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Magnetization profile for impurities in graphene nanoribbons
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The magnetic properties of graphene-related materials, and in particular, the spin-polarized edge states
predicted for pristine graphene nanoribbons (GNRs) with certain edge geometries have received much attention
recently due to a range of possible technological applications. However, the magnetic properties of pristine GNRs
are not predicted to be particularly robust in the presence of edge disorder. In this work, we examine the magnetic
properties of GNRs doped with transition-metal atoms using a combination of mean-field Hubbard and density
functional theory techniques. The effect of impurity location on the magnetic moment of such dopants in GNRs
is investigated for the two principal GNR edge geometries: armchair and zigzag. Moment profiles are calculated
across the width of the ribbon for both substitutional and adsorbed impurities, and regular features are observed
for zigzag-edged GNRs, in particular. Unlike the case of edge-state-induced magnetization, the moments of
magnetic impurities embedded in GNRs are found to be particularly stable in the presence of edge disorder. Our
results suggest that the magnetic properties of transition-metal-doped GNRs are far more robust than those with
moments arising intrinsically due to edge geometry.
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I. INTRODUCTION

The experimental discovery of graphene has precipitated
wide-ranging research to fully determine the physical prop-
erties of this novel material and to pave the way for its
application in future technological devices.1–6 Of particular
interest is the potential for graphene-based spintronic devices
to be realized, and thus much attention has been focused
on determining the magnetic properties of graphene.7 The
existence of spin-polarised edge states, predicted by many
theoretical works,8–11 when a graphene sheet is cut to have a so-
called zigzag-edge geometry has underpinned a large number
of these proposed devices. Narrow stripes of graphene, dubbed
graphene nanoribbons (GNRs), with parallel zigzag edges,
predicted to have opposite spin orientation in particular, are
proposed.9,12,13 The other principal nanoribbon geometry, the
armchair case, does not display such interesting spin polarized
edges. GNRs with zigzag- and armchair-edge geometries are
shown schematically in the top panels of Fig. 1. Despite
theoretical advances in the study of GNRs, experimental
validation of their properties has so far been inconclusive due
to the difficulty in patterning the edge geometries required for
these effects to be observed. Furthermore, the spin-polarized
edge state in zigzag-edged GNRs is predicted to be highly
dependent on the edge geometry and not particularly robust
under the introduction of edge disorder in the form of
vacancy defects or impurity atoms.14 These factors present
major obstacles in the path of utilizing the intrinsic magnetic
edge states of graphene in experimentally realizable devices.
Another possibility that has been proposed is the exploitation
of defect-driven magnetic moments that arise in graphene.15,16

Magnetic moments have been predicted to form around
vacancies and other defects in the graphene lattice, and the
possibility of engineering a ferromagnetic state in graphene
from such moments has been suggested. However, such a
claim would seem to be restricted by the implications of
the Lieb theorem,17 which states that any such magnetic

moments arise from a disparity between the two sublattices
of graphene. Large-scale, randomized disorder would tend
to minimize such a disparity and prevent the formation of
a ferromagnetic state. However, recent experimental evidence
suggests the possibility of engineering such a state through
partial hydrogenation.18 The existence of such a state may then
be accessible through magnetoresistance measurements.19 A
third possibility for incorporating graphene in spintronic
devices lies in the doping of graphene systems with magnetic
impurity atoms. This approach takes advantage of the indirect
exchange coupling, often referred to as the Ruderman-Kittel-
Kasuya-Yosida (RKKY) coupling,20–22 between magnetic
impurities embedded in a graphene system, which is mediated
by the conduction electrons of the graphene host. Although this
coupling is predicted to decay rapidly in graphene sheets,23–26

the quasi-one-dimensional nature of nanoribbons suggests
that a much longer range coupling may persist in these
materials for certain impurity configurations, in a similar
manner to that found in carbon nanotubes.27–29 In fact, an even
longer range interaction may be possible in graphene-related
materials when factors like electron-electron interactions30 or
spin dynamics31 are taken into account.

