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Strain-induced modulation of magnetic interactions in graphene
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The ease with which the physical properties of graphene can be tuned suggests a wide range of possible
applications. Recently, strain engineering of these properties has been of particular interest. Possible spintronic
applications of magnetically doped graphene systems have motivated recent theoretical investigations of the
so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized moments in graphene. In this
work a combination of analytic and numerical techniques are used to examine the effects of uniaxial strain on such
an interaction. A range of interesting features are uncovered depending on the separation and strain directions.
Amplification, suppression, and oscillatory behavior are reported as a function of the strain and mathematically
transparent expressions predicting these features are derived. Since a wide range of effects, including overall
moment formation and magnetotransport response, are underpinned by such interactions we predict that the
ability to manipulate the coupling by applying strain may lead to interesting spintronic applications.
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I. INTRODUCTION

Graphene has been attracting the attention of the wider
scientific community due to an enormous range of tuneable
properties, suggesting applications in fields as diverse as
photonics, sensor technology, and spintronics.1–3 In recent
years the potential to tune the electronic,4–12 transport,4,13–18

optical,10,19,20 and magnetic21–25 properties of graphene sys-
tems by applying strain has been explored. The degree to which
these properties can be tuned is enhanced by the different
types of strain that can be applied. Apart from simple uniaxial
strains,4,9 more exotic features like creases and bubbles can be
introduced.7,11,17,21,26,27

An important topic in spintronics is the indirect exchange
interaction between localized magnetic moments mediated by
the conduction electrons of a conducting host medium. This
interaction manifests itself as an energy difference between
different alignments of the localized moments, leading to
energetically favorable configurations. Such an interaction is
usually calculated within the Ruderman-Kittel-Kasuya-Yosida
(RKKY) approximation28–30 and indeed the interaction itself
often takes this moniker. The RKKY interaction in graphene
has been intensively studied25,31–48 with a general consensus
that the interaction strength decays asymptotically as D−3

in undoped graphene,49 where D is the separation between
the magnetic moments. This fast decay rate, arising from
the graphene electronic structure at the Fermi energy, results
in the interaction being very short ranged. Any method of
amplifying the coupling to extend its range is welcome and
could prove useful for future spintronic applications. Another
peculiar feature of this interaction in graphene-based materials
is the masking of the usual sign-changing oscillations due to a
commensurability effect.50

With the motivation of amplifying the magnetic interaction
strength, in this work we show how the magnetic coupling
between localized moments in a graphene sheet can be
manipulated by applying uniaxial strain. The sequence adopted
is as follows. We start by introducing the general formalism
used to calculate the magnetic coupling, which is written
entirely in terms of the real-space single-particle Green

functions (GFs) of the host graphene sheet. We subsequently
show in a mathematically transparent form how the GF is
affected by the applied strain and use this result to predict the
behavior of the coupling when the direction or strength of the
strain is varied. We find that both amplification and suppression
of the magnetic coupling can be achieved. Furthermore, we
demonstrate that inter- and intrasublattice couplings can be
switched on and off independently, suggesting a wide range
of possible applications. Our results are then confirmed using
fully numerical calculations.

II. METHODS

We start by considering two substitutional magnetic im-
purity atoms at sites A and B a distance D apart embedded
in a graphene sheet. Despite the simplicity of this setup, it is
sufficient to capture the essence of the magnetic interaction
between arbitrary magnetic objects. The indirect exchange
coupling between these two moments can be calculated by con-
sidering the energy difference between the ferromagnetic (FM)
and antiferromagnetic (AFM) alignments of the moments.
The Lloyd formula method51 can be employed to express this
energy difference as

JBA = −1

π
Im

∫
dE f (E) ln

[
1 + 4 V 2

ex G
↑
BA(E)G↓

AB(E)
]
,

(1)

whereGσ
AB is the single-electron GF describing the propagation

of electrons with spin σ =↑ or ↓, Vex is the exchange splitting
of the magnetic impurity, and f (E) is the Fermi function.
To calculate the Green function we employ an Anderson-
like Hamiltonian52 to describe the electronic properties of
the system

