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Abstract—Large public cloud infrastructure can utilise power which is generated by a multiplicity of power plants. The cost
of electricity will vary among the power plants and each will emit different amounts of carbon for a given amount of energy
generated. This infrastructure services traffic that can come from anywhere on the planet. It is desirable, for latency purposes, to
route the traffic to the data centre that is closest in terms of geographical distance, costs the least to power and emits the smallest
amount of carbon for a given request. It is not always possible to achieve all of these goals so we model both the networking and
computational components of the infrastructure as a graph and propose the Stratus system which utilises Voronoi partitions to
determine which data centre requests should be routed to based on the relative priorities of the cloud operator.

Index Terms—Voronoi Partitions, Cloud Computing, Load Balancing, Carbon Emissions

1 INTRODUCTION

A variety of new services are being offered under
the cloud computing paradigm. This service model
involves a cloud based service provider (CBSP) pro-
viding a large pool of computational and network
resources which are allocated on demand to the cloud
users from the pool. Cloud users in turn can use
these resources to provide services for users. The
pool of resources can comprise of several data centres
(DCs) at different geographical locations. There are
many potential benefits to a global distribution of
servers if load balancing is used correctly. Reduced
latency and increased data transmission rates can be
achieved by assigning clients to servers which are
closer in terms of link distance. For some applications
such as conference Voice-over-IP (VoIP) software and
interactive online games low latency is critical in order
to provide a satisfactory Quality of Service (QoS).
In addition, there have been proposals to consider
electricity price when load balancing [1], [2], [3] to
reduce operational costs. By assigning more load to
a DC which is utilising relatively cheap electricity
operational costs can be lowered. This load balanc-
ing can be achieved with protocol-level mechanisms
which are in use today such as dynamically generated
DNS responses, HTTP redirection and the forwarding
of HTTP requests. All of these have been evaluated
thoroughly [4], [5], [6].

Recently the carbon emissions associated with pow-
ering DCs have become important. Greenpeace report
[7] the carbon emissions of selected DCs and the per-
centage of their electricity generated by power plants
that use fuels which emit a relatively large amount
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of carbon. The carbon intensity of a power plant is
the carbon emitted for a given amount of energy
generated. The carbon intensity of power plants using
particular fuels is detailed in [8], [9]. Currently there is
little financial motivation to use green or clean energy
but increasing regulation of carbon emissions and
schemes like the European Union Emissions Trading
Scheme (EU ETS) [10] mean that in the future it is
probable that the right to emit carbon into the atmo-
sphere will be traded as a commodity. In addition,
recent work [11] suggests that on-site power genera-
tion can reduce carbon emissions and electricity cost
by reducing the peak draw of a data centre from an
electricity supplier.

There have been some proposals to use locally
generated clean energy [12] or employ load balancing
based upon the carbon intensity of the electricity sup-
plier [13]. These proposals, however, do not consider
the carbon emitted as a results of packets travelling
across the network from the client to the server. While
the energy consumed by the networking equipment as
part of the cloud computing has been analysed [14],
additional analysis is required to examine the total
carbon emission caused by a cloud computing system.

In addition, other proposals for minimising carbon
emissions use weather data as a metric for load
balancing. While this is a useful metric for in-house
generated electricity it can be inaccurate when elec-
tricity is obtained from an external supplier as other
factors affect their carbon intensity. This is discussed
in greater detail in Section 5.2. Carbon emissions are
seldom the sole concern of cloud operators and other
factors must be considered. The electricity cost can
vary considerably between different geographical re-
gions and this fact can be exploited by cloud operators
to lower the operational cost.

The manner in which a data centre is cooled can
affect both the electricity cost and carbon emissions



as certain schemes such as “free air cooling” require
less energy and hence emit less carbon. Finally cloud
operators are usually bound by service level agree-
ment (SLA) and therefore must maintain a minimum
QoS for service users.

It is not always possible to achieve the best case sce-
nario for all of these factors as they sometimes conflict,
so we formulate a graph-based approach which we
call Stratus that can be used examine and control the
operation of the cloud. Stratus uses Voronoi partitions
which are a graph-based approach which have been
used to solve similar problems in other areas such
as robotics [15]. In this paper we use this approach
to attempt to control the various factors which affect
the operation of the cloud. This paper makes the
following contributions:

o The development of a model which details the
carbon emissions, electricity cost and time re-
quired for the computational and networking
aspects of a service request.

o A distributed algorithm which minimises the
combination of average request time, electricity
cost and carbon emissions is described.

 Data for the carbon intensity and electricity price
of various geographical regions and a represen-
tative set of round trip time between various
geographical regions is presented.

o We evaluate the performance of our distributed
algorithm using the data obtained for various
scenarios.

2 RELATED WORK

There have been a number of proposals which con-
sider the cost of electricity when determining which
data centre should service requests. Qureshi et al. [1]
proposed a distance-constrained energy price opti-
miser and presented data on energy price fluctuations
and simulations illustrating the potential economic
gain. Stanojevic et al. [2] detail a distributed consensus
algorithm which equalises the change in the cost
of energy. This is equivalent to minimising the cost
of energy while maintaining QoS levels. Rao ef al.
[16] formulate the electricity cost of a cloud as a
flow network and attempt to find the minimum cost
of sending a certain amount of flow through this
network. Rao et al. [17] also propose a control system
which uses load balancing and server power control
capabilities to minimize energy cost. Wang et al. [18]
propose using a corrected marginal cost algorithm to
minimize electricity cost. Mathew et al. [19] propose
an algorithm which controls the number of servers
online in the cloud to reduce energy consumption. It
also maintains enough servers at each data center to
handle current requests as well spare capacity to han-
dle spikes in traffic. Liu et al. [3] propose distributed
algorithms which minimize the sum of an energy cost
and a delay cost using optimization techniques such

as gradient projection to minimise the overall cost of
operating the data centre. In addition, they expand
their formulation to consider minimizing the sum of
the social impact cost and delay cost. They define
the social impact cost as a metric for environmental
impact of the data centre. By examining the avail-
ability of renewable energy and directing load to the
appropriate data centres they attempt to reduce the
environmental impact of the data centre.

