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Abstract  18 

Ophiolite complexes preserved along the Yarlung Tsangpo suture zone (YTSZ) and obducted onto 19 

the northern continental margin of India in southern Tibet represent the remnants of the once 20 

extensive Permian–Mesozoic Neo-Tethyan Ocean that separated India from Asia. Complete 21 

ophiolite successions are preserved near Xigaze, whereas the rest of the belt is essentially 22 

represented by mantle rocks with subordinate disrupted lower crustal rocks. U-Pb zircon LA-MC-23 

ICP-MS geochronology on two gabbro samples from the Luobusa ophiolite yielded concordant data 24 

with mean 206Pb/238U ages of 149.9 ± 1.4 (2σ) Ma and 150.0 ± 5.0 Ma. These ages are in contrast to 25 

a younger age of 131.8 ± 1.0 Ma obtained from a pegmatitic gabbro in Xigaze. Five U-Pb zircon 26 

TIMS ages from gabbroic samples in the western portion of the ophiolite belt reveal that the 27 

Dangxiong ophiolite formed between 126.7 ± 0.4 Ma and 123.4 ± 0.8 Ma. Zircons from the 28 

Jungbwa ophiolite have similar ages of 123.4 ± 0.8 Ma and 123.9 ± 0.9 Ma. A single zircon 29 

analysed from a gabbro in Kiogar has an age of 159.7 ± 0.5 Ma. Geochronological data reported 30 

here show YTSZ ophiolites formed in association with intra-oceanic subduction zone systems and 31 

are related a significant tectonic episode within the Tethyan Ocean during Late Jurassic to Early to 32 

mid Cretaceous times.  33 

 34 

  35 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/gr/viewRCResults.aspx?pdf=1&docID=2316&rev=1&fileID=165554&msid={E4E9CF5E-50C3-4AED-8ED1-E925B5F4C145}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

Introduction 36 

The India-Asia collision is marked by the Yarlung Tsangpo suture zone (YTSZ) in southern 37 

Tibet and beyond into northern India along the correlative Indus suture. For at least 2500 km this 38 

suture forms the boundary between the Tethyan Himalaya of the Indian plate to the south and the 39 

collage of plates that make up Asia to the north. Ophiolite complexes, preserved both along the 40 

suture and obducted onto the northern margin of India, provide our only evidence of the age and 41 

composition of the once extensive eo-Tethyan Ocean that separated India from the Lhasa Block on 42 

southern margin of Eurasia. Early interpretations indicated that the YTSZ ophiolites were formed in 43 

a mid-ocean ridge (MOR) environment and consumed along a single zone of convergence along the 44 

southern margin of Eurasia (Nicolas et al., 1981; Allegre et al., 1984; Girardeau et al., 1985b; Wang 45 

et al., 1987). In contrast, recent work (summarized in Hébert et al., 2012) has shown that most 46 

ophiolites possess supra-subduction zone (SSZ) geochemical signatures, except for portions of the 47 

Luobusa ophiolite in SE Tibet, parts of the Jungbwa massif in SW Tibet and the lower part of the 48 

Spontang ophiolite in northern India (Corfield et al., 2001), where evidence for MOR-type 49 

magmatism is preserved. Moreover, rocks associated with at least phases of two intra-oceanic island 50 

arc development have been recognized along the suture (Aitchison et al., 2000; Corfield et al., 51 

2001; Malpas et al., 2003; Miller et al., 2003; Mahéo et al., 2004; Hébert et al., 2012). Most 52 

Himalayan-Tibetan ophiolites are thought to have been emplaced onto the northern passive margin 53 

of the Indian plate during Late Cretaceous-Paleocene times (Searle, 1983, 1986; Allegre et al., 54 

1984; Searle et al., 1997; Aitchison et al., 2000, 2007a; Davis et al., 2002; Malpas et al., 2003; 55 

Aitchison and Davis, 2004; Ding et al., 2005; Guilmette et al., 2009; 2012; Hébert et al., 2012).  56 

One of the keys to advancing the understanding YTSZ zone ophiolites is to constrain the 57 

time at which magmatic rocks crystallised and during formation of the ophiolites. The published 58 

age data from these ophiolites are (summarized in Hébert et al., 2012) and shown in Fig. 1. 59 

Biostratigraphic dating suggests that the Xigaze ophiolite was formed in the Early Cretaceous 60 

(Ziabrev et al., 2003), which is in accordance with the U-Pb zircon ages (Göpel et al., 1984; Malpas 61 

et al., 2003; Wang et al., 2006). Other U-Pb zircon ages ranging from Jurassic to Late Cretaceous 62 

have been published for published from the Zedong, Dangxiong, Spongtang and Muslim Bagh 63 

ophiolites (Pedersen et al., 2001; McDermid et al., 2002; Wei et al., 2006; Kakar et al., 2012). Ages 64 

determined using other isotopic systems such as Sm-Nd have large errors and do not constrain 65 

formation of the ophiolite crustal sequence. High-grade metamorphic rocks have been commonly 66 

found within the sub-ophiolitic melanges (Guilmette et al., 2007; 2009; 2012). These metamorphic 67 

sole rocks are traditionally interpreted as derived from metamorphic soles formed beneath the 68 

ophiolites during their initial intra-oceanic displacement (e.g. Williams and Smythe, 1973; Malpas, 69 

1979; Searle and Malpas, 1982; Wakabayashi and Dilek, 2000; Searle and Cox, 2002). Although 70 
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their ages potentially provide important constraints on obduction processes some recent work 71 

suggests that such metamorphic rocks may be associated with ophiolite generation rather than 72 

emplacement (Dewey and Casey, 2011). In this paper we present new U-Pb zircon ages for five 73 

different massifs of the YTSZ ophiolites from southeastern to southwestern Tibet (Luobusa, 74 

Xigaze, Dangxiong, Jungbwa and Kiogar). We use these data to determine the timing of ophiolite 75 

genesis and elucidate how these ages might be related to the inferred timing of intra-oceanic 76 

displacement, emplacement onto Indian continental margin and ultimate incorporation into the 77 

Himalayan orogenic belt.  78 

 79 

Background 80 

Regional Geology 81 

The southern margin of the Tibetan plateau is characterized by a number of east-west 82 

trending terranes. From the north to the south, it is marked by the Lhasa terrane, which incorporates 83 

the Jurassic to Eocene Gangdese batholith and associated Linzizong extrusives. The Gangdese 84 

granites have U-Pb zircon ages as old as 205 Ma and as young at 34 Ma (Ji et al., 2012) with the 85 

majority of rocks dated thus far between 65-41 Ma (Ji et al., 2009). The calc-alkaline Linzizong 86 

volcanics (andesites, dacites, rhyolites) are the extrusive component to the Gangdese granites and 87 

have 40Ar/39Ar ages ranging from Cretaceous to Eocene with the majority of data suggesting the 88 

most extensive component erupted around 50 Ma (Lee et al., 2009). South of the granitic Gangdese 89 

batholith lie a series of Mid-Late Cretaceous forearc volcaniclastic turbidites (Xigaze terrane) that 90 

were derived from a source region to the north (Dürr, 1996; Aitchison et al., 2011; Wang et al., 91 

2012). The suture zone between India and Eurasia itself consists of a series of dismembered 92 

ophiolites and associated rocks of the Cretaceous Dazhuqu terrane (Aitchison et al., 2000). Other 93 

structural domains include examples of a series of Mid-Jurassic intra-oceanic arc rocks (Zedong 94 

terrane) and a Cretaceous subduction-related accretionary complex (Bainang terrane), occurring 95 

elsewhere along the suture zone (Aitchison et al., 2000 and references therein).  96 

Luobusa massif and associated Zedong terrane ophiolitic rocks 97 

The Luobusa massif is c. 1 km thick and extends for c. 40 km in an east-west direction, 98 

occurring to the immediate north of Luobusa Village in southeast Tibet (Fig. 2a). Although 99 

elsewhere ophiolitic massifs are generally thrust southward onto the northern margin of India as 100 