However, unlike carbon nanotubes, whose periodic bound-
ary conditions ensure the equivalence of lattice sites, the
physical properties of graphene nanoribbons are expected to
display a strong dependence on the location of introduced
impurities.32,33 Indeed, in a previous paper, we have shown
that the binding energies of impurity atoms depend strongly
on their location across a ribbon, with lower binding ener-
gies found for impurities located near the ribbon edges.33

This leads to impurity distributions heavily weighted toward
the edge sites—an observation confirmed elsewhere in the
literature.34–40 In addition to the binding energy, the magnitude
of the magnetic moment on an impurity atom should also
depend on the impurity position. We shall demonstrate here
that the principal features of this dependence derive from
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FIG. 1. (Color online) Top panel: schematic representation of a
4-ZGNR (zigzag-edged ribbon, left) and 7-AGNR (armchair-edged
ribbon, right). Nanoribbons are labeled by the number N of zigzag
chains (ZGNRs) or dimer lines (AGNRs) across their width. In each
case, the number of atoms in the repeated unit cell is 2N . The possible
sites for substitutional (center-adsorbed) impurities are labeled with
arabic (roman) numerals. The arrows refer to the periodicity direction.
Bottom panel: schematic of a substitutional (left) and center-adsorbed
(right) impurity in graphene.

the underlying electronic structure of the GNR host. In
Sec. II, we show how the dependence can be calculated
using a simple tight-binding representation of the graphene
electronic structure combined with a self-consistent mean-field
description of the impurity species. In Sec. III, the features of
the dependence will be investigated, and the effect of the ribbon
geometry and the nature of the impurity will be considered. The
reliability of these results will be demonstrated by comparison
to a full ab initio treatment of Mn inpurities embedded into
graphene nanoribbons. The nature of these features will be
described comprehensively by considering the two principal
GNR geometries, armchair and zigzag edges, for the case of
two impurity configurations: substitutional atoms replacing a
single carbon atom in the graphene lattice andcenter-adsorbed
atoms sitting in the center of a hexagon of carbon atoms. These
two configurations are shown schematically in the bottom
panels of Fig. 1. In Sec. IV, the effects of edge disorder on
the magnitude of the magnetic moments formed at the various
impurity sites across the ribbon are examined. We find that an
edge vacancy only has a significant effect on moments formed
on neighboring sites, and that the moment profile quickly
returns to that of the pure ribbon when we move a few carbon
chains away from the vacancy. This illustrates the relative
robustness of magnetic moments introduced into graphene
systems through transition-metal doping compared with those
arising intrinsically, which are unstable in the presence of edge
disorder.14

II. MODEL

The electronic structure of the system is described
using a Hubbard-like Hamiltonian Ĥ = H0 + Hint, where

H0 = ∑
ijμνσ γ

μν

ij ĉ
†
iμσ ĉjνσ represents the electronic kinetic

energy plus a spin-independent local potential and Hint =
U
2

∑
iμσ n̂iμσ n̂iμσ̄ is the electron-electron interaction term.

The operator ĉ
†
iμσ creates an electron with spin σ in atomic

orbital μ on site i and n̂iμσ is the number operator. The
graphene electronic structure is described using a single-
orbital nearest-neighbor tight-binding model. The low-energy
properties of graphene are known to be well reproduced within
this framework. The magnetic impurities are described by a
fivefold degenerate d band representing a typical transition-
metal magnetic atom. Within H0, we set the onsite energy of the
carbon atoms to zero. The carbon-carbon nearest-neighbour
hopping is γCC = −2.7 eV, and we set t = |γCC| as our unit
of energy. However, a correction to the hopping parameter at
the edge of armchair ribbons, γ E

CC = 1.12γCC, is needed in
order to achieve the expected semiconducting behavior for all
ribbon widths.41 The exact value of the hopping parameter
between the carbon atoms of the graphene lattice and the
magnetic impurity atom, γCM, will depend on the impurity
atom chosen and can be calculated in a number of ways.
While the magnitude of this parameter can amplify the value
of the magnetic moment, it is not expected to have a significant
qualitative effect on the moment profile across the width of the
ribbon.

