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Abstract

A general formalism for the study of excitations above equilibrium in Bethe ansatz
solvable models is presented. Nonzero temperature expressions for dressed energy,
momentum, spin and charge are obtained. The zero temperature excitations of the
Hubbard-Shastry models are examined in detail, and special attention is paid to the
dressing of spin and charge of excited quasi-particles. These are in general momentum
dependent and are only spin-charge separated when the ground state is half-filled and
has zero magnetisation.
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1 Introduction

The quest to understand strongly correlated electrons in low-dimensional systems repre-
sents an important frontier in the field of condensed matter physics [1, 2]. Such materials
exhibit exotic behaviour that cannot be understood from a non-interacting picture. Ex-
actly solvable models are an invaluable tool for gaining access to the non-perturbative
physics at play.

Two recently introduced integrable models, the Hubbard-Shastry A- and B-models
[3], hold great promise in this direction. They describe electrons interacting on a lattice,
similar to the well known Hubbard model [4, 5], but with extra interactions such as spin
exchange, pair hopping and nearest neighbour Coulomb interaction. Their equilibrium
properties were examined in [3] by means of their exact Bethe ansatz solution. It was
found that the A-model exhibits itinerant ferromagnetism, while the B-model is a Mott
insulator of paired electrons and so provides a promising approach to the study of un-
conventional superconductivity given that such physics is expected to be captured by
an effective single-band model [6, 7].

The aim of this paper is to examine the excitations above equilibrium of these two
models in one-dimension. To achieve this goal a general formalism of excitations in Bethe
ansatz solvable models is pursued. This generalises and extends the methods used in
[8]-[11]. Let us briefly outline some of the advancements. Firstly, we consider individual
particle and hole excitations and obtain explicit non-zero temperature expressions for
dressed quantities such as energy, momentum, spin and charge. Our expressions include
an important contribution that did not appear in previous studies which were restricted
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to particle-hole excitations [10]. Secondly, we examine in some detail the dressing of
spin and charge and provide a formula for the induced charge of the system that results
from an excitation. Thirdly, we consider models with Bethe strings and extend to such
models the formalism for excitations presented in e.g. [10] for the Bose gas. Fourthly,
when considering excitations at zero temperature we overcome the need to explicitly
deal with mode numbers [12, 13], and relate possible restrictions on allowed excitations
to properties of the kernels appearing in the Thermodynamic Bethe Ansatz equations.

The dressing of spin and charge is well established and in integrable models it dates
back to [14]. The zero temperature long-range physics of many one-dimensional models
of electrons is captured by the Luttinger liquid, wherein spin-charge separation is exhib-
ited, see e.g. [15]. The low-lying wave-like excitations carry either spin or charge and
propagate at different velocities. Let us stress however that individual quasi-particle ex-
citations need not exhibit spin-charge separation, even at zero temperature. In general
these carry both spin and charge, the magnitude of which varies with the momentum
of the excited quasi-particle. This is compatible with the Luttinger liquid behaviour as
wave-like excitations are composed of infinitely many quasi-particles carrying infinites-
imal energies, and in this limit spin-charge separation may be seen. We would like to
suggest that such non-trivial dressing of spin and charge may account for some of the
anomalous behaviour observed in strongly correlated materials. It would be interesting
to consider issues such as the unusual temperature dependence of resistivity, the Hall
coefficient, and spin excitations in this context, see e.g. [16, 17].

The paper is naturally split into two parts. In the first the formalism for the study
of excitations above equilibrium is presented and in the second part of the paper the
zero temperature limit of this formalism is used to examine excitations over the ground
states of the Hubbard-Shastry A- and B-models.

In Bethe ansatz solvable models the complexity of calculating the spectrum is reduced
to the solution of the Bethe equations, a set of polynomials whose degree scales linearly
with the length of the system. In the thermodynamic limit the roots of these equations,
in general complex, align into strings on the complex plane known as Bethe strings. It
is often possible to make a string hypothesis, which identifies all possible Bethe strings,
and in this paper we restrict our attention to models for which this is so.

There are advantages to working directly with the Bethe strings in the thermody-
namic limit. The Bethe strings are parametrised by a rapidity variable that is real
whereas, as we have mentioned, their constituents (the roots of the Bethe equations)
generally take complex values. The original Bethe equations can be fused together to
give Bethe equations directly for the strings. Moreover, the Bethe strings give a physical
picture: the different types of strings can be understood as the particle content of the
model. The free energy can thus be written and its minimisation gives access to the
equilibrium state. In this way one goes from the full information about the spectrum
that the Bethe equations provide to the physically interesting region.

To examine excitations above equilibrium it is also natural to work directly with
the Bethe strings and this is the approach taken in the formalism developed in section
2. Excitations of a finite number of Bethe strings are considered and formulae for
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the dressed energy, charge and spin of the excited strings are obtained, as well as the
scattering phases for the excited roots which are non-trivial and include scattering with
the equilibrium state. A summary of these results is provided in section 2.5.

In the zero temperature limit the equilibrium state becomes the ground state. This
limit is in general smooth, with the special exception of when some strings are at half-
filling. By a half-filled string we mean one for which there are no holes in the ground
state. In such cases there may exist restrictions on allowed excitations over the ground
state. This can be seen as a manifestation of a zero temperature phase transition.

Now we turn to our study of the excitations of the Hubbard-Shastry models, which
comprises the second part of this paper. Attention is focused on the zero-temperature
regime as the essential features can be observed there. General features of finite tem-
perature behaviour are discussed throughout the presentation of section 2. A detailed
analysis of the finite temperature excitations requires the solution of various infinite sets
of coupled non-linear integral equations and is not pursued here.

The A-model describes an itinerant ferromagnet. It has a gound state that is spin-
polarised for all fillings. At half-filling the behaviour is similar to that of the ferro-
magnetic Heisenberg XXX spin chain. The low-lying excitations are magnons and their
bound states and they disperse quadratically. In the presence of a non-zero magnetic
field they become gapped. In addition there is an electron-like excitation. This is gapped
at half-filling but becomes gapless with linear dispersion away from half-filling. The spin
of the electron-like excitation is aligned with that of the spin-polarised ground state. An
electron-like excitation of opposite spin should be regarded as a compound excitation
of this aligned electron-like excitation and a magnon. The excitations that behave as
magnons at half-filling retain their quadratic dispersion away from half-filling but here
get dressed with some charge in addition to their spin. Thus the spectrum of low-lying
excitations cannot be linearised at any filling in zero magnetic field and the system can-
not be approximated by a Luttinger liquid, as is evidenced in the lack of spin-charge
separation. In the presence of a magnetic field the dressed magnons get gapped and
there are then no low-lying excitations that decrease the magnetisation of the ground
state without decreasing the filling.

The B-model describes a Mott insulator of spin-singlets. At half-filling and in the
absence of a magnetic field the model is in an insulating phase and the magnetisation is
zero. Here the excitations are spin-charge separated for all momenta, they are scattering
states of gapless spinons and gapped holons and the picture is similar to that of the
Hubbard model [5]. The difference is that here the spinons are dressed electrons and
the holons are dressed spin singlets (paired electrons) whereas in the Hubbard model
the spinons are dressed magnons and it is the holons that are dressed electrons. If
one goes away from half-filling or introduces a magnetic field then the spin and charge
are no longer separated and become rapidity dependent. In particular away from half-
filling in the absence of a magnetic field the dressed spin singlets remain pure charge
and become gapless while the electrons are also gapless but get dressed with a charge
in addition to their spin, and thus the excitations are not spin-charge separated. The
dressed charge of an excited electron does go to zero however as its dressed energy goes
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to zero and so these excitations are compatible with those of a Luttinger liquid which
is expected in the continuum limit. Let us conclude by remarking that the dressed
electrons display an “hourglass” dispersion and that away from half-filling and in the
absence of a magnetic field it can be clearly seen that the spin singlets are held together
by spin-spin interactions.

2 Excited states

In this section we develop a general formalism to study excited states of Bethe ansatz
solvable models whose thermodynamics are described by various configurations of Bethe
strings [18]. The dressed energy, momentum and charge, and also the phase shifts of the
excitations, are expressed through the densities of the equilibrium state. The limit of
zero temperature is examined in section 2.4 and the formalism is summarised in section
2.5. For simplicity and clarity of presentation we restrict ourselves to parity invariant
rational models.

2.1 Bethe equations for strings

Let us assume that in the thermodynamic limit every solution of the Bethe equations
for the model under consideration corresponds to a particular configuration of Bethe
strings. Then for large spin chain length L the Bethe equations can be written for string
configurations

(−1)ϕα = eiLpα(vα,k)
∏
β

Nβ∏
n=1

Sαβ(vα,k, vβ,n) . (2.1)

We use indices α, β, γ and so on to distinguish between different strings. Here ϕα is a
constant, unimportant for our consideration, which appears in particular as we have not
excluded self-scattering from the product on the right hand side. For periodic boundary
conditions and in the absence of a twist, ϕα = 0 if Sαα(0) = 1 and ϕα = 1 if Sαα(0) = −1.
The strings are parametrised by a rapidity variable for which the scattering matrices are
of a difference form: Sαβ(vα,k, vβ,n) = Sαβ(vα,k − vβ,n). For strings which do not carry
momentum there is no term eiLpα in the Bethe equations, and by convention we set
pα = 0 for such strings.

Let us briefly review the analysis that yields the equilibrium properties of the model.
This allows us to introduce many useful formulae, along with our conventions. The
counting function is constructed by taking the logarithm of the Bethe equations (2.1)

Lσαzα(v) = πϕα + Lpα(v) +
∑
β

Nβ∑
n=1

φαβ(v, vβ,n) , (2.2)

where

φαβ ≡
1

i
logSαβ (2.3)
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is the phase of the S-matrix. These functions allow one to enumerate the Bethe strings
as Lzα

2π
evaluates to an integer on an α-string Bethe root, which we refer to as the

mode number of the particle. For a given root vα,k we denote the corresponding mode
number as Iα,k ≡ L

2π
zα(vα,k). Moreover the counting function Lzα/2π may evaluate to

an integer for a momentum which is not that of a particle of type α, and such mode
numbers correspond to holes. Note the appearance of σα in the definition of the counting
function. For momentum carrying strings σα = sign(dpα

dv
) and this guarantees that the

counting function is an increasing function of v. For an α-string which does not carry
momentum σα is determined by requiring the counting function to be increasing. Let
us remark that to fully define the counting function (2.2) it is necessary to specify that
branch of the logarithm. This does not affect the study of equilibrium properties, and of
course should not affect the physics, but it will be important for our study of excitations
and we will return to this issue when we begin to discuss them in section 2.3.