Luobusa post collisional back-thrusting along the Great Counter thrust (Gansser, 1964) has resulted 101 

in northward emplacement of the massif above an ophiolitic melange, which in turn is thrust over 102 

Lower Miocene Gangrinboche conglomerates (Aitchison et al., 2002b, 2009). To the south, the 103 

ophiolite is overthrust by rocks of Indian affinity (Zhou et al., 1996; Yamamoto et al., 2007). The 104 

bulk of the ophiolite is essentially represented by a mantle sequence, which comprises harzburgite, 105 
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dunite and chromitite. The chromitites host a variety of rare ultrahigh-pressure minerals such as 106 

diamond, moissanite, native metal and PGE alloys (Bai et al., 1993; 2000; Robinson et al., 2004). 107 

Elsewhere, these mantle rocks are further cut by diabase and gabbro dykes. The details of 108 

petrographical and geochemical relationships of the Luobusa ophiolite have been described by Zhou 109 

et al. (1996, 2005) who argued that these rocks formed in a two-stage process. The peridotites are 110 

interpreted to represent residues of melting at a mid-ocean ridge that were subsequently modified by 111 

supra-subduction zone magmatism (Griselin et al., 1999; Zhou et al., 2005). An intra-oceanic arc 112 

was possibly created by the latter magmatic event and is likely represented by the rocks of the 113 

Zedong terrane (Aitchison et al., 2000. 2007b; McDermid et al., 2002).  114 

 The Zedong terrane is best seen near the township of Zedong, c. 40 km west of Luobusa 115 

where the whole sequence is overturned and overthrust by the Dazhuqu terrane ophiolite. In places, 116 

island arc tholeiitic pillow basalts are overlain by red ribbon cherts. This sequence is further 117 

covered by a succession of autoclastic breccias of shoshonitic affinity, which is cut locally by 118 

basaltic to dacitic dykes (McDermid et al., 2002; Aitchison et al., 2007b). It is possible that rocks 119 

assigned to Dazhuqu and Zedong terranes shared, at least in part, a common history. However, they 120 

are in faulted contact and as noted by (Hébert et al., 2012) resolution of their original relationships 121 

awaits further investigation.  122 

A Sm-Nd age of 177 ± 31 Ma has been reported for a gabbroic dyke of the Luobusa 123 

ophiolite (Zhou et al., 2002). Ophiolitic rocks of the Zedong terrane have been more extensively 124 

dated by U-Pb ion microprobe, Ar-Ar geochronology and radiolarian biostratigraphy. The 125 

radiometric dates of the volcanic rocks and associated plutonic rocks have a wide range of 152-163 126 

Ma whereas the chert, which overlies island arc tholeiitic pillow basalts at the base of the sequence, 127 

contains radiolarians indicative of a possible Bathonian through lower Callovian (circa 168 -162 Ma; 128 

Gradstein et al., 2012) age range (McDermid et al., 2002; Aitchison et al., 2007b). Amphibolites 129 

from the melange zone structurally beneath the Luobusa ophiolite that are inferred to represent 130 

fragments of a metamorphic sole (Malpas et al., 2003) have an Ar-Ar amphibole age of 85.7 ± 0.9 131 

Ma and a biotite age of 80.6 ± 0.6 Ma. A further report of a 162.9 ± 2.8 Ma U/Pb zircon SHRIMP 132 

age from a diabase in the Luobusa ophiolite exists in Chinese literature (Zhong et al., 2006b). 133 

Ophiolitic massifs in the Xigaze area 134 

Several massifs form a near continuous ophiolite belt, stretching east-west over a distance of 135 

c. 150 km near Xigaze, SW of Lhasa (Fig. 2b). Individual massifs are up to c. 2 km thickness and 136 

collectively the belt resembles a classical complete ophiolite succession in that mantle peridotite 137 

(mainly harzburgite with minor dunite, lherzolite and wehrlite) is overlain by layered and intrusive 138 

gabbro (Nicolas et al., 1981; Girardeau et al., 1985c; Wang et al., 1987; Hébert et al., 2012; Bao et 139 

al., 2013; Dai et al., 2013). This sequence in turn passes upward to a sheeted dyke complex, which 140 
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feeds pillow lavas interbedded with radiolarian chert. The ophiolite is everywhere separated from 141 

Upper Cretaceous siliciclastic turbidites of the Xigaze terrane by a late stage south-dipping, north-142 

vergent backthrust (part of Gansser's (1964) Great Counter thrust system; Aitchison et al., 2000, 143 

2002a, 2007a; Aitchison and Davis, 2004; cf. Wang et al., 2012). The volcaniclastic sedimentary 144 

cover of the ophiolite differs from that of the Xigaze terrane over which the ophiolite has been 145 

back-thrust. It is dominated by basaltic detritus and has appreciable quantities of detrital magnetite. 146 

Where present, felsic material is concentrated in tuffaceous horizons (Ziabrev et al., 2003; 147 

Aitchison and Davis, 2004). In contrast volcaniclastic detritus in the Xigaze turbidites is dominated 148 

by material of rhyolitic to dacitic compositions (Dürr, 1996). To the south, the ophiolite lies in the 149 

footwall of a fault contact with the Tethyan Himalayan turbidites along another strand of the north-150 

directed Great Counter thrust system (Gansser, 1964). Although it has previously been postulated 151 

that the ophiolite formed at a MOR (Nicolas et al., 1981; Girardeau et al., 1985a), recent 152 

petrological and geochemical studies have confirmed the interpretation of Aitchison et al. (2000) 153 

that these rocks originated in a SSZ setting with both forearc and backarc affinities having been 154 

suggested (Hébert et al., 2003, 2012; Malpas et al., 2003; Dubois-Cote et al., 2005; Bao et al., 2013; 155 

Dai et al., 2013).  156 

 The ophiolite has a poorly constrained U-Pb whole rock age of 120 ± 10 Ma (Göpel et al., 157 

1984). The first published sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age of a 158 

quartz diorite from a massif at Dazhuqu (Malpas et al., 2003) is 126 ± 2 Ma, which is consistent 159 

with another (SHRIMP) age of 128 ± 2 Ma from a gabbro another massif at Jiding (Wang et al., 160 

2006) and 125 ± 0.88 Ma for gabbro at Qunrang (Li et al., 2009).  161 

The inferred age range of associated basaltic volcanism is consistent with radiolarian 162 

biostratigraphy from the overlying cherts. The oldest sediments are upper Barremian (c. 127.5-125 163 

Ma; Gradstein et al., 2012) and range through to the upper Aptian. (>112 Ma) (Ziabrev et al., 2003). 164 

Amphibolite blocks included in the sub-ophiolitic tectonic melanges, interpreted as disrupted 165 

metamorphic sole rocks, have been dated by the Ar-Ar method. Malpas et al. (2003) reported an 166 

amphibole age of 87.9 ± 0.4 Ma whereas Guilmette et al. (2009) described an older age range of 167 

127.7 ± 2.3 – 123 ± 3.1 Ma. Paleomagnetic studies indicate that the ophiolite formed at equatorial 168 

latitudes, 1000-1500 km south of Eurasia’s margin during the mid-Cretaceous (Abrajevitch et al., 169 

2005).  170 

Dangxiong, Jungbwa and Kiogar massifs 171 

The southwestern Tibetan ophiolites form a 300-km-long discontinuous belt, dominated by 172 

three major massifs (from east to west): the Dangxiong, Jungbwa (Yungbwa) and Kiogar massifs 173 

(Fig. 3). These massifs occur c. 20 km to the south of the suture zone and are tectonically underlain 174 

by ophiolitic melanges. The whole package has been emplaced onto the deformed Mesozoic 175 
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continental margin sequence of the north Indian plate. Late normal faulting along the southern 176 

margin of the Jungbwa massif has juxtaposed the mantle sequence rocks directly above the North 177 

