Dynamics of unusual debris flows on Martian sand dunes

Hideaki Miyamoto,1,2 James M. Dohm,3 Victor R. Baker,1,3 Ross A. Beyer,1 and Mary Bourke4

Received 20 April 2004; revised 28 May 2004; accepted 9 June 2004; published 8 July 2004.

[1] Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation model of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10^2 Pa s and the yield strength of 10^2 Pa can form the observed deposits with a flow rate of 0.5 m3/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

1. Introduction

[2] The observation of gullies and often associated debris aprons ignited discussions concerning the near-surface and surface presence of liquid water and its role in resurfacing the martian landscape in relatively recent times [Malin and Edgett, 2000]. Because liquid water is unstable under present atmospheric conditions [Clifford, 1993], any hypothesis explaining the formation of these features should address this significant aspect. Gullies have been identified on crater, trough and valley slopes, and also on aeolian dunes. Proposed hypotheses for gully formation include: surface water runoff from subsurface aquifers [Malin and Edgett, 2000], where discharge may be saline ground water [Knauth et al., 2000], melting of near-surface ice during past, warmer climatic conditions [Costard et al., 2002], and melting of water-rich snow packs [Christensen, 2003]. Hartmann et al. [2003] suggested that differential melting of surface ice could recharge local aquifers which, in turn, would trigger gully flow. Hypotheses that do not involve water include dry flows of eolian dust and silt [Treiman, 2003]. For the aeolian dunes, the thawing of near surface ice is the preferred mechanism [Costard et al., 2002; Mangold et al., 2003; Reiss and Jaumann, 2003].

[3] Since most hypotheses assume that water-related flows carved the gullies, flow rate and water volume estimates are critical to modeling and testing these hypotheses. Possible quantitative estimation of these values based on the morphologic appearance of the gullies, however, is limited because the erosion rate of water-carved valleys, channels, and gullies is difficult to estimate, as is often the case in terrestrial investigations.

[4] Debris flow-like deposits are observed on the slopes of aeolian dunes in Russell impact crater, located in the boundary region separating Argyre and Hellas impact basins (54.5S and 12.7E). These deposits are significant because of their associated distinct levees, which provide morphologic clues to the physical conditions involved during their formation. In this work, we focus on the formation of these depositional features by analyzing their morphology using a numerical simulation model of a time-varying 2-D Bingham plastic flow. Our approach provides newly constrained flow rates and a more accurate assessment of flow rheology. Previous estimates of rheology [Mangold et al., 2003] used a 1-D analytical approach to estimate velocity from the small difference in thickness between both sides of a levee.

2. Modeling of the Debris Flow

2.1. Major Modeling Assumptions

[5] In this paper, a debris flow-like deposit refers to a complex feature, which includes the following primary components: lateral levees, a central channel, and sometimes a deposit at the terminus (Figure 1). The debris flow-like deposits in Figure 1 have an average length of about 1–2 km on an approximate 10° slope. Detailed descriptions of their morphologies are found in Mangold et al. [2003].

[6] The deposits and associated channels follow the direction of the slope, which suggests that they are formed by gravity-driven processes [Mangold et al., 2003]. These features differ from those described by Malin and Edgett [2000], as each gully has a continuous lateral deposit, the channel displays an almost constant width, but does not terminate in a fan. We interpret this morphology to be highly diagnostic and suggest that the deposits are likely formed by a single major flow, though there might be other minor events that contribute. Combinations of these feature types are associated with the emplacement of debris or ice-slush flows in cold environments on Earth [Rapp, 1985; Hartmann et al., 2003]. In those environments, the channels and levees form after the emplacements of the flow deposits: the formations of the channel and levees are primarily due to the subsidence of the flow surface related...
for both debris and glacial flows, however, we adopted
We recognize that the Bingham model might not be optimal
various flow types with varying concentrations of volatiles,
we assume that a deposit is formed by a plastic flow
the rheological property and the flow rate will largely
assumption, although an oversimplification, is acceptable
channels and levees, and the profile locations used in the photoclino
Figure 1. (a) MOC image M19-01170 with insets. Visible
deposits determined from photoclino
deposits as a single flow and not the channel formation, the
and levees, and the profile locations used in the photoclino
Mangold et al. [2003]. In this work, we adopt the Bingham
Johnson and Rodine [1984]; Corominas, 1995). Their for-
flow and not the channel formation, the
We neglect the interactions between the flow and underly-
given for the levee formation of Icelandic debris flows
Our measurements are about 3 to
<10 Pa s; as low as or smaller than a typical
flow rate is
The estimated values in this investigation are from the
10° slope are used to constrain the model. Assuming that
the trigger mechanism, or the erosive processes, which includes
As often performed for terrestrial debris
in the continuity equation in order to calculate a time
slopes ranging from 0.1–1.0 m for flows on an average
The estimated values in this investigation are from the
of the basal erosion due to inhomogeneous velocity profiles
Johnson and Rodine, 1984; Corominas, 1995). Their for-
the trigger mechanism, or the erosive processes, which includes
channel formation. As often performed for terrestrial debris
river or collapse of the ice-rich central part due to sublimation, as
suggested for the levee formation of Icelandic debris flows
Hartmann et al., 2003].
Here, we assume that the channels of Russell crater
dunes are formed by processes similar to those described
above i.e., that the channels and levees form after the
emplacement of the debris flow-like deposit. We model
the emplacement of the lower part of the debris flow-like
deposit as a single flow and not the channel formation, the
trigger mechanism, or the erosive processes, which includes
channel formation. As often performed for terrestrial debris
flows, we modeled particularly at a break in slope where the
flow is considered to achieve steady state flow conditions,
including constant width and thickness. In this case, we can
assume that a particular flow has constant rheological
properties and flow rate along the modeled area. This
assumption, although an oversimplification, is acceptable
as individual deposits display almost constant width along
the flow, whereas it has been shown that differences in both
the rheological property and the flow rate will largely
change the width of a flow [Miyamoto and Sasaki, 1998].

