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Constrained-DFT method for accurate energy-level alignment of metal/molecule interfaces
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We present a computational scheme for extracting the energy-level alignment of a metal/molecule interface,
based on constrained density functional theory and local exchange and correlation functionals. The method,
applied here to benzene on Li(100), allows us to evaluate charge-transfer energies, as well as the spatial distribution
of the image charge induced on the metal surface. We systematically study the energies for charge transfer from
the molecule to the substrate as function of the molecule-substrate distance, and investigate the effects arising
from image-charge confinement and local charge neutrality violation. For benzene on Li(100) we find that the
image-charge plane is located at about 1.8 Å above the Li surface, and that our calculated charge-transfer energies
compare perfectly with those obtained with a classical electrostatic model having the image plane located at the
same position. The methodology outlined here can be applied to study any metal/organic interface in the weak
coupling limit at the computational cost of a total energy calculation. Most importantly, as the scheme is based
on total energies and not on correcting the Kohn-Sham quasiparticle spectrum, accurate results can be obtained
with local/semilocal exchange and correlation functionals. This enables a systematic approach to convergence.
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I. INTRODUCTION

Organic/inorganic interfaces are ubiquitous in many differ-
ent mesoscopic composites of importance in materials science
and nanotechnology. It is well known that the performances of
organic-based devices, organic or dye sensitized solar cells,
and molecular diodes and transistors only to name a few,
depend strongly on the details of the metal/molecule interface.1

For instance, in organic solar cells the position of the frontier
molecular orbitals of the organic light harvesting material with
respect to the electrode bands is a key design quantity for engi-
neering material combinations with enhanced light-to-current
conversion. It is then of great importance to have at hand
computational tools capable of accurate predictions of level
alignment. This is, however, a difficult theoretical problem.

It has been demonstrated experimentally2–5 that the quasi-
particle energy gap (Egap) of a molecule, defined as the
difference between its ionization potential (I ) and electron
affinity (A), gets reduced with respect to that of the gas
phase by adsorbing the molecule on a polarizable substrate.
In a quasiparticle picture the I is negative of the highest
occupied molecular orbital (HOMO) energy, while the A

corresponds to the energy of the lowest unoccupied molecular
orbital (LUMO). The reduction of the I and A of a molecule
adsorbed on a metallic surface is mainly due to the Coulomb
interaction between the added charge on the molecule and the
screening electrons in the substrate. This interaction leads to
a polarization of the surface, so that a surface charge with
opposite sign with respect to the charge state of the molecule
is formed. This nonlocal feature, called the image-charge
effect, becomes more relevant as the molecule gets closer
to the metallic surface. As a consequence, the reduction of
the I and the A, hence of the HOMO-LUMO gap, becomes
more prominent with the molecule approaching the surface, as
schematically illustrated in Fig. 1(a).

In general, conventional electronic structure theory strug-
gles when predicting the level alignment at a metal/molecule
interface, since only rarely are nonlocal correlation effects

explicitly included. This is, for instance, the case for density
functional theory (DFT),6,7 today the most widely used
method for computing the electronic structure of materials. In
particular, there are two important issues related to DFT and the
problem of level alignment. On the one hand, since the Kohn-
Sham eigenvalues cannot be rigorously interpreted as removal
energies, Koopman’s theorem in general does not apply, so that
the Kohn-Sham spectrum cannot be taken as a quasiparticle
spectrum. The only exception is the HOMO (but not any
of the HOMO-n levels), which can be associated with the
negative of the I .8–10 Even leaving interpretative issues aside,
in practice the Kohn-Sham energy levels often are not a good
representation of the true excitation spectrum of a material,
namely, they are not found at the correct energy position. On
the other hand, in static DFT the standard approximations
to the exchange and correlation functional, including the
local density approximation (LDA),11 hybrid functionals,12 or
explicitly self-interaction corrected ones,13,14 do not include,
or they do but just poorly, nonlocal correlation effects. This
means that, although some of the functionals can predict with
satisfactory accuracy the energy levels of the molecule in
the gas phase, they all fail in describing properly the level
renormalization as the molecule approaches the surface. For
instance, in the LDA there is no change in the HOMO-LUMO
gap as a molecule gets closer to a metallic surface.15

A conceptually straightforward way to include such nonlo-
cal correlation effects in the description is that of using many-
body perturbation theory, namely, the GW approximation
constructed on top of DFT.16–18 This approach has been used
in the past few years for predicting level alignment,15,19–23

in general with good success. The drawback of the GW
scheme stays with its computational overheads, which limit
the system size that can be tackled. This is particularly critical
for the problem at hand since the typical simulation cells for a
molecule on a surface are in general rather large. Furthermore,
as the image charge may spread well beyond the size of the
molecule investigated, one may even require cells significantly
larger than those needed to physically contain the molecule.
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Alternatives to the GW approach, which to some degree
also go beyond taking the simple DFT Kohn-Sham spectrum,
include scissor operators (the DFT+� approach),24–29 where
the HOMO and LUMO eigenvalues are shifted to match values
obtained either from experimental data or from separate total
energy difference calculations (�SCF) plus classical image-
charge models, and modified �SCF schemes.30,31