We assume that Hint is an on-site interaction, which takes
place between electrons occupying the d orbitals of the
transition metal impurities only, and is neglected elsewhere.
The interaction term is then treated in the mean-field ap-
proximation, which reduces its contribution to an on-site
perturbation at the site of the magnetic moment. The matrix
elements of the spin-dependent part of the Hamiltonian
become vσ

μν = − 1
2�μδμνσ , where �μ represents the local

exchange splitting associated with orbital μ and σ = ±1 for
↑ and ↓ spin, respectively. For simplicity, we shall assume
that the on-site effective exchange integrals U are the same for
all d orbitals, whence it follows that �μ is μ independent and
equal to � = Um, where m is the local magnetic moment. The
value of m, and hence vμν , along with the spin-independent
contribution to the on-site energies of the transition metal
atoms, γMM , is calculated self-consistently within the mean-
field approximation under constraints imposed by the values
of the on-site exchange integral U and the d-band occupation
nd . The d-band occupation is calculated at each stage in the
self-consistent procedure by an integral over the density of
states, which comes directly from the diagonal element of the
real-space Green function associated with the GNR-impurity
system. This can be calculated in turn from the recursively
calculated Green function for the pristine GNR using the
Dyson equation.

The DFT calculations were performed by considering
a substitutional or adsorbed Mn impurity located at dif-
ferent positions across the width of zigzag and armchair
nanoribbons. These calculations were carried out using the
SIESTA code42 with the systems placed in a supercell so
that the calculations were performed using periodic boundary
conditions. Double-zeta plus polarization functions were
employed and the exchange-correlation function was adjusted
using the generalized gradient approximation according to the
parametrization proposed by Perdew, Burke, and Ernzerhof.43
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The interactions between the ionic cores and the valence
electrons were described with norm-conserving Troullier-
Martins pseudopotentials.44 The structural optimizations were
performed with the conjugate gradient approximation42 until
the residual forces were smaller than 0.05 eV/Å. Care must
be taken when performing DFT calculations within a periodic
supercell as moment suppression can occur if neighboring
moments prefer an antiferromagnetic alignment, but are forced
to adopt a ferromagnetic alignment by the periodicity of
the system.45 The proper emergence of moments in all our
calculations suggests that antiferromagnetic alignment is not
an issue in this case, an assertion supported by the energetically
favorable ferromagnetic alignment between Mn impurities in
carbon nanotubes.46

Edge disorder is considered by introducing vacancies at
edge sites in the ribbon and then calculating the moment self-
consistently at various sites across the ribbon as before. Within
the simple model, these vacancies are introduced by placing a
very large on-site potential (50t) on the lattice site containing
the vacancy. This is a simplified approach that does not take
into account lattice deformation effects that may occur when
an atom is removed, but is adequate to describe the electronic
effects of removing the relevant orbital from that lattice site. It
is worth highlighting that this simplification only occurs in the
simple model and that the DFT calculations discussed earlier
for systems without edge disorder fully account for relaxation.

III. MAGNETIC IMPURITIES

We present results for two magnetic impurity configura-
tions: the case of a substitutional atom replacing a carbon atom
and also that of a center-adsorbed impurity sitting in the center
of a hexagon of carbon atoms. For the latter case, we assume
that the hopping parameters connecting the impurity atom to
the lattice are equivalent for each of the neighboring six carbon
atoms. The impurity is moved across the finite width of the
ribbon, and the self-consistent value for m is calculated at each
site. We consider both the zigzag and armchair geometries and
a comparison is made for all cases with a full density functional
theory calculation. For a simpler qualitative comparison, the
quantity of interest is the relative fluctuation of the magnitude
of the moment around its value at the center of the ribbon, mc.
This is given by �m/mc ≡ (m − mc)/mc.

A. Substitutional atoms

Figure 2 shows the magnetic moment fluctuation as a
function of impurity location for substitutional impurities
across the width of a 6-ZGNR and a 11-ANGR. For the
case of zigzag ribbons, we first note an excellent qualitative
match between the simple model and the full DFT calculation,
from which we infer that the underlying mechanism for the
variation in the magnetic moments across the ribbon width
is the electronic structure of the nanoribbon. The position
dependence arises from quantum interference effects caused
by the boundary conditions imposed on the electronic structure
of graphene in the form of the edges of the nanoribbons.
Furthermore, we note that the parameters γCM, nd , and U ,
which characterize the magnetic species in our simple model,
can be altered to achieve a better numerical fit, but do not
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FIG. 2. (Color online) The magnetic moment profile across a
6-ZGNR (top panel) and 11-AGNR (bottom panel) for a substitu-
tional impurity, calculated using the self-consistent Hubbard model
discussed in the text (red squares) and also a full DFT treatment with
Mn atoms (black circles). An excellent qualitative match is found
for the zigzag case, but the armchair match is less convincing. As
discussed in the text, this is due to lattice distortion for impurities
near the edge of the AGNR.