Himalayan Gurla Mandata gneisses. The ophiolite has an estimated thickness of 6 km and is 178 

essentially represented by a mantle sequence, composed mainly of harzburgite with minor amounts 179 

of dunite, lherzolite and orthopyroxenite (Dai et al., 2011). Chromitite bands enveloped by dunite 180 

are also found in the Kiogar massif. Despite occasional pegmatitic gabbronorite dykes cutting the 181 

Jungbwa massif (Liu et al., 2010), most gabbroic rocks are found in the Dangxiong massif as 182 

layered troctolitic gabbros and isotropic gabbros (Chan, 2008). Harzburgite dominates the eastern 183 

end of the Dangxiong massif at Xiugugabu with a minor occurrence of diabase and overlying 184 

sediments (Bédard et al., 2009). The mantle and lower crustal sequences at Jungbwa are cut by 185 

basaltic, diabase and gabbroic dykes (Miller et al., 2003). A 2-km-wide shear zone occurs near the 186 

town of Laro, in which ultramafics and gabbros are mylonitized and variably metamorphosed. The 187 

gabbroic intrusions have steep foliations, which commonly parallel the fabrics observed in the 188 

mylonitic peridotites. The Jungbwa massif was the subject of a reconnaissance study by Miller et al. 189 

(2003), who suggested that the peridotites of the this massif appear to be residues of melting in a 190 

MOR, later cut by some basaltic and gabbronorite dykes. Miller et al. (2003) reported an Sm-Nd 191 

age of 147 ± 25 Ma and an Ar-Ar amphibole age of 152 ± 33 Ma of the basaltic dykes. A SHRIMP 192 

zircon age of 122.3 ± 2.4 Ma from the Dangxiong massif has been recently reported for diabase 193 

dikes by Wei et al. (2006). In the Jungbwa district near lakes Mapan Yum Co and La’nga Co 194 

SHRIMP zircon U/Pb ages of 118.8 ± 1.8 Ma and 120.5 ± 1.9 Ma have been reported for diabase 195 

dikes (Xia et al., 2011). Whereas (Li et al., 2008) report an age of 120.2 ±2.3 Ma for diabase dikes 196 

south of Mapan Yum Co. LA-ICP-MS U/Pb zircon ages of 130 ±0.5 Ma and 128 ± 1.1 Ma have 197 

been reported from the Kiogar ophiolitic massif by Xiong et al (2011) for pyroxenite and gabbro 198 

respectively. Ultramafic rocks in this region are generally regarded as having initial MOR origins in 199 

the Jurassic with ophiolitic rocks of Cretaceous age having formed in a SSZ intra=oceanic arc 200 

system (Miller et al., 2003; Liu et al., 2010; Dai et al., 2011). 201 

 202 

Sample descriptions  203 

Eight samples were collected from various YTSZ locations extending from east to west at: 204 

the Luobusa (GCT-405, GCT-406), Xigaze (GCT-152), Dangxiong (GCT-163, GCT-185), 205 

Jungbwa (GCT-61, GCT-134) and Kiogar (GCT-329).  206 

Luobusa: Sample GCT-405 is a fine-grained gabbro, consisting of plagioclase, clinopyroxene with 207 

trace amounts of titanite and ilmenite. The sample was collected from a 1 m width dyke intruding 208 

serpentinized dunite. Zircons in this sample are prismatic and colourless with some inclusions and 209 

range in size from 100×55×30 to 50×50×20 µm. Sample GCT-406 is a fine-grained gabbro, 210 
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consisting of plagioclase, clinopyroxene with trace amount of titanite and ilmenite. The sample was 211 

collected from a gabbroic dyke that cuts serpentinized harzburgite. The zircons are colourless or 212 

pale brown, euhedral long or stubby prisms, without any inclusions. The size of these zircons ranges 213 

from 120×50×30 to 65×50×30 µm. 214 

Xigaze: Sample GCT-152 is a coarse-grained gabbro with mainly plagioclase and clinopyroxene 215 

and trace titanite, apatite and ilmenite. The sample was collected from a km-wide gabbroic stock, 216 

which is further cut by diabase dykes, to the immediate east of Yelong village. Zircons in this 217 

sample are colourless, prismatic and without any visible inclusions. The grains vary in size from 218 

100×50×30 to 70×50×30 µm. 219 

Dangxiong: Sample GCT-185 from is a coarse-grained gabbro, comprising plagioclase, 220 

clinopyroxene and trace amount of quartz, apatite, magnetite and ilmenite. The sample was 221 

collected from a 500 m width gabbro stock, to the southwest of Laro village. Zircons in this sample 222 

are colourless, pale brown, euhedral or fragmentary and range in size from 90×50×40 to 40×35×20 223 

µm. Sample GCT-163 is a coarse-grained gabbro composed of plagioclase, clinopyroxene with 224 

trace titanite, apatite and ilmenite. The sample was collected from a 20 cm thick dyke that cuts fine-225 

grained gabbro to the immediate west of Laro village. Zircons of similar colour and morphology to 226 

those in GCT-185 were found, but they range in size from 160×35×20 to 50×50×20 µm. 227 

Jungbwa: Sample GCT-134 is a medium-grained gabbro, consisting of plagioclase, clinopyroxene, 228 

and hornblende, with minor apatite and ilmenite. The sample was collected from a stock several 229 

hundred meters wide that intrudes serpentinized harzburgite of the Jungbwa massif. Zircon grains 230 

from the gabbro are colourless to pale brown and typically subhedral prismatic with sizes ranging 231 

from 90×45×40 to 50×30×20 µm. Sample GCT-61 from Jungbwa is a coarse-grained gabbronorite, 232 

composed of plagioclase, clinopyroxene, orthopyroxene and trace amount of apatite. The sample 233 

was collected from a 30 cm wide dyke that crosscuts serpentinized harzburgite in the southern part 234 

of the Jungbwa massif. Very few zircons were separated from this sample. They are colourless, 235 

anhedral prismatic grains 80×40×40 µm. 236 

Kiogar: Sample GCT-329 is an extremely coarse-grained gabbronorite (grain size up to 5 cm), 237 

comprising plagioclase, orthopyroxene and clinopyroxene. The sample was collected from a ~5 m 238 

wide intrusive body that cuts harzburgite, ~2km west of Gadi village (Fig. 4). Almost 10 kg of 239 

sample was crushed, sieved and separated, but only one zircon was found. The zircon is 240 

fragmentary (50×45×20 µm), colourless, without any visible inclusions. 241 

 242 

Sample geochemistry  243 

Geochemical analyses of all the dated samples were performed at the University of Hong 244 

Kong. Major element abundances were determined using X-ray fluorescence (XRF) on fused glass. 245 
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The trace elements Sc, V, Cr, Ni, Cu, Zn were also determined by XRF on pressed powder pellets. 246 

The remaining trace elements and the rare earth elements (REE) presented in Table 1 were 247 

determined on a VG Elemental Plasma-mass spectrometer (ICP-MS). The protocol of Jenner et al. 248 

(1991), with standard additions, pure elemental standards for external calibration, and international 249 

standard BHVO-1 taken as reference sample was used. Accuracies of the XRF analyses are 250 

estimated as ± 2% for major elements present in concentrations greater than 0.5-wt % and ± 5% for 251 

trace elements. The ICP-MS results were obtained with accuracy better than ± 5%. 252 

Similar geochemical features characterize all gabbros from the various ophiolite localities. 253 

On the N-MORB normalized diagram (Fig. 4), they all display relative low contents of Nb, Zr and 254 

variable alkalis, Rb, Ba, Th, U and Sr relative to MORB. In contrast, the gabbronorites from the 255 

