This is formally
checked in Appendix B.

Sensitivity and accuracy assessments

We want to assess the sensitivity of our approach at a fixed level of
specificity and compare it to the othermethods. Thus, we are interested
in whether or not a significant effect was reported according to the dif-
ferent methods. Under the assumption that the method specificity is
controlled with a given false positive rate, the method with the highest
number of detections is the most sensitive.

Note that a direct comparison of the sensitivity of the different pro-
cedures (voxel-level, cluster-level, TFCE, parcel-based), i.e. their rate of
detections, is not very meaningful. Indeed, only voxel-level statistics
provide a strong control on false detections. The other procedures
violate the subset pivotality condition, namely that the rejection of
the null at a given location does not alter the distribution of the deci-
sion statistics under the null at other locations (see e.g. Westfall and
Please cite this article as: Da Mota, B., et al., Randomized parcellatio
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Troendle, 2008). This means that the rejection of the null at a given
location is not independent of the rejection at the null at nearby
locations; specifically, the rejection of the null at a given voxel is
bound to the voxel in voxel-based tests, while it is not for other kinds
of inferences considered here. Strictly speaking, those only reject a
global null. Note however, that such a weak control on false detections
is still useful in problems with small effect sizes (see “Neuroimaging–
genetic study”). The ideal method would be able to detect small effects,
but would be also quite specific about their location. That is why an
analysis of the sensitivity should always be considered with an analysis
of the accuracy.

In our experiments, to estimate a method's accuracy, we construct
Receiver Operating Characteristic (ROC) curves (Hanley and McNeil,
1982) by reporting the proportion of true positives in the detections
for different levels of false positives. The true/false positives are deter-
mined according to a ground truth that is defined based on the simula-
tion setup or empirically when dealing with real data. In practice, we
are interested in low false positive rates, so we present the ROC curves
in logarithmic scale.

Use of randomized parcellation in multivariate models

Various neuroimaging methods rely on a prior dimension reduction
of the data, and can therefore benefit from a randomized parcellation
approach that stabilizes the ensuing statistical procedure. Beyond the
specific case of group analysis investigated in this manuscript, we
apply the randomized parcellation technique to the outlier detection
task. Unlike group analysis, outlier detection can be formulated as a
multivariate problem, especially because we consider covariance-
based outlier detection (Fritsch et al., 2012), where an estimate of the
data covariancematrix is computed and then used to provide an outlier
score for each observation, i.e. correlations between features are taken
into account in the final decision about whether or not an image should
be considered an outlier.

IMAGEN, a neuroimaging–genetic study

IMAGEN is a European multicentric study involving adolescents
(Schumann et al., 2010). It contains a large functional neuroimaging
n based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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database with fMRI associated with 99 different contrast images for
4 protocols in more than 2000 subjects, who gave informed signed
consent. Regarding the functional neuroimaging data, the faces pro-
tocol (Grosbras and Paus, 2006) was used, with the [angry faces–
control] contrast, i.e. the difference between watching angry faces
and non-biological stimuli (concentric circles). We also use the
Stop Signal Task protocol (Logan, 1994) (SST), with the activation
during a [go wrong] event, i.e. when the subject pushes the wrong
button. Images from the Modified Incentive Delay task (Knutson
et al., 2000) (MID) were used to construct alternative randomized
parcellations.