Ĥ =
∑

〈r,n,r′,n′〉,σ
t
n,n′
r,r′ ĉ†rnσ ĉr′n′σ +

∑
σ,α

εσ
α ĉ†ασ ĉασ . (2)

Here ĉ
†
rnσ (ĉrnσ ) creates (annihilates) an electron with spin

σ in a π orbital centered at site n = 0 or 1 in the two-atom
unit cell shown in Fig. 1 whose location is given by r. t

n,n′
r,r′
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FIG. 1. (Color online) Schematic representation of the graphene
lattice with the armchair (zigzag) direction marked by the arrow
labeled A (Z). The filled and hollow symbols represent sites on
different sublattices. The unit vectors a1 and a2 and unit cell (dashed
rectangle) are also shown. The large (red) symbols represent magnetic
impurities in the lattice, in this case separated by the unit of separation
in the armchair direction D = lA. The unit of separation in the zigzag
direction lZ is also shown. The distances R1, R2, and R3 between an
atom in the lattice and its three nearest neighbors are shown.

is the electronic hopping term between two such orbitals. The
sum in the first term is restricted to orbitals at neighboring
sites. Thus the first term in Eq. (2) is the standard nearest-
neighbor tight-binding Hamiltonian describing the graphene
electronic band structure. The second term provides a simple
description of the magnetic impurities at sites α = A,B. The
quantity εσ

α = ±Vex is a spin-dependent onsite potential that
accounts for the exchange splitting in the magnetic orbitals. In
this model we consider only a single magnetic orbital at each
impurity site. It is straightforward to generalize this approach
to deal with multiple orbitals and to model specific magnetic
impurities more accurately by including additional terms in
Eq. (2) to modify, for example, the hopping between graphene
and the impurity sites or the band center of the impurities.
Such a parametrization is usually based on a comparison with
ab initio studies of single impurities embedded in graphene.
A large number of studies of this kind have been performed
for a wide range of possible magnetic objects.53–57 In this
work we shall confine our discussion to generic impurities and
the Hamiltonian above, since in general the properties of this
type of interaction are determined by the host medium and are
largely independent of the magnetic impurity species.

The numerical results shown later in this paper use Eq. (1)
in conjunction with the Hamiltonian given in Eq. (2). However,
to proceed analytically it is useful to note that Eq. (1) can be
written as a perturbation expansion in powers of the exchange
splitting Vex and when expressed to leading order in Vex

gives an expression equivalent to the commonly used RKKY
approximation58,59

JBA = −4 V 2
ex

π

∫
dE f (E) Im [ GBA(E) GAB(E) ] , (3)

where GBA(E) is the single-electron, spin-independent GF
describing electron propagation in the pristine host material. In

other words, the GF we consider corresponds to a Hamiltonian
containing only the first term of Eq. (2). Each of the carbon
orbitals considered in this model has three nearest neighbors,
shown in Fig. 1. In unstrained graphene, the bond lengths R1,
R2, and R3 are identical, and therefore so are the associated
hopping terms t1, t2, and t3 which take the value t0 = −2.7 eV.
When a tensile strain ε is applied to the graphene sheet the
bond lengths and hence the hopping values are altered. We
do not consider the effect of strain on the magnitude of the
impurity moment. Several recent studies have discussed this
topic for specific impurities in graphene22,24,53 and similar
materials.60 Reference 24, for example, considers the effects
of strain on the magnetic moments of a wide range of transition
metal impurities. In some cases, sudden jumps in the moment
magnitude occur when the impurity changes its hybridization
with the graphene sheet at critical strain values. In other cases,
for example, substitutional Mn atoms, only a small change in
the moment value is noted with increasing strain. Bearing in
mind that the exchange splitting Vex is proportional to the
moment value, Eq. (3) suggests that such changes in the
moment value could influence the coupling, but should not
qualitatively affect the results presented later in this work.

