C3	$0.8968(5)$	$0.8568(4)$	$-0.0274(4)$	$0.0715(13)$
C4	$0.8479(4)$	$0.7830(3)$	$0.0185(5)$	$0.0747(14)$
C5	$0.9482(4)$	$0.7661(3)$	$0.1504(5)$	$0.0648(12)$
C6	$0.8616(13)$	$0.9594(12)$	$0.2881(10)$	$0.188(7)$
C7	$0.8493(10)$	$1.0156(6)$	$0.1968(12)$	$0.149(4)$
C8	$0.7270(8)$	$0.9981(5)$	$0.0837(7)$	$0.096(2)$
C9	$0.6599(6)$	$0.9236(6)$	$0.1079(8)$	$0.113(2)$
C10	$0.7464(12)$	$0.8997(7)$	$0.2423(12)$	$0.146(4)$
C11	$1.3132(3)$	$0.9501(2)$	$0.3513(3)$	$0.0445(8)$
C12	$1.4196(5)$	$0.9704(4)$	$0.3038(4)$	$0.0744(14)$
C13	$1.4554(7)$	$1.0610(5)$	$0.3250(6)$	$0.127(3)$
C14	$1.3731(8)$	$1.0989(4)$	$0.3807(7)$	$0.123(3)$
C15	$1.2852(5)$	$1.0329(3)$	$0.3990(4)$	$0.0720(13)$
C16	$1.3637(7)$	$0.7520(4)$	$0.3495(9)$	$0.146(4)$
C17	$1.1861(9)$	$0.8235(7)$	$0.4892(5)$	$0.163(4)$

Table 2. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Fel}-\mathrm{C} 9$	2.007 (5)	$\mathrm{Fe} 2-\mathrm{Cl} 3$	2.029 (6)
Fe - C 6	2.013 (8)	$\mathrm{Fe} 2-\mathrm{Cl} 5$	2.032 (4)
$\mathrm{Fe} 1-\mathrm{C} 7$	2.016 (7)	$\mathrm{Fe} 2-\mathrm{Cl} 4$	2.038 (5)
Fel-C10	2.025 (6)	$\mathrm{Fe} 2-\mathrm{Cl} 2$	2.038 (4)
$\mathrm{Fel}-\mathrm{C} 8$	2.026 (5)	$\mathrm{Fe} 2-\mathrm{Cl1}$	2.052 (3)
Fel-C5	2.028 (4)	Sil-Cl7	1.838 (6)
Fe --C4	2.028 (4)	Sil-Cll	1.843 (4)
$\mathrm{Fel}-\mathrm{C} 3$	2.029 (4)	$\mathrm{Sil}-\mathrm{Cl}$	1.858 (3)
$\mathrm{Fe} 1-\mathrm{C} 2$	2.040 (4)	Sil-Cl6	1.867 (6)
$\mathrm{Fe} 1-\mathrm{Cl}$	2.051 (4)		
C17-Sil-C11	111.5 (3)	C5-Cl-Sil	128.6 (3)
C17-Sil-Cl	111.4 (2)	$\mathrm{Sil}-\mathrm{Cl}-\mathrm{Fel}$	129.1 (2)
C11-Sil-Cl	107.8 (2)	$\mathrm{Cl} 2-\mathrm{Cll}-\mathrm{Sil}$	126.1 (3)
C17-Sil-C16	109.3 (5)	C15-Cl1-Sil	129.1 (3)
C11-Sil-Cl6	108.2 (3)	$\mathrm{Cl} 2-\mathrm{Cl1}-\mathrm{Fe} 2$	69.2 (2)
$\mathrm{Cl}-\mathrm{Sil}-\mathrm{Cl} 6$	108.6 (2)	$\mathrm{ClS}-\mathrm{ClI}-\mathrm{Fe} 2$	68.9 (2)
C2-Cl-Sil	125.4 (3)	$\mathrm{Sil}-\mathrm{C} 11-\mathrm{Fe} 2$	126.7 (2)

Data collection and cell refinement: CAD-4 Software (EnrafNonius, 1989). Data reduction: XCAD4 (Siemens, 1993). Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1994). Molecular graphics: SHELXTL/PC. Software used to prepare material for publication: SHELXL93.

This research was supported by NSERC Canada and the University of Toronto.