Eight different 3 T scanners from multiple manufacturers (GE,
Siemens, Philips)were used to acquire thedata. Standard preprocessing,
including slice timing correction, spike andmotion correction, temporal
detrending (functional data), and spatial normalization (anatomical
and functional data), were performed using the SPM8 software
and its default parameters; functional images were resampled at
3 mm resolution. All images were warped in the MNI152 coordinate
space using a study-specific template. Obvious outliers detected using
simple rules such as large registration or segmentation errors
or very large motion parameters were removed after this step.
BOLD time series was recorded using Echo-Planar Imaging, with
TR = 2200 ms, TE = 30 ms, flip angle = 75∘ and spatial resolution
3 mm × 3 mm × 3 mm. Gaussian smoothing at 5 mm-FWHM was fi-
nally added.4 Contrasts were obtained using a standard linear model,
based on the convolution of the time course of the experimental con-
ditions with the canonical hemodynamic response function, together
with standard high-pass filtering (period = 120 s) and temporally
auto-regressive noise model. The estimation of the first-level was car-
ried out using the SPM8 software. T1-weighted MPRAGE anatomical
images were acquired with spatial resolution 1 mm × 1 mm × 1 mm,
and gray matter probability maps were available for 1986 subjects as
outputs of the SPM8 “New Segmentation” algorithm applied to the
anatomical images. A mask of the gray matter was built by averaging
and thresholding the individual gray matter probability maps. More
details about data preprocessing can be found in (Thyreau et al.,
2012). Genotyping was performed genome-wide using Illumina
Quad 610 and 660 chips, yielding approximately 600,000 autosomic
SNPs. 477,215 SNPs are common to the two chips and pass plink stan-
dard parameters (Minor Allele Frequency N 0.05, Hardy–Weinberg
Equilibrium P b 0.001, missing rate per SNP N 0.05).
R
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Random effect analysis on simulated data

We simulate fMRI contrast images as volumes of shape 40 × 40 ×
40 voxels. Each contrast image contains a simulated 4 × 4 × 4 activa-
tion patch at a given location, with a spatial jitter following a three-
dimensional N(0,I3) distribution (coordinates of the jitter are rounded
to the nearest integers). The strength of the activation is set so that
the signal to noise ratio (SNR) peaks at 2 in the most associated
voxel. The background noise is drawn from a (0,1) distribution,
Gaussian-smoothed at σnoise isotropic and normalized by its global
empirical standard deviation. After superimposing noise and signal
images, we optionally smooth at σpost = 2.12 voxels isotropic, corre-
sponding to a 5 voxel Full Width at Half Maximum (FWHM). Voxels
with a probability above 0.1 to be active in a large sample test are
considered as part of the ground truth. Ten subsamples (or groups)
of 20 images are then generated to perform analyses. Each time,
4 Smoothing is applied only in the first-level analysis in order to improve the sensitivity
of the General Linear Model that yields the contrast maps.
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RPBI was conducted with one hundred 1000-parcellations built from
a bootstrapped selection of the 20 images involved. For each of the
10 groups, we expect to obtain a p-value map that shows a significant
effect at the mean location of generated artificial activations in the
contrast images.

We investigate the ability of four methods to actually recover the
region of activation:

(i) voxel-level group analysis, which is the standardmethod in neu-
roimaging;

(ii) cluster-size group analysis, which is known to be more sensitive
than voxel-intensity group analysis;

(iii) threshold-free cluster enhancement (TFCE) (Smith and Nichols,
2009);

(iv) RPBI, which is our contribution.

We control the specificity of each procedure by permutation testing.
In order to ensure an accurate type 1 error control, we generate 400 sets
of 20 images with no activation (i.e. the images are only noise with
σnoise = 1, and SNR = 0). We evaluate the false positive rate at
voxel level for RPBI. We perform the same simulated data experiment
with a more complex activation shape (shown in Fig. 2) as we think it
better corresponds to activations encountered in real data. The rest of
the experimental design remains the same and we perform the same
comparison between methods.

Random effect analysis on real fMRI data

In this experiment, we work with an [angry faces–control] fMRI
contrast. We kept data from 1430 subjects after removal of the
subjects with missing data and/or bad or missing covariables. After
standard preprocessing of the images, including registration of the
subjects onto the same template, we test each voxel for a zero mean
across the 1430 subjects with an OLS regression, including handed-
ness and sex as covariables, yielding a reference voxel-wise p-value
map. We threshold this map in order to keep 5% of the most active
voxels (corresponding to − log10P N 77.5), and we consider it the
ground truth. Since we use a voxel based threshold, the ground
truth may be biased to voxel-level statistics (thus disadvantaging
our method).

