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Abstract

Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of
symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-
cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to
different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont (prokaryote) with a
stable cellular environment while the endosymbiont supplements the host’s diet with essential metabolites. For such
communication to take place, endosymbionts’ genomes have suffered dramatic modifications and reconfigurations of
proteins’ functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and
bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional
shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional
divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes.
Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under
stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes
are directly involved in supplementing the host’s diet with essential metabolites. A test of functional divergence supports a
strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic
communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and
the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides
insights on the role of symbiosis in generating species diversity.
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Introduction

One of the most fascinating puzzles in evolutionary biology is

how variability at the gene and protein level leads to the

generation of new species. Inextricably linked to this question

are two main issues that remain the focus of heated debates and

arduous investigation: i) The extent of variation in a protein’s

function; and ii) the relationship between the variability of a

protein’s sequence and its function. Organism lineages generally

evolve under strict negative selection (purifying selection), with

bursts of adaptive mutations becoming punctually fixed in the

population. Negative selection generally removes functionally/

structurally destabilizing mutations, resulting in protein functional

stasis [1]. Conversely, diversifying selection contributes to the

emergence of new protein functions [2]. Protein structure is the

major determinant of function and it is expected that the structural

stability of a protein should provide functional stability. In fact,

recent evidence suggests that structural robustness to mistransla-

tion errors is the factor determining protein’s evolutionary rate [3].

Consequently, mutations will only be fixed at amino acid sites with

no structural importance, while selection will remove mutations

destabilizing protein’s structure [4,5]. Selection shifts at particular

sites that may affect protein structure and function can lead to

functional divergence [6]. The evolutionary constraints whereby

selection shifts occur range between neutrality [7] and selection

due to functional divergence [8,9].

There are several scenarios under which change in selective

pressures may occur, with gene duplication being the most

prominent case [10–18]. Revolutionary changes in the organism’s

lifestyle may also lead to proteome functional divergence and to

the consequent emergence of new species. Symbiosis of proteo-

bacteria with insects is a striking example of revolutionized change

in the lifestyle of an organism (a free-living bacterium became an

endocellular symbiotic bacterium) that has been directly linked to

the generation of species diversity. Interspecific interactions act in

concert with environmental changes to maintain or generate

species diversification [19,20]. Examples of the role of interspecific

interactions is the case of adaptive radiation of plant-pollinator

mutualisms in which plant traits related to related to reproductive

isolation become subject to natural selection [19,21,22]. In

geological terms, adaptive radiation has been repeatedly acceler-

ated by the symbiosis of two different organisms [23]. In extreme

symbiosis cases, such as the endosymbiotic bacteria of insects,

symbiosis involved a dramatic lifestyle change that was accompa-
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nied by dramatic population-genetics events including strong

bottlenecks to the bacterial effective population sizes during

intergenerational transmission. In some biological systems, such as

in the symbiosis between aphid insects and the bacterium Buchnera

aphidicola sp., the effect of bottlenecking can be dramatic due to the

clonal and vertical transmission of the bacteria. This bottlenecking

results in strong genetic drift and the accelerated fixation of

mutations, leading to profound genomic and metabolic remodel-

ing in endosymbiotic bacteria. For example, the switch of bacteria

from a free lifestyle to symbiosis with a qualitatively more complex

organism may lead to dramatic changes in genomic and metabolic

architecture. Indeed, intracellular life may render most of the

biological processes related to extra-cellular survival redundant.

This gene redundancy may have similar evolutionary consequenc-

es to gene duplication in that selection relaxes over such genes

allowing the fixation of new mutations despite their slightly

destabilizing effects or their slightly advantageous consequences.

Furthermore, the proteome/interactome and metabolism of the

bacterium may change during the establishment of the metabolic

interlink between host and bacterium [24]. In particular, the stable

environment provided by the insect aphid to the endosymbiotic

bacterium Buchnera and the presence in some cases of secondary

endosymbionts collaborating in close metabolic intimacy with the

host renders most of the genes in the endosymbiont redundant

[25,26]. The consequent relaxed constraints on these genes, in

addition to the strong intergenerational bottlenecks these bacteria

undergo [27], has resulted in a well-characterized syndrome for

endosymbiosis. Among the genomic characteristics of endosymbi-

otic bacteria are an AT enrichment and accelerated protein

evolutionary rates [27–33], genome reduction (for example see

[34,35]), low levels of intra-specific polymorphism [33,36], and

decreased stability of RNAs [37] and of proteins [38]. Beside of all

these effects, we also expect ample opportunity for functional

divergence in these bacteria, since: i) strong genetic drift allows the

neutral fixation of mildly deleterious mutations that may become

functionally interesting when ameliorated by compensatory

mutations; and ii) symbiosis may have favored the emergence of

new functions enabling biochemical communication with the host

as well as saving metabolic energy.

An example of genomic economization is the flagella assembly

pathway in bacteria that is also responsible for protein export in

free-living bacteria. It has been shown that endosymbiotic bacteria

of insects such as Buchnera are non-motile and yet they express

many of the hook and basal body genes of the flagella [39],

supporting previous suggestions of the specialization of these genes

in export of proteins from the host to the bacterium [40]. Recently,

we have conducted an exhaustive evolutionary analysis of the

flagella genes in endosymbiotic bacteria of insects and showed that

indeed some genes may have changed their function towards

protein export [26]. Identification of functional divergence is key

in understanding the metabolic communication between the host

and the endosymbiont. However, the detection of adaptive

evolution caused by functional divergence is usually hampered

by the fact that genetic drift in these bacteria may produce similar

evolutionary patterns. Therefore, standard statistical methods

cannot disentangle functional divergence from genetic drift effects

and alternative strategies are needed.

To better understand the scenarios under which the endosym-

biotic bacteria of insects adapted to a dramatically different

lifestyle in comparison with their closest free-living relatives, we

here conduct a genome-wide analysis of functional divergence in

the endosymbiont of aphids and endosymbionts of carpenter ants

using a novel and simple statistical approach.

Results

To investigate the relationship between endosymbiosis and the

shift in the nucleotide substitution rates we first estimated

synonymous (dS) and non-synonymous (dN) pairwise substitutions

as well as the ratio between both these estimates (v = dN/dS) in

endosymbiotic bacteria and in their free-living relatives. To

generalize our conclusions, we present results from the two

endosymbiotic systems, Buchnera and Blochmannia sp. (hereon we

will use the genus name to refer to these endosymbionts Buchnera

and Blochmannia), in each one of the sub-sections. To compare

endosymbiotic evolutionary rates we used the comparisons BAp-

BSg and Bf-Bp to their free-living relatives Ec-St because these

divergence events occurred at equivalent times. Therefore, the

comparisons are appropriate despite possible pressures on

synonymous sites.