Among the various possibilities constrained DFT (CDFT)
represents a conceptually different approach to the problem.
The idea behind CDFT is that one can always define an
appropriate density functional, implementing a given desired
constraint on the charge density32 (e.g., one can demand that
an electron is localized on a particular group in a molecule).
This is obtained by introducing an appropriate external
potential in the Kohn-Sham equations. The crucial point is
that the approach is fully variational, meaning that the energy
minimum of the constrained functional represents the ground
state of the system under that particular constraint.33–35 The
method allows, for example, to access energies and electron
density distributions of charge-transfer states of a given
system, and has been successfully applied to the study of long-
range charge-transfer excitations between molecules.33,36,37

In the present study we apply CDFT to the investigation of
the energy-level alignment of metal/molecule interfaces. In
relation to this problem, CDFT has two main advantages.
First, since CDFT is based on total energy differences, it
does not present the conceptual problems of interpreting
the Kohn-Sham eigenvalues as a true quasiparticle spectrum.
Second, one has to note that the total energy, even in the case of
local functionals, is a rather accurate quantity, in contrast to the
charge density that local functionals usually tend to overdelo-
calize. This means that a theory that improves the charge den-
sity but that relies on the total energy is expected to be accurate.

The present paper is organized as follows. First we provide
a description of the CDFT method used, with details on
how the constrained is imposed. Then results for a specific
system consisting of a benzene molecule deposited on a
Li(100) surface are presented, focusing on charge-transfer
energies, and hence level alignment. In particular, we evaluate
the quantitative accuracy of the results as a function of
the distance between the molecule and the surface, and its
dependence on a set of parameters such as the system size and
the boundary conditions (periodic versus finite). Towards the
end we evaluate the changes in the electron density caused
by the net charge on the molecule, and in particular we
determine the position of the image-charge plane as a function
of molecule-surface distance. We then use the calculated
image-charge plane position in a classical model for the
energy-level shifts and compare our ab initio energies to
available GW results.

II. METHOD

In the Kohn-Sham (KS) framework7 the total energy (in
atomic units) is given by

E[ρ] =
α,β∑
σ

Nσ∑
i

〈φiσ | − 1

2
∇2|φiσ 〉

+
∫

dr vn(r)ρ(r) + J[ρ] + Exc[ρα,ρβ ], (1)

where J is the Hartree energy, Exc is the exchange-correlation
energy, vn(r) is the external potential, ρσ (r) is the electronic
density for spin σ = ↑,↓ of Nσ electrons (ρ = ρ↑ + ρ↓), and
the set {|φiσ 〉} contains the KS wave functions that minimize
the energy. A generic constraint on the charge density is that
there is a specified number of electrons for each spin Nσ

c within
a certain region of space. This can be written as∫

wσ
c (r)ρσ (r)dr = Nσ

c , (2)

where wσ
c (r) is a weighting function that describes the spatial

extension of the constraining region. In the simplest case
wσ

c (r) can be chosen to be equal to 1 within a certain volume
and 0 elsewhere. In order to minimize the KS total energy
of Eq. (1) subject to the constraint of Eq. (2), an additional
spin-dependent term, proportional to the Lagrange multiplier
V σ

c , is added to the energy. A new functional is thus defined
to be

W [ρ,Vc] = E[ρ] +
∑

σ

V σ
c

(∫
wσ

c (r)ρσ (r)dr − Nσ
c

)
. (3)

When ρ satisfies the constraint in Eq. (2), then E[ρ] =
W [ρ,Vc] by construction. Up to the ρ-independent term∑

σ V σ
c Nσ

c , W [ρ,Vc] is the ground-state energy of a system
with an additional spin-dependent external potential V σ

c wσ
c (r).

The KS equations with this extra potential are then given by[
−1

2
∇2 + vn(r) + vσ

xc(r) + Vσ
c wσ

c (r) +
∫

ρ(r′)
|r − r′|dr′

]
φσ

i (r)

= εiφ
σ
i (r), (4)

where vσ
xc is the exchange and correlation potential. As in the

standard Kohn-Sham DFT the electron density is constructed
from the occupied Kohn-Sham eigenvectors {φσ

i (r)} until
self-consistency is achieved. In this particular case the self-
consistency has to also guarantee that the constraint set
by Eq. (2) is satisfied. The minimization then proceeds as
follows. First, as in the standard Kohn-Sham scheme, an
initial charge density is defined and then updated until the
Kohn-Sham equations are satisfied self-consistently. Second,
at every self-consistent step in this update of the charge density
a second self-consistent loop is performed, where for a given
input density ρ(r) the value of V σ

c is updated until the output
charge density obtained via solution of Eq. (4) satisfies the
constraint of Eq. (2). This second step is performed following
an optimization scheme suggested in Ref. 34. Updating V σ

c in
this way ensures that at each self-consistent step and therefore
also at convergence the constraint is fulfilled.