Our objective is to retrieve the population's reference activity
pattern on subsamples of 20 randomly drawn subjects and compare
the performance of several methods in this problem. Because of the re-
duced number of subjects used, we cannot expect to retrieve the same
activation map as in the full-sample analysis due to a loss in statistical
Fig. 2. Complex activation shape used for simulations. This activation shape is more
scattered than a cube, and potentially better reflects the complex shape of real data activa-
tions. Note that, according to its original publication, TFCE performance is independent of
the activation shape (Smith and Nichols, 2009).

based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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power. We therefore measure the sensitivity and we build ROC curves
to assess the performance of the methods. We perform our experiment
on 10 different subsamples and we use the same analysis methods as
the previous experiment. We propose to observe the behavior of our
method with the use of parcellations of different kinds. We perform
analysis of the 10 different subsamples with the following parcellation
schemes:

(i) RPBI (sh. parcels) with parcellations built on bootstrapped sub-
samples of 150 images among the 1430 images corresponding
to the fMRI contrast under study;

(ii) RPBI (alt. parcels) with shared parcellations built on images
corresponding to another, independent fMRI contrast;

(iii) RPBI (rand. parcels) with shared parcellations built on smoothed
Gaussian noise;

We also assess the stability of all these methods by counting how
many times each voxel was associated to a significant effect across
subsamples.We present the inverted cumulative normalized histogram
of this count for each method, restricting our attention to the voxels
that were reported at least once. A method is considered to be more
stable than another if the same voxels appear more often, that is if its
histogram shows many high values.

Neuroimaging–genetic study

The aim of this experiment is to show that RPBI has the potential to
uncover new relationships between neuroimaging and genetics. We
consider an fMRI contrast corresponding to events where subjects
make motor response errors ([go wrong] fMRI contrast from a Stop Sig-
nal Task) and its associations with Single-Nucleotide Polymorphisms
(SNPs) in the COMT gene. This gene codes for the Catechol-O-
methyltransferase, an enzyme that catalyzes transfer of neurotransmit-
ters like dopamine, epinephrine and norepinephrine, making it one of
the most studied genes in relation to brain (Puls et al., 2009; Smolka
et al., 2007). Subjects with too many missing voxels in the brain mask
or with bad task performance were discarded. Regarding genetic vari-
ants, we kept 27 SNPs in the COMT gene (±20 kb) that pass plink stan-
dard parameters (Minor Allele Frequency N 0.05, Hardy–Weinberg
Equilibrium P N 0.001, missing rate per SNP b 0.05). The ±20 kb
window includes some SNPs in the ARVCF gene, that are in linkage
disequilibriumwith SNPs in COMT. Age, sex, handedness and acquisition
U
N
C
O

R

a

Fig. 3. Simulated data (cubic effect). ROC curves for various analysismethods across 10 random
(b) σnoise = 1. The curves are obtained by thresholding the statistical brain maps at various
positives per image. The curve for cluster-size inference could not be built for σnoise = 0 becau
outperforms other methods.

Please cite this article as: Da Mota, B., et al., Randomized parcellatio
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center were included in themodel as confounding variables. Remaining
missing data were replaced by themedian over the subjects for the cor-
responding variables. After applying all exclusion criteria 1372 subjects
remained for analysis.

For each of the 27 SNPs, we perform a massively univariate voxel-
wise analysis with the algorithm presented in (Da Mota et al., 2012),
including cluster-size analysis (Hayasaka and Nichols, 2003), and
RPBI through 100 different Ward's 1000-parcellations. To assess sig-
nificance with a good degree of confidence we performed 10,000
permutations.
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Outlier detection

We finally apply the concept of randomized parcellations to out-
lier detection. We work with a cohort of 1886 fMRI contrast images.
In a first step, we randomly select 300 subjects and summarize the
dataset by computing a 500-parcellation (obtained by Ward's) and
averaging signal over each parcel. We perform a reference outlier de-
tection on this dataset with a regularized version of a robust covari-
ance estimator RMCD-RP (Fritsch et al., 2012). This outlier detection
algorithm consists of fitting robust covariance estimators to random
data projections. For the outlier detection we use the average of the
Mahalanobis distances of the observations to the population mean
in every projection subspace. In a second step, we perform outlier de-
tections with RMCD-RP on random subsamples: We randomly draw
a subsample of n subjects and perform 100 outlier detections with
RMCD-RP on 100 different p-dimensional representations of the
data defined by 100 Ward's p-parcellations built on 300 bootstrapped
subjects from the whole cohort. Following the model of RPBI, we re-
port how many times each subject was reported as an outlier through
these 100 outlier detections and we use that number as an outlier
score. We hence construct two Receiver Operating Characteristic
(ROC) curves (Hanley and McNeil, 1982): one for randomized
parcellation-based (RPB) outlier detection and the other as the aver-
age ROC curve of the 100 inner outlier detections used to obtain the
RPB outlier detection. Finally, we report the rate of correct detections
when 5% of false detections are accepted, to control the sensitivity of
this test when wrongly rejecting few non-outlier data. These statistics
make it possible to easily measure the accuracy improvement of RPB
outlier detection across several experiments performed with different
subsamples of n subjects (keeping the same reference decision ob-
tained at the first step). In our experiment, we choose to work with
b

