Citation:

Farrell ER, O'Kelly BC and Osorio-Salas JP, 2012. VACUUM CONSOLIDATION IN PEAT. Invited Presentation (Continuing Professional Development Lecture), Geotechnical Society of Ireland, Institution of Engineers of Ireland (Engineers Ireland), Dublin, Ireland, 09th February 2012, Geotechnical Society of Engineers Ireland, 65 pp

For webcast of presentation, go to Engineers Ireland website http://www.engineersireland.ie/Communications/ Webcast-Archive/2012/Vacuum-consolidation-in-peat.aspx]

Structure of Presentation

Background

Principles of vacuum consolidation

Current practical applications

- TCD/NRA test site
 - Geotechnical/geology/hydroge ology of test site
 - Construction of test area
 - Instrumentation
 - Benchmark ground movement readings.

- Results from vacuum consolidation test
 - Vacuum achieved
 - Settlement versus time
 - Practical difficulties
- Numerical modelling
 - Laboratory parameters
 - Soil model
 - Comparison of field performance with predictions
- Conclusions

PRINCIPLES OF VACUUM CONSOLIDATION

- Vacuum consolidation is a construction method used to accelerate ground settlement by reducing the air pressure at the ground surface.
- Normally atmospheric pressure (p_{atm}) is taken as the base line when computing $\sigma' = \sigma u$.
- p_{atm} is about 100kPa, and the pwp can reduced below atmospheric using vacuum pumps. This increases the effective stress without generally increasing the shear stresses.
- Vacuum consolidation was originally proposed by Kjellman in Sweden in the 1950s.

Background - Rampart roads

- The construction of roads over peat bogs in the 18th & 19th centuries opened up the bog for harvesting
- The easiest place to harvest was adjacent to the roads, roads ended up elevated above the adjacent ground. These are called Rampart Roads. Heights of 9m have been recorded.
- Many of these roads are used today, resulting in narrow and very dangerous roads.
- Vacuum consolidation may assist in overcoming some of the challenges in widening these roads.

VACUUM CONSOLIDATION

Atmospheric pressure = 100kPa

VACUUM CONSOLIDATION

Current applications

Menard vacuum

Baudrain – Cofra bv

Shang, Tang & Miao (1998)

Hayashi et al, 2003

Figure 1. Typical setup of vacuum consolidation method

TCD/NRA TEST SITE

Consultant: Trinity College Location: Ballydermot Start date: 10/03/2010	End date: 10/03/2010		Elev Proj Drill	vation: ect no).	- 241	9-01-10		
Type of drilling: CP	Hole diameter: 200	mn	Log	ged by	/:	F.M	cNamar	а	
Strata Descrip	otion	pue	5		5	Sample	es / tests		T
1		ege	Depi	Lev	ype	epth	ssult	Vate	
Peat FILL		*****	-	-	-	ă	Ř	> 1	ł
PEAT		She, she, sh She, she, sh She, she, sh She, she, sh She, she, sh	0.80	_	P	0.90			
		186, 1966, 186 18, 1966, 18 186, 1965, 196			Р	1.55			
		alles alle A des alles alle alles alles a	2						
		200, 200, 200, 5, 200, 200, 200, 200, 200, 5, 200, 200, 200, 200, 200, 5, 200, 200, 5, 200, 200, 5, 200, 200, 5, 200, 200, 200, 5, 200, 200, 200, 200, 200, 200, 200, 20			Р	2.40			
		30, 30, 30, 30 30, 30, 30 30, 30, 30 30, 30, 30 30, 30, 30	3-	-					
		ب مقالد مقالد م علاد مقالد مقالد مقالد مقالد م مقالد مقالد مقالد			Р	3.20			
Stiff grey-brown slightly sandy g	ravelly CLAY		4.004	-	SPT-C	4.80	N=41		
				_	SUL 0	5.00			
			11111		SPT-C	5.20	N=40		
OBSTRUCTION broken rock fra	aments possible bedrock		6.00	-	В	5.80	11-10		
End of Borehole	at 6.30 m	111	6.30						
			7	-					
			11111						
				_					
Remarks: 4 descriptions based on drillers observations 3roundwater start day 10th March 4 BomBGL 3roundwater end day 10th March 5 60mBGL		KEY B D U SPT-S SPT-C	Bulk dist Small dis Undistur Standar Standar Ground	urbed sam sturbed sa bed sampl d Penetrat d Penetrati water strik	rple. mple e tion Test, s on Test, so e	plit spoon. blid cone.	GI		

Raised Bog under milled peat production, therefore some peat has been removed. Site is at edge of bog.

Top 1m - very clayey sandy Gravel f% \approx 30% Below – slightly clayey sandy Gravel f% \approx 4-11% K = 1.96x10⁻⁶ to 1.15x10⁻⁵ m/s

In-situ vanes (55mm x 110mm)

Hydrogeology

Drain within 8m of edge of test area.