Kiogar and Jungbwa massifs are much depleted (0.003-0.1 times N-MORB values) and display 256 

pronounced negative anomalies in Nb and Zr and positive anomalies in Sr and Eu. The chondrite-257 

normalized REE patterns of the gabbros show light REE (LREE) depletion, spanning the range of 258 

typical MORB. Patterns of the gabbronorites from the Kiogar and Jungbwa massif are lower than 259 

the typical MORB composition and show enrichment in LREE.  260 

 The gabbros show enrichment in large ion lithophile elements relative to MORB, clear Nb 261 

depletion and similar high field strength element to MORB. All these lines of evidence suggest that 262 

they were generated in a SSZ environment. The spoon-shaped REE element patterns of the 263 

gabbronorites are comparable with boninitic gabbros elsewhere (e.g. the Trinity ophiolite in 264 

California; Metcalf et al., 2000), although these rocks are probably cumulate and their whole-rock 265 

compositions might not approximate to the primary magma. However, it is important to note that 266 

the occurrence of orthopyroxene and crystallization of plagioclase after pyroxenes in these rocks 267 

differs from those formed at MOR. We favour an interpretation that the gabbronorites crystallized 268 

from boninitic magmas in a SSZ setting.  269 

Further details and detailed discussion of the petrogenesis and geochemistry of ophiolitic 270 

rocks along the YTSZ are presented in numerous recent works (Hébert et al., 2003b, 2012; Zhou et 271 

al., 2005; Zhong et al., 2006a; Guilmette et al., 2009; Dai et al., 2011, 2013; Bao et al., 2013). 272 

 273 

U/Pb dating  274 

Methodology 275 

Ages were determined by either isotope dilution thermal ionization mass spectrometry (ID-276 

TIMS) or laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-277 

ICP-MS) at the NERC Isotope Geosciences Laboratory (NIGL), Keyworth, UK. Data and errors 278 

were calculated using the Isoplot 3 macro of Ludwig (2003). The final data (2σ error ellipses) are 279 
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plotted in Fig. 5. Detailed analytical data coupled with the coordinates of sample localities are 280 

presented in Table 2.  281 

 Zircons were separated from the rock samples using standard separation techniques (Rogers 282 

water table, Frantz magnetic separation, and MI heavy-liquid separation). For U-Pb ID-TIMS, 283 

selected grains were chemically abraded to minimize possible Pb-loss using a modified chemical 284 

abrasion technique of Mattinson (2005). This involved annealing bulk zircon fractions at 800° C in 285 

quartz glass beakers for 48 hours. The zircon crystals were subsequently cleaned ultrasonically in 286 

4N HNO3, rinsed in ultra-pure water, then further washed in warm 4N HNO3 prior to rinsing with 287 

distilled water to remove surface contamination. The annealed, cleaned bulk zircon fractions were 288 

then chemically leached in 200 µl 29N HF and 20 µl 8N HNO3 at 120° C for 12 hours. Chemically 289 

abraded zircons were washed several times in ultra-pure water, cleaned in warm 4N HNO3 for 290 

several hours on a hot-plate, rinsed again in ultra-pure water and 8N HNO3 and split into single 291 

grain fractions ready for dissolution. Three samples were analysed by LA-MC-ICP-MS. These 292 

samples were embedded into epoxy mounts and surface polished to expose an equatorial section 293 

through the crystals.  294 

 For U-Pb chemistry prior to TIMS analysis, the recently calibrated EARTHTIME mixed 295 
205Pb/235U tracer was used to spike all fractions. Dissolved, spike equilibrated samples were not 296 

subjected to ion-exchange procedures but were converted to chloride and loaded onto degassed 297 

rhenium filaments in silica gel following a procedure modified after Mundil et al. (2004) Analyses 298 

were preformed using a Thermo Electron Triton equipped with a new generation of MassCom 299 

Secondary Electron Multiplier (Noble et al., 2006). A minimum of 100 ratios were collected for Pb 300 

and 60 for U. Pb ratios were scrutinised for any evidence of organic interferences which were 301 

determined to be negligible. Total procedural blanks for three separate batches of chemistry 302 

between October 2004 and April 2006 were 2.0 to 0.2pg for Pb and 0.3 to 0.1pg for U. Samples 303 

were blank corrected using the 204Pb:206Pb:207Pb:208Pb ratio measured during the analysis (1: 304 

18.70:15:15:36.82). Correction for common lead in all samples was carried out using the Stacey-305 

Kramers (1975) common lead evolutionary model.  306 

 Laser ablation geochronology was conducted following the procedures of Simonetti (2005) 307 

and Horstwood et al. (2003). This included the use of the 91500 zircon as a primary standard. For 308 

each analytical session the overall reproducibility of the primary standard 206Pb/238U was in the 309 

order of 2-3% (2σ), this has been propagated into the uncertainties for each analysis. A fast-washout 310 

ablation cell was used to increase the time-resolution of the data. Measurements used a Nu-Plasma 311 

HR MC-ICP-MS coupled with a New Wave Research LUV266X Nd:YAG laser ablation system. 312 

The grains were ablated using a 20- or 35-µm-diameter spot or 20-µm-wide line raster depending 313 

on the size of the crystal. A 205Tl/235U solution was simultaneously aspirated during analysis to 314 
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correct for instrumental mass bias and plasma-induced inter-element fractionation using a Cetac 315 

Technologies Aridus desolvating nebulizer. Ages and errors were calculated using the Isoplot 3 316 

macro of Ludwig (2003).  317 

Results 318 

Luobusa: Five analyses were conducted on zircons from sample GCT-405 using LA-MC-ICP-MS 319 

and the results are plotted in a Tera-Wasserburg diagram (Fig. 5a). These data form an array with an 320 

intercept age of 148.6 ± 4.2 Ma (MSWD = 0.69). The same analyses give a weighted mean 321 
206Pb/238U age of 148.4 ± 4.5 Ma. The age of sample GCT-406 was also determined by LA-MC-322 

ICP-MS. Six data points form a concordant cluster with a weighted mean 206Pb/238U age of 149.9 ± 323 

2.2 Ma (MSWD = 0.42) (Fig. 5b).  324 

Xigaze: Sample GCT-152 was dated by LA-MC-ICP-MS. Ten analyses yielded a concordant 325 

cluster with a weighted mean 206Pb/238U age of 131.8 ± 1.3 Ma (MSWD = 0.60) (Fig 5c).  326 

Dangxiong: Five single-grain fractions from sample GCT-185 were analysed by TIMS and yielded 327 

a concordia age of 126.69 ± 0.41 Ma and a weighted mean 206Pb/238U age of 126.69 ± 0.50 Ma (Fig 328 

5d). Five single-grain fractions from sample GCT-163 were also analysed by TIMS and produced a 329 

concordia age of 123.43 ± 0.84 Ma and a weighted mean 206Pb/238U age of 123.4 ± 1.0 Ma (Fig 5e). 330 

Jungbwa: Four single-grain fractions from sample GCT-134 were analysed by TIMS and yielded a 331 

concordia age of 123.87 ± 0.85 Ma and a weighted mean 206Pb/238U age of 123.8 ± 1.1 Ma (Fig. 5f). 332 

Two single-grain fractions from sample GCT-61 were also analysed by TIMS and overlap within 333 

error to give a concordia age of 123.42 ± 0.85 Ma and a weighted mean 206Pb/238U age of 123.4 ± 334 

1.1 Ma (Fig. 5g).  335 

Kiogar: The age of sample GCT-329 was determined by TIMS. The only fraction gives a 336 

concordant 206Pb/238U age of 159.7 ± 0.5 Ma (Fig. 5h), which it taken as a tentative magmatic age 337 

for the sample. 338 

Interpretation 339 

The mantle peridotites at Luobusa are essentially residues from melting at a MOR, 340 

subsequently modified by SSZ magmatism (Bai et al., 1993; Zhou et al., 1996; 2005). The dated 341 

gabbros (c. 150 Ma.) display a SSZ geochemical signature and are therefore likely to have formed 342 

during a later stage of magmatism. This age postdates, or partly overlaps within error of the age 343 

range of volcanic rocks (163-152 Ma) exposed in the Zedong terrane (McDermid et al., 2002; 344 