In addition, there has been some analysis of
the electricity consumption of the cloud computing
paradigm. Baliga et al. [14] analyse the power con-
sumption of all the elements of this for a variety of
service scenarios. Mahdevan ef al. [20] examine the
power consumption of network switches and consider
techniques for improving the power efficiency of net-
work switches by disabling ports and using lower
data rates where possible.

There have also been some proposals which con-
sider carbon emissions when determining where to
direct service requests. Liu ef al. [12] expand the model
proposed in [3] to subtract locally generated clean
energy from the energy cost calculation to allow data
centres which have clean energy generation facilities
to service more load. Doyle et al. [13] describe an
algorithm that minimizes a cost function containing
the carbon intensity of the electricity supplier of the
data centre and average job time. Moghaddam et al.
[21] attempt to use a genetic algorithm-based method
with virtual machine migration to lower the carbon
footprint of the cloud. Gao et al. [22] use a flow
optimization based framework to control the three
way trade-off between average job time, electricity
cost and carbon emissions. This system, however, is
only evaluated using yearly average carbon intensity
values. While the system could be applied to the
instantaneous carbon intensity value of an electricity
supplier, the evaluation only considers the yearly
average which can differ significantly from the instan-
taneous value.

Some of these proposals use various mathematical
techniques to achieve their goals. In this work we
propose the use of Voronoi partitions which are used
in a number of areas. Aurenhammer details a number
of applications in [23]. Durham et al. [15] use Voronoi
partitions to divide an environment so that a group
of robots can provide coverage.

This problem can be viewed as similar to a con-
strained version of the facility location problem which
has been shown to be NP-hard [24]. Exact [25] and
approximate [26] solvers for this problem have been
thoroughly studied. These methods, however, are
computationally expensive as any new demand points
requires the solver to run the entire analysis from
scratch. This works well for determining the optimal
site for the construction of a facility as the demand
set is static. In the cloud, however, the demand for a
service is constantly changing and a system that can



respond to incremental change is required.

3 PROBLEM FORMULATION

In this section we formulate the problem. To do this
we need some background notation. Namely we need
to say what a graph is; what a Voronoi partition is;
and how we use these ideas in the context of cloud
computing.

3.1 Graph

A graph consists of a finite set of nodes and edges.
Each edge is incident with two nodes. A path is an
ordered sequence of points such that any consecutive
pair of points is linked by an edge in the graph. In
an undirected graph there is no direction associated
with the edges. Hence, a path can be constructed with
any edge in the graph. A weighted graph associates
a label with each edge. Nodes are connected if a path
exists between them.

3.2 Voronoi Partitions

Voronoi partitions are the decomposition of a set of
points into subsets. These subsets are centered around
points known as sites, generators or seeds. Each point
in the set is added to a subset consisting of a site and
all other points associated with this site. An abstract
notion of distance between a point and the sites is
used to determine which subset a point is associated
with. A point is assigned to a subset if the distance to
site is less than or equal to the distance to the other
sites. For an example of Voronoi partitions used in
applications (robotics) see [15]. We shall now use these
partitions to solve routing problem associated with
load balancing in the cloud.

3.3 Voronoi Partitions of the Cloud

In our work the set of points consist of sources of
requests for cloud services and data centres which
service these. Voronoi partitions are then used to
determine where requests are serviced. A Voronoi cell
represents which sources of requests a data centre is
servicing at a given time. An example of a group
of sources of requests which have been partitioned
between two data centres can be seen in Figure 1.
In this figure each source of requests has a path to
both data centres. The partition that the source of
requests is a part of depends on the paths to the two
data centres. The partitions are made up of sources
of requests which have paths available to them with
lower distances than the paths available to the other
data centre.

Legend

(O = Source of
Requests

[] = Data Centre

Fig. 1.
partitioned between two data centres. Colour indicates
that the node is part of a particular partition.

Example of how sources of requests are

3.4 Problem Statement

Let |J| be a set of J geographically concentrated
sources of requests and |N| be a set of N data centres.
Let |Q| be a finite set of points that represent either
sources of requests or data centres. These points are
connected by E edges in an undirected weighted
graph G = (|Q],|E|, |w|). The weights are calculated
as functions of the time required to service a fraction
of the request T, the carbon emissions associated with
servicing the fraction G; and the electricity cost E; if
any associated with servicing the request along the
edge.

w; = f(T5,Gs, E;) = T; + R1(G;) + Ro(E;) Vi € |w|

where R;, R, are the relative price functions which
are used to specify the relative importance of the
factors. While E; and G; are related, the rates at which
they increase may vary significantly depending on
the specifics of the cloud and hence, both must be
included in the problem formation to ensure the cloud
operator can operate the cloud as desired. It should
be noted that the weights of the graph represent the
networking and computational aspects of servicing a
request.