affect the qualitative form of this plot. The pattern observed
is a jagged, sawtooth-style curve, characteristic of properties
measured across the width of zigzag ribbons. A similar feature
can be seen in the binding energies of impurities, where the
edge sites are found to be the most energetically favorable.33

This feature is a sublattice effect, which arises from the
degeneracy breaking that occurs between the two sublattices
of graphene when a zigzag edge is formed. The sublattices are
represented schematically in Fig. 1 by black or white circles.
Each edge of the ribbon is occupied by sites entirely from one
of the sublattices, and that sublattice is “dominant” on that half
of the ribbon. For the case of impurity magnetic moments on
zigzag ribbons, this effect manifests itself in creating larger
moments on impurities located on the dominant sublattice
on either side of the ribbon. In other words, impurity atoms
on a black site on the side of the ribbon with black edge
sites will have larger moments than their neighboring white
sites. Focusing on a single sublattice, we find that the trend
across the ribbon width is for the largest moment to arise on
the dominant edge site for that sublattice, to decrease as the
impurity is moved toward the center of the ribbon, and to reach
its minimum value at the sites neighboring the opposite edge.
We note that all the features discussed here arise in both the
simple model and the DFT results, confirming that this is not
simply an artifact of our simple model.

The corresponding plots for the armchair case do not agree
with each other as convincingly. The tight-binding model is
found to underestimate the value of the edge moment found
by the DFT calculation. This is because the tight-binding
calculation does not take into account the distortions in the
honeycomb lattice that arise when a substitutional impurity is
introduced near the edge of an AGNR. The relaxed structures
(not shown here) for the two impurity sites nearest the ribbon
edge are found to be considerably perturbed compared to the
pristine ribbon and also to the relaxed structures corresponding
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to the other impurity sites. The shape of the tight-binding
plot for AGNRs is also found to be more dependent on the
parametrization of the impurity than in the zigzag case. This
issue will be explored further in the case of center-adsorbed
impurities. This suggests that the moment profile across
AGNRs is not as robust as that observed in the ZGNR case
and will vary somewhat according to the magnetic species
chosen. However, both tight-binding and DFT models find
that the edge impurity sites lead to larger magnetic moments
than the central ones. Figure 2 also reveals that the sublattice
effect noted in zigzag-edged ribbons is absent in the case of
armchair edges. This is explained from a cursory inspection
of Fig. 1 where it is obvious that the degeneracy between
black and white lattice sites is unbroken by the imposition of
armchair edges. The value of the magnetic moment approaches
mc much quicker for AGNRs, and only minor deviations from
it are observed away from the edges of the ribbon, whereas in
ZGNRS significant deviations are still present deeper into the
ribbon.

The dramatic increase observed in the magnetic moment in
impurities near the edge of zigzag ribbons is consistent with
the presence of a localized edge state at the Fermi energy.
This state results in a large peak in the density of states at
the Fermi energy. Such a peak provides favorable conditions
for moment formation under the Stoner criterion,45 and indeed
if an intrinsic electron-electron interaction is considered in
an undoped ZGNR, will lead to the formation of the spin-
polarized edges as discussed in Introduction.

B. Center-adsorbed atoms

The substitutional-type impurities discussed above gener-
ally result from the occupation of vacancies in the graphene lat-
tice which can, for example, be induced by ionic radiation.47–49