2.2. Bingham Approximation
[8] We do not assume any particular flow-related process
for the formation of the debris flow-like deposits. Rather,
we assume that a deposit is formed by a plastic flow
[Mangold et al., 2003]. In this work, we adopt the Bingham
approximation for the rheology model of a flow, because it is
the simplest and the most widely applied model to assess
various flow types with varying concentrations of volatiles,
which include dry granular flows, at laboratory to geological
scales (see references in Miyamoto et al., 2004).
We recognize that the Bingham model might not be optimal
for both debris and glacial flows, however, we adopted
because the Bingham approximation enables us to test
several hypotheses at the same level.
[9] We measured the thickness of deposits using a
profiling photoclino technique (Figure 1) based on
the Beyer et al. [2003] point photoclino technique.
The estimated values in this investigation are from the
minimum pixel haze estimate, which will produce upper
slope limits. Therefore, the modeled relief may be an over
estimate of the true relief. Our measurements are about 3 to
5 times larger than the values estimated by Mangold et al.
[2003], which may give the lower slope limits. Flow
thicknesses ranging from 0.1–1.0 m for flows on an average
10° slope
2.3. Numerical Simulations of Bingham Flows
[10] We performed numerical simulations of a Bingham fluid
[Miyamoto and Sasaki, 1998] with a small modification
on the expression for the critical thickness to increase
the accuracy [Miyamoto et al., 2004]. This model is based
on a Bingham-approximation version of the shallow-water
equations for a slow-moving flow and is validated against
terrestrial flows [Miyamoto and Sasaki, 1997]. In this
model, volumetric fluxes in the x and y directions are
calculated separately and placed into the continuity equation
in order to determine parameter values that best represent the flow characteristics (see
Figures 2, 3, and 4 and captions). All flows are supplied
at a point source whose area is 4 m². Note that the size of
the source area will not largely influence the results if it
is much narrower than the width of the flow.
[11] Summary of the results include: (1) a flow with very
low viscosity (<10 Pa s; as low as or smaller than a typical
debris slurry) does not achieve the observed flow width
(Figure 2), even if we assume an unrealistically high flow
rate for a possible gravity current such as a debris flow and
an ice-slush flow; (2) a flow with a very high viscosity
(>10¹² Pa s; greater than an ice-slush flow and as high as a
glaciers always displays a greater width than those observed
(Figure 2); and (3) a wide range of viscosity values can
account for the observed widths, heights, and formation
time of the debris flow-like deposits if the flow rate is
properly balanced with the viscosity value (Figure 2).

3. Discussions and Implications
[12] The estimated viscosity values in this work range
from 10 Pa s to 10¹¹ Pa s. Therefore, pure water or a diluted
flow with very low solid content is not considered as a sole
agent in the emplacement of the debris flow-like deposits. Highly viscous flows, such as ice and rock glaciers, are not likely candidates for the formation of these deposits. In addition, a dry granular flow is not likely because of the friction angle of sand grains (typically larger than 25°).

[13] The simulated results show that higher viscosity flows (10^7 to 10^{11} Pa s) may account for the deposits. However, flows with viscosities higher than 10^7 Pa s require durations of more than 10^7 years and extremely low flow rates. These are considered unlikely because there are no terrestrial analogs to explain both the viscosity and the duration. Also, the low and long-lasting flow rate may be unrealistic considering current martian conditions. Although there might be several ways to explain a high viscosity value when considering an ice-rich slush and gelification, we consider this interpretation to be highly questionable.

[14] On the other hand, a rapid debris flow origin [Mangold et al., 2003] is most consistent with our results. The lower end member of the estimated viscosity value, 10^2–10^5 Pa s, and estimated yield strength and flow rate, 10^2–10^3 Pa and 0.005–5 m3/s, respectively, are consistent with typical values of terrestrial debris flows. The existence of rapid debris flows over sand dunes implies an external origin of water, since subsurface seepage from an aquifer is unlikely near the dune crests [Mangold et al., 2003]. This has been explained by the melting of water ice in the top few meters of the martian subsurface at high obliquity [Costard et al., 2002]; in this case, the formation time of the deposits would be well shorter than a few hours. Considering this short time, our simulated results show that the estimated viscosity values would be lower than 10^3 Pa s (Figure 4).