The set |Q)| is partitioned into N subsets represent-
ing the regions serviced by each data centre. This
results in a collection P = {P;}¥, of N subsets of
|Q| such that:

) UL, P=@Q

3) P#0 Vie{l,...,N}

4) P, is connected for all i € {1,...,N}

Two subgraphs P; and P; are connected if there are
two vertices ¢;, ¢; belonging, respectively, to P; and
P; such that (g¢;,q;) € |E|.

We can use Voronoi partitions to establish a collec-
tion of subsets which minimizes the combination of
carbon emissions, electricity cost and average request
time. In this case the Voronoi partition P; associated
with data centre ¢ € |N| can be defined as the set of



1 U:_Pl(t)UP](t)

2 forzxeU

3 W;:={z €U :d(z,i) <d(z,j)}
W; ={zeU:d(z,i) > d(z,j)}

4 endfor

5 P(t+1):=W;

Pj(t + 1) = Wj

Fig. 2. Pseudocode for pairwise partitioning rule
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Fig. 3. Peak Daily price of electricity for suppliers in
the regions of the three data centres studied.

points whose distance to data centre i is less than or
equal to the distance to another data centre j € |N|.
We assume that the data centres have sufficient com-
putational capacity so that there is no constraint on
the size of P,. In order to compute this we need
to define how the distance between two points is
calculated. A standard notion of distance between two
points d(i, j) in a weighted graph is the lowest weight
of a path between the two points (i,7). The weight
of a path is the sum of the weights of the edges in
the path. The goal of using the Voronoi partitions in
this scenario is to minimize the distance between the
sources of requests and the data centres. This can be
defined as:

N
min Y > " d(i, j)
=1 jep,

Note if a source is equidistant to more than one data
centre the point is assigned to the Voronoi partition
that has the least members to attempt to balance the
load on the data centres.

A pairwise partitioning rule can be used to achieve
this goal.

4 PAIRWISE PARTITIONING RULE

At time ¢ data centre i and data centre j communicate
by exchanging the partitions P; and P; so that each
data centre can examine all the regions associated
with the two data centres to determine if there is a bet-
ter route available between a data centre and a region.
We assume without a loss of generality that i < j.
Each data centre then performs the actions depicted in
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Fig. 4. Price of electricity for suppliers in the regions of
the three data centres studied.

the pseudocode in Figure 2. The paths between each
region and the two data centres are examined. If the
path between the data centre ¢ and a region is smaller
than the path between the region and the data centre
J then the region is added to a temporary partition
associated with data centre i. Otherwise it is added
to a temporary partition associated with data centre
Jj. The partitions of the two regions are then updated
with the appropriate temporary partition. In order to
generate the initial partitions the distance between
each node in the graph and all the data centres is
calculated. The nodes are then added to the partition
which yields the minimal distance between the nodes
and the data centre.

5 CLoOuUD ANALYSIS

In this section we examine the variation in the costs
that exist between data centres.

5.1 Electricity Cost

The price of electricity on the wholesale market de-
pends on a number of factors. The wholesale elec-
tricity market is administered by an authority known
as a Regional Transmission Organisation (RTO) in the
United States and the Single Market Operator (SEMO)
in Ireland. In this market, power producers present
supply offers, consumers present bids and an author-
ity in charge of the transmission network determines
how the electricity should flow and sets prices. The
price is determined based on the bids and offers
as well as other factors such as reliability and grid
connectivity. The variation of local electricity prices
in different geographical regions can be exploited by
cloud operators to lower operational costs [1]. To
illustrate this we examine the potential savings that
can be made by part of Amazons’s EC2 [27] cloud.
We examine the local prices of electricity suppliers
located in the regions of the California, Virginia and
Ireland data centres. Pacific Gas and Electric (PG&E)
is one supplier in the California region and Dominion
(DOM) is a supplier in the Virginia region. We chose



700

600 |

500 |

400 -

300 -

Carbon Intensity (g/kWhr)

27/02  24/03  18/04

Date

08/01  02/02 13/05

Fig. 5. Daily peak carbon intensity of electricity sup-
plier in the region of the Ireland data centre studied.

these as they supply electricity in the region the data
centres are located. Ireland uses a single market for
electricity known as SEMO and only a single price
for wholesale electricity is available. The peak daily
day-ahead electricity price for these suppliers from
January 2011 through April 2011 is depicted in Figure
3.

It is interesting to note that the maximum price
can approach $550/MWh and that the peak price for
the electricity is nearly always greatest in the Ireland
region. This would suggest that little traffic would
be routed to the Ireland data centre if a load balanc-
ing scheme design to minimise electricity prices was
utilised. If, however, we examine the hourly variation
of electricity prices we can see that this is not the
case. The day-ahead electricity price for the electricity
suppliers from the 22" January 2011 through the 29t
January 2011 is depicted in Figure 4. From this we can
see that peaks in electricity price in the Ireland region
tend to be very sharp and that at non-peak times
the variation in price between geographical regions
is much smaller.