Taking the thermodynamic limit L → ∞ with Nα/L fixed, one gets equations for
the densities of particles and holes

ρα + ρ̄α =
1

2π

∣∣∣∣dpαdv

∣∣∣∣+Kαβ ? ρβ , (2.4)

where Lραdv (respectively Lρ̄αdv) is the number of integers corresponding to particles
(respectively holes) that the counting function Lzα/2π evaluates to over a range dv.
Repeated indices are summed over and ? denotes convolution (see appendix A.1 for the
precise definition) over the domain of the rapidity of the appropriate string, which we
denote by Iα. The kernels Kαβ are defined by

Kαβ = σαKαβ , Kαβ(v) =
1

2πi

d

dv
logSαβ(v) . (2.5)

Since the counting functions are all defined to be increasing functions it follows that the
densities of all particles and holes in the equations (2.4) are positive.

The equations for the densities can be used to determine the total number of particles
and holes for each type of string, which we call the range of mode numbers. Indeed,
integrating equations (2.4) and multiplying by L one gets the range

Nα + N̄α = L
∆pα
2π

+ kαβNβ , (2.6)

where N̄α is the number of holes of type α in the state, and ∆pα = 1?|dpα
dv
| for momentum

carrying strings and ∆pα = 0 for strings that do not carry momentum. The kαβ, defined
as kαβ ≡ 1 ? Kαβ, are constants. Note that all roots of the Bethe equations are counted
in the range, including those which correspond to v = ∞. Furthermore since N̄α ≥ 0
eqs. (2.6) imply the following selection rules

Nα ≤ L
∆pα
2π

+ kαβNβ , (2.7)

which restrict the allowed Nα appearing in the Bethe equations.
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2.2 Equilibrium state

The equilibrium state follows from the minimisation of the free energy

f = eα ? ρα − Ts . (2.8)

Here eα denotes the energy carried by an α-string. Note that in addition to describing
possible dispersion this will also depend on the chemical potentials that appear in the
model. The entropy per site is denoted by s and is given by

s =
∑
α

1 ?∆s(ρα, ρ̄α) , ∆s(ρ, ρ̄) = ρ log
(
1 +

ρ̄

ρ

)
+ ρ̄ log

(
1 +

ρ

ρ̄

)
. (2.9)

Minimising the free energy subject to the equations for densities (2.4) yields

f = − T

2π

∣∣∣∣dpαdv

∣∣∣∣ ? log
(
1 +

1

Yα

)
, (2.10)

where the functions Yα are determined by the set of thermodynamic Bethe ansatz (TBA)
equations

log Yα =
eα
T
− log

(
1 +

1

Yβ

)
? Kβα . (2.11)

These should be regarded as the conditions for equilibrium. The Yα are related to the
densities of particles and holes as Yα = ρ̄α

ρα
and allow one to solve (2.4) for the densities

at equilibrium. It is useful to also introduce the pseudo-energy

εα = T log Yα . (2.12)

These are well defined in the zero temperature limit whereas the Yα are not. Both
quantities Yα and εα will be useful and we will use them interchangeably.

At finite temperature the equilibrium state is a mixture of infinitely many states
contributing equally to the partition function. We assume for definiteness that the spin
chain length L is very large, and choose any of the states which in the thermodynamic
limit contribute to the equilibrium state as a reference state. In the zero temperature
limit it becomes the ground state of the model. Let us say then that reference state
consists of Nα α-strings with rapidities vα,k, k = 1, . . . , Nα.

2.3 Excited states

Now we wish to study excitations about the equilibrium state outlined above. We restrict
our attention to excitations where the numbers of excited roots are much smaller than
the numbers of particles in the equilibrium state.

Let us first return to a point that we skipped above, the choice of the branch for the
counting function (2.2). The choice of branch affects the formalism one obtains for the
excitations and we present here what we found to be an optimal choice. In particular
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we find that in order to obtain a reasonable expression for the dressed momentum of
a string it is necessary to keep track of the branch of each logSαβ term in eq.(2.2).
Moreover, our choice of branch is guided by the behaviour of the pseudo-energies for the
equilibrium state. We choose the branch of logSαβ and the range of momentum pα so
that the counting function is continuous about the minimum of εα.

Let us be specific about the strings we will consider. For strings with rapidity variable
defined on R we assume that the pseudo-energy is even, and monotonic on the interval
(0,∞). Then there are two cases, and we give explicit expressions for the phase in each

• Type 1: εα(v) has a minimum at v = 0, and is increasing on the interval (0,∞),

1

i
logSαβ(v, t) = 2πbαβ + πcαβ + Θαβ(v − t) = φαβ(v, t) , (2.13)

and the range of pα(v) is chosen so that it is continuous for v along (−∞,∞).

• Type 2: εα(v) has a minimum at v = ±∞, and is decreasing on the interval (0,∞),

1

i
logSαβ(v, t) = 2πbαβ − πcαβ sign(v) + Θαβ(v − t) = φαβ(v, t) , (2.14)

and the range of pα(v) is chosen so that pα(−∞) = pα(+∞), and it is discontinuous
only at v = 0.

Here

Θαβ(v) = 2π

∫ v

0

dtKαβ(t) , καβ =
1

π
Θαβ(∞) = 1 ?Kαβ , (2.15)

bαβ is an integer capturing the freedom in the choice of branch, and the cαβ are defined
such that cαβ − καβ is as close to zero as possible subject to the constraint that cαβ is
an even integer if Sαβ(0) = 1 and cαβ is an odd integer if Sαβ(0) = −1. Note that if
Sαβ(±∞) = 1 (which is the case for rational S-matrices) then cαβ = καβ. For type 1
strings φαβ(±∞, t) = π(cαβ ± καβ) and the range of φαβ is φαβ(+∞, t)− φαβ(−∞, t) =
2πκαβ. For type 2 strings it is worth stressing that the scattering phase φαβ is no longer
of a difference form with this choice of the branch of logSαβ. It is mildly broken so
that, for models with cαβ = καβ, the counting function and scattering phases would be
continuous everywhere but at v = 0, the maximum of εα. The jump discontinuity of the
scattering phase at v = 0 is equal to φαβ(−0, t)− φαβ(+0, t) = 2πcαβ, which is equal to
2πκαβ if Sαβ(±∞) = 1.

These two cases capture the behaviour of most strings of Bethe ansatz solvable
models. For strings that are not captured modifications of the subsequent analysis will
have to be made1. In particular, the y-particles of the Hubbard-Shastry models must be
considered separately because their rapidity variable is not defined on R. We deal with

1 For instance there are models where the counting function is not always monotonic. So long as
it oscillates only a finite number of times however this should not affect the description of excitations
above equilibrium.
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this important case in appendix A.3. Let us remark that although the above definition
for type 2 strings (2.14) may at first sight appear to be overkill it is necessary in order to
correctly identify the nature of excitations of such strings, for example the hourglass-like
dispersion seen in the Hubbard-Shastry B-model discussed in section 3.2.

Now consider a general excited state. Let us say that it consists of Ñα α-strings with
rapidities ṽα,k , k = 1 , . . . , Nα. The rapidities satisfy the same Bethe equations (2.1)

(−1)ϕα = eiLpα(ṽα,k)
∏
β

Ñβ∏
n=1

Sαβ(ṽα,k − ṽβ,n) . (2.16)

The rapidities ṽα,k of the excited state can be divided into two groups. The first group
consists of rapidities with mode numbers Ĩα,k which coincide with some of the mode
numbers of the particles of the reference state. They are close to the corresponding
rapidities of the reference state, that is, the difference between the rapidities with the
same mode number is of order 1/L. We denote these rapidities as v′α,k , k = 1 , . . . , N ′α.
The second group consists of the remaining rapidities, those which have mode numbers
not coinciding with any mode number of the particles of the reference state. There are
Na
α = Ñα − N ′α of strings of type α in this group. These rapidities will be denoted as

ṽaj . The reference state also contains strings with mode numbers different from any

Ĩα,k, the mode numbers of the particles of the excited state. These correspond to holes
of the excited state and their rapidities will be denoted as ṽrj . For a string of type
α there are N r

α = Nα − N ′α of them. One can think about the excited state as being
obtained by adding Na

α strings to, and removing N r
α strings from, the reference state.

Let Na =
∑

αN
a
α be the total number of strings added to the reference state, and let

N r =
∑

αN
r
α be the total number of strings removed from the reference state. Thus the

equations (2.16) can be rewritten in the form

(−1)ϕα = eiLpα(v′α,k)

∏Na

j Sαaj(v
′
α,k − ṽaj)∏Nr

j Sαrj(v
′
α,k − ṽrj)

∏
β

Nβ∏
n=1

Sαβ(v′α,k − v′β,n) , (2.17)

(−1)ϕak = eiLpα(ṽak )

∏Na

j Sakaj(ṽak − ṽaj)∏Nr

j Sakrj(ṽak − ṽrj)
∏
β

Nβ∏
n=1

Sakβ(ṽak − v′β,n) , (2.18)

where the product
∏

β

∏Nβ
n=1 Sαβ(·, v′β,n) includes the product

∏Nr

j Sαrj(·, ṽrj), that is it

is equal to
∏

β

∏N ′β
n=1 Sαβ(·, v′β,n)

∏Nr

j Sαrj(·, ṽrj) and reduces to
∏

β

∏Nβ
n=1 Sαβ(·, vβ,n) in

the thermodynamic limit.
Here we have made an implicit assumption that the mode numbers of every string

in the reference state are also mode numbers of the excited state. This is justified at
non-zero temperature as one can always choose the reference state so that this is the
case2. At zero temperature however, specifically at half-filling, it may happen that the

2Indeed the densities ρ(v), ρ̄(v) are related to the numbers of particles and holes with rapidity in an
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mode number of a string in the reference state is not a mode number of the excited
state, either due to a change in the range of mode numbers or an overall shift of the
range of the counting function. For example if the range is decreased for an excitation
and all mode numbers correspond to particles then some strings are necessarily removed,
and moreover there is no excited state rapidity one can assign to them. Such situations
require special care and are discussed in section 2.4.