[15] In the case of the rapid debris flow, the minimum estimated volume of water from our calculations is only ~100 m3. This amount of water is not a large volume: if we assume that the water is from the eroded area, which is about 1 km by 20 m width from MOC images, and that this

Figure 2. Width vs. viscosity for different yield strengths and supply rates. Flow widths ranging from about 15 m to 35 m are used to constrain the possible values of viscosity and supply rate based on observations using MOC imagery (gray highlights the estimated widths of debris flow-like deposits). The range of the supply rate for the calculations is from 10^{-12} m3/s to 50 m3/s. Left, results determined with lower viscosity flows using a yield strength of 10^3 Pa (solid lines) and 10^2 Pa (dashed lines). Right, Larger viscosity results using a yield strength of 10^7 Pa. Time required to form a deposit with a typical length of debris flow-like deposits (600 m) is more than 10^3 years (solid lines) or more than 10^4 years (dashed lines).

Figure 3. Diagram shows the water volume necessary to form a debris flow-like deposit that has a length of 600 m. Results determined using a yield strength of 10^3 Pa (solid lines) and 10^2 Pa (dashed lines). The range of the supply rate is from 0.005 m3/s to 50 m3/s. Gray highlighted areas show the possible ranges of parameters constrained by both widths (Figure 2) and thicknesses. Water volume is calculated by total volume from the simulations to achieve the length of 600 m, and a rough estimate of water contents for viscosities (10% for 10^5 Pa s, 20% for 10^4 Pa s, 30% for 10^3 Pa s, 40% for 10^2 Pa s, 45% for 10 Pa s, and 50% for 1 Pa s). Though the estimates of the water contents are based on the general trend of that of terrestrial debris flows, the estimated values should be considered as order of magnitude estimates.

Figure 4. This diagram displays the time of formation of debris flow-like deposits for different viscosities and supply rates. Results determined using a yield strength of 10^3 Pa (solid lines) and 10^2 Pa (dashed lines). The range of the supply rate is from 0.005 m3/s to 50 m3/s. Gray highlighted areas show the possible ranges of parameters constrained by both widths (Figure 2) and thicknesses. Dotted line indicates a possible duration of meltwater during the daytime at high obliquity.
area was covered by sand and ice mixture with ice content of 50%, only several centimeters melting depth would produce ~ 100 m3 of water. Therefore, in the periods of high obliquity, for example, sufficient warming on pole-facing slopes may melt near-surface ice deposits and increase pore pressure near the surface. Explanations for the origin of the near-surface ice include: (1) diffusion from the atmosphere [Mellon and Jakosky, 1995] (2) burial of precipitated snow and frost layers by rapidly aggrading sand layers [Calkin and Rutford, 1974; Bourke et al., 2004] (3) Blown snow transported simultaneously with sedimentary particles and deposited as niveo-aeolian deposits [McKenna Neuman, 1993; Bourke et al., 2004].

[16] Our interpretation of the results presented here include the following sequence of events: (1) melt water at the near-surface of the dune causes a decrease in the critical strength to produce a sufficient amount of material to slip, triggering a debris flow, as seen in terrestrial debris flows, (2) the debris flow continues down the slope, collecting the sand and water/ice mixture, and (3) the flow begins to slow at the break in slope and the internal higher-velocity flow material dissects the debris flow material forming the channel and levees.

[17] This process can explain why the gullies initiate at nearly the same elevation where the slope is greatest and therefore easiest for surface materials to slip. The rheological property of the debris flow is probably controlled by the surface material, which is the mixture of sand and water. This is consistent with first, that each deposit displays an almost constant width along its length without branches and second, that a single debris flow-like deposit displays almost the same geometric pattern as another in the same area. This could explain why many gullies in the dune field of Russell crater display similar morphologies to those in other dune fields. Although terrestrial data show that small difference in water concentration can significantly change the morphology of terrestrial debris flows. The spacing of each debris flows probably reflects the uniformity of the property of the slope, possibly due to the homogeneity of both the sand particles and the volumetric fraction of ice in the dune material, and melting rate of the deposited ice by insolation.

[18] The debris flow-like deposits usually show simple structures rather than episodic debris aprons. This may be due to the depletion of the volatile along the flow. The formation of the dune might be so recent that there might be no chance for ice to recharge after the formation of deposits, because obliquity varies from 15 to $>$35 on timescales of 10^5 to 10^6 years [Ward, 1979].

[19] Acknowledgments. We thank L. Bleamaster for helpful discussions. We are grateful for helpful reviews by two anonymous reviewers. This study was supported in part by JSPS Postdoctoral Fellowships for Research Abroad (to HM) and NASA MDAP NAGS-11090 (to MB).

References