5.2 Carbon Emissions

An analysis of the carbon intensity of electricity sup-
pliers in various geographical regions is useful when
attempting to minimise the environmental impact of
a cloud. To illustrate this we examine the carbon
emitted by a service which has users in a number
of different geographical regions utilising the EC2
infrastructure. The carbon intensity data for the data
centres and sources of requests were obtained from
[28] and can be seen in Table 1. The data for states in
the United States were in agreement with data from
[29]. The carbon intensity of an electricity supplier
is calculated using the weighted average (where the
power generated by the power plant is the weight
used) of the carbon intensity of the power plants
operated by the electricity supplier. The demand for
electricity changes over the course of a day and
electricity suppliers turn power plants on and off to
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Fig. 6. Carbon intensity and generated wind power
of electricity supplier in the region of the Ireland data
centre studied.

react to the changes in the demand. A consequence
of this is that the carbon intensity of an electricity
supplier varies over time. It would be possible to
estimate the realtime carbon intensity by examining
the weighted average of the carbon intensity for all
the power plants that are operating but some elec-
tricity suppliers provide a realtime carbon intensity
value directly. To the author’s knowledge, the realtime
carbon intensity of all the geographical regions in
Table 1 is not available. It is, however, available for
the Ireland region. Figure 5 depicts the daily peak
carbon intensity of the electricity supplier in Ireland
from January through April 2011. This data was ob-
tained from the Ireland Transmission System Operator
Eirgrid [30]. We can see that there is a large variation
with time. This suggests that the data can be exploited
to minimise the environmental impact of the cloud.
Figure 6 depicts the carbon intensity of the SEMO
suppliers from the 29nd January 2011 through the
29 January 2011. The interval between data points
is fifteen minutes. From Figure 6 we can see that the
carbon intensity is not as volatile as the electricity
market price but varies enough to allow the cloud
operator to utilise the realtime data to minimise the
environmental impact.

A novel aspect of our approach to minimising car-
bon emissions when compared with other approaches
[3], [21] is that we use carbon intensity data rather
than weather data when determining where to route
load. This does not affect schemes where power is
generated locally by the cloud operator but it can have
a significant effect when cloud operators draw power
from an electricity supplier for two reasons. Firstly it
is not always possible to utilise solar and wind power.
An electricity network must carefully balance supply
and demand and ideally the market authority would
use the cleanest power plants available to meet the
demand. This, however, cannot be achieved in reality
as it would required power plants to be able to turn
on or off in very short spaces of time and some power



plants (e.g. coal) take a long time to turn on or off. The
result of this is that they are very rarely turned off and
if there is insufficient system demand solar and wind
power is wasted.

The second reason that the use of weather data
can be an inaccurate metric is that even if there
is sufficient demand and solar and wind power is
utilised the changes in the operation of other power
plants can affect the carbon intensity. As a result there
is not a direct correlation between availability of wind
and solar power and carbon emissions. For example
if a pumped storage plant is turned on and the
wind speed drops carbon intensity may still go down.
The reason for this is that the reduction in carbon
emissions caused by the use of the pumped storage
plant may be greater than the increase in carbon
emissions caused by other power plants supplying
the electricity which is no longer supplied by the
wind turbines. If we examine Figure 6 we can see an
example of this. There is some correlation between the
wind power generated and carbon intensity but it not
direct. Sometimes when the wind power generated
increases the carbon intensity also increases. It should
be noted that the Irish SEMO market does not use
significant amounts of solar power so this is not a
factor in the analysis.

5.3 Cooling Cost

Cooling costs for a data centre are dependent on its
design and the local climate in addition to the load
placed upon it. If a data centre uses aisle containment
[31] it can significantly reduce the cost of cooling the
data centre. Aisle containment is the separation of the
inlets and outlets of servers with a barrier such as
PVC curtains or Plexiglas [32] in order to prevent air
migration which adversely affects cooling costs.

In addition “free air cooling” can be used. This is
the use of air economizers to draw in cold air from
the environment into the data centre when the climate
conditions are suitable, thereby preventing the use of
computer room air conditioner (CRAC) chiller units
and lowering the cooling costs [33]. Water cooling
[34], [35] can also be used but it is rarely used in data
centres at present.

In order to examine how this cost varies with
demand we constructed two models of data centres in
the computational fluid dynamics (CFD) simulation
software Flovent [36]. These represent typical data
centres which have been examined in previous re-
search [37], [38]. One data centre used cold aisle con-
tainment and the other does not. Apart from this the
data centres were of similar construction. Each data
centre has dimensions 11.7m x8.5mx3.1m with a 0.6m
raised floor plenum that supplies cool air through
perforated floor tiles. There are four rows of servers
with seven 40U racks in each case, resulting in a total
of 1120 servers. The servers simulated were based on
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(COP) curve for a chilled water CRAC unit.

Hewlett-Packard’s Proliant DL360 G3s model, which
consumes 150W of power when idle and 285W at
100% utilization. From this we can determine that the
total power consumption of the data centre is 168kW
when idle and 319.2kW at full utilisation. For cooling,
the data centre is equipped with four CRAC units.
Each CRAC unit pushes air chilled to 15°C into the
plenum at a rate of 16, 990%3. The cooling capacity of
the each CRAC unit is limited to 90kW, and in full
operation each CRAC unit itself consumes 10kW.
The layout of the two data centres modelled is
shown in Figure 7. Racks of servers are represented as
boxes with the letter “S” and CRAC units can be iden-
tified as boxes with the letter “C”. The simulations are
used to establish the maximum inlet temperature of
a server rack T),,-. We can use this to establish the
cooling costs C' which can be calculated as follows:

Q
COP(Tsup + (Tsafe - Tmaz))

Where @) is the amount of power the servers con-
sume, Ty,, the temperature of the air that the CRAC
units supply, T4 e the maximum permissible temper-
ature at the server inlets in order to prevent equip-
ment damage, Ty,q, the maximum temperature of
the server inlets in the data centre, Pt,, the power
required by the fans of the CRAC units and COP is the
“coefficient of performance” (COP), that is the ratio of
heat removed to work necessary to remove the heat, is
a function of the temperature of the air being supplied
by the CRAC unit. The COP of a typical chilled-water
CRAC unit used in the calculations of cooling costs is
depicted in Figure 8. We assume a T, s value of 25°C.