It can therefore be difficult to exercise control over their
distribution. However, impurities that adsorb to the graphene
lattice tend to do so at the most energetically favorable
positions, which in undoped graphene tend to correspond to
sites near the edge of the ribbon. However, it may be possible
to exercise a degree of control over the distribution of these
impurities by manipulating the binding energy profile across
the ribbon width.33 Figure 3 shows the magnetic moment
fluctuation for a center-adsorbed impurity at various sites
across a GNR calculated again using both the simple model
and a full DFT approach (black cirlces). Within the simple
model approach, we consider two values of γCM, the hopping
parameter between the impurity atom and surrounding lattice
sites. The values considered are γCM = γCC (red squares) and
γCM = 0.7γCC (blue triangles). For the case of ZGNRs (top
panel), we note the impressive qualitative match between the
models. Furthermore, we note that the change in hopping
parameter does not effect the qualitative shape of the plot, but
can be used to yield a better fit. We also note that, unlike the
substitutional impurity considered earlier, the sublattice effect
is no longer present. This is because the impurity is no longer
strongly associated with a particular sublattice but instead
binds to three carbon atoms from each, which has the effect
of averaging out any sublattice-dependent effects. The general
trend of a monotonic increase in the magnetic moment of the
Mn impurity is noted as it is moved toward the center of the
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FIG. 3. (Color online) The magnetic moment profile across a
8-ZGNR (top panel) and 11-AGNR (bottom panel) for a center-
adsorbed impurity impurity. The black circles show the results from a
full DFT treatment with Mn atoms, whereas the red squares and blue
triangles show the results from the self-consistent Hubbard model
with γCM = γCC and 0.7γCC, respectively. We note that this parameter
does not affect the qualitative features of the moment profile across
the ZGNR, but alters that across the AGNR significantly.

ribbon. This is in stark contrast to the result for substitutional
impurities, where the largest moment is observed at the edge
and for the dominant sublattice, the moment decreases as
the impurity is moved toward the center of the ribbon. The
discrepancy can be explained by the fact that the center-
adsorbed Mn impurity induces fluctuations in the magnetic
moments on nearby sites in the graphene lattice. Edge atoms
are particularly susceptible to magnetic moments due to the
localized state discussed before, and thus have larger induced
deviations in their moments than the others. Consequently,
center-adsorbed impurity atoms at the edge of a ZGNR tend to
induce large moment deviations on the edge sites, resulting in
a smaller moment on the impurity atom itself. This is verified
by examining the spin-density plots from the DFT calculation
for the case of center-adsorbed impurities near the edge of a
ZGNR. Figure 4 shows the spin-density plots corresponding
to an impurity on the edge (left) and next-to-edge (right)
hexagons. It is clear that the center-adsorbed impurity nearest
the edge introduces a much larger disturbance to the values

FIG. 4. (Color online) Spin-density plots showing up (blue) and
down (red) spin densities near a center-adsorbed impurity on the edge
(left) and next-to-edge (right) hexagons on a 8-ZGNR. The isosurface
used was 0.001 e/Bohr3.
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FIG. 5. (Color online) The edge-adsorbed impurity discussed in
the text, shown schematically in the top left panel. The spin-density
plot for this configuration on a 8-ZGNR is shown in the bottom
left panel. The right-hand side panels show the moment fluctuation
(top) and segregation energy function (bottom) for this configuration
calculated using the DFT approach, compared to those for the center-
adsorbed locations across the width of a 8-ZGNR.

of the magnetic moments on surrounding sites than the more
centrally located impurity. In fact, the magnetic edge states
are seen to be essentially unperturbed by the latter. In contrast
to these DFT calculations, the simple model does not account
for the intrinsic magnetic edge states on ZGNRs. However, a
similar moment profile is recovered as the magnetic impurity
atom induces moments, rather than fluctuations of existing
moments, on the surrounding lattice sites, and these are found
to be significantly larger for the case of the center-adsorbed
impurity nearest the ribbon edge.

However, in zigzag ribbons, there is an additional type of
adsorption site, which consists of an impurity atom bound to
two edge sites and the site between them. This configuration,
which we shall label “edge-adsorbed” (EA), is illustrated
schematically in Fig. 5. It can be viewed as an impurity atom
connecting to half a hexagon of the graphene lattice. As this
site only occurs at the edge, we cannot study the position
dependence of it. However, DFT calculations reveal that a
larger moment arises here than for the center-adsorbed atom
located nearest the ribbon edge and, furthermore, that the edge-
adsorbed configuration is also more energetically favorable
than any of the center-adsorbed sites. This is clear from the
right-hand side panels of Fig. 5. The upper panel shows
the moment fluctuation for the EA case compared with
those of the center adsorbed locations across a 8-ZGNR.
The bottom panel plots the segregation energy function, β =
(EB − Ec

B)/|Ec
B |, for the same cases. This quantity, introduced

in Ref. 33, plots the relative deviation of the binding energy of
an impurity on a GNR, EB , around its value at the center of the
ribbon, Ec

B . The edge-adsorbed case is found to be the most
energetically favorable. A spin-density plot for this type of
impurity is shown in the bottom left panel of Fig. 5 and reveals
that this impurity configuration has a less dramatic effect on
the moments of nearby edge sites than the center-adsorbed

case on the edge hexagon, consistent with a larger moment
found for the EA configuration.