Differential Selective Constraints in Endosymbiotic
Genomes

Buchnera sp. genomes experienced relaxed constraints after the

establishment of endosymbiosis with aphids because the estimated

number of substitutions increased proportionally in synonymous

and non-synonymous sites (Table 1). For example, dN in

endosymbionts (dNe) increased on average fivefold when compared

to dN in free-living bacteria (dNf) (Median ratio R(dN) = dNe/

dNf = 5.118). Likewise, dSe increased on average three fold when

compared to dSf (R(dS) = 3.329). On average, then, both types of

sites experienced relaxed constraints after the symbiosis of bacteria

with aphids, but this relaxation was more significant at non-

synonymous sites, further highlighting the importance of genetic

drift during the evolution of endosymbiotic bacteria. The

endosymbiont of carpenter ants presented similar relaxed

constraints at synonymous sites but much more relaxed constraints

at non-synonymous sites when compared to Buchnera sp. (Table 1).

Contrary to the expectation of a genome-wide relaxation of

constraints after symbiosis, we found that some genes showed

increased selection pressures in the endosymbiotic lineages, with

greater selection intensities in endosymbionts (ve) than in their

free-living relatives (vf) [R(v) =ve/vf,1]. The number of genes

showing such ratios was significant with as much as 29.67% of the

genes (151 out of 509 genes) and 16.98% of genes (91 out of the

536 genes) presenting R(v),1 in Buchnera sp. and Blochmannia sp.

endosymbiont genomes, respectively (Figure 1A and 1B and Table

S1). When we examined the constraints operating at synonymous

and non-synonymous sites at these genes and compared them to

Author Summary

Biological complexity has emerged on earth by the
combination of living forms. This combination, called
symbiosis, had to overcome the problems caused by the
uncoupled metabolisms of the organisms involved. One
way to do so was through the loss of genes that were no
longer needed for the endosymbiont in the protected
cellular environment provided by the host. Another step
necessary to adjust both metabolisms was through the
change in the function of bacterial proteins to perform
new roles in the symbiotic system. In this article, we test
such events in symbiotic systems involving an insect and a
bacterium by developing a new and simple method to
identify proteome-wide functional shifts. Our results show
that most of the functional changes occurred at genes
involved in metabolic communication with the host and
are correlated with the host’s ecological traits.

Functional Divergence and Endosymbiosis in Insects

PLoS Computational Biology | www.ploscompbiol.org 2 April 2009 | Volume 5 | Issue 4 | e1000344



those in the set of genes with R (v).1, we noticed that increased

selection intensity was partially due to more relaxed constraints at

synonymous sites, but mainly to significantly stronger constraints at

non-synonymous sites in this dataset (Table 1). For example, the

increase factor of dN [R(dN)] when comparing endosymbionts with

free-living bacteria in the dataset with R(v),1 was half that in the

dataset of genes showing R(v).1. In summary, increments of v in

endosymbiotic bacteria are negatively correlated with increments in

synonymous substitutions and positively correlated with non-

synonymous substitutions increments for Buchnera (Perason’s corre-

lation; rR(v)-R(dS) = 20.696, P%10212, and rR(v)-R(dN) = 0.539,

P%10212) and Blochmannia (rR(v)-R(dS) = 20.540, P%10212, and

rR(v)-R(dN) = 20.421, P%1029).

Differential Functional Enrichment in Highly Constrained
Genes in Endosymbiontic Bacteria

To test the link between the biological and evolutionary

characteristics of Buchnera and Blochmannia and the constraints on

their genomes we analyzed the distribution of genes with R(v),1

among the different functional classes obtained using COG terms.

We examined metabolism (represented by 161 genes and 229

genes in Buchnera and Blochmannia, respectively), cellular processes

and signaling (represented by 99 and 108 genes in Buchnera and

Blochmannia, respectively) and information storage and processing

(represented by 127 and 153 genes in Buchnera and Blochmannia,

respectively). We discarded genes that were ambiguously classified.

The total number of genes, number of genes with R(v),1 and

enrichment of each functional sub-category are indicated in

Table 2. We tested the significance of the enrichment with genes

highly conserved in endosymbionts compared to their free-living

relatives using the hypergeometric distribution as explained in

material and methods. Several of the functional categories

examined presented a high percentage of constrained genes in

both Buchnera and Blochmannia, although this was more pronounced

in Buchnera than in Blochmannia (Figure 2). Buchnera presented

several of the categories enriched with genes under stronger

constraints than in its free-living relatives, including genes involved

in transport and metabolism of essential amino acids (category E);

in post-translational modification and chaperones (O); and in

translation, ribosomal structure and biogenesis (J) (Figure 2).

Blochmannia only presented evidence for such enrichment in the

category of genes involved in translation, ribosomal structure and

biogenesis. Several other functional categories presented poor

percentages (significantly low) of strongly constrained genes in

Buchnera but not in Blochmannia including the categories of

coenzyme transport and metabolism, cell motility, and inorganic

ion transport and metabolism (Figure 2). Other categories such as

those including defense genes (V), signal transduction (T), etc.

comprised a very low number of genes and hence presented no

statistical power for rejecting the null hypothesis of no differential

enrichment with constrained genes.

Heterogeneous Functional Divergence among Metabolic
Pathways in Endosymbionts

Based on the assumption that endosymbiosis involved a

dramatic biological leap made possible by functional shifts in

pre-existing proteins, we tested for the presence of functional

divergence in Buchnera and Blochmannia. Even though both

endosymbiotic systems share common biochemical traits (for

example, the need for essential amino acids in their diet as well as

nitrogen compounds), they also possess distinct biological require-

ments. For example, unlike aphids, ants are unable to fix and

reduce sulphur, which is provided by the endosymbiont. We

attempted to test whether analyses of functional divergence could

shed light on the connection between protein variability and

biochemical host-endosymbiont links. Our test identified 63.7%

and 78.6% of genes to be under functional divergence in Buchnera

and Blochmannia, respectively. Buchnera presented three functional

categories enriched with functional divergence, including the one

Table 1. Increments of selective constraints in endosymbiotic
bacteria of insects.

Data Median

Buchnera sp. Blochmannia sp.