We relate the rapidities of the reference state Bethe roots to those with corresponding
mode number in the excited state through

ṽα,k − vα,k =
σα
2π

ζα(vα,k)

L
, (2.19)

where we have introduced ζα which are of order 1. It is possible to obtain a closed
equation for ζα by subtracting the logarithm of the Bethe equations of the ground state
(2.17) from those of the excited state (2.1) for Bethe roots with the same mode number.
Expanding (2.17) and taking the thermodynamic limit one obtains

ζα(ρα + ρ̄α) = ζβρβ ? Kβα − φαa + φαr , (2.20)

with the help of the equation for densities (2.4). Here we have taken into account that

Sαβ(v)Sβα(−v) = 1 ⇒ σβ
2πi

d

dt
logSαβ(v − t) = −Kβα(t− v) , (2.21)

and introduced the notation

Xa ≡
Na∑
j=1

Xaj(ṽaj) , Xr ≡
Nr∑
j=1

Xrj(vrj) , (2.22)

for any quantity Xα. The function Fα = −ζα(ρα+ ρ̄α), which we will refer to as the shift
function [9, 10], is an important object and it satisfies the following closed equation

Fα =
Fβ

1 + Yβ
? Kβα + φαa − φαr . (2.23)

Another form of this equation which will prove useful is

ζαρα = ζβρβ ?
Kβα

1 + Yα
− φαa − φαr

1 + Yα
. (2.24)

interval dv about v. At non-zero temperature both the densities of particles and holes are non-trivial
for all v and the particles and holes within each interval dv can be rearranged. Thus one can always
choose a reference state at non-zero temperature such that a finite number of particles and holes have
required mode numbers.
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Energy

The change in the energy of the excited state from the equilibrium state is given by

∆E =
∑
α

( Ñα∑
k=1

eα(ṽα,k)−
Nα∑
k=1

eα(vα,k)
)
→ ea − er +

σα
2π
ζαρα ? e′α , (2.25)

where e′α = d
dv
eα(v), and summation over α is assumed, and we have used the notation

(2.22). Differentiating the TBA equations (2.11) and integrating by parts one gets

e′α
T

= (log Yα)′ −Kαβ ?
(log Yβ)′

1 + Yβ
, (2.26)

and substituting into (2.25) gives

∆E = ea − er + T
σα
2π
ζαρα ?

(
(log Yα)′ − Kαβ

1 + Yβ
? (log Yβ)′

)
, (2.27)

Dependence of ∆E on ζα can be eliminated through eq. (2.24) yielding

∆E = ea − er +
T

2π
σα
(

log(1 +
1

Yα
)
)′
? (φαa − φαr) . (2.28)

Then integrating by parts gives 3

∆E = ea − er − T log(1 +
1

Yα
) ?
(
Kαa −Kαr

)
+ T log(1 +

1

Y max
α

)(kαa − kαr) , (2.29)

where Y max
α = Yα(vmax) is equal to Yα evaluated at the value of v corresponding to the

maximum of the pseudo-energy, and recall kαβ ≡ 1 ?Kαβ = σακαβ. Finally we use again
the TBA equations (2.11) to obtain

∆E =
Na∑
j=1

(
εaj + T log(1 +

1

Y max
β

)kβaj

)
−

Nr∑
j=1

(
εrj + T log(1 +

1

Y max
β

)kβrj

)
. (2.30)

Hence the dressed energy of an α-string is

Eα(v) = εα(v) + T log(1 +
1

Y max
β

)kβα . (2.31)

Note that the last term in the formula is rapidity independent and does not contribute
to the total energy in a particle-hole excitation. In previous studies of excitations at
non-zero temperature, see e.g. [10], only particle-hole excitations were considered and
the dressed energies were given just by the pseudo-energies εα(v), and the rapidity in-
dependent term was neglected. Let us stress however that this term is important, in
particular so that in limit of infinite temperature the dressed energies take their bare
values Eα = eα as is expected. This follows as the functions Yα become constant in the
limit T →∞ because the driving terms drop out of the TBA equations (2.11).

3Let us remark that the jump discontinuity of φαβ for type 2 strings is 2πcαβ , which is equal to
2πkαβ only if Sαβ(±∞) = 1.

11



Momentum

In a similar way the change in the momentum of the excited state from the equilibrium
state is given by

∆P =
∑
α

( Ñα∑
k=1

p̃α,k −
Nα∑
k=1

pα,k

)
→ pa − pr +

1

2π
ζαρα ?

∣∣∣∣dpαdv

∣∣∣∣ . (2.32)

Let us first remark that the momentum of a state is defined modulo 2π and thus, as
the momentum of the reference state is fixed, the change in momentum is also defined
modulo 2π. To simplify expression (2.32) we substitute (2.4) into (2.20) and get

1

2π
ζα

∣∣∣∣dpαdv

∣∣∣∣+ ζαKαβ ? ρβ = ζβρβ ? Kβα − φαa + φαr . (2.33)

Multiplying by ρα, integrating, and taking the sum over α we find

1

2π
ζαρα ?

∣∣∣∣dpαdv

∣∣∣∣ = −ρα ? (φαa − φαr) , (2.34)

and thus

∆P =
Na∑
j=1

(
paj − ρβ ? φβaj

)
−

Nr∑
j=1

(
prj − ρβ ? φβrj

)
. (2.35)

Hence we identify the dressed momentum of an added α-string as

Pα = pα − ρβ ? φβα . (2.36)

and a removed one with the opposite sign. The dressed momentum can be used to
parametrise the strings and this is discussed in appendix A.2.

To examine the range of dressed momentum it is useful to note that∣∣∣∣dPαdv

∣∣∣∣ = 2π(ρα + ρ̄α) , (2.37)

which is seen using eqs. (2.4) and (2.21). For α-strings of type 1 the range of dressed
momentum is over

(
Pα(0) − π(nα + n̄α), Pα(0) + π(nα + n̄α)

)
where Pα(0) = pα(0) +

2πnβbβα + πnβcβα, nα = 1 ? ρα and n̄α = 1 ? ρ̄α. On the other hand for strings of
type 2 the range is split into two parts. Recall that the bare momentum of a type 2
α-string has a jump at v = 0 and that it increases from pα(σα0) to pα(−σα0). The range
of dressed momentum in this case is thus over

(
Pα(σα0), Pα(σα0) + π(nα + n̄α)

)
and(

Pα(−σα0)− π(nα + n̄α), Pα(−σα0)
)
. In general this may result in a gap in the dressed

momentum.
Let us remark that the dressed momenta depend on the choice of branch of logSαβ,

i.e. the bαβ in eqs. (2.13), (2.14). Considering only strings of type 1 and 2 the dressed
momenta (2.36) can be written as

Pα = pα − ρβ ?Θβα − 2πnβbβα −
∑

β of type 1

πnβcβα , (2.38)
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where one is free to choose the integers bβα. Terms for cβα with β of type 2 do not
contribute as we restrict ourselves to parity invariant models and so the densities are
even. It is of course possible to describe any excitation with a definite choice of bβα, e.g.
one can set all bβα = 0. However in this case some excitations would have unnatural
description which would require considering particle-hole excitations with zero energy
contributing only to the total momentum. For nβ irrational one can achieve any value
of dressed momentum by choosing bβα appropriately. Let us remark that one is free to
choose bβα independently for each added and removed α-string and one may refer to the
set bβaj , bβrj , where β runs over all strings that interact with the excited string, as the
branch of the excitation.

Phase shift

Now we turn our attention to the scattering phase shift. Consider first the counting
function for an α-string of the excited state

Lσαz̃α(v) = πϕα + Lpα(v) + φαa(v)− φαr(v) +
∑
β

Nβ∑
n=1

φαβ(v, v′β,n) , (2.39)

Expanding v′β,n in the final term about its equilibrium value, replacing the sums by
integrals, and noting equations (2.20, 2.36), one gets

Lσαz̃α = πϕα + LPα + Fα . (2.40)

Recall that Fα here is the shift function which is determined through the closed set
of equations (2.23). Exponentiating equation (2.40) and evaluating it at a rapidity v
corresponding to a mode number of the excited state it takes the form

1 = eiLPαei(Fα+πϕα) . (2.41)

An added α-string with rapidity v has dressed momentum Pα(v) and so its scattering
phase shift is δα = Fα(v)+πϕα. Similarly a removed α-string with rapidity v has dressed
momentum −Pα(v) and so its scattering phase shift is δα = −Fα(v)− πϕα. Clearly the
phase shifts δ are defined modulo 2π.

As the equations (2.23) are linear it is natural to introduce the set of functions
Φαβ(v, t) satisfying the following system of equations

Φαβ = φαβ +
Φγβ

1 + Yγ
? Kγα , (2.42)

where it is understood that
(

Φγβ
1+Yγ

? Kγα

)
(v, t) =

∫
dw

Φγβ(w,t)

1+Yγ(w)
Kγα(w, v). Then Fα =

Φαa−Φαr and hence we refer to the Φαβ as dressed scattering phases. In terms of these
functions equation (2.41) takes the following physically intuitive form

(−1)ϕα = eiPα(v)L

Na∏
j=1

eiΦαaj (v,ṽaj )
Nr∏
j=1

e−iΦαrj (v,ṽrj ) . (2.43)
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It is worth mentioning that the dressed scattering phases are in general not of a difference
form, and in particular Φαβ(v, v) 6= 0. This is a reflection of the fact that an excitation
has nontrivial scattering with the equilibrium state.

Charge

Each chemical potential appearing in the model is related to a conserved quantity and a
corresponding charge. For a given chemical potential µ let us denote the corresponding
bare charge4 carried by an α-string as wα = −∂eα

∂µ
. Furthermore let us introduce an

object ωα = −∂εα
∂µ

, which we call the pseudo-charge of an α-string. It satisfies the
following set of integral equations

ωα = wα +
ωβ

1 + Yβ
? Kβα . (2.44)

The change in the total charge of the excited state from the equilibrium state is

∆W =
∑
α

( Ñα∑
k=1

wα(ṽα,k)−
Nα∑
k=1

wα(vα,k)
)
→ wa − wr +

σα
2π
ζαρα ? w′α , (2.45)

where here we are being formal as wα has no rapidity dependence. Indeed the final term
is zero, but let us further analyse it nevertheless. Recalling that ζαρα = − Fα

1+Yα
, we have

ζαρα ? w′α =− Fα
1 + Yα

? w′α = − Fα
1 + Yα

? ω′α +
Fα

1 + Yα
? Kαβ ?

( ωβ
1 + Yβ

)′
=− Fα

1 + Yα
? ω′α + Fα ?

( ωα
1 + Yα

)′ − φαa ?
( ωα

1 + Yα

)′
+ φαr ?

( ωα
1 + Yα

)′
=Fαωα ?

( 1

1 + Yα

)′
+ 2πσα

ωα
1 + Yα

? (Kαa −Kαr)− 2πσα
ωmax
α

1 + Y max
α

(kαa − kαr) .