For uniaxial strains in the high-symmetry zigzag (Z) and
armchair (A) directions the bond lengths vary with strain as
follows:

Z :
R1

R0
= R3

R0
= 1 + 3

4
ε − 1

4
εσ,

R2

R0
= 1 − εσ,

(4)

A :
R1

R0
= R3

R0
= 1 + 1

4
ε − 3

4
εσ,

R2

R0
= 1 + ε,

where R1 = R3 due to symmetry, R0 is the unstrained bond
length in graphene, and σ = 0.165 is the graphite value for
Poisson’s ratio, giving the level of contraction in the direction
perpendicular to the applied strain. The hopping parameters
vary with the change in bond length �R as

t(�R) = t0 e
−α �R

R0 , (5)

where α = 3.37 is taken from the literature.4,61 Using
the hopping parameters found using Eqs. (4) and (5)
allows us to calculate the band structure of a strained
graphene system. The dispersion relation4 is given by
ε± = ±

√
t2
2 + 4 t1t2 cos kA cos kZ + 4 t2

1 cos2 kZ . For conve-
nience we have defined dimensionless k-space vectors kA =
1
2 lA kx, kZ = 1

2 lZ ky in terms of lA (lZ)—the strained unit of
length between unit cells separated in the armchair (zigzag)
direction and shown in Fig. 1, where kx and ky are the
reciprocal vectors in the x and y directions. It is important
to distinguish between the strain and separation directions.
Both armchair and zigzag separations between the moments
will be considered, and for both cases strains will be applied
parallel and perpendicular to the separation direction. In our
convention, the zigzag and armchair directions are mutually
perpendicular so that strain applied parallel (perpendicular) to
the separation direction is applied along the same (opposite)
high-symmetry direction.

The real-space GF between two sites on the graphene lattice
separated by a vector D can be written as a double integral over
the Brillouin zone. We have shown previously43 for unstrained
graphene that one of the integrals can be solved analytically
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using contour integration and that for high-symmetry direction
separations, the remaining integral is very well approximated
using the stationary phase approximation. This approach
allows us to write the GF for energies throughout the entire
band in the form

GD(E) = A(E) eiQ(E)D

√
D

, (6)

where A(E) is an energy-dependent coefficient and Q(E) can
be identified with the Fermi wave vector in the direction of sep-
aration. The exact functional forms of these quantities depend
on the separation direction, but the distance dependence of the
GF is clear in this form. Following Ref. 43 we can generalize
the expressions to strained graphene.

For separations in the armchair direction between sites on
the same sublattice, and for energy values in a broad range
around E = 0 (|E| � 0.5|t0|), we can write

A(E,ε) =
√

2

iπ

√√√√ −E(
E2 + 4t2

1 − t2
2

)√
t2
2 − E2

,

(7)

Q(E,ε) = cos−1

(√
t2
2 − E2

t2

)
.

For zigzag separations there are two contributions (±) to the
GF, whose corresponding expressions are

A±(E,ε) =
√

1

2iπ

√
E

|t2|(t2 ± E)

1[
4t 2

1 − (E ± t2) 2
] 1/4 ,

Q±(E,ε) = cos−1

(−t2 ∓ E

2t1

)
. (8)

The strain dependence in these cases enters through t1 and
t2, given by Eqs. (4) and (5). In Fig. 2 we demonstrate the
remarkable agreement between these expressions and numeri-
cally calculated GFs for a representative sample of separation
and strain directions. The analytic form of these expressions
should prove useful since many physical properties can be
written in terms of Green function elements. Furthermore,
they are not limited solely to the linear dispersion regime and
are valid across a large energy range.

III. RKKY INTERACTION IN STRAINED GRAPHENE

The behavior of the magnetic coupling can be extracted
from Eq. (3) quite easily when the GFs are expressed in the
form shown in Eq. (6). The integration procedure is identical to
that for unstrained graphene43 and can be reduced to a sum over
Matsubara frequencies. The functions B(E,ε) = A2(E,ε) and
Q(E,ε) are expanded around EF and in the low temperature
limit T → 0 we find

JBA ∼ Im
∑

�

J�(EF ,ε)

D �+2
cos [2Q(EF ,ε) D], (9)

where

J�(EF ,ε) = (−1)� V 2
ex B(�)(EF ,ε)