R(dN)a R(dS)b R(dN) R(dS)

Full Dataset 5.11862.097 3.32962.018 7.45864.511 3.56862.395

R(v)c,1 3.28861.506 5.34463.470 4.39362.531 6.73863.554

R(v)$1 5.30263.639 2.76660.211 8.135365.316 3.14662.064

aRatio between the rate of non-synonymous substitutions per site in
endosymbiotic bacteria and that of their free-living bacteria.

bRatio between the rate of synonymous substitutions per site in endosymbiotic
bacteria and that of their free-living bacteria.

cRatio between the non-synonymous-to-synonymous rates ratio of
endosymbiotic bacteria and that of their free-living relatives.

doi:10.1371/journal.pcbi.1000344.t001

Figure 1. Constraints operating in endosymbiotic bacteria of aphids (A) and carpenter ants (B) in comparison with their free-living
relative bacteria Escherichia coli and Salmonella typhimurium. We compared the constraints operating in protein-coding genes between
endosymbiotic and free-living bacteria by dividing the non-synonymous-to-synonymous rates ratio of endosymbionts (ve) by that of their free-living
relatives (vf) and we called this ratio R(v) [R(v) = ve/vf; represented in the Y-axis). We plotted genes according to their position in the bacterial
chromosome (X-axis). We also indicate R(v) = 1 since this is the value at which genes have not changed their selective constraints.
doi:10.1371/journal.pcbi.1000344.g001

Functional Divergence and Endosymbiosis in Insects
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involved in amino acid transport and metabolism (E), post-

translational modification and chaperones (O) and translation,

ribosomal structure and biogenesis (J) (Figure 3). Blochmannia also

showed significant evidence of functional divergence enrichment

at these categories and in additional categories involved in

coenzyme transport and metabolism (H), and cell wall and

membrane biogenesis (M) (Figure 3). Other categories in

Blochmannia presented evidence of being poorly populated by

genes under functional divergence including that comprising genes

involved in intra-cellular trafficking (U) and transcription (K)

(Figure 3).

Functional Divergence in the Endosymbiotic Metabolic
Pathways

To identify the relationship between functional divergence and

endosymbiosis we analyzed the distribution of genes between the

different metabolic pathways and tested the enrichment of

pathways with genes under functional divergence using the

hypergeometric distribution. We identified and classified genes

into 67 different pathways. In Buchnera symbionts we found 10

pathways to be significantly enriched and 4 to be significantly

impoverished with proteins that underwent functional divergence

after symbiosis (Figure 4A and Table S2). Among the enriched

pathways we identified those including proteins involved in the

biosynthesis of aminoacyl-tRNA of the 10 essential amino acids

needed by the aphid, biosynthesis of the essential amino acids

(Lysine, Valine, Leucine, Isoleucine, Glycine, Serine, Threonine,

Phenylalanine, Tyrosine and Tryptophan), DNA replication,

ribosomes, and homologous recombination. ABC transporters,

two-component system, phosphotransferases and RNA polymer-

ase were the metabolic pathways showing the least number of

Figure 2. Distribution of highly constrained genes among the
functional categories in Buchnera sp. (blue bars) and Blochman-
nia sp. (red bars). The different functional categories as explained by
the Cluster of Orthologous Groups (COG) are represented in the X-axis.
The height of the bar represents the relative contribution of each class
(i) of size (t), to the total number of genes under strong selective
constraints (ni: R(v) = ve/vf,1) when considering the whole dataset (T).
This normalized number hence was calculated as w = (ni/t) * (t/T). Classes
showing significant enrichment with highly constrained genes under a
hypergeometric distribution are labeled by (*, P,0.05; **, P,1022; ***,
P,1023). We also labeled those functional classes significantly
underrepresented by highly constrained genes using green stars.
doi:10.1371/journal.pcbi.1000344.g002

Table 2. Distribution of constrained genes in endosymbiotic
bacteria of aphids (Buch) and carpenter ants (Bloc) among the
functional categories classified using COG.

Category Sub-category #Genes
# Genes
R(v),1 %Genes

Buch Bloc Buch Bloc Buch Bloc

Met C 40 42 12 5 30.0 11.9

G 19 28 6 4 31.6 14.3

E 47 58 21 11 44.7 18.9

F 20 23 4 2 20.0 8.7

H 25 34 5 4 20.0 11.8

I 10 25 3 4 33.0 16.0

P 12 19 6 7 50.0 36.8

CPS D 8 13 2 1 25.0 7.8

O 33 28 13 4 39.4 14.3

M 17 48 4 7 23.5 14.6

N 23 0 2 0 8.7 0.0

T 4 4 1 0 25.0 0.0

U 10 13 3 1 33.0 7.7

V 3 2 0 0 0.0 0.0

ISP J 82 106 41 29 50.0 27.4

K 14 16 8 3 57.0 18.8

L 31 31 9 7 29.0 22.6

doi:10.1371/journal.pcbi.1000344.t002

Figure 3. Distribution of genes under functional divergence
among the functional categories in Buchnera sp. (blue bars) and
Blochmannia sp. (red bars). The different functional categories as
explained by the Cluster of Orthologous Groups (COG) are represented
in the X-axis. The height of the bar represents the relative contribution
of each class (i) of size (t), to the total number of genes under functional
divergence (ni: R(v) = ve/vf,1) when considering the whole dataset (T).
This normalized number hence was calculated as w = (ni/t) * (t/T). Classes
showing significant enrichment with genes under functional divergence
under a hypergeometric distribution are labeled by (*, P,0.05; **,
P,1022; ***, P,1023). We also labeled those functional classes
significantly underrepresented by highly constrained genes using green
stars.
doi:10.1371/journal.pcbi.1000344.g003
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functionally divergent genes. In the case of Blochmannia we could

identify and classify genes into 71 different pathways. 506 genes

showed evidence of functional divergence and because of this large

number we applied a chi-square distribution to test for enrichment

with functional divergence. This test was performed so that the

chi-square value was calculated for each metabolic class (pathways)

as follows:

x2
1~

%FDi{mð Þ2

%FDizmð Þ

Here %FDi stands for the proportion of the genes in that

metabolic class i showing functional divergence, while m is the

mean proportion of genes under functional divergence throughout

the metabolic pathways. Analyses of Blochmannia pathways

identified similar pathways as those in Buchnera sp. to be enriched

with genes under functional divergence, including aminoacyl-

tRNA for essential amino acids for the host, DNA replication,

essential amino acids biosynthesis, folate biosynthesis and

oxidative phosphorylation (Figure 4B). The pathways for ABC

transporters, phosphotransferases, and the two-component system

were also impoverished with genes under functional divergence.

However, in contrast to Buchnera 18 pathways were enriched and

16 pathways impoverished for genes under functional divergence.

For example, among enriched pathways with proteins under

functional divergence not present in Buchnera were those involved

in the metabolism of sulphur, histidine, vitamine B6, selenamine

acid, pyrimidine; biosynthesis of liposaccharides, ubiquinones, fatty

acids, and peptidoglycans, and the pathway of RNA polymerase. In

contrast to Buchnera other pathways were impoverished for proteins

under functional divergence, including those involved in metabo-

lism of nitrogen, urea, phenylalanine, starch and sucrose, galactose,

fructose and mannose, propanoate, thiamine, biotine, methane and

butanoate (Figure 4B and Table S2).

Discussion

Symbiosis, which has been generally the result of the association

of organisms with different biological complexities, has been

regarded as central to the rapid adaptive radiation [19,20,22].