Aitchison et al., 2007b). These rocks were deposited above late Middle Jurassic island arc tholeiites 345 

and overlying cherts and were erupted during intra-arc rifting (Aitchison et al., 2007b). The 346 

relationships between the Luobusa and Zedong terranes remain conjectural as all contacts are 347 

faulted, but Aitchison et al. (2007b) envisaged that the Zedong terrane developed during intra-arc 348 

rifting, which pre-dates formation of gabbros dated in this study. Hence this raises a possibility that 349 
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continued rifting led to breakup of the arc and formation of a basin in the backarc region, into which 350 

these gabbroic dykes invaded.  351 

The gabbro from the Xigaze ophiolite has an age of 131.8 ± 1.3 Ma, which is slightly older 352 

than those previously reported (126 ± 2 Ma from a quartz diorite at Dazhuqu; Malpas et al. (2003) 353 

and 128 ± 2 Ma from a gabbro at Jiding; Wang et al. (2006)). Combining available 354 

geochronological and biostratigraphic data (Ziabrev et al. 2003) this suggests the SSZ magmatism 355 

may have lasted from 132-126 Ma. In southwest Tibet, the U-Pb ages of the gabbroic rocks from 356 

the Dangxiong ophiolite, range from 127 to 123 Ma, which is consistent with an age of 122.3 ± 2.4 357 

Ma for a diabase from along strike (Wang et al., 2006). The crustal rocks of the Jungbwa ophiolite 358 

formed in a similar time frame. The gabbronorite has an age of 123.42 ± 0.85 Ma, which is 359 

indistinguishable from the age of the gabbro from the same massif (123.87 ± 0.85 Ma). The 360 

gabbronorite exhibits a LREE-enriched boninite-like signature in contrast to SSZ-tholeiitic 361 

signature recorded by the gabbro. The concomitant ages are interpreted to reflect the co-genetic 362 

formation of these two suites of rocks in a SSZ setting. 363 

 364 

Discussion 365 

By the early Middle Jurassic >4000 km of Neo-Tethyan Ocean separated Eurasia from India, 366 

which was then still part of Gondwana (Besse and Courtillot, 1988). A series of northwest-southeast 367 

trending spreading ridges are postulated to have developed to the north of the Indian passive margin, 368 

facilitating formation of MORB-type oceanic lithosphere (Besse and Courtillot, 1988). A segment 369 

of this oceanic lithosphere may be represented by a present-day volumetrically dominant tholeiitic 370 

suite of the Spongtang ophiolite in Ladakh and perhaps the depleted MORB-type peridotites 371 

preserved at Jungbwa and Luobusa in southern Tibet.  372 

Commencing in the Late Jurassic, the motions of the plates bordering Neo-Tethys changed 373 

considerably. This may have been associated with rifting of Argo-Burma terrane from NW 374 

Australia (Stampfli and Borel, 2002; Gibbons et al., 2012) and the rifting of India from Africa 375 

(Coffin and Rabinowitz, 1987; Ali and Aitchison, 2008). Plate reorganization possibly induced the 376 

formation of a north-dipping intra-oceanic subduction zone, located around the equatorial region 377 

(Abrajevitch et al., 2005). Much of the existing Early Jurassic or early oceanic lithosphere was 378 

subducted along this intra-oceanic island arc system. During continued subduction, an intra-oceanic 379 

island arc, represented by the Zedong terrane formed in the latest Mid Jurassic. This was locally 380 

followed by intra-arc rifting during which rocks of shoshonitic affinity were erupted (Aitchison et 381 

al., 2007b). Extension induced formation of a basin, in which SSZ-type gabbroic rocks intruded the 382 

Luobusa depleted, MORB-type, peridotites at c. 150 Ma. The temporal extent of this intra-oceanic 383 

subduction system is uncertain, but a north-dipping subduction zone appears to have developed 384 
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further to the west between c. 132-123 Ma. As the dense older oceanic lithosphere was consumed at 385 

the subduction zone, roll back of the subducting slab ensued, with southward migration of the 386 

trench and consequent extension of the overriding plate. Extensional tectonics induced formation of 387 

SSZ-type ophiolites at spreading centers above the subduction zones. Blocks of amphibolites 388 

occurring in the sub-ophiolitic mélanges may be derived from the metamorphic soles, suggesting 389 

initial displacement of these ophiolites between c. 128-123 Ma (Guilmette et al., 2009).  390 

Other Mesozoic ophiolitic rocks associated with this belt extend from Nagaland in NE India 391 

across southern Tibet and into NW India at Nidar and Spongtang, thence Pakistan at Waziristan and 392 

Muslim Bagh. Superficially they resemble classical ophiolites in that peridotite, gabbro and basalt 393 

interlayered with radiolarian chert, are all present (Corfield et al., 2001; Mahéo et al., 2004). In NW 394 

India upper Barremian-mid Aptian radiolarians have been recovered from the sediments 395 

intercalated with the basalts of the Nidar ophiolite, providing an inferred age of the associated SSZ-396 

type basaltic magmatism (Mahéo et al., 2004; Zyabrev et al., 2008). The Spontang ophiolite has a 397 

U-Pb zircon age of 177 ± 1 Ma (Pedersen et al. 2001) and is overlain by Lower Cretaceous 398 

radiolarian chert (Baxter et al., 2010) and a Late Cretaceous andesitic arc sequence at 88 ± 5 Ma 399 

(Spong arc; Pedersen et al., 2001). Corfield et al. (2001) interpreted the ophiolite as representing 400 

Jurassic Tethyan MORB crust with a Late Cretaceous island arc, built on it during initiation of the 401 

subduction-obduction process.  402 

In the Late Cretaceous, rapid northward movement of the Indian plate (Besse & Courtillot 403 

2002) was possibly accommodated by the formation of other subduction zone systems, one of 404 

which was located in northern regions of the Neo-Tethyan Ocean. This additional intra-oceanic 405 

island arc system formed closer to the Eurasian margin and included the Kohistan island arc, which  406 

initiated during the Jurassic with an important phase of convergence between 99-82 Ma; 407 

(Schaltegger et al., 2002), and was subsequently accreted to the Eurasian plate (see Burg, 2011 for a 408 

detailed discussion). Another north-dipping subduction zone is also inferred to have developed, 409 

extending from the north of the Arabian passive margin to the Indian passive margin. The Late 410 

Cretaceous Semail ophiolite in Oman / UAE and the Spongtang arc sequence perhaps developed in 411 

this supra-subduction zone, with the Semail ophiolite obducted onto the Arabian continental margin 412 

in the latest Cretaceous (e.g. Searle and Cox, 1999; Corfield et al., 2001; Goodenough et al., 2010). 413 

88-80 Ma metamorphic sole rocks in southern Tibet may be counterparts of those now preserved in 414 

Oman and the UAE (Searle and Malpas, 1982; Hacker, 1994; Hacker and Gnos, 1997; Styles et al., 415 

2006), which developed during the initial displacement of the Semail ophiolite.  416 

Obduction of ophiolitic rocks onto the Indian northern margin occurred as oceanic 417 

lithosphere between the margin and the intra-oceanic subduction zone was completely consumed. 418 