[2Q′(EF ,ε)] �+1
(10)

is the distance-independent coefficient for the �th term in the
power series, � is a non-negative integer and B(�)(EF ,ε) is
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FIG. 2. (Color online) Comparison between numerically calcu-
lated (symbols) and analytic expressions (lines) for the GF between
two sites on the same sublattice in strained graphene systems. In all
cases black solid lines and circles (red dashed lines and squares)
represent the real (imaginary) part of the GF. The upper panels
represent the GF for a separation of 40lA in the armchair direction
and the lower panels a separation of 40lZ in the zigzag direction. The
left (right) panel in each case represents the GF for a strain in the
armchair (zigzag) direction of ε = 0.05. An excellent agreement is
seen for each.

the �th order energy derivative of B(E,ε) evaluated at EF ,
resulting from its Taylor expansion. In general, the leading
term in the series should determine the asymptotic decay rate
of the coupling. For the undoped case it can be shown, for both
strained and unstrained graphene, using Eqs. (7) and (8) that
the coefficient B(0)(0,ε) = 0, so that the � = 1 term dominates
and J (EF = 0) ∼ D−3. Thus we should not expect to change
the decay rate of the interaction by applying uniaxial strain. To
study how strain does affect the coupling, we examine Eq. (9)
in undoped graphene as strain is applied and then increased.
We define the strain-dependent amplification β as the ratio
between the strained and unstrained couplings,

β(ε) = JBA(ε)

JBA(ε = 0)
. (11)

A. Armchair separations

The periodicity of the coupling, determined fromQ(E,ε) in
Eq. (7), is clearly independent of t1 and t2, and thus strain, for
E = 0. Thus the only effect that strain can have is a distance-
independent amplification or suppression arising from the J1

term in Eq. (9). In Fig. 3(a) we plot the numerically calculated
coupling between moments on the same sublattice as a function
of armchair separation. This quantity is shown for zero strain
(black line), and for strains of ε = 0.05 in the armchair
(red, dashed) and zigzag (green, dot-dashed) directions. The
results, shown in log-log form, confirm that the decay rate is
unaffected as the strained cases lie parallel to the unstrained
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FIG. 3. (Color online) (a) Log-log plot showing the numerical
magnetic coupling against armchair-direction separation without
strain (black, solid line) and with ε = 0.05 armchair (red, dashed) and
zigzag (green, dot-dashed) uniaxial strain applied. (b) Amplification
factor βA as a function of strain in the armchair (red, solid line)
and zigzag (green, dashed) directions. Filled and hollow symbols
represent numerical calculations for same-sublattice and opposite-
sublattice cases, respectively. (c) Same as (a) but for zigzag separation
of impurities. (d) Amplification factor βZ as a function of armchair
strain for same- (solid line, filled symbols) and opposite- (dashed
line, hollow symbols) sublattice cases. Lines represent the analytic
result and symbols the numerical calculations. (e) Same as (d) but for
zigzag strain.

case. We note that the coupling is enhanced by zigzag strain,
and suppressed by armchair strain. To study the effect of
increasing strain we calculate the amplification factor β(ε).
Using Eq. (7) we find a simple analytical form for armchair
separations

βA = 3 t0
t2

4t2
1 − t2

2

. (12)

We note that this expression has the same form in terms of t1
and t2 for strains in both high-symmetry directions, but that the
t1 and t2 values themselves depend on the strain direction, as
given by Eq. (4). In Fig. 3(b) we plot the analytic expression for
βA as a function of strain in both the armchair (red, solid line)
and zigzag (green, dashed line) strain directions. A monotonic
decrease (increase) in the coupling for armchair (zigzag)
separations consistent with the results in Fig. 3(a) is observed.
To confirm the analytic prediction, numerical calculations of
βA are performed for a fixed value of separation (D = 20 lA).
Filled and hollow symbols represent calculations performed
for sites on the same or different sublattice(s), respectively.
An excellent agreement with the analytic predictions is seen
in all cases. In addition to the substitutional case discussed
here, numerical calculations were also performed for the
case of impurities adsorbed on top of a single carbon atom.