This methodology was implemented in the DFT package
SIESTA.38 SIESTA uses a linear combination of atomic orbitals
(LCAO) basis set, so that, instead of defining the constraining
region in real space via the function wσ

c (r), we define it over
the LCAO space. This means requiring that the total charge
projected onto a given set of basis orbitals is equal to Nσ

c . For
this aim we have implemented both the Löwdin35,39 and the
Mülliken40 projection schemes. A detailed description of the
implementation is given in the Appendix. At the quantitative
level our results depend somewhat on the projection method
employed, and it has been shown that usually the Löwdin
scheme gives the most accurate results.33,40
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Using such a CDFT approach we can evaluate the charge-
transfer energy between the molecules and the metal surface,
and hence the position of the frontier energy levels with respect
to the Fermi energy of the metal. For a given substrate size and
perpendicular distance d between the molecule and the surface
atoms, first a standard DFT calculation without constraints
is performed. This determines the total ground-state energy
of the combined molecule+substrate system E(mol/sub; d)
and the amount of charge present on each fragment, one
fragment being the molecule and the other the substrate. In
our calculations we consider d ranging from 4 to 14 Å, where
the molecule is only weakly coupled to the substrate, so that the
amount of charge on each fragment is a well-defined quantity.
Although CDFT is designed for arbitrary geometries and
constraints, in the case of overlapping fragments the amount
of charge localized on each fragment becomes ill defined and
the results have to be taken with care.33

The next step consists in performing a different DFT
calculation, where the constraint is set in such a way that
one electron is removed from the molecule and one electron
is added to the substrate. The total energy of such a charge-
transfer state is E(mol+/sub−; d). Hence the charge-transfer
energy needed to transfer one electron from the molecule to
the substrate E+

CT is given by

E+
CT(d) = E(mol+/sub−; d) − E(mol/sub; d). (5)

In an analogous way we obtain the charge-transfer energy
gained by moving one electron from the surface to the molecule
E−

CT as

E−
CT(d) = E(mol/sub; d) − E(mol−/sub+; d), (6)

where E(mol−/sub+; d) is the CDFT ground-state energy of
the configuration where one electron is moved from the metal
surface to the molecule. We note that such a procedure always
deals with globally charge neutral simulation cells, so that
no monopole energy corrections are necessary under periodic
boundary conditions. Moreover, for practical calculations the
charge-transfer approach can be expected to be more accurate
than a calculation using non-neutral cells, where the metal is
kept neutral but the molecule is charged. For such non-neutral
calculations the image charge is formed on the metal surface
in an analogous way to the charge-transfer setup. However,
in order for the metal cluster to be charge neutral, a charge
with opposite sign will also form on the surface of the metallic
cluster. Given the finite size of the cluster, this will lead to
additional inaccuracies due to the interaction between the
image charge and such a spuriously confined additional surface
charge.

Within the charge-transfer procedure we can directly deter-
mine the energy-level alignment at the interface, since −E+

CT
(−E−

CT) corresponds to the energy of the HOMO (LUMO) with
respect to the substrate Fermi energy. In a similar constrained-
DFT approach,31 Sau and co-workers calculated the charging
energy associated with transferring small amounts of charge
from the substrate to a specific molecular orbital. The charge-
transfer energy was then obtained by extrapolation to integer
charge. In order to avoid the use of such an extrapolation, here
we always transfer an entire electron between the molecule and
the substrate. Since a CDFT calculation has a computational
cost only marginally more expensive than that of a standard

FIG. 1. (Color online) (a) Schematic energy-level diagram of
the frontier orbitals of a molecule approaching a metallic surface.
Note the HOMO-LUMO level renormalization as a function of the
molecule-surface distance z due to polarization of the metal. (b)
Top-view ball-stick representation of a benzene molecule at a Li(001)
surface for a Li(001) 12 × 12 supercell. The dashed rectangles show
the 3 × 3 (purple) and 6 × 6 (green) supercells. The inset in (b) is the
side view of the benzene lying flat at a distance d from the surface.

DFT ground-state one (the CPU time increases by about a
factor of 2 over the entire self-consistent cycle), CDFT allows
us the study of large organic molecules on surfaces. This
is a prohibitive task for many-body-corrected quasiparticle
schemes, such as the GW method.