Searle & Treloar (2010) noted that in Ladakh and Zanskar most of the crustal shortening and 419 
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extreme thickening of Mesozoic shelf carbonates occurred prior to deposition of unconformably 420 

overlying Paleocene-Eocene shallow marine carbonates. Using Oman as an analogy, they suggested 421 

that this deformation resulted from the Late Cretaceous obduction of the Spongtang ophiolite onto 422 

the passive margin of India.  423 

In southern Tibet it is less possible to be certain about the precise timing of ophiolite 424 

obduction as evidence for such an event appears to be paradoxical. However, it would seems likely 425 

that all ophiolites along the Himalaya were emplaced during an event that could have spanned ~20 426 

million years. One thing that appears certain is that if indeed these rocks were part of an intra-427 

oceanic (intra Tethyan) island arc system they must have collided with either India or Eurasia 428 

before the two continents collided and the Tethyan Ocean closed once and for all. All available 429 

structural evidence and detrital sedimentology indicate emplacement was onto the northern margin 430 

of India rather than southern Eurasia. 431 

High-grade amphibolitic rocks found in mélange zones beneath the base of ophiolitic 432 

successions have been widely interpreted as timing of initial oceanic lithosphere displacement and 433 

emplacement. Such rocks have been found from the mélange zones at Xigaze and Luobusa. In the 434 

former area, most of the metamorphic sole rocks have ages of 128-123 Ma (Guilmette et al., 2009) 435 

whereas a much younger block of (88 Ma) amphibolite was also found (Malpas et al., 2003). 436 

Similar Late Cretaceous amphibolite blocks were also recovered in Luobusa and have ages of 86-80 437 

Ma (Malpas et al., 2003). It is unclear at the moment whether these ages represent two discrete 438 

events or a prolonged emplacement event. The closeness between U–Pb zircon ages and 40Ar–39Ar 439 

amphibole ages suggests the SSZ-type YZSZ oceanic lithosphere was young and hot when the 440 

metamorphic rocks were formed and some authors have recently suggested that the ages of 441 

metamorphic soles might be more closely related to ophiolite generation than emplacement (Dewey 442 

and Casey, 2011). The residual heat of the oceanic lithosphere could therefore have provided heat 443 

needed for metamorphism. The situation in southern Tibet is similar to the classical example of the 444 

Semail ophiolite, for which the time difference between crystallization and peak amphibolite 445 

metamorphism is less than 2 Ma (Hacker, 1994; Hacker and Gnos, 1997; Searle and Cox, 1999; 446 

2002; Searle et al., 2004). The significance of the second group of amphibolites is uncertain, but it 447 

is possibly worth noting that the Spong arc in Ladakh has an age of 88 ± 5 Ma (Pedersen et al., 448 

2001) and the Kohistan island arc in NW Pakistan has a similar age of 99-82 Ma (Schaltegger et al., 449 

2002). A similar age of 80.2 ± 1.5 Ma has also been reported for the Muslim Bagh ophiolite (Kakar 450 

et al., 2012). These ages overlap with those for Late Cretaceous amphibolite blocks preserved in the 451 

mélanges in Xigaze and Luobusa areas (Malpas et al., 2003; Guilmette et al., 2009). This raises a 452 

possibility that the amphibolite blocks might have formed by a mechanism similar to that discussed 453 

above, but in a younger subduction zone, above which the island arc complex and its eastward 454 
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extension formed. Whether the amphibolites in NW India are related to the Spong arc or Kohistan 455 

island arc remains an open question. Other evidence of such an Early Cretaceous SSZ event might 456 

have been destroyed during the India-Asia collision.  457 

In southern central Tibet immediately south of the suture zone, the first appearance of 458 

ophiolitic detritus in sediments deposited on the margin of Greater India is recorded in the northern 459 

Tethyan Himalayan flysch succession in the late Paleocene (c. 57 Ma) (Ding et al., 2005; Aitchison 460 

et al., 2007a). A slightly younger Early Eocene age has been reported further to the south (Zhu et al., 461 

2005) possibly indicating progression of a sedimentary wedge shedding southwards as the ophiolite 462 

was emplaced onto northern India. Moreover, the ophiolite tectonically overlies mélange containing 463 

siliceous sediments with radiolarians as young as latest Paleocene (Liu and Aitchison, 2002; Liang 464 

et al., 2012). We note that, in Oman, ophiolitic detritus only appears in the foreland basin 465 

succession at the very top of the succession 20 million years after the obduction process is inferred 466 

to have begun and it is clear that stratigraphic data alone cannot be used to interpret timing of the 467 

entire emplacement event. In southern Tibet the whole SSZ package of ophiolite, turbidites and 468 

mélange was eroded during the accumulation of syn-orogenic deposits such as the Paleocene-Lower 469 

Eocene Liuqu conglomerate (Davis et al. 2002). In Ladakh the Lamayuru thrust sheets that underlie 470 

the Spongtang ophiolite are unconformably overlain by Late Maastrichtian (Marpo Fm.) and 471 

Paleocene – Early Eocene shallow marine limestones (Stumpata, Singie-la, Kesi formations; (Searle 472 

et al., 1997; Corfield et al., 1999; Green et al., 2008)). The ophiolite is interpreted by some authors 473 

to have been emplaced onto the north Indian margin in the Late Cretaceous when obduction is 474 

postulated to have downflexed the passive margin and increased the sedimentation rate significantly 475 

(Searle et al., 1997; Corfield et al., 2005). Garzanti et al. (1987; 2005) suggested a later (post-Early 476 

Eocene) emplacement of the Spongtang ophiolite based on the fact that along the southwestern 477 

margin the Spongtang ophiolite has been thrust above Eocene shallow water limestones. Searle et al. 478 

(1988; 1997) showed that this was a later thrust that re-stacked the sequence and not the original 479 

obduction-related thrust. Corfield et al. (1999) sequentially restored all the structures in the Zanskar 480 

shelf and infer a two stage-thrusting event, the first of which they interpreted as pre-Paleocene 481 

obduction and the second as post-Eocene continental collision-related. Whatever the precise timing 482 

of their obduction, the ophiolites must have been emplaced prior to the final closing of Tethys 483 

Ocean.  484 

 485 

Conclusion 486 

A preponderance of dated SSZ ophiolitic rocks from along both the YTSZ and its lateral 487 

correlative the Indus Suture are of Early Cretaceous (Barremian to early Aptian; 130-120 Ma) age. 488 

Locally these rocks are associated with, and possibly built upon, MOR rocks of Late Jurassic age. 489 
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Recently published hypotheses that link widespread rapid generation of ophiolites to forearc 490 

spreading during subduction initiation events (Dewey and Casey, 2011; Whattam and Stern, 2011) 491 

suggest this has important implications for understanding the evolution of the Tethyan Ocean and 492 

has important implications for regional geodynamic models. 493 
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Figure Captions 505 

 506 

Fig. 1. Ophiolites and ophiolitic suture zones (black) and their ages. All dates are radiometric U-Pb 507 

zircon or 40Ar-39Ar amphibole ages. Igneous crystallization ages are shown in normal font 508 

(bold font are results of current study); metamorphic sole ages are italicized. Locations from 509 

which radiolarian faunas have been extracted from intercalated or overlying cherts are 510 

indicated by (rads). Sources of data: Semail (Hacker, 1994; Hacker and Gnos, 1997; Warren 511 

et al., 2003), Band-e-Zeyerat (Ghazi et al., 2004), Bela (Ahmed, 1993), Muslim Bagh 512 

(Mahmood et al., 1995; Kakar et al., 2012), Waziristan (Khan et al., 2007), Kohistan 513 

(Schaltegger et al., 2002). Spontang1-MORB-type sequence, 2-island arc sequence (Pedersen 514 

et al., 2001), Nidar (Zyabrev et al., 2008), Kiogar (Xiong et al., 2011), Jungbwa (Li et al., 515 

2008; Xia et al., 2011), Dangxiong (Wei et al., 2006), Jiding (Wang et al., 2006), Xigaze 516 

(Malpas et al., 2003; Ziabrev et al., 2003; Wang et al., 2006; Guilmette et al., 2009; Li et al., 517 