C= + Pfan (1)

Figure 9 depicts the results of the cooling cost
simulations. The percentage utilisation of the data
centre is shown on the x axis and the cooling cost in
kilowatts is shown on the y axis. Each line represents
a different system. The CAC-CRAC line is a system
which uses cold aisle containment and CRAC cooling.
The FAC line is a system uses “free air cooling”. The
NCAC-CRAC line is a system which does not use
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TABLE 1
Average round trip time between data centres and sources of requests, carbon intensity of data centres and
sources of requests and daily number of requests at source

Region California (ms) | Ireland (ms) | Virginia (ms) | Carbon Intensity | Number of Requests
(g/kWhr) (Millions)
Austria (AUS) 177.98 47.67 159.07 870 7.038
Belgium (BEL) 171.98 28.45 158.09 317 11.736
California (CAL) 384
Colorado (COL) 42.77 155.36 101.27 903 6.76
Connecticut (CON) 88.05 117.65 75.73 392 4293
Finland (FIN) 188.47 55.77 176.72 99 5.418
Florida (FLO) 54.26 171.87 98.21 762 26.365
France (FRA) 192.44 21.24 184.75 96 61.355
Georgia (GEO) 58.91 115.12 77.43 694 1.968
Germany (GER) 177.74 40.89 157.68 612 58.76
Mlinois (ILL) 63.81 142.78 102.08 544 18.049
Indiana (IND) 69.65 151.05 83 986 7.803
Ireland (IRE) 655
Ttaly (ITA) 188.71 4471 167.3 473 55.372
Kansas (KAN) 50.48 148.4 85.2 817 4.545
Kentucky (KEN) 71.98 146.85 87.29 968 5.169
Maryland (MAR) 99.71 140.46 88.05 641 6.69
Massachusetts (MAS) 89.33 98.02 72.1 603 9.602
Minnesota (MIN) 62.09 147.74 85.79 744 6.724
Netherlands (NET) 163.93 19.71 138.79 548 15.527
New York (NEW) 96.45 78.71 134.11 386 27.604
North Carolina (NCA) 72.32 72.45 31.12 604 11.817
Norway (NOR) 194.82 48.84 183.08 6 6.69
Ohio (OHI) 83.81 132.08 69.17 873 14.828
Oklahoma (OKL) 46.42 159.96 98.22 819 4.378
Ontario (ONT) 90.84 142.81 97.12 224 16.64
Oregon (ORE) 27.66 213.48 153.28 246 4.807
Pennsylvania (PEN) 71.99 118.53 52.78 597 16.097
Portugal (POR) 222.69 64.11 190.02 550 10.925
Spain (SPA) 194.55 35.83 172.47 487 40.633
Sweden (SWE) 186.01 48.79 170.28 19 11.887
Tennessee (TEN) 235.61 276.43 311.61 661 7.891
Texas (TEX) 37.61 151.93 98.96 763 31.015
UK (UK) 175.59 17.62 163.25 614 78.647
Virginia (VIR) 559
Washington (WAS) 29.57 192.11 126.53 938 10.119
Wisconsin (WIS) 67 146.49 94.03 834 7.025
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Fig. 9. Cooling cost of various data centre cooling
systems at various levels of demand

cold aisle containment and CRAC cooling. “Free air
cooling ” only consumes fan power and is therefore
constant.

5.4 Average Job Time

The previous sections establish that electricity cost
and carbon emissions can be lowered. It is likely,
however, that there will be an increase in the average
service request time which the cloud operator will
have to take into account when determining its load
balancing policy. A useful metric for service request
time is the latency between the server and client.
To establish the round trip time data an experiment
on PlanetLab [39] was established with a server at
each node location. Nodes in the same region as
our three data centre locations then pinged the other
geographical regions at fifteen minute intervals for
approximately two days. The average latency estab-
lished from this experiment can been seen in Table
1. Average service request time could be reduced by
routing load from a geographical region to the data
centre region using lowest latency as a criterion to
route load. From Table 1 we can see that if such a load
balancing scheme was used, each data centre region
will have some of the load routed to it. From this we
can conclude that any reduction in carbon emissions
or electricity cost will cause an increase in the average
latency as load will not be routed with latency as the
sole metric.

Figure 10, 11 and 12 depict the measured latency
between the data centre and the other regions for
the California, Ireland and Virginia data centres re-
spectively. It is interesting to note that the latencies
remain mostly constant over time at the California
and Ireland data centres but vary frequently at the Vir-
ginia data centre. We postulate that this is a result of
congestion at the Virginia region. In addition, we can
see that there is some variation in the latency between
the other regions and the California and Ireland data
centres. Thus we can conclude that latency varies with
time particularly in regions where congestion takes
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Fig. 10. Latency between California and different
geographical regions at fifteen minute intervals.
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Fig. 11. Latency between Ireland and different geo-
graphical regions at fifteen minute intervals.

place and it should be monitored so that the increase
in average service request time caused by reducing
carbon emissions or electricity cost can be measured
correctly. Indeed there may be times, where there is
no increase in average service request time associated
with a reduction in carbon emissions or electricity
cost.