The results (not shown) are also in perfect agreement with
Eq. (12), highlighting the fact that an exact parametrization
of the magnetic impurity is not necessary to calculate the
qualitative behavior of the RKKY interaction. The identical
amplification of couplings between same- and opposite-
sublattice sites is explained by the phase factor between these
couplings, which is zero for armchair direction separations.40

For other separation directions a more complex behavior
is expected as this phase factor is no longer zero, and the
phase of the distant-dependent oscillations may also be strain
dependent.

B. Zigzag separations

In Fig. 3(c) we show the magnetic coupling as a function
of zigzag separation for the unstrained case (black, solid line)
and for strains of ε = 0.05 in the armchair (red, dashed) and
zigzag (green, dot-dashed) directions. A more complicated,
nonmonotonic behavior than the armchair case is observed.
This arises due to the Fermi wave vector in the zigzag
direction and for unstrained graphene the oscillation has a
period of 3lZ . As strain is applied, the wave vector determining
the oscillation period varies as Q(ε) = Q(0) + δk(ε), where
δk = cos−1(−t2

2t1
) − 4π

3 . The amplification factor in the zigzag
direction is thus

βZ =
t0

√
4t2

1 − t2
2√

3 t2
2

cos2{ [Q(0) + δk(ε)] D}
cos2[Q(0) D]

. (13)

The first part is a distance-independent term similar to βA

which gives a monotonic increase (decrease) in the coupling
for strain applied in the armchair (zigzag) direction. Viewed
with the armchair results, this suggests a trend of strain
perpendicular (parallel) to the separation direction amplifying
(suppressing) the coupling. The second part of Eq. (13)
accounts for amplification due to the change in the Fermi wave
vector with strain and leads to oscillations in βZ . The analytic
expression for βZ is plotted in Figs. 3(d) and 3(e) for armchair
and zigzag strains, respectively, for both same-sublattice (solid
lines) and opposite-sublattice (dashed line) cases with D =
40lZ . The opposite-sublattice results take into account the π

2
phase shift from the same-sublattice case predicted for zigzag
separations.40 An excellent agreement is again noted with the
numerical calculations represented by filled (same-sublattice)
and hollow (opposite-sublattice) symbols. The oscillations in
the coupling, which appear as a function of strain, are very
interesting and may have significant implications for strain
tuning of the interaction. Unlike for armchair separations, a
small difference in the applied strain can tune the coupling
from zero to several multiples of the unstrained value. Since the
same-sublattice and opposite-sublattice couplings are exactly
out of phase in this direction one is switched off when the other
reaches a maximum. For an arbitrary nonarmchair separation
the coupling will have characteristic strain values for which
one of the couplings is zero but the other is not. Thus strain
suggests itself as a powerful tool, not only to amplify the
interaction between impurity moments, but also to switch the
interaction on and off and to control the interplay between
impurities on different sublattices.
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IV. CONCLUSIONS

In this work we have derived analytic expressions for the
Green function and RKKY interaction in graphene for high-
symmetry directions (armchair and zigzag) of both separation
and applied uniaxial strain. Since GF methods are used to
describe a wide range of physical properties, our expressions
should prove useful in the investigation of strained graphene
systems. An excellent match is found between these analytical
expressions and full numerical calculations. Similarly, the
simple closed-form expressions describing the amplification
of the magnetic interaction in a strained graphene system agree
with our numerical results. A general trend of amplification
for strain perpendicular to the moment separation direction, or
suppression for strain parallel to this direction, is noted. Also
noted are oscillations in the amplification as strain is increased
for moments separated in a nonarmchair direction. This
behavior is again well captured by our analytic approach. Such
oscillations suggest the intriguing possibility of selectively
turning on or off the coupling between moments and in
particular of controlling the inter- and intrasublattice couplings

independently. Since the magnetic coupling underpins a
wide range of physical features, including overall moment
formation and magnetotransport response, the ability to fine
tune the coupling with strain may lead to interesting spintronic
applications. We hope that further investigation of strained
graphene systems with magnetic impurities will yield a diverse
range of tuneable properties suitable for device application.
Finally, we would like to note that we recently became of a
similar work by Peng and Hongbin.25
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