Here ωmax
α = ωα(vmax) is defined similarly to Y max

α , both functions being evaluated at
the value of v corresponding to the maximum of the pseudo-energy. This allows one to
write the total change in charge as

∆W =
Na∑
j=1

(
ωaj(ṽaj)−

ωmax
α

1 + Y max
α

kαaj
)
−

Nr∑
j=1

(
ωrj(ṽrj)−

ωmax
α

1 + Y max
α

kαrj
)
+
σα
2π
Fαωα?

( 1

1 + Yα

)′
.

We would like to present an interpretation of this change as

∆W =
Na∑
j=1

Waj(ṽaj)−
Nr∑
j=1

Wrj(ṽrj) + ∆Wind . (2.46)

4 For models where a magnetic field B enters as a chemical potential the bare spin of an α-string is

generally given by − 1
2
∂eα

∂B .
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Here the excited strings are assigned a dressed charge

Wα(v) = ωα(v)−
ωmax
β

1 + Y max
β

kβα = −∂Eα
∂µ

, (2.47)

that they carry, while the final term

∆Wind =
σα
2π
Fαωα ?

( 1

1 + Yα

)′
(2.48)

is understood as an induced charge of the system. An interesting feature here is that the
dressed charge carried by an excited string depends in general on the string’s rapidity.
In the limit of infinite temperature the functions Yα become constant and the dressed
charges take their bare values while the induced charge goes to zero. The zero tempera-
ture limit will be discussed in the next section where it is seen that the induced charge
resides at the edge of the Fermi sea.

The above is the interpretation we shall adopt in this paper but let us mention that
the final term in eq. (2.46) can be redistributed among the added and removed roots
using Fα = Φαa − Φαr. In particular, integrating by parts this final term one obtains
back

∆W =
Na∑
j=1

waj −
Nr∑
j=1

wrj , (2.49)

via the curious identity

ωβ
1 + Yβ

? Kβα =
σα
2π

1

1 + Yβ
? (ωβΦβα)′ . (2.50)

One may wonder why we insist on the interpretation of eq. (2.46) over that of eq.
(2.49). These are two ways of interpreting ∆W that imply different physics. That the
change in charge can be split as in eq. (2.46) and that the dressed charge is related to the
dressed energy as W = −dE

dµ
is quite convincing. An important factor also is that spin-

charge separation has been observed experimentally [19] and to account for it requires an
understanding of the dressing of charge that extends to non-zero temperatures. Equation
(2.49) does not provide this.

2.4 Zero temperature

Now we turn our attention to the limit of zero temperature. This is a special limit as
the nature of excitations may change. In section 3.2 the zero temperature limit of the
Hubbard-Shastry B-model is examined in detail and much of what is indicated here is
made precise.

Examining the TBA equations (2.11) in the zero temperature limit we see that it is
better to work with the pseudo-energies εα = T log Yα rather than with the functions Yα
directly. Indeed, in the limit T → 0 we see that the functions Yα become singular

limT→0 εα(v) < 0 ⇔ limT→0 Yα(v) = 0 ⇒ limT→0 ρ̄α(v) = 0 ,
limT→0 εα(v) > 0 ⇔ limT→0 Yα(v) =∞ ⇒ limT→0 ρα(v) = 0 .

(2.51)
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Let us note that εα(v) < 0 implies that there are no holes for α-strings with spectral
parameter v in the ground-state, whereas εα(v) > 0 implies that there are no particles of
α-strings with spectral parameter v in the ground-state. For each α-string let us define
the following subintervals of Iα

Qα = {v : εα(v) < 0} ,
Q̄α = {v : εα(v) > 0} . (2.52)

We say that an α-string is at half-filling if Qα = Iα, which implies from (2.51) that there
are no holes in the ground state for such strings. Let us next denote the boundaries
between Qα and Q̄α. For increasing v we label as q+

α the point where v goes from Q̄α

to Qα, and as q−α the point where v goes from Qα to Q̄α. Then in the zero temperature
limit

1

1 + Yα(v)
→
{

1 if v ∈ Qα

0 if v ∈ Q̄α

, (2.53)

and ( 1

1 + Yα

)′
(v)→ δ(v − q+

α )− δ(v − q−α ) (2.54)

where δ is the Dirac delta function. The zero temperature limit of the TBA equations
(2.11) are given by

εα = eα + εβ ?Qβ Kβα . (2.55)

First consider the situation when all strings are away from half-filling. Here the
problem mentioned in the paragraph above eqs. (2.17), (2.18) does not arise and the zero
temperature limit of the formalism for excitations above equilibrium is straightforward.
The total change in energy for an excitation, given by (2.30), reduces to

∆E =
Na∑
j=1

εaj(ṽaj)−
Nr∑
j=1

εrj(ṽrj) , (2.56)

as for each string at less than half-filling εmax
α > 0 implies Y max

α =∞. This is the familiar
picture in which the pseudo-energies play the role of the dressed energies.

Similarly the change in charge (2.46) becomes

∆W i =
Na∑
j=1

ωiaj(ṽaj)−
Nr∑
j=1

ωirj(ṽrj) + ∆W i
ind . (2.57)

The limit of the induced charge can be taking using eq. (2.54) giving

∆W i
ind =

σα
2π
ζα(q−α )ρα(q−α )ωiα(q−α )− σα

2π
ζα(q+

α )ρα(q+
α )ωiα(q+

α ) . (2.58)

We thus see that the induced charge is due to the shift of the rapidities at the boundaries
of the intervals Qα. This can be understood as a back-reaction of the density, which
here at zero temperature occurs at the edge of the Fermi sea.
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Now we turn to the situation of having some strings in the ground state at half-
filling, let us say that εmax

γ ≤ 0 for some γ-strings. Here one must be careful to only

consider excitations for which the Ñγ satisfy the selection rules (2.7) as there are no
holes for γ-strings. Put another way, some of the γ-strings in the ground state may have
no corresponding mode number in the excited state, due to a decrease in the range of
mode numbers, and are thus necessarily removed. On the other hand an increase in the
range of mode numbers will mean that there are some holes in the excited state that do
not correspond to removed strings and are thus not dynamical. This situation requires
one to reconsider the nature of the excitations.

Let us outline a convenient prescription for dealing with excitations that change the
range of mode numbers of strings which are at half-filling. If the range increases we
choose to consider only excitations for which all the extra mode numbers are filled.
In our terminology this means that in such an excitation these extra mode numbers
always correspond to added strings and thus all holes of the excited state correspond
to removed strings. Obviously if the range decreases in an excitation then the removed
mode numbers always correspond to removed strings. We refer to such added and
removed strings as singular strings. Such singular strings have rapidities that approach
vmax in the limit L → ∞ because they correspond to mode numbers at the edges of
the range. We refer to the remainder of the added and removed strings as physical
strings. Note that this prescription does not limit the freedom to capture all possible
excitations. Indeed any excitation for which not all the extra mode numbers are filled
can be considered as a limit of an allowed excitation where the rapidities of the necessary
number of physical removed strings approach vmax.

An excitation could also result in an overall shift of the mode numbers. This would
correspond to the removal of some singular strings at one end of the range and the
addition of singular strings at the other. It can be seen however, that for each of the
quantities of interest to us, that this transfer of singular strings is not important.

Let us thus break the added and removed strings into two types, physical and singular

Na
γ = Npa

γ +N sa
γ , N r

γ = Npr
γ +N sr

γ , (2.59)

where we use p and s to denote physical and singular respectively. Let us further denote
the changes in numbers of physical and singular strings as

δNp
γ = Npa

γ −Npr
γ , δN s

γ = N sa
γ −N sr

γ . (2.60)

Then our prescription is that

δN s
γ = kγβδN

p
β + kγγ′δN

s
γ′ , (2.61)

where the right hand side here is the change in the range of mode numbers of γ-strings
found from eq. (2.6), and we use γ′ as a dummy index to make it clear that the sum is
only over strings which are at half-filling. Let us remark that there may be a restriction
on the number of physical roots one can excite as only solutions to eq. (2.61) for which
δN s

γ is an integer for each half-filled string are allowed.
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Now consider again the change in energy formula (2.30) which here takes the form

∆E =
Na∑
j=1

(
εaj(ṽaj)− εmax

γ kγaj
)
−

Nr∑
j=1

(
εrj(ṽrj)− εmax

γ kγrj
)
. (2.62)

Splitting the strings between their physical and singular subsets this becomes

∆E =
Npa∑
j=1

εaj(ṽaj)−
Npr∑
j=1

εrj(ṽrj)− εmax
γ kγαδN

p
α + εmax

γ δN s
γ − εmax

γ kγγ′δN
s
γ′

=
Npa∑
j=1

εaj(ṽaj)−
Npr∑
j=1

εrj(ṽrj) ,

(2.63)

where all the constant terms have cancelled due to (2.61). The singular strings may
also have non-zero dressed momentum and non-trivial dressed scattering. These can
be redistributed among the physical strings according to the solution of (2.61). For
example, if the solution to eq. (2.61) is δN s

γ = fγαδN
p
α then the dressed momentum and

dressed scattering take the following form for the half-filled phase

P h.f.
α = Pα + Pγ(v

max)fγα , Φh.f.
αβ (v, t) = Φαβ(v, t) + Φαγ(v, v

max)fγβ . (2.64)

Finally let us consider again the change in charge. As for the energy, the contributions
of the singular roots cancel all constant terms appearing in the dressed charge (2.47).
Also the derivative in (2.48) is zero at zero temperature for half-filled strings and so such
strings do not give rise to an induced charge of the system. The formula for the change
in charge thus takes the form

∆W =
Npa∑
j=1

ωaj(ṽaj)−
Npr∑
j=1

ωrj(ṽrj) + ∆W a.h.f
ind ,

where ∆W a.h.f
ind denotes the induced charge due to the back-reaction of the strings which

are away from half-filling.