These different metabolic complexities translate into dramatic

lifestyle changes in one or both partners of the relationship that are

instrumental to their successful metabolic marriage. In attempt to

understand this metabolic communication and the key evolution-

ary events having led to them we have addressed a fundamental

question regarding endocellular symbiosis: What are the main

genome evolutionary events that enabled the functional/metabolic

communication between symbiotic bacteria and insects? In some

cases, such as in endosymbiotic bacteria of aphids, hints about the

complexity of this communication have been provided through

genetic, evolutionary and metabolic studies. Other associations,

such as the one established between ants and their symbionts

remain intriguing because of the apparent balance of the insect’s

diet. Genomes sequencing projects of endosymbiontic bacteria of

insects offer an unprecedented opportunity for establishing the

Figure 4. Distribution of genes under functional divergence among the metabolic pathways significantly enriched or impoverished
with these genes in Buchnera (A) and Blochmannia (B). The different metabolic classes are color-coded. Dotted line separates metabolic
pathways enriched with functionally divergent genes (above the line) from those impoverished with these genes (below the line). The height of the
bar represents the relative contribution of each class (i) of size (t), to the total number of genes under functional divergence (ni: R(v) = ve/vf,1) when
considering the whole dataset (T). This normalized number hence was calculated as w = (ni/t) * (t/T).
doi:10.1371/journal.pcbi.1000344.g004
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biological and evolutionary bases of endosymbiosis in insects.

However, presently we rely on a handful of endosymbiotic

genomes to infer general results. Inference of convergent dynamics

is only possible if the different endosymbiotic bacteria examined

are not directly related from the phylogenetic perspective such as

in the case of Buchnera and Blochmannia endosymbionts [41–44]. In

addition, unlike aphids, ants present a balanced diet [45] and

endosymbionts have been shown to be essential only during the

pupation phase [46]. The presence of several full genomes for ants

and aphids endosymbionts and the ecological differences between

aphids and ants makes it possible to identify evolutionary genome

dynamics that are either strictly related to the establishment of

symbiosis or to the ecological capabilities provided by the

bacterium to the host.

Most of the studies aimed at identifying signs of adaptive

evolution in protein-coding genes are built on the Neo-Darwinists

theoretical ground, which is based on deterministic models that

assume infinite populations sizes. These theories and studies

dismissed the idea of genetic drift following the rationale that most

of the observed polymorphism is maintained in the population

through balancing selection (for review see [47]). In the light of the

neutral theory of molecular evolution however, most of the

variation is selectively neutral and maintained by genetic drift.

This rather than the exception is a frequent observation in

organisms’ populations that in fact are responsible for generating a

huge ecological and biological diversity such as the case of

endosymbiotic bacteria of insects. Our genome-wide evolutionary

analyses unravel the clear effect of genetic drift in both

endosymbiotic systems studied. This is also supported by the fact

that non-synonymous sites are much more relaxed than synony-

mous sites in endosymbionts because these sites are under selection

in free-living bacteria. Strikingly however, Blochmannia presents

more relaxed constraints than Buchnera (for example the percentage

of genes with R(v),1 in Buchnera is nearly twice as much as that in

Blochmannia) probably because of its limited role during the lifecycle

of the ant host. The more relaxed constraints in the the greater

genome size of Blochmannia pinpoint the existence of non-

functionalized genes probably due to the younger symbiosis of

Blochmannia with ants (around 70 MYA for Blochmannia against the

approximately 200 MYA for Buchnera) [48].

The next question we asked was whether relaxed constraints

were random (as a result of genetic drift) or they correlated with

the requirements of the host and the bacterium. Our functional

class enrichment analyses indicate that, in accordance with the

expectation given the metabolic requirements of the host, genes of

transport and metabolism of essential amino acids, ribosome

structures and translation and genes involved in posttranslational

modifications and chaperones were more constrained in Buchnera

than in their free-relative bacterial homologs. Genetic drift in

Buchnera has been extensively demonstrated (for example see [27]).

Conserved constraints at non-synonymous sites can therefore be

due either to a major need for these proteins to perform their

ancestral functions or alternatively to their functional divergence

to perform different but more important functions in the

endosymbionts. Indeed, all the functional categories showing

R(v),1 have been previously reported to play key roles in host’s

ecology (for example supplementing host’s diet with essential

amino acids [49,50]). Furthermore, the high evolutionary rates of

genes of ribosomal structure and translational proteins, posttrans-

lational modification and folding supports their functional

divergence since Buchnera accumulates slightly deleterious muta-

tions at high rates at these proteins, being unlikely to conserve

their ancestral function. Chaperones have been reported to

improve their folding activity, probably by functional divergence,

thereby buffering the effects of Muller’s ratchet [51,52]. Unlike the

transport and metabolism pathways, we detected significant

enrichment of genes under strong selective constraints in the

classes of ribosomal structures and translation from Blochmannia,

which may be in accordance with ants being omnivorous [53–57].

We show evidence that in small effective population sizes of

endosymbionts genetic drift may be followed by increase of their

effective population sizes where selection can become efficient in

filtering the mutations fixed enabling fixation of slightly advanta-

geous mutations (For a discussion on the subject see [47]). Hence,

slightly advantageous mutations are likely to be fixed neutrally in

the population possibly leading to changes in proteins’ functions

(for example to functional divergence). Functional divergence is

based on the assumption that changes in the evolutionary

conservation of certain protein residues may lead to a change in

function. Following this idea many groups have developed

statistical methods to identify functional divergence after gene

duplication (for example see [58–62]), although these methods

were not developed for genome wide analyses. As in gene

duplication, changing lifestyles of organisms may lead to gene

redundancies in the new environments. Consequently, the

selective pressures to delete such redundancies decreases allowing

the accumulation of mutations with slight effects on fitness and

hence for functional divergence. Here we developed a novel

method to identify genome wide functional divergence that is in

theory applicable to any organism with changing lifestyles, such as

pathogens, extremophiles, etc. The results correlated strongly with

the ecological requirements of the hosts. Interestingly, we found

that pathways involved in tRNA synthesis, of the 10 essential

amino acids, the metabolism of these 10 essential amino acids,

DNA replication, ribosomes, and homologous recombination are

highly enriched with genes that show evidence of functional

divergence in both endosymbiotic systems. This convergence may

be due to the possible unbalanced diet of ants during the pupation

phase. Functional divergence of genes involved in DNA

replication, including helicase (DnaB), primase (DnaG) and the

SSB protein in Buchnera may make replication dependent upon the

population of the host. Further, other metabolic pathways such as

ABC transporters, phosphotransferases and the two-component

system were poorly populated by genes under functional

divergence. These genes are probably involved in the transport

of proteins and ions from the bacterium to the host, and are

therefore under strong functional constraint. Such seems the case

also of the RNA polymerase category. The fact that Buchnera and

Blochmannia both present genes evolving under different constraints

in the replication pathway, in addition to the lack of genes in

Blochmannia involved in initiating replication (dnaA, priA and recA)

[63] may support the need of a slowing of the bacterial replication

in a host-controlled way.