6 SIMULATION SETUP

In this section we describe the setup for the simu-
lation of the algorithm described in Section 4 and
our methodology for establishing the weights of the
graph described in Section 3.4. We simulate three data
centres. One of these in Ireland and the other two
are in the United States in Virginia and California.
We chose these locations to mimic Amazon’s EC2
platform [27] which currently has major data centres
at these locations. We model 34 sources of requests
in the simulation which represent certain countries in
Europe, states in the United States and provinces in
Canada. Each source is connected to each data centre
by a single edge. This is illustrated in Figure 13.

To calculate the weights of the edges of the graph
we needed to determine the time, carbon emissions
and electricity cost associated with servicing the net-
working and computational portions of a request.



Fig. 13. Diagram of the simulation setup. The colour of the node indicates that the node is part of a particular

partition.
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Fig. 12. Latency between Virginia and different geo-
graphical regions at fifteen minute intervals.

For the networking portion of a request, we firstly
assume that each service request requires the transfer
of relatively small amount of data and therefore the
duration of the connection can be approximated by
the round trip time. To calculate the time associated
with the computational portion of the request we
assume that the request requires 50ms of computation.

In order to calculate the carbon emissions and
electricity cost of serving a request we assume that
the data centre uses Hewlett-Packard’s Proliant DL360
G3s. This type of server consumes 150W at 0% util-
isation and 285W at 100% utilization. This yields
dynamic power of 135W for each server. This is
then multiplied by the time required to service the
computational portion of the request (50ms) to yield
the energy required to service a request. We must
then consider the energy required for the additional
cooling required by servicing the requests. We assume
that the Ireland data centre uses “free air cooling”,
the Virginia data centre uses cold aisle containment
and the California data centre uses a standard cooling
system with no cold aisle containment. The cooling
energy required by the data centre when it is not

processing the request is subtracted from the energy
required when it is processing the request to give the
cooling energy caused by the request. This is added
to the energy already calculated to yield the total
computational energy. The total computational energy
is then multiplied by the electricity price to yield the
electricity cost E;. The energy is also multiplied by
the carbon intensity of the data centre to yield the
computational carbon emitted.

The networking aspect of the weights must also be
considered. The power consumed by a switch can
be altered by powering off (disabling) ports when
they are not in use and powering on (enabling) ports
when they need to be used. In order to calculate
the carbon emissions associated with servicing the
networking portion of the request we assumed that
only two ports would open during the duration of the
request. To calculate the carbon emitted we first obtain
the energy consumed by multiplying the duration of
the round trip by a power value required to open
a port (0.7W). This value was an intermediate value
of those presented in [20]. The energy consumed is
then multiplied by the average carbon intensity of the
source of the request and the data centre to obtain
the network carbon emitted. This is added to the
computational carbon emitted to give the total carbon
emitted and the carbon weight G;. While cloud oper-
ators are likely to be held at least partially responsible
for the carbon emissions of the networking aspect
by increased regulation, current modes of operation
suggest that they are not held responsible for the vast
majority of the electricity cost of this aspect and as
such it is ignored.

In all simulations the algorithm runs for a two
day period using latency, electricity price and carbon
intensity data described in Section 5. The latency
between the sources of requests and the data centre
is as seen in Figure 10,11,12. The electricity price is as
seen in the first two days of Figure 4 for the three data



centres. The carbon intensity data is as seen in Table 1
for all the regions except Ireland which uses the data
seen in the first two days of Figure 6. The algorithm
updates every fifteen minutes. It is assumed that the
time required to service a request is sufficiently short
that redirection is not required to minimize the cost
when the algorithm updates. It should be noted that
we assume that redirecting additional requests to each
data centre does not cause congestion or affect the
average service request time.

In order to examine the overall costs to the cloud
we must consider the number of requests coming
from each source of requests. We used figures from
the websites [40], [41] which estimated the number of
Facebook users in each source location and assumed
that the daily average number of service requests
from a single user was 2.6. We used Facebook as it
is representative of a broad range of cloud applica-
tions. The daily number of requests for each source
can be seen in Table 1. We also needed to establish
the number of requests at each source during each
fifteen minute interval over the two day period. It
has previously been found that realistic workloads
have a diurnal cycle with a trough at approximately
6:00am and a peak of roughly four times the trough
value at approximately midnight [1]. We divided the
daily number of requests at each source into this
diurnal pattern and adjust the peaks to match the time
difference of the region. The total demand can be seen
in Figure 14.

In the first set of simulation we examine the ex-
tremes of the algorithm by looking at four scenar-
ios. In the first scenario we set the relative price
functions to zero. This represents a scenario where
time is crucial and the operator is attempting to
minimize the time taken to service a request with
no regard for electricity cost and associated carbon
emissions R;1(G;) = 0,R2(E;) = 0 and the weights
of the edges of the graph become w; = T;. We shall
hereafter refer to this scenario as “Best Effort Time”.
In the second scenario we set the first relative price
function to ten thousand times the carbon emissions.
This essentially functions as infinite times the carbon
emission. This represents a scenario where time and
electricity cost are unimportant and all efforts can
be made to reduce the associated carbon emissions
R1(G;) = 10000G;, R2(E;) = 0 and the weights of the
edges of the graph become w; = T;+10000G;. We shall
hereafter refer to this scenario as “Best Effort Carbon”.
In the third scenario we set the second relative price
function to ten thousand time the electricity cost.
This represents a scenario where time and carbon
emissions are unimportant and all efforts can be made
to lower the electricity costs Ri(G;) = 0,Ry(E;) =
10000E; and the weights of the edges of the graph
become w; = T; + 10000E;. We shall hereafter refer
to this scenario as “Best Effort Electricity”. In the
final scenario we examine a baseline for current load
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balancing operations by examining a round robin
scheme. This is the default option in many commercial
load balancing solutions. We shall hereafter to refer to
this scenario as “RoundRobin”.