2.5 Summary of the excited state formalism

Let us summarise the main features of the excited state formalism developed in this
section. In the thermodynamic limit the Bethe equations become the equations for
densities (2.4). Requiring the free energy to be minimised yields the TBA equations
(2.11). This closed set of non-linear integral equations on ρ̄α

ρα
allows one to determine

the equilibrium densities. Excitations of a finite number of strings above the equilibrium
state can be investigated by examining the shifts of the roots (2.19) arising due to an
excitation. These shifts also satisfy a closed set of non-linear integral equations (2.20),
and with the aid of these equations all the features of an excitation can be extracted.
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Let us clear the notations of the previous subsections and parametrise an excited
state by Np added particles with rapidities vpk , k = 1, . . . , Np, and by Nh holes with
rapidities vhk , k = 1, . . . , Nh. Here the indices pk and hk include the information of the
type of string. The excitation can be encoded in a set of Bethe equations for which the
pseudo-vacuum is the equilibrium state

(−1)ϕa =eiPpk
(vpk )L

Np∏
j=1

eiΦpkpj
(vpk ,vpj )

Nh∏
j=1

e−iΦpkhj
(vpk ,vhj ) , (2.65)

(−1)−ϕa =eiPhk
(vhk )L

Nh∏
j=1

eiΦhkhj
(vhk ,vhj )

Np∏
j=1

e−iΦhkpj
(vhk ,vpj ) . (2.66)

Let us stress that these Bethe equations are only valid for large L. The momentum is
given through eq. (2.36)

Pα = pα − ρβ ? φβα for particle excitations, (2.67)

Pα = −pα + ρβ ? φβα for hole excitations, (2.68)

and the scattering phases Φαβ are determined through the closed set of equations (2.42).
Due to interactions with the equilibrium state the energy of each excited root gets dressed
(2.31)

Eα = εα + T log(1 +
1

Y max
β

)kβα for particle excitations, (2.69)

Eα = −εα − T log(1 +
1

Y max
β

)kβα for hole excitations. (2.70)

Here εα = T log Yα are the psuedo-energies and the constants Y max
α and kαβ are defined

after eq. (2.29). Similarly, for a conserved quantity the corresponding charge of each
excited root gets dressed and is given by (2.47)

Wα = ωα −
ωmax
β

1 + Y max
β

kβα = −dEα
dµ

for particle excitations, (2.71)

Wα = −ωα +
ωmax
β

1 + Y max
β

kβα = −dEα
dµ

for hole excitations, (2.72)

where ωα are the pseudo-charges determined through the closed set of equations (2.44)
and the constant ωmax

α is defined above eq. (2.46). The total change in charge for the
excitation also has a contribution ∆Wind given in eq. (2.48). This is an induced charge
of the system that is not carried by the excited roots, but rather is due to a back-reaction
of the densities.

In the limit of infinite temperature T → ∞ the dressed energy and dressed charge
take their bare values as one expects. The limit of zero temperature T → 0 requires
special attention and is discussed in detail in section 2.4. If some strings are at half-
filling there may be restrictions on allowed excitations given through eq. (2.61) and their
nature may be altered. Regardless of whether this is necessary the dressed energy and
dressed charge of excited roots take their pseudo values in the zero temperature limit.
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3 Hubbard-Shastry models

Now we wish to examine the excitations of the Hubbard-Shastry models. An introduc-
tion to these models can be found in [3], as well as an overview of their equilibrium state.
We will focus here on the A- and B-models as the excitations of the Hubbard model
have been investigated elsewhere, see for example [5] and references therein. Not alone
are these models of great interest but also the B-model in particular provides a good
illustrative example for the application of the formalism developed in section 2. We will
restrict our attention to excitations at zero temperature.

We begin with a brief review of the Hubbard-Shastry A- and B-models. Let us first
write the following general Hamiltonian for a one-dimensional lattice of length L

H =
L∑
j=1

(
Tj,j+1 + κH VH

j,j+1 + κCC VCC
j,j+1 + κSS VSS

j,j+1 + κPH VPH
j,j+1

)
− µN− 2BSz ,

Tj,k = −
∑
σ

[
c†j,σck,σ

(
τ0 + τ1nj,−σ + τ2nk,−σ + τ3nj,−σnk,−σ

)
(3.1)

+ c†k,σcj,σ
(
τ̄0 + τ̄1nj,−σ + τ̄2nk,−σ + τ̄3nj,−σnk,−σ

)]
.

Here the canonically anticommuting fermionic operators c†j,σ create and cj,σ annihilate

electrons of spin σ =↑ or σ =↓ at the j-th site of the lattice. The operator nj,σ = c†j,σcj,σ
is the local particle number operator for electrons of spin σ at site j, µ is the chemical
potential and N =

∑L
j=1 nj,↑+nj,↓, andB is a magnetic field coupling to the z-component

of the spin operator Sz = 1
2

∑L
j=1 nj,↑ − nj,↓. The respective Hubbard, charge-charge,

spin-spin and pair hopping interactions are

VH
j,k =

1

2

(
nj,↑ −

1

2

)(
nj,↓ −

1

2

)
+

1

2

(
nk,↑ −

1

2

)(
nk,↓ −

1

2

)
− 1

4
,

VCC
j,k = ηzj η

z
k −

1

4
=

1

4
(nj,↑ + nj,↓ − 1)(nk,↑ + nk,↓ − 1)− 1

4
,

VSS
j,k =

1

2
(S+

j S−k + S−j S+
k ) + Szj Szk

=
1

2
(c†j,↑cj,↓c

†
k,↓ck,↑ + c†j,↓cj,↑c

†
k,↑ck,↓) +

1

4
(nj,↑ − nj,↓) (nk,↑ − nk,↓) ,

VPH
j,k =

1

2
(η+

j η−k + η−j η+
k ) =

1

2
(c†j,↑c

†
j,↓ck,↓ck,↑ + c†k,↑c

†
k,↓cj,↓cj,↑) .

The A-model and B-models each have one free coupling constant ν that is related to the
parameters given in (3.1) as

κH = 2 cosh 2ν
cosh ν

, κCC = −κSS = κPH = 2
cosh ν

,

τ0 = 1 , τ1 = τ̄2 = −1− i tanh ν , τ3 = 2i tanh ν ,

for the A-model, and

κH = −κCC = κSS = κPH = 2 tanh ν ,

τ0 = 1 , τ1 = τ2 = −1 + sech ν , τ3 = −2τ1 .
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for the B-model.
Now we present the models in their diagonalised form which is how we will view

them in this paper. Here it is more convenient to reparametrise the coupling constant
as

u = sinh ν .

Their Bethe equations are [20]

1 =eiL p(vk)

M∏
j=1

vk − wj − i u
vk − wj + i u

, k = 1, . . . , N ≤ L ,

−1 =
N∏
j=1

wk − vj − i u
wk − vj + i u

M∏
l=1

wk − wl + 2i u

wk − wl − 2i u
, k = 1, . . . ,M ≤ N

2
,

(3.2)

where eip(v) for each of the models (and for completeness for the Hubbard model also) are
given in Table 1, along with the dispersion relations E(p). Note that rapidity variable v
of momentum carrying roots is related to the momentum through y with v = 1

2
(y+1/y),

and so eip(v) is a double valued function of v. We refer to these roots as y-particles and
they are discussed in detail in appendix A.3.

A-model B-model Hubbard

eip(v) i1+yx+

y−x+
y+x+

y−x+ i y

E(p) −2 cos p− 2
√

1 + u2 −2 cos p −2 cos p− 2u

Table 1: The momenta and dispersion relations for the Hubbard-Shastry models.
Here v = 1

2(y + 1/y) and x+ = i(u +
√

1 + u2).

The string hypothesis for the behaviour of the Bethe roots in the thermodynamic
limit is that each root is a member of one of the following types of strings [21, 18]

• y-particle: a charge 1, spin-up momentum carrying particle,

• M |vw-string: a charge 2M , zero spin momentum carrying bound state,

• M |w-string: a zero charge, spin −M bound state,

where M denotes a positive integer. The momentum and the dispersion relation for the
M |vw-strings are

pM |vw(v) =
M∑
j=1

p+

(
v + (2j −M)iu

)
+ p−

(
v − (2j −M)iu

)
,

EM |vw(v) =
M∑
j=1

E+

(
v + (2j −M)iu

)
+ E−

(
v − (2j −M)iu

)
,
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and σ1|vw = sign
(dpM|vw

dv

)
= −1. Here we have adopted the clean notations of [29], which

are compared with the more conventional notations, of say [5], in appendix A.1.
These strings constitute the particle content of the model in the thermodynamic

limit and they are summarised in figure 1. Re-writing the Bethe equations in terms of

u

y+

y−
:
:
: w

y+ y− 1|vw 2|vw 3|vw 3|w2|w1|w

Figure 1: (Colour online) An illustration of string hypothesis for the Hubbard-Shastry models.
The horizontal line represents the real axis while the imaginary direction extends vertically.
The y± refer to the two branches of the y-particle and the×mark the corresponding value of the
v-rapidity variable, which take values on (−1, 1) for the A-model, and on (−∞,−1)∪(1,∞) for
the B-model. The circles mark the rapidities of w roots. The M |vw and M |w strings have real
centres that take values on R. The M |vw-strings are momentum carrying and their momentum
pM |vw and dispersion EM |vw are obtained by summing the contributions of the roots of which
they are composed.

the string solutions they take the form5

1 = eiL py(vy,k)

∞∏
M=1

NM|vw∏
j=1

SM(vy,k − vM,j)
∞∏
N=1

NN|w∏
l=1

SM(vy,k − wN,l) ,

−1 = eiL pM|vw(vM,k)

Ny∏
j=1

SM(vM,k − vy,j)
∞∏
N=1

NN|vw∏
l=1

SMN(vM,k − vN,l) ,

−1 =

Ny∏
j=1

SM(wM,k − vy,j)
∞∏
N=1

NN|w∏
l=1

1

SMN(wM,k − wN,l)
.

(3.3)

The S-matrices are given in appendix A.1. These are the string Bethe equations which
represent the starting point, eq. 2.1, of the formalism developed in section 2.

There are two conserved quantities corresponding to charge and spin, and their re-
spective chemical potentials are µ and B. The energies carried by the strings are influ-
enced by these chemical potentials and are

ey = Ey − µ−B , eM |vw = EM |vw − 2Mµ , eM |w = 2MB . (3.4)

We denote the bare charge of an α-string by wc
α = −∂eα

∂µ
and the bare spin by ws

α =

−1
2
∂eα
∂B

.

5These correct a minor error in eqns. (A.11-A.13) of [3].
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Figure 2: A-model: Plots of Ey(v) and E1|vw(v) for u = 1/2, 1, 2. In the plots of Ey(v) the y+

branch is represented by a solid line and the y− branch is represented by a dashed line.
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Figure 3: A-model: Zero temperature phase diagram in
the µB-plane. The phases identified are: I) empty band,
II) partially filled and spin polarised band, III) half-filled
and spin-polarised band. The line separating phases I and
II is µ+B = 2− 2

√
1 + u2, and the line separating phases

II and III is µ+B = −2− 2
√

1 + u2.

3.1 A-model

Now we examine the zero temperature excitations of the A-model. Let us first recall the
ground state. This is determined by the zero temperature limit of the TBA equations
(2.11)

εy = Ey − µ−B ,

εM |vw = EM |vw − 2Mµ+ εy ~Qy KM ,

εM |w = 2MB + εy ~Qy KM .