Other categories in Blochmannia, but not in Buchnera, presented

enrichment with genes under functional divergence including

categories with genes involved in metabolism of sulphur, histidine,

lipopolysaccharides, fatty acids, peptidoglycans, and nitrogen. All

these categories include genes that are essential to provide the host

with the ability to reduce sulphur, and to recycle nitrogen through

the endosymbiont urease, as previously suggested [64]. Other

enriched categories were polysaccharides and peptidoglycans that

are essential components of the cell wall (specifically of the outer

membrane) and they provide a rather more structured membrane

to the bacterium rendering it more resistant [63] to the hostile

environment of the cytosol [65]. Finally, metabolic pathways

related to the metabolism of sugars (for example, Fructose) are

highly impoverished with genes under functional divergence

probably due to the need to preserve ancestral functions so as to
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deal with the sugar-rich ant diet. In conclusion, metabolic

pathways related to host ecological requirements are either

enriched or impoverished with genes under functional divergence,

both extremes ensuring the conservation of the ancestral

optimized function or specializing the pathway for the overpro-

duction or improvement of the final substrate. In summary, we

show a new way of testing for functional divergence that can be

potentially applied to other biological systems such as pathogens

and organisms living in different and extreme environments. Using

this method we provide evidence of the main underlying

evolutionary mechanisms that were essential for the establishment

of endosymbiosis and for the specific metabolic communication

between the bacterium and the insect host. The differing

evolutionary dynamics of the metabolic pathways and their

correlation with the insect’s ecological requirements reveal a clear

link between bacterial symbiosis and species ecological innovation.

Material and Methods

Genomes and Alignments
We provide the full list of genes examined for functional

divergence in table S1. In our analysis we used the four genomes of

the endosymbiotic bacterium of aphids Buchnera aphidicola,

including strains Acyrthosiphon pisum (BAp: NC_002528), Schizaphis

graminum (BSg: NC_004061), Baizongia pistaciae (BBp: NC_004545)

and Cinara cedri (BCc: NC_008513). For he same genes we used the

genomes of the free-living relatives Escherichia coli K12 (Ec:

NC_000913); Salmonella tyhimurium (St: NC_003197); Shigella flexneri

(Sf: NC_004741); and Erwinia carotovora (Eca: NC_004547). For the

analysis of functional divergence we used the external (outgroup)

genome of Photorhabdus luminescens (Pl: NC_005126), due to its

appropriate phylogenetic proximity to both groups of bacteria. In

the case of the endosymbiotic bacteria of carpenter ants, we used

Candidatus Blochmannia floridanus (Bf: NC_005061) and Candidatus

Blochmannia pennsylvanicus (Bp: NC_007292), the only two genomes

available and fully sequenced. These two endosymbiotic systems

present the possibility of generalizing our conclusions because both

have independent evolutionary origins [41] and yet they are

phylogenetically close to the same free-living bacterial relatives.

With each one of the genes in the genomes we performed Blast

searches to find the orthologs in the other genomes, considering

acceptable only those genes showing reciprocal best top hits with

scores of less or equal than 1024. For each one of the genes we

built multiple protein alignments using ClustalW program with the

default parameters [66]. Then we obtained the multiple

alignments for protein-coding sequences concatenating nucleotide

triples according to the corresponding protein alignment. All

multiple sequence alignments were carefully inspected before

proceeding with the evolutionary analyses.

Characterisation of Selective Constraints in
Endosymbiotic Genomes

Protein functional divergence along a phylogenetic lineage

requires a re-distribution of evolutionary rates along a protein and

the rapid fixation of functionally advantageous mutations through

episodic (punctual) Darwinian selection in that lineage. The

second condition to be met to consider a mutational event as

responsible for functional divergence is that the mutation became

fixed under strong purifying selection after speciation post-dating

that lineage. This involves an increase in the number of amino

acid replacing nucleotide substitutions in the lineage leading to

that cluster while synonymous substitutions remain neutral.

Consequently, as a result of functional divergence we expect an

increase of the non-synonymous-to-synonymous rates ratio

(v= dN/dS), which has been used in numerous studies as an

indicator of the force of selection acting on protein-coding genes

(see for example [51,67,68]). While the number of non-

synonymous nucleotide substitutions per site (dN) is under selection

because they involve changing the amino acid composition of

sequences, synonymous substitution per site (dS) accumulate

neutrally due to their silent effect on protein’s amino acid

composition. However synonymous sites may also be under

selection caused by translational efficiency or stability of RNA

molecules [69–72]. Assuming however that synonymous sites

evolve neutrally, Values of v,1 indicates that most of the amino

acid substitutions are deleterious and removed by selection

(purifying selection); v = 1 indicates neutral evolution, while

v.1 provides evidence for the fixation of amino acid replacing

mutations by positive selection.

In this study we analyzed whether lineages of endosymbiotic

bacteria of insect show evidence of functional divergence by

presenting different v values than expected under linear evolution.

Functional divergence involves a shift in the selection forces acting

on amino acid sites of protein-coding genes. Therefore, irrespec-

tive of the constraints on synonymous sites, endosymbiotic v (ve)

will yield similar values to those in their free-living relatives (vf) if

the constraints were the same in both groups of bacteria and

different values if the selective constraints changed in one clade

compared to the other. To characterise the changes in selective

constraints in the endosymbiotic lineage we estimated dN and dS for

the endosymbiotic lineage and free-living bacterial lineage using

the program YN00 from the PAML package version 4.0 [73]. We

studied the full genome of Buchnera sp. and Blochmannia sp. including

a total of 509 and 536 genes, respectively. We estimated the

number of substitutions per site using the modified method of Nei

and Gojobori [74] as implemented in YN00. Then, we performed

comparisons of the selective constraints in each gene between

endosymbionts and their free-living cousins by dividing their

corresponding v values (R~
vBAp{BSg

vEc{St
). To increase the coherence

of the comparison analyses between both symbiotic systems, we

estimated nucleotide substitutions for the genes in the comparisons

of each one of the endosymbiotic lineages (BAp-BSg, Bf-Bp) to their

free-living relatives Ec-St. We performed these comparisons

because these pairs show similar divergence times (50–100 Million

Years; [32,75]).

In this manuscript we do not deal with the causes of relaxed

constraints in symbiotic bacteria. For example, synonymous sites

may be under relaxed constraints in genes that were over-

expressed in free-living bacteria but are no longer so in

endosymbionts. The effect of translational efficiency in selection

over synonymous sites has been previously shown [76]. Further,

we have recently reported evidence of selection on non-

synonymous sites shaped by translational robustness [77].