We apply our CDFT method to compute the energy-level
alignment of a benzene molecule as a function of its distance
d from a Li(100) surface. The calculations are performed
using norm-conserving relativistic pseudopotentials,41 and the
LDA11 for the exchange-correlation potential. The real-space
grid is set by an equivalent mesh cutoff of 300 Ry and the
charge density, and all the operators are expanded over a
double-ζ polarized basis set with an energy shift of 0.03 eV.38

The Li metallic surface is modeled by a 6 atomic layer thick
slab. The bcc primitive unit cell lattice constant is set to 3.51 Å.
We consider two types of boundary conditions in the plane of
the Li substrate surface, namely, periodic boundary conditions
(PBCs) and nonperiodic boundary conditions (non-PBCs).
Furthermore, in order to investigate the finite size effects
originating from the size of the Li surface, we consider
three different cell sizes (for both PBCs and non-PBCs),
namely, small (3 × 3 atoms per layer), intermediate (6 × 6),
and large (12 × 12) (see Fig. 1). In the case of non-PBCs the
real-space box containing the Li slab supercell has dimensions
55 × 55 × 55 Å3. This is chosen in such a way that even for the
12 × 12 slab there is at least 15 Å of vacuum between the Li
slab and the boundaries of the simulation box. By using a cubic
box one can apply Madelung corrections in SIESTA. These
are necessary since the electrostatic potential is calculated by
using periodic boundary conditions.42 In the case of PBCs
the in-plane dimensions are set by the Li supercell size and
thus are 10.56 × 10.56, 21.09 × 21.09, and 42.12 × 42.12 Å2,
respectively, for the 3 × 3, 6 × 6, and 12 × 12 cell. The cell
dimension in the direction perpendicular to the surface plane
is the same as for the case of non-PBCs, namely, 55 Å.

We use two different boundary conditions for the Li surface
in order to investigate the effects arising from the spurious
dipole-dipole interaction between image supercells. The size
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of this spurious interaction can be reduced by increasing the
size of the unit cell. For the PBC setup the dimensions in
the plane are set by the Li cluster size, while for non-PBC
calculations we use a large simulation cell which minimizes
the dipole-dipole interaction between periodic images. In this
way we can disentangle the effects of changing the extension
of the Li surface in plane from those associated with the size
of the simulation box. Furthermore, in the case of non-PBCs,
edge effects may arise and our aim is to find the required cluster
and cell size that gives quantitatively accurate charge-transfer
energies.

III. RESULTS

In order to determine the energy-level alignment between
the molecule and the surface, we first need to determine the
Li work function (WF ). This is calculated by performing a
simulation for the Li slab with PBCs and no benzene adsorbed
and by taking the difference between the vacuum potential
and the slab Fermi energy. The so obtained value for the
Li(001) WF is 2.91 eV. This is in fair agreement with previous
calculations (3.03 eV),43 which have also shown that the Li WF

can vary by about 0.5 eV depending on the crystallographic
orientation of the surface. The experimental values reported for
polycrystalline Li vary considerably (2.3–3.1 eV), as discussed
in Ref. 44 and references therein.

In this case of non-PBCs the Li substrate is essentially
a giant molecule and we can calculate the I and the A by
means of the �SCF method, where I = E(N−1) − E(N) and
A = E(N) − E(N+1) (N is the number of electrons in the
neutral system). The results are listed in Table I for the different
Li cluster sizes. We note that there is a substantial difference
between the I and A, resulting in a quasiparticle energy gap of
the order of 1 eV for the Li clusters. Such a gap arises because
of the charge confinement in the finite cluster. In this case
electron-electron repulsion energy leads to a decrease of the
A and an increase of the I as compared to the WF calculated
with PBCs. If instead of adding (removing) a full electron we
add (remove) a small fractional charge (0.1 of an electron),
electron-electron repulsion energy becomes negligible, the
gap disappears, and we obtain A = 3.0 eV (I = 3.1 eV).

TABLE I. Ionization potential (I ), electron affinity (A) and quasi
particle gap (Egap), in eV, for the three Li substrates considered and for
the benzene molecule in the gas phase compared with experimental
data and GW calculations.

Li substrates
3 × 3 6 × 6 12 × 12 Benzene gas phase

�SCF �SCF GW Expt.

I 3.46 3.44 3.55 9.56 9.23a/9.05b/7.9c 9.24d

A 1.57 2.18 2.63 −1.45 −0.80a/−1.51b/−2.7c −1.14e

Egap 1.89 1.26 0.92 11.01 10.51f/10.55b/10.6c 10.38

aReference 48.
bReference 49.
cReference 20.
dReference 45.
eReference 46.
fReference 15.
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FIG. 2. (Color online) Negative of the charge-transfer energy
E−

CT and removal energy E+
CT as a function of the molecule-surface

distance d for the three clusters considered. (a) and (b) are for
non-PBC and PBC calculations, respectively. The green dashed lines
represent the negative of the Imol and Amol of the isolated molecule
(�SCF calculations) shifted by the calculated Li WF of 2.91 eV.