In the second set of simulations we explore scenar-
ios where the cloud operator needs to strike a balance
between the three factors. In this set of simulations
we examine the performance of the algorithm under
scenarios which attempt to balance the various factors
by adjusting («, 8) Ri1(G;) = aG;, Re(E;) = BE; in
intervals of 100 from 0 to 10000 and examining the
total electricity cost, carbon emissions and average
service request time of each scenario to examine what
savings in electricity cost and carbon emissions can
be made when there are constraints on the average
service request time. We define « as a variable which
represents the relative importance of carbon emissions
to the cloud operator and § as a variable which
represents the relative importance of electricity cost.

7 RESULTS

The key performance metrics for the simulations are
the average service request time, the electricity cost
and the carbon emissions associated with servicing
requests for the two days. We first examine these
for the first set of simulations. They are shown for
each scenario in Table 2. When comparing the best
effort carbon scenario with the roundrobin baseline
we can see that carbon emissions for a service can
be reduced by 21%. If we examine the best effort
electricity scenario and the roundrobin baseline we
can see that the electricity cost can be reduced by
61%. There is, however, a corresponding increase in
the average service request time of 7ms. If we investi-
gate the best effort time scenario and the roundrobin
baseline we can see that the average service request
time can be reduced by 47%. It is also interesting to
compare the three best effort scenarios. If we compare
the best effort time scenario and the best effort carbon
scenario we see that the latter emits 13% less carbon
but has an average service request time that is 42ms
higher. If we examine the best effort time scenario
and the best effort electricity scenario we can see that
the latter costs 58% less but has an average service
request time that is 87ms higher. These comparisons
are useful for the cloud operator as it allows them
to see if the scenarios are feasible under SLAs and
whether it is more desirable to concentrate on lower
electricity costs or carbon emissions.

From Table 2 we can also see the number of requests
sent to each data centre under the various scenarios.
We can see that under the best effort carbon scenario
all of the requests go to the Ireland data centre. This
is interesting as the carbon intensity for the California
region is relatively low. The additional carbon caused
by the cooling setup used in the data centre is suffi-
ciently high that all the requests go to the Ireland data
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TABLE 2
Average Service Request time, Daily Carbon Emission and Number of Requests Serviced at Each DC for
Various Scenarios

Scenario Average Carbon Emis- | Electricity Number  of | Number of | Number of
Service sions (kg) Cost ($) Requests Requests Requests
Request Serviced by | Serviced Serviced
Time (ms) California by Ireland | by  Virginia
(million) (million) (million)
Best Effort | 90 1378 240 241 822 302
Time
Best  Effort | 132 1200 195 0 1365 0
Carbon
Best Effort | 177 1567 100 1276 0 89
Electricity
RoundRobin 170 1522 257 455 455 455
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Fig. 14. Number of requests serviced at each data
centre when the “Best Effort Time” scenario is used.
It shows UTC local time.
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Fig. 15. Number of requests serviced at each data
centre when the “Best Effort Carbon” scenario is used.
It shows UTC local time.

centre under this scenario. We can also see that under
the best effort electricity scenario most of the load
goes the California data centre. It is interesting that the
additional electricity cost of the cooling setup in the
data centre is mostly insufficient to overcome the local
electricity price differential and the requests mostly
go to the California data centre. We also examine
the number of requests serviced at the data centres
at each time interval. Figure 14 depicts the numbers
of requests serviced at each data centre during a

©
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Fig. 16. Number of requests serviced at each data
centre when the “Best Effort Electricity” scenario is
used. It shows UTC local time.

time interval for the best effort time scenario. From
Figure 14 we can see that the number of requests
serviced at the Ireland data centre follows the change
in demand relatively steadily while the number of
service requests for the Virginia and California data
centre fluctuates. The reason for this that the Ireland
data centre will take most requests from the European
regions as the latency remains relatively steady, while
the California data centre is likely to take service re-
quests which would otherwise go to the Virginia data
centre if there is congestion as the latency between
these regions and the California data centre is lower
than the latency between these regions and the Ireland
data centre. Figure 15 depicts the number of requests
serviced at each data centre during a time interval
for the best effort carbon scenario. From Figure 15
we can see that the all requests go to the Ireland
data centre for all the time intervals. Figure 16 depicts
the number of requests serviced at each data centre
during a time interval for the best effort electricity
scenario. From Figure 16 we can see that the California
data centre services all the requests for the first part
of the time period and in second part the electricity
costs of the Ireland and California data centre become
almost equal so that some of the requests go to the
California data centre and some of the requests go
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Fig. 17. Carbon Emitted at each time interval under a
variety of scenarios. It shows UTC local time.
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Fig. 18. Electricity Cost at each time interval under a
variety of scenarios. It shows UTC local time.

to the Ireland data centre. Finally all the requests get
serviced by the California data centre as the prices
diverge.