However, irrespective of the reasons for such constraints the aim

was to show that in fact v was affected by variation of such

constraints at synonymous and non-synonymous sites but to a

different extent.

Identification of Functional Divergence
In this manuscript we identified functional divergence type I as

described previously [59]. Functional divergence type I involves

the change in the selection constraints at specific amino acid sites

of a protein in a phylogenetic cluster in comparison to another.

The question we asked here is what genes have dramatically

changed their selective constraints during the evolution of

endosymbiosis in comparison with their free-living bacterial

relatives, indicating hence a change in function. The test

performed here is therefore unidirectional (1 tail test). In
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particular, we wanted to examine the acquisition of functional

importance at amino acid sites in endosymbiotic proteins that were

evolving neutrally in their free-living cousins (indicating functional

divergence). In statistical and evolutionary terms, the purpose was

to identify amino acid sites that were variable at free-living

bacteria, but that, after they have undergone important physico-

chemical changes in the lineage leading to endosymbionts, became

highly constrained (conserved) in the lineages postdating endo-

symbionts speciation events. Because endosymbiotic bacteria have

been evolving under genetic drift, we expect sites to be more

variable than in their free-living relatives and hence positive

identification of sites under functional divergence would provide a

conservative measure of such selection constraints shifts.

To conduct a genome wide analysis of functional divergence, we

developed a fast, accurate, and simple statistical method to identify

functional divergence in genomic data (Figure 5 shows the

different steps of the method in a schematic way). Bayesian and

maximum-likelihood approaches developed previously to identify

functional divergence (for example, [58,59]) could not be used in

this study because: i) such methods have been implemented for the

analysis of single genes; ii) they have been devised to identify

functional divergence after gene duplication; and iii) they require

at least four sequences per clade to conduct the analysis. These

requirements are not always met and in the case of endosymbionts

of ants only two genome sequences have been fully sequenced.

Our method uses BLOSUM scores to compare the evolutionary

distance between two clades of homologous proteins and an

outgroup sequence, providing a fast and conservative way of

identifying amino acid sites under functional divergence. The

input is a protein sequence alignment of the two pre-defined clades

and an outgroup sequence. The endosymbiont clade was defined

as the clade-of-interest (which we call clade 1), so that the method

identifies sites in that clade which have diverged significantly

further in function from the outgroup sequence than have the

homologous sites in the second clade (clade 2) (see Figure 5 for

details).

For each column in the alignment, we calculate the BLOSUM

scores for the substitution between each amino acid in each clade

and the outgroup residue. Since the probability of observing an

unlikely substitution increases with the divergence time between

sequences, each pairwise BLOSUM score is divided by the Poisson

distance between the sequences from which the two residues are

derived – that is, the outgroup and one other sequence. Even

though amino acid substitutions are under selective constraints, we

assume that some sites may evolve neutrally and some others

under constraints but that these effects cancel each other out when

averaged along the sequence. We then calculate the mean

BLOSUM score between all clade 1 residues and the outgroup

(clade 1 mean: B1), all clade 2 residues and the outgroup (clade 2

mean B2), and the standard error of both these quantities (SE1,

SE2). Negative BLOSUM scores indicate rarely observed substi-

tutions, while positive scores indicate commonly observed ones.

Since we are attempting to identify sites in clade 1 that are under

functional divergence when compared to clade 2, we filter out all

sites for which the value of clade 1 mean is positive (indicating

hence conservative substitutions; B1w0), and also those sites for

which the value of clade 2 mean is negative. Further, to avoid

obtaining spurious results due to the high genetic drift experienced

by endosymbiotic bacteria, we filter out all sites that are not

completely conserved in clade 1. Finally, we calculate a Z-score for

the column to estimate the probability of the observed putative

functionally divergent site.

Metabolic Data
The database KEGG (Kyoto Encyclopedia of Genes and

Genomes) [78] links genomic information with current knowledge

on functional information. It consists of four main sections

including pathway information, genes collections from all fully

sequenced genome, chemical information (for example, cell

compounds, enzymes, drugs approved etc.) and relationships of

various biological objects. It also integrates a number of software

that link all the knowledge about the pathway, comprising

information genes present in a particular pathway for a specific

species.

We downloaded the file genes_pathway.list from KEGG ftp site

(ftp://ftp.genome.jp/pub/kegg/linkdb/genes/), which contains

all links between genes in KEGG database, and the pathway in

which the gene is present. To determine the possible link between

the interaction of the endosymbiont metabolism and that of the

host, we tested if particular pathways showed evidence of proteins

under functional divergence constraints in the endosymbiotic

lineages.

The functions of the genes were determined using Cluster of

Orthologous Groups (COG) [79]. We had genes from 17 different

sub-categories and they were; Translation, ribosomal structure

and biogenesis (J), Transcription (K), and Replication, recombi-

Figure 5. Genome wide identification of functional divergence. Proteins are identified to be under functional divergence if they show amino
acid sites presenting significant evidence of shifts in the evolutionary rates in cluster 1 (cluster under study) compared to cluster 2 (background
cluster). To measure functional divergence at site i, we first calculate all pair-wise BLOSUM transition values in the pair-wise comparison of the
sequences in the tree. Sequences in cluster 1 are compared to the outgroup and the BLOSUM transition values between outgroup and cluster 1
generate a distribution that is compared to that generated when comparing sequences of cluster 2 to the outgroup. The change in the physico-
chemical properties of amino acids from cluster 1 to cluster is indicated by colored squares. If the transition scores are significantly more radical when
comparing the outgroup to cluster 1 at that amino acid site of the protein than when we compared the outgroup to cluster 2 then we consider the
site to be under functional divergence. The significance of the transition scores in cluster 1 is calculated by comparing the distribution of scores in
cluster 1 to that in cluster 2 and significance is considered at the 1% confidence level.
doi:10.1371/journal.pcbi.1000344.g005
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nation and repair (L) from Information Storage and Processing

(ISP). Cell cycle control, cell division, chromosome partitioning

(D), Defense mechanisms (V), Signal transduction mechanisms (T),

Cell wall/membrane/envelope biogenesis (M), Cell motility (N),

Intracellular trafficking, secretion, and vesicular transport (U),

Posttranslational modification, protein turnover, chaperones (O)

from Cellular Processes and Signaling (CPS). Energy production

and conversion (C), Carbohydrate transport and metabolism (G),

Amino acid transport and metabolism (E), Nucleotide transport

and metabolism (F), Coenzyme transport and metabolism (H),

Lipid transport and metabolism (I), and Inorganic ion transport

and metabolism (P) from Metabolism (Met).