Likewise, the gap is reduced for larger cluster, in which the
electron density of the additional electron (hole) can delocalize
more. Before investigating the combined molecule/Li system
we calculate also the I and the A for the isolated benzene
molecule, and our results are shown in Table I. We find the
energy gap for the molecule in the gas phase, Egap = I − A,
to be in good agreement with experiments,45,46 with other
works using the �SCF (Ref. 47) approach, and with GW
calculations.15,48

The benzene/Li interface [see Fig. 1(b)] consists of a
benzene molecule, in its gas phase geometry, positioned
parallel to the Li surface at a distance d. We now evaluate the
dependence of the various charge-transfer energies (positions
of the HOMO and LUMO) on d for all the different Li
supercells as well as for both non-PBCs and PBCs. We
start by presenting our results for calculations performed
with non-PBCs. In Fig. 2(a) we plot −E+

CT and −E−
CT as a

function of d for all three Li clusters considered. As expected,
due to the electron-hole attraction, the absolute value of
the charge-transfer energy decreases as d gets smaller. This
in itself shows that CDFT can capture nonlocal Coulomb
contributions to the energy. While for small d the energies
of the three different clusters are approximately equal to each
other, for large distances they differ significantly. In order to
determine the origin of such deviations we evaluate the same
energies in the limit of very large distances (d → ∞), where

TABLE II. Charge-transfer energies (in eV) in the limit of
large distances (d → ∞) for the three molecule/Li cluster cells
investigated. Values are obtained by evaluating Eqs. (7)–(9) with
the Is and As taken from Table I.

Li substrates

3 × 3 6 × 6 12 × 12

E+
CT(∞) 7.99 7.38 6.93

E−
CT(∞) 4.91 4.89 5.0

E
gap
CT (∞) 12.9 12.27 11.93
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they become

E+
CT(∞) = Imol − ALi (7)

and

E−
CT(∞) = Amol − ILi, (8)

since the interaction energy between the charge on the Li slab
and that on the molecule vanishes for d → ∞. The charge-
transfer energy gap is then given by

E
gap
CT (∞) = E+

CT(∞) − E−
CT(∞)

= Imol − Amol + (ILi − ALi). (9)

While Imol and Amol are independent of the cluster size, this is
not the case for ILi and ALi (see Table I). This reflects in the fact
that the charge-transfer energies at a large molecule-surface
separation cary with the cluster size (see Table II).

At large distances the variation of E+
CT with the Li

cluster sizes is mainly caused by significant changes in
ALi. Interestingly, this is not the case for E−

CT, since ILi is
approximately the same for all the Li clusters considered. As
d gets smaller, the extension of the image charge on the Li
slab is reduced, so that even small clusters are large enough
to contain most of the image charge. Therefore the energy
differences depend less on the cluster size. For d up to about
6 Å, Fig. 2(a) shows that E+

CT and E−
CT are converged even for

the small 3 × 3 supercell. Since in organic-based devices the
first molecular layer deposited on top of the metallic substrate
is typically rather close to the surface, we expect that in these
situations a rather small cluster size will be already sufficient
for our CDFT scheme to yield an accurately converged level
alignment. This means that the CDFT approach is a valuable
tool for an accurate evaluation of the electronic structure of
molecules on surfaces in realistic conditions. Finally, when
one looks at larger d, it is immediately clear that larger cluster
sizes must be considered. The green dashed lines in Fig. 2
correspond to the infinite cluster size limit, for which we have
ILi = ALi = WF ≈ 2.9 eV. It can then be seen that, even up
to the largest considered d of 14 Å, results obtained for the
12 × 12 cluster are within the infinite cluster limit (set in the
figure by the two green dashed lines), so that they can be
considered converged.

We now move to the case of PBCs, in which there are no
edge effects due to the finite size of the cell. Results for the
charge-transfer energies are presented in Fig. 2(b). Although
the general trends are analogous to the ones found for the case
of non-PBCs, we note that for the 3 × 3 supercell the changes
in the charge-transfer energy as a function of d are largely
overestimated. This is due to the use of PBCs, in which the
lateral dimensions of the supercell box coincide with those of
the Li slab (i.e., there is no vacuum). Because of the PBCs
one effectively simulates a layer of charged molecules and not
a single molecule on the surface. Thus, when the molecules
are closely spaced, the charge-transfer energy is that of two
opposite charged surfaces facing each other (the molecular
layer and the Li slab). This is significantly larger than that of
a single molecule (note that we always compare the charge-
transfer energy per cell, i.e., per molecule). When one increases
the size of the supercell and arrives at 12 × 12, both PBC and
non-PBC calculations produce the same results. This confirms

the observation that the 12 × 12 supercell is large enough to
contain a substantial part of the image charge as well as to
minimize the Coulomb interaction between repeated supercell
images up to d = 14 Å.

From the charge-transfer energies we can now obtain
an approximate value of the energies of the HOMO and
LUMO orbitals, by offsetting them with the metal WF , so
that EHOMO � −(E+

CT + WF ) and ELUMO � −(E−
CT + WF ).

Note that if the metal substrate is semi-infinite in size, then
these relations become exact, since by definition the energy
required to remove an electron from the metal and that gained
by adding it are equal to the work function. However, in a
practical calculation, a finite size slab is used, and therefore the
relations are only approximately valid due to the inaccuracies
in the calculated WF for finite systems. As shown above, the
WF becomes more accurate as the cluster size is increased.