subsamples containing 20 subjects. SNR = 2 and noise spatial smoothness: (a)σnoise = 0,
levels, yielding as many points on the curves. The x-axis is the expected number of false
se the detections correspond either to true positives only, or to false positives only. RPBI

n based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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Fig. 4. Simulated data (complex activation shape). ROC curves for various analysismethods across 10 random subsamples containing 20 subjects. SNR = 2 and noise spatial smoothness:
(a)σnoise = 0, (b)σnoise = 1. The curves are obtained by thresholding the statistical brainmaps at various levels, yielding asmany points on the curves. The x-axis is the expected number
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p = 100 and n = {80,100,200,300,400}, yielding p/n configurations
that correspond to various problem difficulties. For a fixed (n,p) couple,
we run the experiment on 50 different subsamples and we present the
rate of correct detections in a box-plot.

Results

Random effect analysis on simulated data

Voxel-intensity group analysis is the only method that benefits
from a posteriori smoothing, while spatial methods lose sensitivity
and accuracy when the images are smoothed. This is in agreement
with the theory and the results of (Worsley et al., 1996a). Figs. 3
and 4 show that detections made by spatial methods (cluster-size
group analysis, TFCE and RPBI) do not come with wrongly reported
effects in voxels close to the actual effect location. This would be the
case for a method that simply extends a recovered effect to the neigh-
boring voxels and would wrongly be thought to be more sensitive be-
cause it points out more voxels. RPBI offers the best accuracy as its
ROC curve dominates in Fig. 3. We could not always build ROC curves
for the cluster-size method. This illustrates an issue of the cluster-
forming threshold: most voxels do not pass the threshold and then
U
N
C
O

a

Fig. 5. Real fMRI data. Evaluation of the performances for various analysismethods across 10 ran
faces protocol. (a) Sensitivity improvement relative to cluster-size under control of the specificit
voxels across 1430 subjects are kept. RPBI and TFCE have similar performance for low false po

Please cite this article as: Da Mota, B., et al., Randomized parcellation
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Rwere discarded by the method, leading to a true positive rate equal
to zero. The cluster-forming threshold directly acts on the recovery
capability of the method, but lowering the threshold does not increase
the sensitivity of this approach in general. By integrating over multi-
ple thresholds, the TFCE partially addresses this issue. We also en-
countered an issue in the construction of ROC curves for voxel-
intensity based analysis in our simulations with a complex-shaped ac-
tivation (see Fig. 4): either there were only true positives, or there
were only false positives in our results, hence a lack of point for the
construction of the ROC curves. When no signal is put in the data
(SNR = 0), RPBI reports an activation 37 times over 400 at P b 0.1
FWER corrected, 20 times at P b 0.05 FWER corrected, and 4 times
at P b 0.01 FWER corrected. In all cases, it corresponds to the nominal
type I error rate.