(3.5)

The dispersions Ey and E1|vw are plotted as functions of v in Figure 2. The y-particles are
the only strings which have a non-zero density and so the ground state is spin polarised.
As y-particles have charge 1 and spin 1

2
the magnetisation of the ground state is equal

to half of the density. The phase diagram6 is presented in Figure 3. The ground state is
empty in phase I as the energy cost of having electrons in the ground state is too high. In
phase II y-particles enter the ground state and the filling increases with increasing µ, up
to the boundary with phase III where the ground state becomes half-filled. Analysing
the TBA equations (3.5) one can see that the M |vw-strings are type 1 strings while
the M |w-strings are of type 2. The y-particles should be treated as type 1 strings as
discussed in appendix A.3 and so the phase shifts are

φy,M |vw(v, t) = πby,M |vw + ΘM(v − t) , φy,M |w(v, t) = πby,M |w + ΘM(v − t) ,
6We restrict our attention to the quadrant µ ≤ 0 and B ≥ 0 as the other quadrants are related by

symmetries.
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and the dressed momenta are

Py = py , PM |vw = pM |vw −
dpy
dv

~Qy ΘM − πny(2by,M |vw + 1) ,

PM |w = −dpy
dv

~Qy ΘM − πny(2by,M |w + 1) ,

(3.6)

where by,M |w and by,M |vw are the integers that determine the branch of the excitation.
Let us first consider excitations above the half-filled phase III. One does not have

to introduce singular strings through eq. (2.61) as the range of mode numbers for y-
particles Ny + N̄y = L does not change for an excitation. That kyβ = 0 for all β-strings
is a reflection of this. Moreover the dressed energies can be written explicitly as

εy = Ey − µ−B , εM |vw = −2Mµ , εM |w = −EM |vw + 2MB , (3.7)

while the dressed momenta are branch independent and simplify to

Py = py , PM |vw = 0 , PM |w = −pM |vw . (3.8)

Here the identities (A.1.8) have been used. The dressed charge and spin are equal to
their bare values. Thus the y-particles behave as electrons and are gapped, and so there
is an energy cost to remove them from the ground state. Their dressed energy and
momentum take their bare values and so are related as

εy = −2 cosPy − 2
√

1 + u2 − µ−B . (3.9)

The 1|w-string is the magnon and the M |w-strings are their bound states. In B = 0

magnetic field they have quadratic dispersion at low energies, εM |w ∼
√

1+u2−u
M

P 2
M |w,

while in a B > 0 magnetic field they are gapped. The M |vw-strings are not dynamical.
In the strong coupling u → ∞ limit the energy gap for removing an electron goes to
infinity and the physics becomes that of the ferromagnetic spin chain7 [3].

Now we consider excitations above phase II where the filling ranges between 0 and 1.
The dressed energies are given by (3.5) and the dressed momentum by (3.6), and here the
choice of branch becomes important. For convenience we choose by,M |vw = 0, by,M |w = −1
for all M . The range of dressed momentum is then (−π, π) for y-particles, (0, 2π−2πny)
for M |vw-strings and (0, 2πny) for M |w-strings. These should be considered modulo 2π
and it is convenient to plot the dressed momentum of the M |vw-strings and the M |w-
strings in the range (0, 2π). It should be kept in mind that the other branches of the
excitations are obtained by shifts of 2πny. Plots of dressed energy as functions of dressed
momentum for y-particles, M |w-strings and M |vw-strings for various filling at B = 0
and u = 1 are given in Figures 4 and 5. The velocity can easily be read from the
plots as it is the derivative of dressed energy with respect to dressed momentum. Away

7 The ferromagnetic spin-chain Hamiltonian appears at order 1
u and so it is necessary to rescale the

energies appropiately.
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from half-filling the dressed charge and spin of some strings gain dependence on rapidity.
They are given by

ωc
y = 1 , ωc

M |vw = 2M −WM , ωc
M |w = −WM ,

ωs
y =

1

2
, ωs

M |vw = −1

2
WM , ωs

M |w = −M − 1

2
WM ,

(3.10)

where WM(v) = −1 ~Qy KM is a non-negative function that goes to zero both at half-
filling and zero filling. We see that the y-particle behaves as an electron in this phase
also, but that it is now gapless. In B = 0 magnetic field the M |w-strings retain their
quadratic dispersion away from half-filling but they are no longer pure spin, they gain
charge opposite to that of an electron as their energy increases. The dressed spin and
charge of a 1|w-string is plotted as a function of its dressed momentum for various
fillings at B = 0 and u = 1 in Figure 5. In a B > 0 magnetic field the M |w-strings
become gapped. The M |vw-strings become dynamical in phase II but they are gapped
throughout.
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3.2 B-model

Now we discuss the zero temperature excitations of the B-model. Let us begin again by
recalling the ground state. The zero temperature TBA equations are

εy = Ey − µ−B − ε1|vw ?Q1|vw K1 ,

εM |vw = EM |vw − 2Mµ+ εy ~Qy KM − ε1|vw ?Q1|vw K1M ,

εM |w = 2MB + εy ~Qy KM .

(3.11)

The dispersions Ey and E1|vw are plotted as functions of rapidity v in Figure 6. Here
1|vw-strings and y-particles are the only strings that can have non-zero densities. The
phase diagram is presented in Figure 7. For B = 0 there exist only 1|vw-strings and the
ground state has zero magnetisation. In a B > 0 magnetic field some of the bound pairs
get broken introducing y-particles to the ground state. From the TBA equations (3.11)
one can see that the M |vw-strings are type 2 strings while the M |w-strings are of type
1, and the y-particles should be treated as type 2 strings as discussed in appendix A.3.

Let us first focus on excitations over the ground state when it is half-filled and has
zero magnetisation. This is the subregion of phase V where µ0 ≤ µ ≤ 0 and B = 0. The
TBA equations 3.11 can be solved explicitly with solution

ε1|vw = −Ey~s−µ , εM≥2|vw = −2(M−1)µ , εy = Ey−E1|vw ?s , εM |w = 0 . (3.12)
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The M |vw-strings for M ≥ 2 and the M |w-strings are not dynamical. The 1|vw-strings
are half-filled and so we use the prescription (2.61) for handling excitations which change
the range of mode numbers and get

δN s
1|vw = −1

2
δNp

1|vw −
1

2
δNp

y −
∞∑

M=2

δNp
M |vw . (3.13)

Thus only excitations with δNp
1|vw + δNp

y even are allowed, as δN s
1|vw must be an integer.

To calculate the dressed momenta let us make the branch choice b1|vw,M |vw = 1 and
b1|vw,y = 0,

P1|vw = −π + p1|vw −
1

2π
Υ ?

dp1|vw

dv
= −py ~ s , PM≥2|vw = (M − 1)π mod 2π ,

Py = −Ψ + py − p1|vw ? s , PM |w = 0 ,
(3.14)

where we have introduced the useful functions

Υ(v) = Θ1 ? s(v) = i log
[Γ(1

2
+ i v

4u
)Γ(1− i v

4u
)

Γ(1
2
− i v

4u
)Γ(1 + i v

4u
)

]
,

Ψ(v) = Θ2 ? s(v)−Θ1(v) =
π

2
− 2 arctan

[
exp

(πv
2u

)]
.

(3.15)

The range of P1|vw is (−π
2
, π

2
) while the range of Py is (−3π

2
,−π

2
)∪ (π

2
, 3π

2
). Let us remark

that when taken modulo 2π the range of Py will have an overlap. The singular 1|vw-
strings appearing through eq. (3.13) have rapidity vmax = 0 and so carry momentum 0.
The dressed charge and spin are

ωc
y = 0 , ωc

1|vw = 1 , ωc
M≥2|vw = 2M − 2 , ωc

M |w = 0 ,

ωs
y =

1

2
, ωs

M |vw = 0 , ωs
M |w = −M ,

(3.16)

and we observe that the excitations are spin-charge separated in this phase. The removed
1|vw-strings get dressed as holons while added y-particles get dressed as spinons. The
energies and momenta of the holons, antiholons and spinons are

Eh = −ε1|vw = Ey ~ s+ µ , Ph = −P1|vw = py ~ s ,

Eh̄ = −ε1|vw + ε2|vw = Ey ~ s− µ , Ph̄ = −P1|vw + P2|vw = −π sign + py ~ s ,

Es = Es̄ = εy = Ey − E1|vw ? s , Ps = Ps̄ = Py = −Ψ + py − p1|vw ? s .

(3.17)

Here an antiholon is identified as a composite excitation of a holon and a 2|vw-string
because a 2|vw-string is not dynamical. Let us remark that through eqs. (3.12), (3.14)
and (3.16) it can be seen that its addition can also be regarded as the action of the
charge su(2) raising operator on a state. Similarly the spinon s̄ is a composite of a
spinon s and a 1|w-string. Plots of Eh(Ph) and Es(Ps) are given in Figure 8 for various
values of u. The velocities can again easily be read from the slopes. The holons are
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Figure 8: Plots of Eh(Ph) and Es(Ps) for the half-filled B-model at µ = 0, B = 0.

gapped for µ > µ0. The gap goes to zero in the weak coupling u → 0 limit while the
gap has a maximal value of 2− 2 log 2 ≈ 0.6137 at µ = 0 in the strong coupling u→∞
limit. The spinons are gapless and display an “hourglass” dispersion. The similarity to
experimental data on spinon scattering in some cuprate materials, say Fig. 2 of [17],
cannot go unremarked. In the strong coupling u → ∞ limit the two lower wings join
differentiably at π and the upper wings can be understood as the contributions of dressed
electrons on doubly occupied sites [3].

Next let us calculate the dressed scattering phases to examine the scattering of the
holons and spinons. First we present explicitly the bare scattering phases

φ1|vw,1|vw(v, t) = 2π − π sign(v) + Θ2(v − t) ,
φ1|vw,M≥2|vw(v, t) = 2π − 2π sign(v) + Θ1M(v − t) ,

φ1|vw,y(v, t) = φy,1|vw(v, t) = −π sign(v) + Θ1(v − t) ,
φ1|vw,M |w(v, t) = 0 , φy,y(v, t) = 0 , φy,M |w(v, t) = −π sign(v) + ΘM(v − t) .

To calculate the dressed scattering it will be necessary to redistribute the contributions
of the singular strings as in eq. (2.64). Solving eqs. (2.42) for Φ1|vw,1|vw, ΦM |vw,1|vw and
Φy,1|vw we get

Φ1|vw,1|vw(v, t) = π − π sign(v) + Υ(v) + Υ(v − t) ,
ΦM≥2|vw,1|vw(v, t) = −2π sign(v) + ΘM−1(v) + ΘM−1(v − t) ,

Φy,1|vw(v, t) = −π − π sign(v)−Ψ(v)−Ψ(v − t) ,
(3.18)

where the identity π sign?K1 = Θ1 has been used. As we are interested in the scattering
phase shift, which is defined modulo 2π, sign(v) can be dropped from (3.18). Taking
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into account the scattering phases of singular strings the dressed scattering phases are

Φh.f.
1|vw,1|vw(v, t) = Υ(v − t) , Φh.f.

y,y (v, t) = π −Υ(v − t) ,
Φh.f.
αβ (v, t) = Φh.f.