Statistical Analyses
The main tests we performed were those aimed at determining

whether any of the functional classes determined using Cluster of

Orthologous Groups (COG) [79] or any of the pathways presented

evidence of enrichment with genes under strong selective

constraints and/or functional divergence. Since the number of

data was finite per class and we were using discrete number of

genes we conducted our tests using an approximation to the exact

Fisher’s test, called Hypergeometric approximation. Under the

Hypergeometric density function, the probability of observing K

events in the class m, from a sample size of N is:

p~

m

K

� �
N{M

n{K

� �

N

n

� �

This probability density accounts for the unequal size of the

different classes and for non-normal distribution of data, making

the test statistically robust to deviations from normality due to

finite data sets. We used this test to identify functional classes and

metabolic pathways enriched or impoverished by genes under

functional divergence.

Supporting Information

Table S1 The ratio between the intensities of selection in the

endosymbiont Buchnera aphidicola genomes and Blochmannia sp. and

their free-living cousins. Genes are ordered alfabeticaly according

to gene name in E. coli. Data missing or that could not be

estimated are indicated by -.

Found at: doi:10.1371/journal.pcbi.1000344.s001 (0.70 MB

DOC)

Table S2 Functional divergence analysis in the metabolic

pathways of Buchnera and Blochmannia endosymbionts.

Found at: doi:10.1371/journal.pcbi.1000344.s002 (0.09 MB

DOC)

Author Contributions

Conceived and designed the experiments: MAF. Analyzed the data: CT

TAW MAF. Wrote the paper: MAF.

References

1. Messier W, Stewart CB (1997) Episodic adaptive evolution of primate lysozymes.

Nature 385: 151–154.

2. Gould SJ, Eldredge N (1993) Punctuated equilibrium comes of age. Nature 366:

223–227.

3. Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH (2005) Why highly

expressed proteins evolve slowly. Proc Natl Acad Sci U S A 102: 14338–14343.

4. Bloom JD, Raval A, Wilke CO (2007) Thermodynamics of neutral protein

evolution. Genetics 175: 255–266.

5. Lin YS, Hsu WL, Hwang JK, Li WH (2007) Proportion of solvent-exposed

amino acids in a protein and rate of protein evolution. Mol Biol Evol 24:

1005–1011.

6. Gaucher EA, Gu X, Miyamoto MM, Benner SA (2002) Predicting functional

divergence in protein evolution by site-specific rate shifts. Trends Biochem Sci

27: 315–321.

7. Lopez P, Casane D, Philippe H (2002) Heterotachy, an important process of

protein evolution. Mol Biol Evol 19: 1–7.

8. Abhiman S, Sonnhammer EL (2005) Large-scale prediction of function shift in

protein families with a focus on enzymatic function. Proteins 60: 758–768.

9. Gu J, Neary JL, Sanchez M, Yu J, Lilburn TG, et al. (2007) Genome evolution

and functional divergence in Yersinia. J Exp Zool B Mol Dev Evol 308: 37–49.

10. Fitch WM, Markowitz E (1970) An improved method for determining codon

variability in a gene and its application to the rate of fixation of mutations in

evolution. Biochem Genet 4: 579–593.

11. Ohno S (1970) Evolution by Gene Duplication. Berlin: Springer.

12. Li WH, Gojobori T (1983) Rapid evolution of goat and sheep globin genes

following gene duplication. Mol Biol Evol 1: 94–108.

13. Clark AG (1994) Invasion and maintenance of a gene duplication. Proc Natl

Acad Sci U S A 91: 2950–2954.

14. Hughes AL (1994) The evolution of functionally novel proteins after gene

duplication. Proc Biol Sci 256: 119–124.

15. Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12:

364–369.

16. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in

multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A

94: 7799–7806.

17. Force A, Lynch M, Pickett FB, Amores A, Yan YL, et al. (1999) Preservation of

duplicate genes by complementary, degenerative mutations. Genetics 151:

1531–1545.

18. Gu X (2003) Evolution of duplicate genes versus genetic robustness against null
mutations. Trends Genet 19: 354–356.

19. Schluter D (2000) The ecology of adaptive radiation. Oxford, UK: Oxford
University Press.

20. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8: 336–352.

21. Johnson SD, Linder HP, Steiner KE (1998) Phylogeny and radiation of
pollination systems in DISA (Orchidaceae). Am J Bot 85: 402–402.

22. Levin DA (2006) Flowering phenology in relation to adaptive radiation. Syst Bot
31: 239–246.

23. Price PW (1991) The web of life: development of over 3.8 billion years of trophic

relationships. In: Symbiosis as a Source of Evolutionary Innovation: Speciation
and Morphogenesis Margulis L, Fester R, eds. Cambridge, MA: MIT Press. pp

262–272.

24. Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes.

Trends Microbiol 6: 263–268.

25. Perez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, et al. (2006) A small
microbial genome: the end of a long symbiotic relationship? Science 314:

312–313.

26. Toft C, Fares MA (2008) The evolution of the flagellar assembly pathway in

endosymbiotic bacterial genomes. Mol Biol Evol 25: 2069–2076.

27. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic
bacteria. Proc Natl Acad Sci U S A 93: 2873–2878.

28. Lynch M (1997) Mutation accumulation in nuclear, organelle, and prokaryotic
transfer RNA genes. Mol Biol Evol 14: 914–925.

29. Lynch M (1996) Mutation accumulation in transfer RNAs: molecular evidence

for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol 13: 209–220.

30. Rispe C, Moran NA (2000) Accumulation of deleterious mutations in endosym-

bionts: Muller’s ratchet with two levels of selection. Am Nat 156: 425–441.

31. Brynnel EU, Kurland CG, Moran NA, Andersson SG (1998) Evolutionary rates
for tuf genes in endosymbionts of aphids. Mol Biol Evol 15: 574–582.

32. Clark MA, Moran NA, Baumann P (1999) Sequence evolution in bacterial
endosymbionts having extreme base compositions. Mol Biol Evol 16:

1586–1598.

33. Funk DJ, Wernegreen JJ, Moran NA (2001) Intraspecific variation in symbiont
genomes: bottlenecks and the aphid-buchnera association. Genetics 157:

477–489.

34. Wernegreen JJ, Moran NA (2000) Decay of mutualistic potential in aphid

endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis.
Proc Biol Sci 267: 1423–1431.

Functional Divergence and Endosymbiosis in Insects

PLoS Computational Biology | www.ploscompbiol.org 9 April 2009 | Volume 5 | Issue 4 | e1000344



35. Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome

reduction in Buchnera spp.: toward the minimal genome needed for symbiotic
life. Proc Natl Acad Sci U S A 99: 4454–4458.