Random effect analysis on real fMRI data

Fig. 5a shows the sensitivity improvement relative to cluster-size
for various analysis methods under control for false detections at
5% FWER. Cluster-size was taken as the reference because it is the
method that yields the most sensitivity among state-of-the-art
methods to which we compare RPBI to. RPBI achieves the best
b

dom subsamples containing 20 subjects, on a [angry faces–control] fMRI contrast from the
y at 5% FWER. (b) ROC curves built with a pseudo ground truthwhere 5% of themost active
sitive rates (b10−2), although TFCE performs slightly better.

based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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sensitivity improvement, and RPBI with shared, alternative or random
parcels are always more sensitive than TFCE. Voxel-level group anal-
ysis yields poor performance while cluster-size analysis is comparable
to TFCE. These gains in sensitivity should be linked with a measure
of accuracy (see “Materials and methods”). Fig. 5b shows the ROC
curves associated with the performance of the methods under com-
parison. For acceptable levels of false positives (b10−2), RPBI almost
equals TFCE when we use parcellations that have been built on the
contrast under study. RPBI with alternative or random parcels yields
poor recovery although these approaches are based on the random-
ized parcellation scheme. This demonstrates that the sensitivity is
not a sufficient criterion and that the choice of parcellations plays
an important role in the success of RPBI. Unlike simulations, real
data may contain outliers, which reduce the effectiveness of all
the presented methods. One benefit of RPBI with shared parcels is
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Voxel-level Cluster-size TFCE

a) subgro

b)subgro

Fig. 6.Negative logp-value associatedwith a non-zero intercept testwith confounds (handedne
maps are thresholded at−log10P N 1 FWER corrected and the reference map at −log10P N 77
circle in order to make them visible.

Please cite this article as: Da Mota, B., et al., Randomized parcellatio
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that the impact of bad samples in the test set is lowered, because
the parcellations are informed by potentially abundant side data.
This requires other data from a similar protocol, but Fig. 5b shows
that this approach outperforms other methods by finding more true
positives.

The lack of stability of group studies is a well-known issue, yet it de-
pends on the analysis performed (Strother et al., 2002; Thirion et al.,
2007). RPBI has better reproducibility than the other methods, as
shown in Fig. 7. The histogram of the RPBI method dominates, which
means that significant effects were reported more often at the same lo-
cation (i.e. the same voxel) across subgroups when using RPBI than
when using the other methods. For RPBI with shared parcels, it is even
more pronounced and this is explained by the fact that parcellations
are shared across subgroups, which is another advantage to this
method.
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RPBI Reference

1.0

3.7

z=5

z=52 77.5

222

up no.1

1 0
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z=-18 77.5
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ss, site, sex), on a [angry faces–control] fMRI contrast from the faces protocol. The subgroups
.5 (i.e. 5% of the most active voxels). Small activation clusters are surrounded with a blue

n based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
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In general, the same activation peaks rise from the cluster-size, the
TFCE and the RPBI maps (see Fig. 6). The TFCE slightly improves the re-
sults of cluster-size and provides voxel-level information. As can be seen
in Fig. 6, the map returned by RPBI better matches the patterns of the
reference map and is less scattered. Voxel-based group analysis clearly
fails to detect some of the activation peaks.

Neuroimaging–genetic study

The SNP rs917478 yields the strongest correlation with the pheno-
types and lies in an intronic region of ARVCF. The number of subjects
in each genotype group is balanced: 523 homozygous with major
allele, 663 heterozygous and 186 homozygous with minor allele. For
RPBI, 31 voxels (resp. 81) are significantly associated with that SNP
at P b 0.05 FWER corrected (resp. P b 0.1) in the left thalamus, a re-
gion involved in sensory-motor cognitive tasks. The association peak
has a p-value of 0.016 FWER corrected. Cluster-size inference finds
this effect but with a higher p-value (P = 0.046). Voxel-based infer-
ence does not find any significant effect. A significant association
for rs917479 is reported only by RPBI; Fig. 8 shows that this SNP
is in high linkage disequilibrium (LD) with rs917478 (D′ = 0.98
and R2 = 0.96). As shown in Fig. 8, those SNPs are also in LD with
rs9306235 and rs9332377 in COMT, the targeted gene for this study.
Fig. 8 shows the thresholded p-value maps obtained with RPBI with
rs917478.

The ARVCF gene has already been found to be associated with inter-
mediate brain phenotypes and neurocognitive error tests in a study
about schizophrenia (Sim et al., 2012). We applied our method on this
gene, for which we have 33 SNPs, and did not find any effect except
from rs917478 and SNPs in LD with it.