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: FG1011). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Enraf-Nonius (1989). CAD-4 Soflware. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Foucher, D. A., Tang, B. Z. \& Manners, I. (1992). J. Am. Chem. Soc. 114, 6246-6248.
Manners, l. (1994). Adv. Mater. 6, 68-71.
Rulkens, R., Lough, A. J. \& Manners, I. (1994). J. Am. Chem. Soc. 116, 797-798.
Sheats, J. E., Carraher, C. E. \& Pittman, C. U. (1985). In Metal Containing Polymer Systems. New York: Plenum.
Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1994). SHELXL93. Program for the Refinement of Crsytal Structures. Univ. of Göttingen, Germany.
Siemens (1993). XCAD4. Program to Extract Intensity Data from the Enraf-Nonius CAD-4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1994). C50, 1669-1671

Tricarbonyl $\left(\eta^{6}\right.$-pyridine)chromium (0)

Sylvia M. Draper and Janice J. Byrne
Department of Chemistry, Trinity College, Dublin 2, Ireland

Ciara J. Breheny and Conor Long
School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

John N. Low
Department of Applied Physics and Electronic \& Mechanical Engineering, University of Dundee, Dundee DDI 4HN, Scotland
(Received 23 February 1994; accepted 13 June 1994)

Abstract

The molecular structure of tricarbonyl $\left(\eta^{6}\right.$-pyridine)chromium $(0),\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$, is presented here. The Cr atom is bound to the pyridine ring via the π-electron system and is situated directly below the heteroarene ring centre. The pyridine ring is slightly distorted compared to free pyridine and the distance from the Cr atom to the plane of the pyridine ring is 1.698 (2) \AA. The tricarbonyl moiety adopts an eclipsed conformation with respect to the pyridine ring atoms.

Comment

The title compound, (I), consists of an unsubstituted pyridine ring with a tricarbonylchromium unit bonded to the π-electron system of the heterocycle.

This compound is analogous to the $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\eta^{6}-\right.\right.$ $\mathrm{C}_{6} \mathrm{H}_{6}$)] compound in which the π-bonded benzene ring exhibits no significant distortion from the sixfold $D_{6 n}$ symmetry of free benzene (Bailey \& Dahl, 1965). No such symmetry exists for pyridine, however, as is evident from the results calculated from microwave measurements by Bak, Hansen \& Rastrup-Andersen (1954), which indicate that the internal angles in the heteroaromatic ring vary from $116.7(1)^{\circ}$ at the N atom to
$124.0(1)^{\circ}$ at the C atom α to the N atom. In the crystal the equivalent angles are 115.7 (4) and $123.8(3)^{\circ}$ (mean of two), respectively. The internal angle at C13 is $119.9(4)^{\circ}$, while the equivalent angles in free pyridine and bis(2,6-dimethylpyridine)chromium (Riley \& Davis, 1976) are 118.1 and $115.8(9)^{\circ}$, respectively. Thus, the coordination of the π-system to the tricarbonylchromium unit causes a slight distortion of the pyridine ring system. The mean $\mathrm{N}-\mathrm{C}$ distance in the crystal is 1.370 (7) \AA, compared with $1.340(5) \AA$ in free pyridine. The equivalent distances in D-glucitolpyridine (Kim, Jeffrey \& Rosenstein, 1971) and pyridinium dicyanomethylide (Bugg \& Sass, 1965) are 1.330 (6) and 1.37 (1) \AA, respectively. The pyridine ring is essentially planar. The Cr atom sits at a distance of 1.698 (2) \AA from this mean plane, directly below the centre of the ring. This is significantly longer than the Cr to ring-plane distance of 1.620 (1) \AA in $\operatorname{bis}(2,6-$ dimethylpyridine)chromium.

Fig. 1. A view of the molecule with atomic numbering scheme. The atoms are shown with displacement ellipsoids drawn at the 30% probability level.

The mean Cr to ring-atom distance in the title compound is 2.189 (4) \AA, compared with $2.136(15) \AA$ in bis(2,6-dimethylpyridine)chromium. The conformation of the tricarbonyl unit is such that the carbonyl ligands eclipse atoms $\mathrm{C} 11, \mathrm{C} 13$ and C 15 . This is a relatively uncommon conformation; most $\left[M(\mathrm{CO})_{3}\left(\eta^{6}\right.\right.$-arene $\left.)\right]$ compounds ($M=\mathrm{Cr}$ or Mo) adopt a staggered conformation (Muetterties, Bleeke, Wucherer \& Albright, 1982).

Experimental

The $\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\eta^{6}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$ compound was synthesized by the method described by Davies \& Shipton (1989). Suitable crystals were grown from diethyl ether/ n-hexane solution.