In the results for adsorbed Mn impurities on an AGNR in
the bottom panel of Fig. 3, we notice that for the DFT result
and the simple model calculation with γCM = γCC, the edge
hexagonal site has a smaller moment on it than the other sites.
However, the deviation in the value of the edge moment and,
indeed, of the moment at any site from mc is far smaller than in
the ZGNR case. The moment profile in this case is essentially
flat, with only minor deviations from mc across the width of
the ribbon. Examining the case of γCM = 0.7γCC reveals that
the shape of the profile across the ribbon is less robust than the
zigzag case as the edge moment here is found to be slightly
larger than mc. Of the cases examined, the effect is weakest
here and does not appear to be very robust. Thus the position
dependence of magnetic impurities is smallest for adsorbed
impurities on AGNRs and cannot be deemed a significant
effect.

IV. EDGE DISORDER

In this section, the robustness of the features discussed in
the previous section will be examined in the presence of edge
vacancy defects. This is an important point to consider when
comparing impurity-driven magnetic moments in GNRs to
those arising intrinsically due to the edge states, which have
been shown to be particularly vulnerable to edge disorder.14

For each of the cases discussed in the previous section, we
examine the effect of a single edge vacancy on the magnitude
of a nearby moment, calculated with the mean-field Hubbard
model approach. The distance between the magnetic impurity
and the edge vacancy is varied to examine the range of this
effect.

Figure 6 shows the effect of an edge vacancy on the
magnetic moments of substitutional impurities in a 6-ZGNR
(left) and an 11-AGNR (right). To show the range of the
effect, we plot the relative change in the moment when an
edge vacancy is introduced as a function of distance between
the edge vacancy and the unit cell containing the magnetic
impurity atom. Note that in this case, we are plotting the
fluctuation of each moment relative to its value at its current
position in a system without edge defects, not relative to its
value at the center of the ribbon as was shown previously. This
plot is shown for a number of possible sites for the magnetic
impurity across the width of the ribbon, namely, the edge atom
on the same side as the vacancy, the site next to the edge, a site
at the center of the ribbon, and a site at the opposite edge, as
shown schematically in the upper panels.

For the ZGNR, the first point to note is that the only sites
that show a considerable change in their moments are the
first two cases. The edge site has a slight reduction in the
value of its moment, whereas the site next to the edge and
belonging to the opposite sublattice to the edge has a significant
increase in magnetic moment. However, the first point in this
curve corresponds to a site neighboring the edge vacancy.
Excluding this, the largest deviation in magnetic moment
does not exceed 5%. However, for all positions, the moment
reverts very quickly back to its value without the vacancy
when it is moved further away down the ribbon. This suggests
that a single edge vacancy will have very little effect on the
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FIG. 6. (Color online) Effects of a single edge vacancy on
the magnetic moments of substitutional magnetic impurities on
a 6-ZGNR (left) and 11-AGNR (right). The top images show
schematically the edge vacancy and the possible sites of magnetic
impurities across the width of the ribbons. For each ribbon, we
consider sites at the edge (black, circle), next to the edge (red, square),
center (green, triangle), and at the opposite edge (blue, inverted
triangle) of the ribbon. The graphs underneath show the fluctuation in
the magnetic moment of an impurity at each of these sites under the
introduction of an edge vacancy relative to the moment the impurity
would have in the absence of an edge vacancy. This is plotted as
a function of distance between the edge vacancy and the unit cell
containing the magnetic impurity, where the distance is given in unit
cells. The shaded area in each of the ribbon schematics contains one
unit cell of that ribbon.

moments of magnetic impurities located more than a lattice
spacing or two away. The AGNR case is quite similar. Moving
away from the vacancy, the deviations in the moments again
become very small. It is clear that significant deviations in
the moments of substitutional impurities are not seen outside
the immediate vicinity of the edge vacancy in either ribbon
geometry. Similar results are shown for the adsorbed cases in
Fig. 7. The effect here is even smaller than for the substitutional
case, with fluctuations of less than 2% at distances greater
than two unit cells away from the edge vacancy for all
impurity types considered, including the edge-adsorbed case
in ZGNRs.