Outlier detection

Fig. 9 illustrates the accuracy of RPB outlier detection as com-
pared to standard outlier detection performed on data issued from
a single parcellation. We present the rate of correct detections
when 5% false detections are accepted. Since the experiment is con-
ducted on 50 subsamples of n subjects, we present the results
for various values of n (n ∈ {80,100,200,300,400}) with box-plots.
For a large number of subjects (low-dimensional settings: n b p)
RPB outlier detection performs slightly better than standard outlier
detection, while in high-dimensional settings (p N n) it clearly out-
performs the classic approach. Relative results are the same when
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Fig. 7. Real fMRI data. Inverse cumulative histograms of the relative number of voxels that
were reported as significant several times through the 10 subsamples (P b 0.05 FWER
corrected), on a [angry faces–control] fMRI contrast from the faces protocol. Parcel-level in-
ference yields results that are less reproducible than those of RPBI.
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allowing for any proportion of false detection comprising between
0% and 10%.

Discussion

In this work, we introduce a new method for statistical inference
on brain images (RPBI) based on a randomized version of the
parcellation model (Thirion et al., 2006) that is stabilized by a boot-
strap procedure. In both simulation and real data experiments, RPBI
shows better performance (sensitivity, recovery and reproducibility)
than standard methods. The strength of this method is that the deci-
sion statistic takes into account the spatial structure of the data. Also,
the randomization of the parcellations yields more reproducible
results in view of between-subject variability and lowers the effect of
inaccurate parcellation. Our experiments with simulated and real
data show that the choice of the parcellations can greatly influence
the success of RPBI. In this section, we discuss this choice. We also
discuss some factors that can influence the method performance,
such as images properties or tested features characteristics and com-
putational aspects.

Brain parcellations

In our experiments, we used Ward clustering to build brain
parcellations. The main advantage of this clustering algorithm is that
it has the ability to take into account spatial pattern similarities be-
tween a set of input images, which acts as a spatial regularization. In
addition, the Ward criteria is designed such that, taking the mean sig-
nal within each parcel as new features to describe one subject image
gives the optimal data representation in terms of preserved informa-
tion (for a fixed dimension corresponding to the number of parcels).
Importantly, the variability of the parcellations is directly related to
the variability and number of the images on which they are built. We
determined empirically that using 1000 parcels is a good trade-off be-
tween accurate parcellations and dimension reduction. This choice
leads to using an average of 50 voxels per parcel, which is a good
order of magnitude to describe the activation clusters. Note that, this
number of parcels is far from standard brain atlases with, at best,
a few hundred ROIs, suggesting that atlases are not well-suited for
such studies. Our first real data experiment demonstrates that it is
beneficial that the parcellations reflect the group spatial activity
pattern of the fMRI contrast under study: when the parcellations are
built on another fMRI contrast or on random noise, the final perfor-
mance of persistence analysis drops back to the level of state-of-the-
art methods in terms of accuracy.

RPBI and images properties

Our first experiment shows that RPBI performance drops when im-
ages are smoothed a posteriori. Unlike voxel-intensity analysis,
cluster-size analysis, TFCE and RPBI, which are spatial methods, suffer
from data smoothing. In the presence of smooth noise, this experiment
also shows that RPBI outperforms other methods. Our experiment on
real data shows that RPBI can recover activations clusters of various
size and shape, as visible on the effect maps reported in Fig. 6. Yet, the
use of parcels clearly helps in focusing on activations with a spatial ex-
tent of the order of the average parcel size. Cluster-size group analysis
also focusesmore easily on some activationswith a given size, according
to internal parameters such as the cluster forming threshold or an op-
tional data smoothing. TFCE is designed to address this issue and clearly
enhances the results of the cluster-size inference.