Crystal data

$\left[\mathrm{Cr}(\mathrm{CO})_{3}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
$M_{r}=215.13$
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$

Monoclinic
$P 2_{1} / c$
$a=10.752$ (5) \AA
$b=7.652(5) \AA$
$c=11.110(2) \AA$
$\beta=111.80(5)^{\circ}$
$V=848.7$ (7) \AA^{3}
$Z=4$
$D_{x}=1.684 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
1589 measured reflections
791 independent reflections 751 observed reflections
$[I>3.0 \sigma(I)]$

Refinement

Refinement on F
$R=0.044$
$w R=0.061$
$S=2.17$
751 reflections
118 parameters
H atoms refined as riding $(\mathrm{C}-\mathrm{H}=1.08 \AA)$
$w=1 /\left[\sigma^{2}(F)+0.0008 F^{2}\right]$

Cell parameters from 25 reflections
$\theta=1.00-22.00^{\circ}$
$\mu=1.28 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rectangular plate
$0.90 \times 0.80 \times 0.60 \mathrm{~mm}$ Yellow

$$
\begin{aligned}
& R_{\text {int }}=0.046 \\
& \theta_{\max }=19.90^{\circ} \\
& h=-10 \rightarrow 9 \\
& k=0 \rightarrow 7 \\
& l=0 \rightarrow 10
\end{aligned}
$$

3 standard reflections monitored every 100 reflections
intensity variation: 2.0%

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e}^{-3}
\end{aligned}
$$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, Table 2.2B)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	x	y	z	U_{eq}
Cr1	$0.24257(5)$	$0.02605(9)$	$0.18428(5)$	$0.0427(6)$
C1	$0.3175(4)$	$-0.0975(7)$	$0.3383(5)$	$0.070(3)$
O1	$0.3647(3)$	$-0.1745(6)$	$0.4330(3)$	$0.111(3)$
C2	$0.1775(4)$	$-0.1785(6)$	$0.1000(4)$	$0.058(3)$
O2	$0.1344(3)$	$-0.3074(5)$	$0.0447(3)$	$0.089(3)$
C3	$0.0883(5)$	$0.0442(5)$	$0.2178(4)$	$0.052(3)$
O3	$-0.0076(4)$	$0.0527(5)$	$0.2408(3)$	$0.076(2)$
N11	$0.3461(4)$	$0.2752(5)$	$0.2494(4)$	$0.072(3)$
C11	$0.2300(5)$	$0.3047(6)$	$0.1449(6)$	$0.074(4)$
C12	$0.1985(4)$	$0.2192(6)$	$0.0255(4)$	$0.064(3)$
C13	$0.2871(4)$	$0.1000(6)$	$0.0121(4)$	$0.063(3)$
C14	$0.4082(5)$	$0.0677(6)$	$0.1161(4)$	$0.061(3)$
C15	$0.4319(4)$	$0.1561(6)$	$0.2304(4)$	$0.066(3)$

Table 2. Selected geometric parameters (\AA)

$\mathrm{Crl}-\mathrm{Cl}$	$1.857(5)$	$\mathrm{Cl}-\mathrm{Ol}$	$1.146(6)$
$\mathrm{Crl}-\mathrm{C} 2$	$1.825(5)$	$\mathrm{C} 2-\mathrm{O} 2$	$1.164(6)$
$\mathrm{Crl}-\mathrm{C} 3$	$1.835(5)$	$\mathrm{C} 3-\mathrm{O} 3$	$1.153(6)$
$\mathrm{Crl}-\mathrm{N} 11$	$2.190(4)$	$\mathrm{N} 11-\mathrm{C} 11$	$1.371(7)$
$\mathrm{Crl}-\mathrm{Cl1}$	$2.171(5)$	$\mathrm{N} 11-\mathrm{C} 15$	$1.368(7)$
$\mathrm{Crl}-\mathrm{C} 12$	$2.213(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.404(8)$
$\mathrm{Crl}-\mathrm{Cl3}$	$2.211(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.366(7)$
$\mathrm{Crl}-\mathrm{C} 14$	$2.202(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.405(6)$
$\mathrm{Crl}-\mathrm{Cl5}$	$2.149(4)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.376(7)$

The H atoms were located on a difference map and then given normalized bond lengths of $1.08 \AA$ and allowed to ride on their parent atoms. Data collection and cell refinement: EnrafNonius CAD-4 software. Data reduction: NRCVAX DATRD2
(Gabe, Le Page, Charland, Lee \& White, 1989). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: $N R C V A X$ LSTSQ. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: NRCVAX TABLES (January 1994 version).

The authors would like to thank Professor George Ferguson for his advice.