βα (v, t) , Φh.f.
y,1|vw(v, t) = π + Ψ(v − t) ,

Φh.f.
1|vw,M≥2|vw(v, t) = π + ΘM−1(v − t) , Φh.f.

y,M |w(v, t) = π + ΘM(v − t) ,
Φh.f.
M |vw,N |w(v, t) = 0 , Φh.f.

y,M≥2|vw(v, t) = 0 ,

Φh.f.
M≥2|vw,N≥2|vw(v, t) = δMNπ + ΘMN(v − t)−ΘM+N(v − t)−ΘM+N−2(v − t) ,

Φh.f.
M |w,N |w(v, t) = δMNπ −ΘMN(v − t) .

Let us compute explicitly the phase shifts for the charge triplet and charge singlet
excitations.
Charge triplet: holon-holon scattering. Here two 1|vw-strings with rapidities v1 and v2

are removed. Let us say that v1 has a greater velocity dεh
dPh

than v2, and let us denote
this as v1 � v2. Then

F1|vw(v) = −Φh.f.
1|vw,1|vw(v, v1)− Φh.f.

1|vw,1|vw(v, v2)

and the phase shift is
δCT = π + Υ(v1 − v2) . (3.19)

Charge singlet: holon-antiholon scattering. Here two 1|vw-strings with rapidities v1 � v2

are removed and a 2|vw-string with rapidity ṽ is added. The rapidity ṽ of the added
2|vw-string can be fixed through eq. (2.41) using P2|vw = 0,

F2|vw = −Φh.f.
2|vw,1|vw(v, v1)− Φh.f.

2|vw,1|vw(v − v2) + Φh.f.
2|vw,2|vw(v − ṽ)

= π −Θ1(v − v1)−Θ1(v − v2) + Θ2(v − ṽ) ,

and so F2|vw(ṽ) = π gives ṽ = v1+v2
2

. Here

F1|vw(v) = −Φh.f.
1|vw,1|vw(v, v1)− Φh.f.

1|vw,1|vw(v, v2) + Φh.f.
1|vw,2|vw

(
v,
v1 + v2

2

)
and thus

δCS = Υ(v1 − v2)−Θ1

(v1 − v2

2

)
. (3.20)

Let us remark that these results as functions of the rapidity are the same as those of the
half-filled Hubbard model, see e.g. eqs. (7.124) and (7.126) of [5]. The scattering shifts
for the spin triplet, singlet and spin-charge excitations can be computed similarly and
also agree with those of the Hubbard model, eqs. (7.139), (7.141) and eq. (7.145) of [5].

Now let us consider the less than half-filled phase while still keeping B = 0. In
Figure 7 this is the portion of phase IV along the µ-axis. The magnetisation is zero and
the filling is 2n1|vw. Here again εM |w = 0 and PM |w = 0 for M |w-strings but to find the
dressed energies and momenta of M |vw-strings and y-particles one must solve the TBA
equations (3.11) numerically. Taking all bαβ = 0, the dressed momentum for y-particles

29



-3 -2 -1 0 1 2 3

-1

0

1

2

n = 0.9
n = 0.6
n = 0.3

ε 1
|v

w

P1|vw

-3 -2 -1 0 1 2 3

1

1.2

1.4

1.6

n = 0.3
n = 0.6
n = 0.9

ω
c 1
|v

w

P1|vw

Figure 9: B-model: Plots of dressed energy ε1|vw(P1|vw) and dressed charge ωc
1|vw(P1|vw) at

u = 1 and B = 0 for various fillings.

takes values in πn1|vw < |Py| < π + πn1|vw, for 1|vw-strings in πn1|vw < |P1|vw| < π, for
M |vw-strings with M ≥ 3 odd in 2πn1|vw < |PM |vw| < π, and for M |vw-strings with M
even in π + 2πn1|vw < |PM |vw| < 2π. These ranges should be considered modulo 2π but
it is more convenient in plots to use the ranges specified here. The other branches are
obtained by shifts of 2πn1|vw. The dressed spins of the excited strings take their bare
values while the equations for dressed charge are

ωc
y = 1− ωc

1|vw ?Q1|vw K1 , ωc
M |vw = 2M − ωc

1|vw ?Q1|vw K1M , ωc
M |w = 0 . (3.21)

These are rapidity dependent for the y-particles and M |vw-strings. Let us remark
however that at v = ±∞ the dressed charges take the values they have at half-filling
(3.16)

ωc
y(±∞) = 0 , ωc

1|vw(±∞) = 1 , ωc
M≥2|vw(±∞) = 2M − 2 . (3.22)

In Figure 9 the dressed energy and dressed charge of a 1|vw-string as function of its
dressed momentum is plotted for various fillings at u = 1. The corresponding plots for
y-particles are given in Figure 10 and the “hourglass” behaviour about π is seen again.
Both excitations are gapless. The M |vw-strings with M ≥ 2 are dynamical but have
a gap of −2(M − 1)µ. The 1|vw-strings remain spinless but y-particles with non-zero
energy here have dressed charge in addition to their spin. At low energies the charge
carried by a y-particle scales with its energy, and moreover the magnitude of the charge
carried increases sharply as the filling is decreased. Thus the excited quasi-particles
are not spin-charge separated away from half-filling. Nevertheless, in the limit of zero
energy the quasi-particles carry either spin or charge and so this is compatible with
spin-charge separated wave-like excitations that one may expect in the continuum limit,
as in the Luttinger liquid. Let us remark that, as can be seen from Figure 9, the charge
of a zero-energy 1|vw-string becomes greater than 1 at less than half-filling and thus we
expect that the charge carried by a charge-wave gets increased at reduced filling.

It is noteworthy that at B = 0 one can clearly see that the 1|vw-string is a spin-
singlet bound state. Let us show this. The spin singlet excitation is achieved by adding
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Figure 10: B-model: Plots of dressed energy εy(Py) and dressed charge ωc
y(Py) at u = 1 and

B = 0 for various fillings.

two y-particles with rapidities v1 and v2, and adding a 1|w-string with rapidity w which
we initially take to be arbitrary. The relevant dressed phase shifts are

Φy,y(v, t) = −
(
K1 ?Q1|vw Φ1|vw,y

)
(v, t) ,

Φ1|vw,y(v, t) = −π sign(v) + Θ1(v, t)−
(
K2 ?Q1|vw Φ1|vw,y

)
(v, t) ,

Φy,1|w(v, t) = π + Θ1(v − t) , Φ1|w,y(v, t) = π + Θ1(v − t) , Φ1|w,1|w(v, t) = π −Θ2(v − t) .

The rapidity w is fixed to w = v1+v2
2

by eq. (2.41) as P1|w = 0. The scattering phase
shift is

Fy(v1) = Φy,y(v1, v1) + Φy,y(v1, v2) + π + Θ1

(v1 − v2

2

)
. (3.23)

Note that Θ1(±iu) = ±i∞ and so the final term gives rise to a pole of the S-matrix at
v1 = v2− 2iu. Although the first two terms cannot be obtained explicitly it can be seen
analytically that they cancel the pole through the term Θ1 in Φ1|vw,y for v ∈ Q1|vw, while
for v /∈ Q1|vw the pole remains. The pole corresponds to a bound state of a y−- and a
y+-particle as ImP−(v) > 0 for Im v 6= 0 and ImP+(v) < 0 for Im v 6= 0. The bound
state, with rapidity v, thus corresponds to a spin singlet excitation with

v1 = v − iu , v2 = v + iu , w̃ = v . (3.24)

and the changes of energy and momentum are

∆E = ε1|vw(v) , ∆P = P1|vw(v) for v /∈ Q1|vw . (3.25)

Here the identity K1(v + iu− i0) + K1(v − iu + i0) = δ(v) + K2(v) was used to obtain
the energy and eq. (2.36) was used to obtain the momentum. Hence the bound state is
indeed an added 1|vw-string. This indicates that spin-spin interactions are responsible
for the pairing of the electrons into 1|vw-strings.

Let us consider briefly the effect of a B > 0 magnetic field at half-filling, the interior
of phase V in Figure 7. Here there are both 1|vw-strings and y-particles in the ground
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Figure 11: B-model: Plots of dressed energy ε1|vw(P1|vw) and dressed charge ωs
1|vw(P1|vw) at

u = 1 and µ = 0 for various values of magnetisation m.

state and it has a magnetisation between 0 and 1/2. The 1|vw-strings are at half-filling8

and so excitations must satisfy (3.13), that is, only excitations with δNp
1|vw + δNp

y even

are allowed. The 1|vw-strings are gapped and have dressed charge 1 while the y-particles
have dressed charge zero and are gapless. TheM ≥ 2|vw-strings are non-dynamical while
the M |w-strings are dynamical but gapped. The spin dressing equations for y-particles
and 1|vw-strings are

ωs
y =

1

2
− ωs

1|vw ? K1 , ωs
1|vw = ωs

y ~Qy K1 − ωs
1|vw ?Q1|vw K1M . (3.26)

Let us remark that ωs
y(±∞) = 1, ωs

1|vw(±∞) = −1
2

and thus at zero temperature the
dressed spin jumps as soon as a magnetic field is introduced. This is true for any filling.
Plots of the dressed energy and dressed spin of a 1|vw-string are given in Figure 11 for
various magnetisations at u = 1 and µ = 0. The corresponding plots for y-particles are
given in Figure 12.