2009), Zedong (McDermid et al., 2002) and Luobusa (Malpas et al., 2003; Zhong et al., 518 

2006b).  519 

Fig. 2. Simplified geological maps of the a) Xigaze and b) Luobusa areas in the southeastern section 520 

of the YTSZ (modified after Zhou et al., 1996; Davis et al., 2002). Sites for geochronology 521 

samples are also shown. 522 

Fig. 3. Simplified geological map of the southwestern section of the YTSZ, showing the Dongxiang, 523 

Jungbwa and Kiogar massifs (after Guo et al., 1991), field mapping and satellite imagery 524 

interpretations. 525 

Fig. 4. (a) MORB- and (b) chondrite-normalized diagrams of the dated samples. 526 

Fig. 5. U-Pb concordia and Tera-Wasserberg diagrams showing the data points for samples 527 

analyzed by LA-MC-ICP-MS and TIMS. 528 
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Tables 531 

 532 

Table 1. Major and trace element compositions of the dated samples. 533 

Table 2. U-Pb zircon data obtained by (a) LA-MC-ICP-MS and (b) TIMS. 534 
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Location Kiogar Jungbwa Jungbwa Dangxiong Dangxiong Luobusa Luobusa Xigaze
Sample No. GCT-329 GCT-61 GCT-134 GCT-163 GCT-185 GCT-405 GCT-406 GCT-152

 gabbronorite  gabbronorite  gabbro  gabbro  gabbro diabase diabase  gabbro

Major oxides (wt%)
SiO2 49.69 47.59 46.24 48.69 48.91 46.81 49.12 48.95
TiO2 0.06 0.06 1.35 0.28 0.55 0.87 1.23 0.90
Al2O3 12.29 19.23 15.55 17.94 18.92 15.20 15.38 15.87
Fe2O3 5.31 3.22 11.35 3.95 6.09 8.79 9.97 8.31
MnO 0.11 0.06 0.19 0.09 0.11 0.15 0.15 0.15
MgO 15.90 11.83 6.51 8.05 6.31 7.70 6.86 7.62
CaO 12.59 15.26 11.88 14.64 13.44 12.98 10.51 11.48
Na2O 0.35 0.44 2.25 2.42 2.17 2.75 2.82 2.64
K2O 0.03 0.04 0.22 0.07 0.11 0.01 0.77 0.59
P2O5 0.00 0.01 0.12 0.00 0.08 0.05 0.08 0.05
LOI 2.26 1.53 3.97 3.07 2.43 3.53 2.37 2.70
TOTAL 98.60 99.28 99.62 99.22 99.11 98.83 99.26 99.24

Trace elements (ppm)
Ti 381 366 8112 1701 3281 - - -
Sc 48.2 29.2 35.2 42.8 34.0 45.16 28.42 38.37
Rb 0.25 0.62 4.62 1.54 0.67 141.30 857.55 244.70
Sr 18.3 46.3 175 207 136 141.30 857.55 244.70
Y 2.95 2.62 60.41 8.83 13.7 21.07 28.77 21.42
Zr 0.78 2.61 45.66 9.42 22.0 51.43 73.86 50.96
Nb 0.01 0.13 1.20 0.08 0.45 0.80 1.02 0.63
Cs 0.65 0.58 0.10 0.05 0.08 6.88 0.24 0.51
Ba 47.5 14.2 56.9 2.56 5.25 28.52 42.97 17.66
Ta - 0.10 0.03 -0.03 0.01 0.04 0.10 0.02
Hf 0.03 0.53 1.98 0.35 0.71 1.43 2.10 1.42
Pb 0.03 1.43 0.54 0.09 0.17 0.18 0.24 0.31
Th 0.01 0.05 0.18 0.06 0.03 0.06 0.08 0.06
U 0.01 0.04 0.19 0.01 0.02 0.03 0.04 0.03
V 185 141 - 143 204 174.10 216.92 459.10
Cr 593 749 - 417 204 47.23 78.94 113.25
Ni 505 340 - 103 204 39.73 69.03 71.14
Cu 14.4 8.29 - 3.34 204 41.42 41.98 52.82
Zn 26.9 26.7 - 16.1 204 217.24 263.89 225.02
La 0.07 0.40 2.90 0.33 1.12 1.76 2.44 1.50
Ce 0.15 0.79 9.53 1.11 3.55 5.68 7.99 4.96
Pr 0.02 0.10 1.68 0.22 0.61 1.00 1.33 0.89
Nd 0.13 0.35 9.08 1.48 3.45 5.88 7.83 5.27
Sm 0.08 0.17 3.24 0.69 1.27 2.12 2.66 1.97
Eu 0.08 0.10 1.22 0.29 0.56 0.84 1.10 0.76
Gd 0.20 0.25 4.18 1.07 1.77 2.86 3.57 2.74
Tb 0.05 0.06 0.84 0.21 0.34 0.54 0.67 0.53
Dy 0.42 0.48 5.57 1.46 2.28 3.53 4.69 3.41
Ho 0.11 0.10 1.22 0.32 0.50 0.77 1.03 0.75
Er 0.35 0.35 3.75 0.91 1.41 2.14 2.96 2.16
Tm 0.06 0.06 0.53 0.13 0.21 0.31 0.43 0.32
Yb 0.42 0.38 3.63 0.85 1.36 2.06 2.91 2.06
Lu 0.07 0.06 0.53 0.13 0.21 0.30 0.43 0.32

Table 1



Table 2a: LA-MC-ICPMS U-Pb data

U (ppm)* 207Pb/206Pb 2σ% 206Pb/238U 2σ% 207Pb/235U 2σ% Rho‡ 207Pb/206Pb 2σ abs 206Pb/238U age 2σ abs 207Pb/235Pb age 2σ abs

GCT-405, Luobusa N 29.22807° E 92.17838° diabase
z4 1127.9 0.0548 2.5 0.0225 7.4 0.170 7.8 0.95 402.8 56.8 143.7 10.7 159.7 13.4
z5 425.7 0.0623 9.1 0.0237 5.3 0.204 10.5 0.50 683.7 193.7 151.3 8.0 188.4 21.5
z6 523.9 0.0544 3.4 0.0233 8.2 0.175 8.8 0.92 387.5 76.5 148.4 12.2 163.5 15.6
z7 1515.3 0.0491 1.1 0.0235 3.3 0.159 3.4 0.95 154.6 24.9 150.0 5.0 150.2 5.5
z8 506.1 0.0547 1.6 0.0231 3.4 0.174 3.8 0.90 400.5 36.9 146.9 5.1 162.8 6.7

GCT-406, Luobusa N 29.23117° E 92.18645° diabase
z1 880.8 0.0502 6.5 0.0234 2.4 0.162 6.9 0.35 206.1 150.5 149.1 3.7 152.5 11.3
z3 626.4 0.0496 8.5 0.0231 2.4 0.158 8.8 0.28 174.1 197.7 147.4 3.6 149.0 14.0
z5 550.5 0.0484 9.0 0.0233 3.0 0.155 9.4 0.31 120.3 211.4 148.3 4.4 146.7 14.8
z6 660.1 0.0484 8.3 0.0237 2.5 0.158 8.7 0.29 119.6 196.6 150.8 3.8 148.9 13.9
z14 1050.1 0.0494 2.8 0.0236 2.2 0.161 3.6 0.61 165.4 66.3 150.5 3.3 151.4 5.8
z16 1099.1 0.0495 3.4 0.0239 2.1 0.163 4.0 0.53 172.1 78.5 152.0 3.2 153.3 6.5