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: HAl108). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

References

Bailey, M. F. \& Dahl, L. F. (1965). Inorg. Chem. 4, 1314-1319.
Bak, B., Hansen, L. \& Rastrup-Andersen, J. (1954). J. Chem. Phys. 22, 2013-2017.
Bugg, C. \& Sass, R. L. (1965). Acta Cryst. 18, 591-594.
Davies, S. G. \& Shipman, M. R. (1989). I. Chem. Soc. Chem. Commun. pp. 995-996.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Crvst. 22, 384-387.

Johnson, C. K. (1976). ORTEPIl. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kim, H. S., Jeffrey, G. A. \& Rosenstein, R. D. (1971). Acta C'ryst. B27, 307-314.
Meutterties, E. L., Bleeke, J. P., Wucherer, E. J. \& Albright, T. A. (1982). Chem. Rev. 82, 499-525.

Riley, P. E. \& Davis, R. E. (1976). Inorg. Chem. 15, 2735-2740.

Acta Cryst. (1994). C50, 1671-1673
Nonacarbonyl- $1 \kappa^{4} \mathbf{C}, 2 \kappa^{5} \mathrm{C}$-pivalonitrile$1 \kappa N$-manganeserhenium $(M n-R e)$: Unsymmetrical Distortions of Equatorial Carbonyl Ligands

Hans-Günther Beckers, Ulrich Flörke* and Hans-Jürgen Haupt

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstrasse 100 , D-33098 Paderborn, Germany
(Received 21 February 1994; accepted 28 March 1994)

Abstract

The title compound, $\left[(\mathrm{CO})_{5} \mathrm{MnRe}(\mathrm{CO})_{4}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{~N}\right)\right.$], is a monosubstituted manganese -rhenium decacarbonyl and has the common staggered-ligand arrangement at both metal centres. The unexpected strong bending of two of

the four equatorial manganese CO groups is probably caused by intermolecular packing forces. The $\mathrm{Mn}-\mathrm{Re}$ bond length is 2.969 (2) \AA.

Comment

Our investigations into the photochemical reactions of $(\mathrm{CO})_{5} \mathrm{MnRe}(\mathrm{CO})_{4}\left(\mathrm{PH} R_{2}\right)$ ($R=$ alkyl, aryl) led to the synthesis of the first nitrile-substituted heteronuclear cluster compound (CO$)_{5} \mathrm{MnRe}(\mathrm{CO})_{4} \mathrm{NC}^{t} \mathrm{Bu}\left[{ }^{t} \mathrm{Bu}=\right.$ $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$]. The reaction of $\operatorname{MnRe}(\mathrm{CO})_{10}$ with $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NO}$ in the presence of ${ }^{\text {' }} \mathrm{BuCN}$ in thf solution gives good yields of the title compound, (I). Air-stable monosubstituted complexes of the homonuclear carbonyls $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ may be formed with acetonitrile (Koelle, 1978), whereas the heteronuclear complex needs more sterically demanding ligands for stabilization. As the title compound is the first nitrile-substituted manganese-rhenium carbonyl complex, we undertook a single-crystal structure determination.

(I)

The carbonyl versus nitrile ligand substitution took place at the Re atom (Fawcett, Poe \& Twigg, 1973) in the equatorial position (Koelle, 1978), as expected (Fig. 1). The resulting molecular structure is closely related to that of the isonitrile compound $(\mathrm{CO})_{5} \mathrm{MnRe}(\mathrm{CO})_{4} \mathrm{CN}^{t} \mathrm{Bu}$ (Leins, Billing, Levendis, du Toit \& Coville, 1992) with an almost identical MnRe bond length: nitrile 2.969 (2), isonitrile 2.963 (3) \AA. With respect to the carbonyl and nitrile/isonitrile groups, both compounds have the same staggered-ligand arrangement and to a great extent have comparable geometries. Carbonyl groups 2 and 4 at the Mn atom, which point to the nitrile side of the molecule, bend considerably towards the Re atom [by 8.3 (3) and $7.9(3)^{\circ}$, respectively], their positions being significantly different from those of the carbonyl groups 1 and 3. As is known from the work of Jackson, Eisenstein, Martin, Albeniz \& Crabtree (1991), the bending of the equatorial carbonyl ligands of a (CO) $)_{5} M R$ molecule towards R depends on the electropositive character of the R group. Leins et al. (1992) noted for their isonitrile complex that it is not clear whether the observed $\mathrm{Re}-\mathrm{Mn}-\mathrm{CO}$ angles (82.7$86.4^{\circ}$) are a result of the electronic or the steric effects. It is reasonable to assume that substitution of the isonitrile versus a nitrile ligand, L, will not substantially influence the electronic properties of the $\operatorname{Re}(\mathrm{CO})_{4} L$ group and so the bending of the equatorial carbonyl ligands