Sensitivity and reproducibility

Usually, the sensitivity of a procedure is compared under a given
control for false positives. Under this criterion, RPBI outperforms
based inference, NeuroImage (2013), http://dx.doi.org/10.1016/

http://dx.doi.org/10.1016/j.neuroimage.2013.11.012
http://dx.doi.org/10.1016/j.neuroimage.2013.11.012


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

R
P

B
I

C
lu

st
er

-s
iz

e

Z=4 Y=-19 X=-12
1.0

1.8

10 B. Da Mota et al. / NeuroImage xxx (2013) xxx–xxx

Please cite this article as: Da Mota, B., et al., Randomized parcellation based inference, NeuroImage (2013), http://dx.doi.org/10.1016/
j.neuroimage.2013.11.012

http://dx.doi.org/10.1016/j.neuroimage.2013.11.012
http://dx.doi.org/10.1016/j.neuroimage.2013.11.012


T

R
O

O
F

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778779
780
781
782
783
784
785

786787
788

789

790

791

792

793

794

Fig. 9. Proportion of observations correctly tagged as outlierswhen 5% errors are accepted.
Results are represented as boxes according to the number of subjects present in the sub-
samples inwhichwe seek outliers. Chance level is given by the dashed black line. RPB out-
lier detection always outperforms standard outlier detection, although the difference
between both is small and may not worth the implementation and computation costs. It
is larger in the case where there are more features than subjects.

11B. Da Mota et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

voxel-intensity, cluster-size analysis and TFCE (Fig. 5.a). By aggregating
100 × 1000 measurements, RPBI drastically reduces the multiple com-
parison problem and stabilizes parcel-based statistics. Neuroimaging
studies are subject to a lack of reproducibility and using the most sensi-
tive procedure does not guarantee the unveiling of reproducible results
(Strother et al., 2002; Thirion et al., 2007). Experiments on real data
show the gain in terms of reproducibility of RPBI compared to other
methods when the subset of subjects changes (Fig. 7). RPBI with shared
parcels has a better recovery and yields more reproducible results
across various analysis settings.

Randomized parcellation can be applied to various neuroimaging
tasks. However, sensitivity improvement is not straightforward and
may depend on problem-specific settings. In particular, our experiment
about outlier detection suggests that multivariate statistical algorithms
require amore subtle use of randomized parcellation in order to get sig-
nificant sensitivity improvement.

Computational aspects

Our goal here is not to provide an exhaustive study of the computa-
tional performance, but to report on our experience of the experiments
performed. The procedure is separated into two distinct steps: (i) the
generation of the 100Ward K-parcellations and extraction of the signal
means, then (ii) the statistical inference. The generation of parcellations
is optional (parcellations can be replaced by precomputed ones), but
Ward's hierarchical clustering algorithm is fast and this step takes
only a few minutes on a desktop computer for 100 parcellations. The
second step involves a permutation test. Our implementation fits a
Massively Univariate Linear Model (Da Mota et al., 2012; Stein et al.,
2010) in an optimized version adapted to permutation testing and our
application. As a result, in our experiments with 20 subjects and
10,000 permutations, the statistical inference takes only 1 min × cores,
i.e. 5 s on a 12-core computer. The total computation time thus amounts
to a fewminutes on a desktop computer and is limited by the construc-
tion of the parcellations. Asymptotically, the computation time in-
creases only linearly with the number of subjects and the number of
variables to test, which is a desirable property to scale to larger prob-
lems like neuroimaging–genetic studies.

Conclusion

RPBI is a general detection method based on a consensus across
bootstrap estimates that can be applied to various neuroimaging prob-
lems such as group analyses or outlier detection. In our work, we use
randomized parcellations to benefit from many ROI-based descriptions
of our datasets that we construct with Ward's clustering. Simulations
and real-data experiments show that RPBI is more sensitive and stable
than state-of-the-art analysis methods. This is the case for various
types of problems, including neuroimaging–genetic associations. We
also demonstrate that the RPBI framework can be applied to outlier de-
tection problem and improves detections accuracy.
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Appendix A. Formal description of Ward's clustering algorithm

Ward's clustering algorithm is a particular case of hierarchical
agglomerative clustering (Johnson, 1967). Let Y = {y1, …,yp} ∈ ℝn × p

be a set of n fMRI volumes described by p voxels each. For two clusters
of voxels c and c′, we define the distance:

Δ c; c′
� � ¼ cj j c′j j

cj j þ c′j j Yh ic− Yh ic′
�� ��2

2; ðA:1Þ

where Yh ic ¼ 1
cj j∑ j∈c y

j . For each partition C = {c1, …,ck} of the set of
voxels Y (i.e. ∪c ∈ C = Y and ci ∩ cj = Ø ∀(ci,cj) ∈ C2), we note C∗ the
set of all pairs of clusters that share at least one neighboring voxel.
Ward's clustering algorithm starts with an initial partition of p clusters
C = {{y1}, …,{yp}} that correspond to one singleton cluster per voxel.
At each iteration,wemerge the two clusters ci and cj of C∗ thatminimize
the distance Δ:

ci; c j
� �

¼ argminΔ c; c′
� �

:
c; c′
� �

∈C� ðA:2Þ

The spatial constraint comes from the fact that we restrict the
solution of the minimization criterion to C∗. When constructing a
K-parcellation, the algorithm stops when card (C) = K.

Fig. A.10 shows some example parcellations, while Fig. A.11 shows
the size and compactness of the parcels. In “Materials and methods”,
we use various Ward's clustering scheme that simply correspond to
different choices for Y.
enotypes. Family wise corrected p-valuesmap (thresholded at P b 0.1) obtained with RPBI
ported effect. Linkage disequilibrium reported by HapMap for SNPs with MAF N 0.05 in a
n. Red boxes without values correspond to maximum linkage disequilibrium, i.e. D′ = 1.
the end of COMT, namely rs9306235 and rs9332377.
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Fig. A.10. Example parcellations obtained with Ward's clustering algorithm. The [angry faces–control] fMRI contrast maps of 20 bootstrapped subjects were used.

Fig. A.11. Size and compactness of the parcels obtainedwithWard's clustering algorithmon
fMRI contrastmaps. For eachparcel, the compactness ismeasured as thedifference between
a mask of the parcel and its 1-eroded image). One can observe a great variability in parcel
size/compactness, which reflects the structure of the individual fMRI contrast maps.
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An important question iswhether the counting statistic introduced in
Eq. (1) is a valid statistic to detect activated voxels. One essential criteri-
on for this is to check the pivotality, i.e. the convergence – under the null
hypothesis – of the statistic distribution toward a law that is invariant
under data distribution parameters. In the present case, the main devia-
tion from pivotality could result from a distribution of (extreme) statis-
tical values that depends on the parcel size: large parcels would
represent fMRI signal averaged over larger domains, and thus would
get typically lower values. This is indeed typically the case for the
mean statistic (see Fig. B.12 (b)); however, we show for instance that
the t statistic used in “Materials andmethods” is very weakly influenced
by the parcel size: we repeated the experiment described in “Materials
and methods”, i.e. computing the t statistic on parcels obtained by
Ward's algorithm, based on100 randombatches of 20 subjects, after per-
mutation by random sign swap.We tabulate the t distribution according
to the parcel size by using 10 size bins. The result, shown in Fig. B.12 (a),
is that the effect, if any, is not detectable by visual inspection.

To test more precisely the independence on the t distribution with
respect to the parcel size, we tested the equality of the mean, median
and variance of the size-specific distributions using the One-way
(mean), Kruskal (median), Bartlett (variance), Levene (variance) and
Fligner (variance) tests as implemented in the SciPy library.5 All
the tests are performed on the 10 bins jointly. We obtain the following
p-values: One-way, P = 0.36; Kruskal, P = 0.27; Bartlett: P = 0.95;
5 http://www.scipy.org/.
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OLevene: P = 0.016; Fligner: P = 0.06. This means that there is only a
small effect on the variance, as reported by the Levene test, that is
more sensitive than Fligner (which is non-parametric) and Bartlett,
which assumes Gaussian distributions. However this effect is very
small, and has no obvious consequence on the number of peak values
of the statistic; in particular, we do not observe monotonic trends
with size. Note that the small effect fades out when using larger number
of subjects (here, only n = 20 subjects per groups were used). Finally,
we did not find any significant correlation between the number of de-
tections above a given threshold (using uncorrected p-values of 10−2,
10−3, 10−4) and the parcel size.

In conclusion, the effect of parcel size is too small to jeopardize the
usefulness of the counting statistic.
Fig. B.12. Impact of the parcel size on thedistribution of the second-level one-sample t sta-
tistic (a) and of the mean value (b). While there is an obvious effect on the mean, there is
no conspicuous effect on the t distribution.
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Appendix C. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.11.012.
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