In Figs. 3(d) and 3(e) we show the calculated values for the
12 × 12 supercell and PBCs obtained by using the Li WF of the
infinite slab of 2.91 eV, and in Fig. 3(c) we present E

gap
CT (d) =

E+
CT(d) − E−

CT(d). In order to quantify how the image charge
changes the charge-transfer energies as a function of d, we

FIG. 3. (Color online) Image-charge analysis. (a) Isosurface of
the difference between the charge densities calculated with DFT
(ground state) and CDFT (charge-transfer state) �ρ(r). Note the
formation and the spatial distribution of the image charge. Different
panels correspond to different molecule/surface distances d . The
isosurfaces are taken at 10−4 e/Å3. Red isosurfaces denote negative
�ρ(r) (electron depletion), while blue are for positive �ρ(r) (electron
excess). (b) Position of the charge image plane taken from the surface
atoms [see Eq. (11)], respectively, when one electron, d+

0 , or one
hole, d−

0 , is transferred from the molecule to the Li substrate for the
12 × 12 PBC calculations as a function of d . (c)–(e) are E

gap
CT , EHOMO,

and ELUMO, respectively, as a function of d and compared with the
classical model of Eq. (10). The dashed green lines are −Imol and
−Amol calculated with �SCF.
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can write E±
CT(d) = E±

CT(∞) + V (d), where the new quantity
V (d) corresponds to the energy lowering due to the distance-
dependent electron-hole attraction. It was demonstrated a long
time ago,50 by using self-consistent DFT calculations, that
for flat surfaces V (d) can be accurately approximated by the
classical image-charge energy gain

V (d) = −q2

4(d − d0)
, (10)

where q is the charge on the molecule, and d0 is the height
of the image-charge plane with respect to the topmost surface
atomic layer

d0(d) =
∫ dB

dA
z �ρxy(z; d)dz∫ dB

dA
�ρxy(z; d)dz

. (11)

In other words, d0 can be interpreted as the center of gravity of
the screening charge density localized on the metal surface, and
in general it depends on d. Here �ρxy(z; d) = ∫

dxdy�ρ(r; d)
and �ρ(r; d) is the difference between the charge densities
of the DFT (ground state) and the CDFT (charge-transfer
state) solutions for a fixed d. Note that the charge transfer
between the surface and the molecule leads to the formation
of a spurious charge layer on the back side of the Li slab (i.e.,
opposite to the surface where the molecule is placed), which is
due to the finite number of atomic layers used to simulate the
metal surface. In order not to consider such a spurious charge
while evaluating the integral in Eq. (11), the two integration
limits, dA and dB , are chosen in the following way: (1) dA

is taken after the first two �ρ(d) charge oscillations on the
back of the cluster, and (2) dB is the distance at which �ρ(d)
changes sign between the top Li layer and the molecule (i.e.,
it is in the vacuum).

Figure 3(a) provides a visual representation of the image-
charge formation as the molecule approaches the surface and
shows isosurface plots of �ρ(r; d) for different distances d.
Here we present the case in which one electron is removed
from the molecule and is added to the Li surface. As one
would expect, the farther away the molecule is from the
surface, the more delocalized the image charge becomes.50

Note that the isosurface value is kept constant for all d

[�ρ(r; d) = 10−4 e/Å3], so that the apparent shrinking of the
image charge for d = 11 Å simply reflects the fact that most of
the image charge is now spread at an average density smaller
than 10−4 e/Å3. Likewise, no isosurface contour appears on
the Li slab for d = 14 Å, since now the image charge is rather
uniformly spread at low density. In contrast, at small d the
oscillations of the charge density between the atomic layers
of the metallic surface can also be seen. It can also be seen
that at 4 Å the charges on the molecule and the image charge
on the Li surface start to overlap. Note that for even shorter
distances, when the overlap becomes very large, the CDFT
approach presented here becomes ill defined, since the charge
on each fragment is not well defined anymore.

By evaluating Eq. (11) we now determine d0(d) and the
results obtained for the 12 × 12 PBC calculations are shown
in Fig. 3(b) for both electron (d+

0 ) and hole (d−
0 ) transfer from

the molecule to the surface. The average d0 values are 1.81 and
1.72 Å for d+

0 and d−
0 , respectively. Although the two values

are similar, they are not identical. This is consistent with the

small band gap of the Li slab, which indicates that holes and
electrons behave differently. The average values of d+

0 and d−
0

can now be used to evaluate Eq. (10) for the classical model.
The results are shown in Figs. 3(c)–3(e) and demonstrate that
the classical model works remarkably well for this system [the
calculated slope of both EHOMO(d) and EHOMO(d) matches
almost perfectly that obtained by CDFT]. It also shows once
again that the results for our 12 × 12 PBC cell are indeed well
converged with respect to the slab and cell size.