A single edge vacancy has been shown not to have a
significant effect on the magnetic moments of transition metal
impurities in a GNRs. In fact, even the introduction of an
extended edge defect, consisting of a length of ribbon to either
side of the magnetic impurity with a certain concentration
of edge vacancies, does not considerably affect the impurity
moments unless there is an edge vacancy in their immediate
vicinity. We conclude that magnetic moments introduced into
GNRs by transition-metal doping are particularly stable and
robust in the presence of edge disorder. In particular, the
striking moment profiles seen for magnetic impurities in
ZGNRs will not be significantly perturbed by the introduction
of a reasonably strong extended edge disorder. This point is
illustrated quite clearly in Fig. 8 for the case of substitutional
impurities on a 6-ZGNR, the same case considered in the
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FIG. 7. (Color online) The effect of an edge vacancy on the
magnetic moment of center-adsorbed magnetic impurity atoms on
an 8-ZGNR and 11-AGNR. The notation in the schematics and
graphs is the same as for Fig. 6. For the zigzag case, the result
for an edge-adsorbed impurity (star, purple) is also shown.

upper panel of Fig. 2. The moment profile for the pristine case
is shown as calculated with the mean-field Hubbard approach
(red squares). Also shown is the moment profile for a system
with a disordered region with a length of 100 unit cells to
either side of the magnetic impurity (black circles). Within this
disordered region, carbon atoms from the edge zigzag chain

edge centre

Impurity position

0

0.2

Δm
 / 

m
c

FIG. 8. (Color online) Schematic showing region of 6-ZGNR
with a magnetic impurity and edge disorder consisting of atoms
removed randomly from the edge zigzag chain of the ribbon (top
panel) and the the resulting moment fluctuations (bottom panel). The
red squares indicate the position-dependent moment fluctuations in a
ribbon without edge disorder, whilst the black circles correspond to
the average fluctuations taken over fifty edge-disorder configurations,
with the standard deviation shown by the error bars.
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at either edge of the ribbon are removed with a probability of
10%. This plot shows the result of an average over 50 such
configurations, with the error bars on each point indicating
the standard deviation. The moment profile is seen to not vary
significantly from that of pristine case, demonstrating clearly
the robustness of the moment profile.

V. CONCLUSIONS

We have demonstrated the features of the magnetic moment
variation of a magnetic impurity as its location is varied across
the width of a graphene nanoribbon. For zigzag-edged nanorib-
bons, we found an excellent agreement between the simple
self-consistent Hubbard model and a more complete ab initio
treatment. Furthermore, the qualitative features of the resulting
moment profile remained constant for different parametriza-
tions describing the magnetic impurity, suggesting that they
hold for a wide range of magnetic species. For substitutional
impurities, a nonmonotonic behavior connected to the sublat-
tices of the graphene atomic structure was identified. For this
type of impurity, a larger moment was found on impurities lo-
cated on the edge site of a ZGNR. For impurities adsorbed onto
the center of a hexagon of the graphene lattice, a monotonic
increase of the moment magnitude as the impurity was moved
toward the center of the ribbon was found. However, an addi-
tional impurity type, consisting of an impurity atom connecting
to three edge atoms at a zigzag edge, was found to have a larger
moment than one connected to the edge hexagon. It was also

noted to be more energetically favorable. For armchair-edged
nanoribbons, the moment profile features were noted to be less
robust than for the zigzag case. However, the fluctuations of the
moment value around that at the ribbon center were also found
to be smaller. For both edge geometries and impurity configu-
rations, we showed that an edge vacancy did not have a signifi-
cant effect on the moment of a magnetic impurity located more
than one or two lattice spacings away. Furthermore, we demon-
strated that the distinctive moment profile for substitutional im-
purities on a zigzag-edged ribbon was robust in the presence of
an extended edge disorder. In light of these findings, we argue
that the magnetically doped nanoribbons may provide a route
to applications previously envisaged for nanoribbons with
intrinsic magnetic ordering, which is less stable in the presence
of experimentally imposed constraints such as imperfect edge
geometry.
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