36. Abbot P, Moran NA (2002) Extremely low levels of genetic polymorphism in

endosymbionts (Buchnera) of aphids (Pemphigus). Mol Ecol 11: 2649–2660.
37. Lambert JD, Moran NA (1998) Deleterious mutations destabilize ribosomal

RNA in endosymbiotic bacteria. Proc Natl Acad Sci U S A 95: 4458–4462.
38. van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, et al. (2003)

Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A

100: 581–586.
39. Maezawa K, Shigenobu S, Taniguchi H, Kubo T, Aizawa S, et al. (2006)

Hundreds of flagellar basal bodies cover the cell surface of the endosymbiotic
bacterium Buchnera aphidicola sp. strain APS. J Bacteriol 188: 6539–6543.

40. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome
sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS.

Nature 407: 81–86.

41. Herbeck JT, Degnan PH, Wernegreen JJ (2005) Nonhomogeneous model of
sequence evolution indicates independent origins of primary endosymbionts

within the enterobacteriales (gamma-Proteobacteria). Mol Biol Evol 22:
520–532.

42. Dasch GA, Weiss E, Chang KP (1984) Endosymbionts of insects. In: Bergey’s

Manual of Systematic Bacteriology Krieg NR, Holt JG, eds. BaltimoreMD:
Williams & Wilkins. pp 811–833.

43. Schroder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, et al.
(1996) Intracellular endosymbiotic bacteria of Camponotus species (carpenter

ants): systematics, evolution and ultrastructural characterization. Mol Microbiol
21: 479–489.

44. Sameshima S, Hasegawa E, Kitade O, Minaka N, Matsumoto T (1999)

Phylogenetic comparison of endosymbionts with their host ants based on
molecular evidence. Zool Sci 16: 993–1000.

45. Pfeiffer M, Linsenmair KE (2000) Contributions to the life history of the
Malaysian giant ant Camponotus gigas (Hymenoptera, Formicidae). Insectes

Sociaux 47: 123–132.

46. Zientz E, Beyaert I, Gross R, Feldhaar H (2006) Relevance of the endosymbiosis
of Blochmannia floridanus and carpenter ants at different stages of the life cycle

of the host. Appl Environ Microbiol 72: 6027–6033.
47. Hughes AL (2007) Looking for Darwin in all the wrong places: the misguided

quest for positive selection at the nucleotide sequence level. Heredity 99:
364–373.

48. Sauer C, Stackebrandt E, Gadau J, Holldobler B, Gross R (2000) Systematic

relationships and cospeciation of bacterial endosymbionts and their carpenter
ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov.

Int J Syst Evol Microbiol 50: 1877–1886.
49. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids

and their symbiotic bacteria Buchnera. Annu Rev Entomol 43: 17–37.

50. Sandstrom J, Telang A, Moran NA (2000) Nutritional enhancement of host
plants by aphids - a comparison of three aphid species on grasses. J Insect Physiol

46: 33–40.
51. Fares MA, Barrio E, Sabater-Munoz B, Moya A (2002) The evolution of the

heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids,
is governed by positive selection. Mol Biol Evol 19: 1162–1170.

52. Fares MA, Ruiz-Gonzalez MX, Moya A, Elena SF, Barrio E (2002)

Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature
417: 398.

53. Dasch GA (1975) Morphological and molecular studies on intracellular bacterial
symbiotes of insects Yale University.

54. Holldobler B, Wilson EO (1990) The Ants. Cambridge, MA: Belknap Press of

Harvard University Press.
55. Bolton B (1994) Identification Guide to the Ant Genera of the World.

Cambridge, MA: Harvard University Press.

56. Davidson DW (1997) The role of resource imbalances in the evolutionary

ecology of tropical arboreal ants. Biological Journal of the Linnean Society 61:
153–181.

57. Davidson DW (1998) Resource discovery versus resource domination in ants: a

functional mechanism for breaking the trade-off. Ecol Entomol 23: 484–490.
58. Gu X (1999) Statistical methods for testing functional divergence after gene

duplication. Mol Biol Evol 16: 1664–1674.
59. Gu X (2001) Maximum-likelihood approach for gene family evolution under

functional divergence. Mol Biol Evol 18: 453–464.

60. Gu X (2006) A simple statistical method for estimating type-II (cluster-specific)
functional divergence of protein sequences. Mol Biol Evol 23: 1937–1945.

61. Lopez P, Forterre P, Philippe H (1999) The root of the tree of life in the light of
the covarion model. J Mol Evol 49: 496–508.

62. Gao X, Vander Velden KA, Voytas DF, Gu X (2005) SplitTester: software to
identify domains responsible for functional divergence in protein family. BMC

Bioinformatics 6: 137.

63. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, et al. (2003) The
genome sequence of Blochmannia floridanus: comparative analysis of reduced

genomes. Proc Natl Acad Sci U S A 100: 9388–9393.
64. Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, et al. (2007) Nutritional

upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia.

BMC Biol 5: 48.
65. Goetz M, Bubert A, Wang G, Chico-Calero I, Vazquez-Boland JA, et al. (2001)

Microinjection and growth of bacteria in the cytosol of mammalian host cells.
Proc Natl Acad Sci U S A 98: 12221–12226.

66. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucleic

Acids Res 22: 4673–4680.
67. Yang Z (2002) Inference of selection from multiple species alignments. Curr

Opin Genet Dev 12: 688–694.
68. Lynn DJ, Lloyd AT, Fares MA, O’Farrelly C (2004) Evidence of positively

selected sites in mammalian alpha-defensins. Mol Biol Evol 21: 819–827.

69. Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral
evolution at synonymous sites in mammals. Nat Rev Genet 7: 98–108.

70. Parmley JL, Chamary JV, Hurst LD (2006) Evidence for purifying selection
against synonymous mutations in mammalian exonic splicing enhancers. Mol

Biol Evol 23: 301–309.
71. Mayrose I, Doron-Faigenboim A, Bacharach E, Pupko T (2007) Towards

realistic codon models: among site variability and dependency of synonymous

and non-synonymous rates. Bioinformatics 23: i319–327.
72. Resch AM, Carmel L, Marino-Ramirez L, Ogurtsov AY, Shabalina SA, et al.

(2007) Widespread positive selection in synonymous sites of mammalian genes.
Mol Biol Evol 24: 1821–1831.

73. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol

Evol 24: 1586–1591.
74. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of

synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:
418–426.

75. Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal
substitution rate in cellular genomes. J Mol Evol 26: 74–86.

76. Rispe C, Delmotte F, van Ham RC, Moya A (2004) Mutational and selective

pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria
of aphids. Genome Res 14: 44–53.

77. Toft C, Fares MA (2009) Selection for translational robustness in Buchnera
aphidicola, endosymbiotic bacteria of aphids. Mol Biol Evol.

78. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes.

Nucleic Acids Res 28: 27–30.
79. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein

families. Science 278: 631–637.

Functional Divergence and Endosymbiosis in Insects

PLoS Computational Biology | www.ploscompbiol.org 10 April 2009 | Volume 5 | Issue 4 | e1000344