Finally we make a comparison between our results and
those available in the literature for many-body-based calcula-
tions. We find an overall reduction of E

gap
CT of 2.5 eV, when

the benzene moves from infinity to d = 4.5 Å. Garcia-Lastra
et al.20 studied the dependence of the frontier quasiparticle
energy levels of a benzene molecule as a function of the
distance to a Li substrate by means of GW calculations. They
found an overall reduction in Egap of ∼3.2 eV as compared to
the benzene HOMO-LUMO gap in the gas phase, as one can
extract from Fig. 1(c) of Ref. 20. The authors also fit their GW
results to the classical model, finding the best match fitting for
d0 = 1.72 Å, in very good agreement with our calculated value.
There is a small discrepancy in the results of Ref. 20, since
if one uses the classical model of Eq. (10) with d0 = 1.72 Å,
then the HOMO-LUMO gap reduction should be smaller than
3.2 eV, namely, 2.6 eV at d = 4.5 Å. Note that the GW results
are obtained for cells much smaller than the converged 12 × 12
used here. If we now force the classical model to fit our results
for the 3 × 3 and 6 × 6 supercells, we will obtain, respectively,
d0 = 2.3 and 2.1 Å for a corresponding gap reduction of 3.27
and 3.0 eV. In these two cases, however, the fit is good at all
d only for the 6 × 6 supercell, while it breaks down for the
3 × 3 one for d beyond 8 Å. This is somehow expected since
for large molecular coverages (the 3 × 3 cell) the pointlike
classical approximation is no longer valid.

IV. CONCLUSION

In summary, we have implemented and applied CDFT to
determine the energy-level alignment of metal/organic inter-
faces in the weak electron coupling regime, i.e., for molecules
physisorbed on surfaces. In particular, we have demonstrated
how the frontier energy levels of a benzene molecule change,
leading to a HOMO-LUMO gap reduction, when the molecule
is brought close to a Li(100) surface. This effect is due to the
screening charge formed on the metal surface. We have then
shown that, in order to obtain quantitatively converged results,
rather large metal cluster sizes are needed for large distances,
whereas at small molecule-metal separations smaller clusters
can also give quantitatively accurate results. Our calculated
value for the image-charge plane is 1.72 and 1.80 Å for A and
I, respectively, in good agreement with the values fitted from
GW calculations. Using these distances for the image-charge
plane height we have compared our ab initio results with
a classical electrostatic model and found good agreement.
The approach presented here offers several advantages over
many-body quasiparticles schemes, namely, (i) rather large
systems can be calculated, since the computational costs are
similar to those of standard DFT calculations, (ii) surfaces
with arbitrary shapes and reconstruction can be studied,
including defective and contaminated surfaces, and (iii) it
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gives a direct way of determining the position of the image
charge for such interfaces. Overall, CDFT applied to the
level alignment problem appears as a promising tool for
characterizing theoretically organic/inorganic interfaces, so
that it has a broad appeal in fields such as organic electronics,
solar energy devices, and spintronics.
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APPENDIX: IMPLEMENTATION DETAILS

Our implementation of the constrained-DFT approach
within SIESTA follows the prescription of Wu et al. described in
Ref. 51. Accordingly, we begin by defining a set of constraints
on the electronic spin density of the form∑

σ

∫
wσ

k (r)ρσ (r)dr − Nk = 0, (A1)

wherein σ = ↑,↓ represents the spin index, wσ
k (r) is a

weight function corresponding to the constraint k, defining
the property being constrained, and Nk is the constraint value.
The total electron density is given by

ρ(r) =
∑

σ

ρσ (r) =
∑

σ

Nσ∑
i

∣∣φσ
i (r)

∣∣2
, (A2)

where Nσ is the number of occupied Kohn-Sham orbitals
φσ

i (r). A Lagrange multiplier Vk is associated with each
constraint specified in Eq. (A1). This allows the following
modified energy functional to be defined,

W [ρ,{Vk}] = E[ρ] +
∑

k

Vk

[∑
σ

∫
wσ

k (r)ρσ (r)dr − Nk

]
,

(A3)

with E[ρ] being the standard Kohn-Sham (KS) energy
functional given by

E[ρ] =
∑

σ

Nσ∑
i

〈
φσ

i

∣∣ − 1

2
∇2

∣∣φσ
i

〉 + ∫
vext(r)ρ(r)

+ J [ρ] + Exc[ρ↑,ρ↓]. (A4)

In Eq. (A4) the first term is the kinetic energy, vext(r) is the
external potential, J [ρ] is the classical Coulomb energy, and
Exc[ρ↑,ρ↓] is the exchange-correlation energy. The variational
principle yields the stationary condition for the functional W

with respect to the normalized orbitals φσ
i , which leads to the

following modified Kohn-Sham equations,[
−1

2
∇2 + vext(r) +

∫
dr′ ρ(r′)

|r − r′| + vσ
xc(r)

+
∑

k

Vkw
σ
k (r)

]
φσ

i (r) = εσ
i φσ

i (r). (A5)

Thus the constraints enter the effective KS Hamiltonian in
the form of an additional external potential

∑
k Vkw

σ
k (r). The

ground state of the constrained KS system is obtained by
solving Eq. (A5) in conjunction with Eq. (A1). Wu et al. have
shown51 that the functional W is concave with respect to the
parameters Vk, and that by optimizing W through varying {Vk},
one can find the constraint potential that yields the ground state
of the constrained system. In order to optimize W , we utilize
its first derivate with respect to {Vk} given by

dW

dVk
=

∑
σ

Nσ∑
i

(
δW

δφσ
i

∂φσ
i

∂Vk
+ c.c.