GCT-152, Xigaze N 29.13193° E 88.38178° coarse grained gabbro
z3 151.0 0.0522 10.0 0.0202 3.1 0.145 10.5 0.30 294.1 228.3 128.7 4.0 137.6 15.3
z7 441.6 0.0501 5.3 0.0210 2.3 0.145 5.7 0.40 200.0 122.1 134.2 3.1 137.8 8.4
z8 356.4 0.0502 6.1 0.0205 2.4 0.142 6.5 0.36 204.1 141.2 130.9 3.1 134.8 9.4
z9 237.2 0.0503 7.6 0.0207 2.5 0.144 8.0 0.31 208.3 176.7 132.2 3.3 136.3 11.6
z10 600.8 0.0503 4.5 0.0207 2.3 0.143 5.1 0.45 207.1 105.3 131.9 3.0 136.0 7.4
z11 192.3 0.0518 8.4 0.0207 2.2 0.148 8.7 0.26 274.9 193.3 132.3 3.0 140.1 13.0
z12 216.8 0.0525 7.9 0.0205 2.5 0.148 8.3 0.30 306.7 180.6 130.9 3.3 140.6 12.5
z15 243.9 0.0528 7.4 0.0206 2.5 0.150 7.8 0.31 320.1 169.0 131.2 3.3 141.6 11.8
z16 215.4 0.0526 8.0 0.0204 2.3 0.148 8.3 0.28 312.6 181.4 130.3 3.1 140.2 12.4
z17 259.5 0.0521 7.0 0.0211 2.4 0.151 7.4 0.32 290.0 159.4 134.4 3.2 143.1 11.3

*Accuracy of U concentration is ~10%
†All isotopic ratios are non-common-Pb corrected
‡ Error correlation coefficient calculated using isoplot (Ludwig, 2003)

Isotopic ratios† Ages (Ma)
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Table 2b: TIMS U-Pb data

weight (µg) U(ppm) Pb(ppm)† Pb (pg)‡ 206Pb/204Pb§ 207Pb/206Pb¶ 2σ (%) 206Pb/238U¶ 2σ (%) 207Pb/235U¶ 2σ (%) Rho⌐ 207Pb/206Pb 2σ (Ma) 206Pb/238U 2σ (Ma) 207Pb/235U 2σ (Ma)

The Dangxiong massif, GCT-185, N 30.23942° E 82.89673°  coarse grained gabbro
z1-1* 4.2 181.7 10.6 17.8 69.2 0.04859 0.7 0.01980 0.4 0.13262 0.8 0.50 128.0 17.1 126.4 0.5 126.4 1.1
z1-3 0.5 516.5 29.6 8.2 54.7 0.04856 1.7 0.01999 1.6 0.13381 2.3 0.67 126.5 39.9 127.6 2.0 127.5 3.1
z1-4 1.6 41.8 5.4 8.5 33.4 0.04862 4.1 0.02002 1.5 0.13419 4.5 0.42 129.6 95.7 127.8 1.9 127.9 6.1
z1-5 1.0 52.8 8.4 8.4 31.7 0.04861 7.4 0.02000 3.0 0.13407 7.9 0.35 129.0 175.3 127.7 3.9 127.8 10.8
z2-1* 4.1 175.7 7.2 12.3 83.5 0.04862 1.0 0.01995 0.7 0.13370 1.2 0.56 129.5 24.2 127.3 0.8 127.4 1.7

The Dangxiong massif, GCT-163, N 30.28087° E 82.92470° coarse grained gabbro
z1-1* 6.1 0.0 0.0 0 51.6 0.04849 1.2 0.01926 0.8 0.12880 1.5 0.57 123.3 28.9 123.0 1.0 123.0 1.9
z1-2* 1.6 0.0 0.0 0 28.1 0.04853 13.3 0.01942 4.4 0.12992 13.4 0.20 125.2 312.3 124.0 5.5 124.0 17.6
z1-4 0.7 0.0 0.0 0 38.6 0.04853 3.6 0.01954 2.6 0.13076 4.5 0.60 125.3 85.6 124.7 3.2 124.8 6.0
z1-5 0.5 0.0 0.0 0 39.8 0.04848 7.0 0.01933 5.4 0.12920 7.8 0.49 122.7 164.8 123.4 6.7 123.4 10.2
z2-1* 3.7 0.0 0.0 0 40.4 0.04853 2.8 0.01950 1.6 0.13047 3.2 0.50 125.2 66.1 124.5 2.0 124.5 4.3

The Jungbwa massif, GCT-134, N 30.56662° E 81.31613° medium grained gabbro
z1-1 1.2 0.0 0.0 0 56.9 0.04855 1.9 0.01973 2.3 0.13208 2.8 0.75 126.4 44.4 125.9 2.9 126.0 3.8
z1-2* 0.8 0.0 0.0 0 24.0 0.04852 16.7 0.01941 2.1 0.12982 16.7 0.51 124.6 393.6 123.9 2.6 123.9 21.8
z1-3 0.6 0.0 0.0 0 70.8 0.04850 1.0 0.01927 0.9 0.12883 1.3 0.67 123.6 23.6 123.0 1.1 123.0 1.8
z2-1 0.8 0.0 0.0 0 62.1 0.04855 1.4 0.01969 1.6 0.13180 2.2 0.76 126.0 33.1 125.7 2.0 125.7 2.9

The Jungbwa massif, GCT-61, N 30.59481° E 81.28422° coarse grained gabbro
z1-1* 1.0 0.0 0.0 0 84.1 0.04849 1.0 0.01931 1.3 0.12909 1.6 0.80 123.1 22.9 123.3 1.7 123.3 2.1
z1-2 1.5 0.0 0.0 0.0 111.0 0.04850 0.6 0.01934 0.8 0.12932 1.0 0.81 124.0 13.6 123.5 1.0 123.5 1.3

The Kiogar massif, GCT-329, N 31.03797° E 80.29572° coarse grained gabbro
z1-1 0.8 0.0 0.0 0 112.4 0.04929 0.4 0.02508 0.3 0.17042 0.5 0.60 161.4 9.8 159.7 0.5 159.8 0.9

*Samples not being subjected to ion-exchange procedures
†Radiogenic lead corrected for mass fractionation, laboratory Pb, spike and initial common Pb
‡Total common Pb
§206Pb/204Pb is a measured ratio corrected for mass fractionation and common lead in the 205Pb/235U spike
¶Corrected for mass fractionation, laboratory Pb & U spike and initial common Pb
⌐Error correlation coefficient calculated using isoplot (Ludwig, 2003)

Isotopic ratios Ages (Ma)



KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 329 (Kiogar).kml

http://ees.elsevier.com/gr/download.aspx?id=165542&guid=90aa7737-0515-4ebe-bddc-b8ecd8eda6d4&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 61 (Jungbwa).kml

http://ees.elsevier.com/gr/download.aspx?id=165543&guid=b74f8346-61df-41fd-83e7-40874a0d3ea8&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 134 (Jungbwa).kml

http://ees.elsevier.com/gr/download.aspx?id=165544&guid=32e6150a-d9ae-49b6-8836-3d6658ac3c9f&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 163 (Dangxiong).kml

http://ees.elsevier.com/gr/download.aspx?id=165545&guid=4e637c1b-dbbe-4aad-bdb1-dcb8724d4a3c&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 185 (Dangxiong).kml

http://ees.elsevier.com/gr/download.aspx?id=165546&guid=21b79e91-e2e7-470b-8f11-77996d7c39e6&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 152 (Xigaze).kml

http://ees.elsevier.com/gr/download.aspx?id=165547&guid=d3a34836-0246-48e1-95c6-e6ed07cc31a1&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 406 (Luobusa).kml

http://ees.elsevier.com/gr/download.aspx?id=165548&guid=4cf8e020-b2f4-47af-993c-d08491331531&scheme=1


KML File (for GoogleMaps)
Click here to download KML File (for GoogleMaps): GCT 405 (Luobusa).kml

http://ees.elsevier.com/gr/download.aspx?id=165549&guid=67f83e4c-d1db-4ac0-83a8-4abfc87e63b2&scheme=1