Figure 17 depicts the carbon emitted under each
scenario over the time period. From Figure 17 we
can see that the carbon emitted follows the number
of service requests under all scenarios. This is as we
expected as more service requests require more energy
which increases the carbon emissions. We can also
see there are no spikes in the emissions which is as
we expected as Figure 6 shows that the change in
carbon intensity over time is gradual. Finally we can
see that the difference between the schemes is quite
small. The carbon intensities of the three data centres
are relatively similar. The Ireland data centre’s car-
bon intensity ranges from 369g/kWhr to 522g/kWhr,
Virginia has a carbon intensity of 559g/kWhr and
California has a carbon intensity of 384g/kWhr but
this is offset by the cooling setup used in our simu-
lation data centre. The difference in carbon intensities
between other regions is much larger. For example
Norway with its high level of hydropower has a
carbon intensity of 6g/kWhr while Austria has a
carbon intensity of 870g/kWhr.

Figure 18 depicts the electricity cost under each
scenario over the time period. From Figure 18 we can
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Fig. 19. Average service request time at each time
interval under a variety of scenarios. It shows UTC
local time.

see that the difference between the various scenarios
can be quite large particularily when there are peaks
in the electricity cost at the data centre where requests
are being serviced. It is also interesting to note that the
difference can be quite small as we can see that the
electricity cost of the best effort carbon scenario and
the best effort electricity scenario are effectively the
same towards the end of the time period. It should be
noted that the while the overall electricity cost is quite
low it is the relative differences in the electricity price
that are the most important. In our model we assumed
that a single server performs all the computation
required for a single request. While it is possible for
cloud services to use this approach, latency considera-
tion frequently result in a Partition/Aggregate design
pattern being used [42]. In this approach a request
is broken into pieces which are then farmed out to
worker servers. The responses of the workers are
aggregated together by aggregator servers to yield
the result to the request. In this design hundreds
of servers can be used to process a single request
although typically tens of servers are used to handle
requests. In this design the energy consumption for
a request is significantly higher as tens of servers are
operating simultaneously and the overall electricity
cost would consequently be significantly higher. We
chose not to model the requests in this fashion as
without trace data it is difficult to simulate this design
accurately as each worker server frequently operates
for different lengths of time and therefore the energy
consumed by each worker will be different.

Figure 19 depict the average service request time
under the various scenarios. From Figure 19 we can
see that the best effort carbon and best effort elec-
tricity scenarios have average service request times
that fluctuate smoothly. This is a result of not using
the Virginia data centre to service the load as its
congestion causes the average service request time
to change frequently. The reason for the change in
average service request time for the best effort carbon
and best effort electricity scenarios is the changes in
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Fig. 20. Total carbon output with varying relative price
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Fig. 21. Total electricity cost with varying relative price
functions.

demand in the regions. If there are more requests
in from a region with high latency at a given time
interval this will increase the average service request
time. This does not occur in the roundrobin and best
effort time scenarios as the requests are spread among
the three data centres and the effect is diluted. It is
important that the cloud operator considers this so
that SLAs are not violated.

We now examine the second set of simulations.
Figure 20 depicts the total carbon output as we vary
a and B. From Figure 20 we can see that as we
increase « the carbon emissions decrease and that
as we increase [ the total carbon emissions increase.
Figure 21 depict the total electricity cost as we vary
a and . From Figure 21 we can that we increase
a the electricity cost increases and as we increase 3
the electricity cost decreases. Figure 22 depicts the
average service request time as we vary « and . From
Figure 22 we can see that as we increase a and 3 we
increase the average service request time. The increase
is more severe in (’s case but this is a result of the
particulars of the simulations as the average latency
between all the regions and the California data centre
is higher than the average latency between all the
regions and the Ireland data centre. Figure 21 is not
monotonic as the initial increase of a from zero will
move requests from Virginia to Dublin which lowers
the electricity cost while increasing o« beyond this
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Fig. 22. Average service request time with varying
relative price functions.

point moves requests from California to Dublin which
increases the overall electricity cost. Similar trends can
be seen in Figure 22.

The selection of « and § are of crucial importance
to the operation of this algorithm. Ultimately the
selection of these values will depend on the SLAs the
cloud operator has agreed to. Savings in electricity
cost and reductions in carbon emissions can only be
achieved if SLAs can still be maintained while there
is an increase in the average service request time.
The selection of whether to lower carbon emissions
or electricity cost will depend on whether the cloud
operator is under any regulation to limit its carbon
emissions, public relations pressures or the price of
carbon on carbon trading schemes. The first set of
simulations has shown the average service request
time will vary with time. From this we can conclude
that o and § will also vary with time. It would,
however, be relatively simple to alter the algorithm
so that & and (3 are adjusted at each time interval in
relations to the average service request time of the
previous time interval and this is left for future work.

8 CONCLUSION

We have shown that a cloud can be operated in such
a manner to lower carbon emissions and operational
cost. Our simulations show that there is a correspond-
ing penalty in terms of average service request time
if the cloud is run in such a fashion. Our work
examines the electricity cost, carbon emissions and
average service request time for a variety of scenarios.
The decision concerning how to balance the various
factors will depend on SLAs, government legislation
and the price of carbon on trading schemes. Using this
information and the specifics of the cloud the operator
can run the cloud in the most desirable fashion. The
nature of the service will determine if a cloud owner
can implement this algorithm while conforming to
service level agreements.
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