)
+ ∂W

∂Vk

=
∑

σ

∫
wσ

k (r)ρσ (r)dr − Nk, (A6)

where the stationary condition δW
δφσ

i

= 0 implied by Eq. (A5) is

used. Thus we see that the derivative dW
dVk

vanishes automati-
cally when Eq. (A1) is satisfied.

We now outline the implementation of this formalism for
the simulation of electron transfer processes within SIESTA.
In a typical electron transfer problem one has to partition the
system into a donor region (D) and an acceptor region (A).
Within SIESTA, this is done by specifying a certain group of
atoms as belonging to D and a second group of atoms as
belonging to A. The constrained calculation then involves the
transfer of a specified amount of charge from D to A. In order to
partition the continuous electron density in real space between
the A and D regions, we choose an appropriate population
analysis scheme, which in turn determines the form of the
weight function wk in Eq. (A1). The localized numerical orbital
basis set within SIESTA is particularly suitable for atomic-
orbital-based population analysis schemes such as the ones
due to Lowdin39 and Mulliken.40 We have implemented weight
functions corresponding to both the Lowdin and Mulliken
schemes within SIESTA. For Löwdin populations, the number
of electrons on a group of atoms C is given by

NC =
∑
μ∈C

(
S

1
2 DS

1
2
)
μμ

=
∑
νλ

Dνλ

∑
μ∈C

S
1
2
λμS

1
2
μν = Tr

(
DwL

C

)
,

(A7)

where D and S are the density and overlap matrices, respec-

tively, and wL
Cλν = ∑

μ∈C S
1
2
λμS

1
2
μν defines the Löwdin weight

matrix. Similarly, with a Mulliken population analysis, the
number of electrons on a group of atoms C is

NC =
∑
μ∈C

[D(S)]μμ = Tr[(DS)], (A8)

with the corresponding weight matrix given by

wM
Cμν =

⎧⎪⎨
⎪⎩

Sμν if μ ∈ C and ν ∈ C,
1
2Sμν if μ ∈ C or ν ∈ C,

0 if μ � C and ν � C.

For charge-transfer problems, Wu et al. recommend a parti-
tioning of the charge density based on the Löwdin scheme.

The self-consistent field (SCF) procedure for obtaining the
constrained-DFT ground state within the current implemen-
tation consists of an inner and outer loop. The outer loop
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is similar to a conventional SCF cycle wherein the orbitals
obtained by solving the KS equations and the associated
self-consistent density are updated. The inner loop consists
of optimizing the Vk multipliers to ensure that the constraint
condition given in Eq. (A1) is satisfied at each step of the
outer loop. By Eq. (A6), this is equivalent to finding the
extremes of W . Since the derivative of W with respect to
the Vk is readily available from Eq. (A6), we employ a
conjugate gradient (CG) optimization procedure to ensure
that Eq. (A1) is satisfied. Subsequently, the KS equations
are solved and the resulting orbitals are used to update the
KS density and Hamiltonian in the outer loop. We note
that Wu et al. also calculated the second derivative (Hessian
matrix) of W with respect to the Vk parameters and employed
Newton’s method to optimize {Vk}. However, the expression
for the second derivatives ∂W

∂Vk∂Vl
depends explicitly on the KS

orbitals, whereas the first derivative [Eq. (A6)] involves only
the density.51 We therefore prefer to work with the gradient
alone and employ a CG optimization scheme for the {Vk}.
Thus the overall SCF procedure consists of the following
sequence of steps: (i) Construct the standard KS Hamiltonian
H for the current guess density. (ii) Obtain the constrained KS
Hamiltonian HC = H + ∑

k Vkw
σ
k (r) by adding the constraint

potential
∑

k Vkw
σ
k (r) from the previous iteration. (iii) Using

the Pulay scheme, mix Hc with Hamiltonians from previous
iterations to obtain H′

C . (iv) By keeping H′
C fixed, opti-

mize {Vk} so that the constraints in Eq. (A1) are satisfied.
(v) Solve the KS equations for the Hamiltonian combining
H′

C and the optimized {Vk}. The new density matrix D
thus obtained and the optimized {Vk} are used in the next
iteration. (vi) Repeat steps (i)–(v) until self-consistency is
achieved.
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