We conclude by comparing our findings to studies, respectively [22] and [23], of
related models the supersymmetric t-J model [24]-[26] and Essler-Korepin-Schoutens
(EKS) model [27]-[28]. These share similar phase diagrams, indeed in the limit of strong
coupling the B-model reduces to the EKS-model with coupling U = 4, and the super-
symmetric t-J model also shares their common ground state. Thus the excitations are
expected to be very similar and this is the case. The dressing of spin and charge of
excitations, which we describe in detail, is suggested at in [22] and is not discussed in
[23]. In particular we do not observe the existence of an electronic excitation carrying
charge 1 and spin 1

2
for any filling as claimed in [23]. In our language the excitation they

consider is understood as a y−-particle and it carries these charge and spin only at zero
filling where it is undressed. An interesting feature of the EKS model is the presence
of gapless excitations for U < 4 ln 2 ∼ 2.77 that they call localons, and in our language
correspond to M |vw-strings with M ≥ 2. These are gapped throughout the B-model

8There are no holes for 1|vw-strings here. There are less of them than there are at B = 0 as their
range of mode numbers is decreased by the presence of the y-particles.
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however as is to be expected due to the presence of a charge gap at half-filling. Let us
comment on a difference between the B-model and its strong coupling limit related to
the hourglass-like dispersion of the y-particles, see Figures 8 and 10. In the u → ∞
limit the dispersion curves split into two branches, one upper one lower, that touch
tangentially at one point. These correspond to the y+ and y− branches of the y-particle
respectively. For the supersymmetric t-J model excitations corresponding to the upper
branch do not appear. For finite u however the structure of the excitation is no longer
of an upper and lower branch but rather of left and right moving excitations. Finally
we should comment on the advantages of our formalism over those of say [22, 23]. By
working directly with the Bethe strings we obtain a clear description of excitations over
the pseudo-vacuum reference state instead of the somewhat unnatural reference state
which is the preferred choice of [22, 23] because it makes it easier to work with Bethe
roots. Furthermore, overcoming the need to deal directly with mode numbers and using
dressing equations (2.44) to determine the dressing of spin and charge allowed us to
straightforwardly identify the nature of the quasi-particle excitations.
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A Appendices

A.1 Conventions, definitions and notations

Convolutions

The symbol ? denotes the following “convolution”

g ? h ≡
∫ ∞
−∞

dt g(u, t)h(t, v) , (A.1.1)

If g (or h) is a function of a single variable then one just drops u (or v or both), e.g. if
g = g(t) then g ? h ≡

∫∞
−∞ dt g(t)h(t, v). However, if g or h is a kernel defined through

a function of one variable then it should be understood as g(t, v) ≡ g(t− v).
In section 2 we have expressions of the form gαβ ? hβγ and here convolution is under-

stood to be over the domain of the rapidity of the β-string. In section 3 we deal directly
with the Hubbard-Shastry models for which the y-particles have a non-trivial domain
of rapidity, see appendix A.3. We use the symbol ~ to denote a contour integral in
the counter-clockwise direction around the branch cut of x(v), given by eqn. (A.3.15).
Explicitly, for the A-model one has

gαy~hyγ =

∫
|t|≤1

dt (gα−(u, t)h−γ(t, v)− gα+(u, t)h+γ(t, v)) = gα− ?̂ h−γ−gα+ ?̂ h+γ ,

while for the B-model

gαy~hyγ =

∫
|t|≥1

dt (gα−(u, t)h−γ(t, v)− gα+(u, t)h+γ(t, v)) = gα− ?̌ h−γ−gα+ ?̌ h+γ ,

where
gα±(u, t) ≡ gαy(u, t± i0) , h±γ(t, v) ≡ hyγ(t± i0, v) ,

and ?̂ and ?̌ denote convolutions with the integration over |t| ≤ 1 and |t| ≥ 1 respec-
tively.

Matching the notations and conventions

Most of our notations and conventions come from [29], and here we compare them to
those of [5].

In the Bethe ansatz we denote particles momenta as pj and auxiliary roots as wj, so
they are related to the ones in [5] as pj ↔ kj, wj ↔ Λj.

In the string hypothesis a M |w-string is a Λ string of length M , a w-particle is a
Λ-string of length 1, a M |vw-string is a k-Λ string of length M , and y-particles could
have been called k-particles.

In the TBA equations the Y-functions are related to the ones in [5] as YM |w ↔ ηM ,
YM |vw ↔ η′M , Y−(sin(k))↔ ζ(k) , |k| ≤ π/2 and Y+(sin(k))↔ ζ(k) , |k| ≥ π/2.
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Kernels and S-matrices

In section 3 we deal explicitly with various S-matrices and kernels which we list here

KM(v) =
1

2πi

d

dv
logSM(v) =

1

π

uM

v2 + u2M2
, SM(v) =

v − i uM
v + i uM

, (A.1.2)

KMN(v) =
1

2πi

d

dv
logSMN(v) = KM+N(v) +KN−M(v) + 2

M−1∑
j=1

KN−M+2j(v) , (A.1.3)

SMN(v) = SM+N(v)SN−M(v)
M−1∏
j=1

SN−M+2j(v)2 = SNM(v) , (A.1.4)

s(v) =
1

2πi

d

dv
logS(v) =

1

4u cosh πv
2u

, S(v) = − tanh
(πv

4u
− iπ

4

)
, (A.1.5)

Let us give also explicitly the functions ΘM(v) = 2 arctan( v
uM

),

ΘMN(v) = ΘM+N(v) + ΘN−M(v) + 2
M−1∑
j=1

ΘN−M+2j(v) . (A.1.6)

Some useful identities

1 ? KM = 1 , KM ? KN = KM+N , 1 ? s =
1

2
,

K1 − s ? K2 = s , KM+1 − s ? KM − s ? KM+2 = 0 .
(A.1.7)

dpy
dv

~KM = −dpM |vw
dv

, Ey ~KM = −EM |vw . (A.1.8)

π sign ? KM = ΘM . (A.1.9)

A.2 Dressed momentum as a variable

In the text we have chosen to parametrise all quantities using the v-rapidity variable
for which the S-matrices take a difference form. Here we would like to point out that
parametrising in terms of dressed momentum has some interesting features. Dressed
momentum as a function of v is given in eq. (2.36) as Pα = pα − ρβ ? φβα. It is defined
in terms of the density with respect to which the momentum gets dressed. By inversion
one obtains vα(P ).

The densities parametrised in terms of P are related to those parametrised in terms
of v as ρα(P ) =

∣∣dvα
dP

∣∣ ρα(vα(P )
)
. It is worthwhile here to choose a different normalisation

for the densities so let us introduce ρ̃α = 1
2π
ρα and ˜̄ρα = 1

2π
ρ̄α. The equation for densities

eq. (2.4) then simplies dramatically to

ρ̃α(P ) + ˜̄ρα(P ) = 1 , (A.2.10)
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for the density through which the dressed momentum has been introduced, as can be
seen from (2.37). Remarkably the densities are non-interacting in this parametrisation.
Moreover the densities are related to the functions Yα simply as

ρ̃α(P ) =
1

1 + Yα(P )
. (A.2.11)

Next consider the expansion (2.19) in terms of dressed momentum. Let us define ζ̃α
through

P̃α,k − Pα,k =
ζ̃α(Pα,k)

L
. (A.2.12)

The closed equation for ζ̃α takes the form

ζ̃α = ζ̃β ρ̃β ? K̃βα − φαa + φαr , (A.2.13)

where K̃αβ(P,Q) = dvα(P )
dP

Kαβ(vα(P ) − vβ(Q)), and here the shift function is just −ζ̃α.
The dressing equations also take a nice form, for example for dressed charge one has

ωα = wα + ωβ ρ̃β ? K̃βα . (A.2.14)

Finally, the induced charge term (2.48) becomes ∆Wind = −ζ̃αωα ? ρ̃′α, with ρ̃′α = dρ̃α
dP

.

A.3 The y-particles of the Hubbard-Shastry models

In this appendix we describe the y-particles of the Hubbard-Shastry models. These
do not fit into the classification of strings as type 1 and type 2 in section 2 and so we
indicate how the formalism developed there can be applied to them. First it is convenient
to introduce the two functions

xA(v) = v + v

√
1− 1

v2
, xB(v) = v + i

√
1− v2 . (A.3.15)

The function xA has a cut along (−1, 1) and the function xB has a cut along (−∞,−1)∪
(1,∞). Let us define IA,B

+ and IA,B
− to be respectively the upper and lower edges these

cuts. For values of v on the cuts we define xA,B(v) = xA,B(v + i0). Then, since v =
1
2
(y + 1/y), for any given v one has two possible corresponding y-roots and they can be

parametrized as

y+ = x(v) , y− =
1

x(v)
, (A.3.16)

so that in terms of the v-rapidity the y-roots are split into two subsets. The y-particles
can thus be regarded as a string whose v-rapidity takes values on a two-sheeted Riemann
surface. For the Hubbard and A-models we take x(v) = xA(v) and so for these models
Iy = IA

+ ∪ IA
− , while for the B-model we take x(v) = xB(v) and here Iy = IB

+ ∪ IB
−.

Now let us address the definition of the counting function for these y-particles. As
for the type 1 and type 2 strings identified in section 2, we wish to define the counting
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function zy so that it is continuous everywhere except at the maximum of the pseudo-
energy εy of the y-string. This is achieved at the cost of the counting function being
an increasing function of v, and thus care must be taken about how the densities are
defined in order to ensure that they are positive. Let us restrict ourselves to the parity
invariant Hubbard-Shastry models and let us assume without loss of generality9 that the
minimum of εy(v) is on the edge IA,B

+ . Then we define the counting function as

Lσ+zy(v) = πϕy + Lpy(v) +
∑
β

Nβ∑
n=1

φyβ(v, vβ,n) , (A.3.17)

where the range of p is chosen to be continuous everywhere along IA,B
± except at the

value v = vmax ∈ IA,B
− , the value of v corresponding to the maximum of εy(v), and the

scattering phases φyβ are defined as in eq. (2.13) for the case y+ = xA and as in eq.

(2.14) for the case y+ = xB. For the Hubbard-Shasrty models σ+ = sign(dp+
dv

) = −1

and σ− = sign(dp−
dv

) = 1 and so zy is an increasing function of v for v ∈ IA,B
+ and it

is a decreasing function of v for v ∈ IA,B
− . This ensures that the counting function is

increasing on the contour clockwise around the cut of xA,B(v) (that goes along IA,B
+ on

the upper side and oppositely along IA,B
− on the other) with the exception of the point

vmax ∈ IA,B
− at which it is discontinuous. When introducing the densities however it is

necessary to include the factor σ− for the density of roots on the edge IA,B
− in order to

ensure that this density is positive. Thus we have

ρ± + ρ̄± =
1

2π

∣∣∣∣dp±dv

∣∣∣∣+K±β ? ρβ , (A.3.18)

where

K±β = σ±K±β , K±β(v) =
1

2πi

d

dv
logS±β(v) , (A.3.19)

and

ρy(v) =

{
ρ+(v) if v ∈ I+

ρ−(v) if v ∈ I−
, ρ̄y(v) =

{
ρ̄+(v) if v ∈ I+

ρ̄−(v) if v ∈ I−
. (A.3.20)

Finally let us remark that K+β = −K−β as S+β = S−β, and so

kyβ = 1 ~Kyβ = 0 , (A.3.21)

for all β-strings.
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