TCD/NRA VACUUM CONSOLIDATION FIELD TRIAL

Table 1 – Simplified soil profile

Layer	Depth (m)	Description	Observations and properties			
1	0-0.7	Man-made fill	Black peat; occasional plastic bags, gravel, pieces of geotextile, machine parts.			
2	0.7 – 4.0	Pseudo-fibrous peat	$w = 561 - 1340\% G_{s} = 1.38 - 1.59$ LOI = 87 - 99% $\gamma_{h} = 9.57 - 10.56 \text{kN/m}^{3}$ $e_{o} = 6.78 - 14.83 S_{r} = 94 - 100\%$ pH = 4.5 - 6.2 Von Post = H ₄ - H ₇ $C_{c} = 2.2 - 6.4$			
3	4.0 - 7.0	Glacial till	The clay fraction reduces with depth , about 30% fines in top metre, reducing to 4-11%.			

TCD/NRA VACUUM CONSOLIDATION FIELD TRIAL

Instrumentation

- 10 No. Vibrating wire (VW) piezomters (also calibrated for suction)
- 6 No. push-in VW settlement cells 0.9m, 1.5m & 2.65m
- Settlement plates
- Standpipes

- Barometric pressure/temp.
- Rain gauge
- Water meter
- Air pressure gauges

Acknowledge assistance of NVM Ireland Ltd.

TCD/NRA VACUUM CONSOLIDATION FIELD TRIAL

Pumping system: 30th Nov 2009 – 23rd Jun 2010 1.5kW Centrifugal pump 38mm diameter jet pump

Pumping system: 29th Jul 2010 - 29th Oct 2010

- 2.2kW Liquid ring pump
- 1.5kW Centrifugal pump
 - 38mm diameter jet pump

MONITORING BEFORE PUMPING

- Prior to starting the TCD/NRA vacuum consolidation field trial, four months of baseline monitoring were conducted.
- The vacuum consolidation trial was run from 30th November 2009 and was terminated on 29th October 2010

Pore water pressure vs depth before pumping (S=0.85m)

SURFACE AND PIEZOMETRIC LEVELS (Boulder clay)

PORE WATER PRESSURE vs TIME - SPACING=0.85m (Before pumping)

Flooding in August 2009

MONITORING DURING PUMPING

• The TCD/NRA vacuum preloading field trial commenced on the 30th November 2009.

• The results for the eleven months of pumping presented here.

• Rain, water table, vacuum, settlement and pore water pressure are presented.

SETTLEMENT vs TIME (During pumping)

Time (days)

DAILY RAIN (During pumping)

WATER TABLE (During pumping)

PORE WATER PRESSURE vs TIME - SPACING=0.85m (During pumping)

Profile A - A'

Profile B - B'

Visual 1st June 2010

CRACKS AT EDGE

Chai et al. (2005)

SETTLEMENT OF PEAT

Soil models investigated • Simple EOP C_s & C_c (C_R = C_c/{(1+e_o)} & R_R) and σ_{vc}

• Soft Soil model (SS) Plaxis $(\lambda^* = C_c / \{2.3(1+e_o)\}, \kappa^*)$

Soft Soil Creep model Plaxis (λ*= C_c/{2.3(1+e_o)}, κ*, μ*)

0

Modelling vacuum consolidation

SPACING 0.85m

	Upper peat	Middle peat	Lower peat
РОР	10	5	11
*	0.125	0.16	0.16
k*	0.05	0.055	0.04
m*	0.0065	0.0078	0.009
g	10.45	10.1	10.06
e _o	7.42	13.81	12.05
k _v =k _H	0.3	0.2	0.01
(m/day)			
C _k	1.8	3.44	3.44

VALUES USED ON BACK ANALYSIS WITH SSC MODEL

	Upper peat	Middle peat	Lower peat
РОР	10	5	11
*	0.11 to 0.125	0.14 to 0.16	0.16 to 0.2
k*	0.022 to 0.05	0.03 to 0.055	0.033 to 0.04
m*	0.0065 to 0.008	0.0078 to 0.01	0.0065 to 0.009
g	10.45	10.1	10.06
e _o	6.78 - 8.69	13.43 - 14.5	11.5 – 12.5
k _v =k _H (m/day)	0.011 to 0.128	0.0053 to 0.011	0.0015 to 0.0029
C _k	1.8	3.44	3.44

PARAMETERS INTERPRETED FROM LABORATORY OEDOMETER TESTS

• Swell using simple soil model = 0.161m

- Swell measured = 0.13m
- Equivalent E' ≈ 100kPa at this very low effective stress.

CONCLUSIONS

 The TCD/NRA vacuum preloading field trial was implemented and showed that this technique can be successfully used in peat soils.

 The drainage system comprising PVDs, horizontal drains and a granular bed, was effective in distributing the applied vacuum pressure and collecting the drained water.

Practical difficulties/Observations

- Summer conditions general water table was lower than side barrier.
- Higher suctions achieved with vacuum pump but more stable values with liquid ring pump
- Pore pressure reduction at edges was slightly lower (2kPa to 8.5kPa) than at centre.
- Δ PWP roughly uniform with depth
- Vacuum pressure adequately transmitted in 0.85m and 1.2m spacings.

- Calcification of pumps a significant issue
- Freezing, tears, bursts electrical cuts affected the performance.
- Airtight cover could be improved, use of water seal should be considered.
- Vacuum consolidation had little effect on the water table outside the test area.
- Behaviour can be simulated using standard soil models.

ACKNOWLEDGEMENTS

- National Road Authority.
- Trinity College Dublin.
- Geotechnical Trust Fund Award (Engineers Ireland).
- Universidad de Antioquia
- Bord na Móna