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Abstract

Software in distributed and mobile computing environments needs to cope with variability,

diversity of computing platforms and operates in di↵erent execution environments. Mo-

bile computing environments are heterogeneous and dynamic. Everything from the devices

used and resources available to network bandwidth and user context can change at runtime.

This presents the software developers with the challenge of tailoring behavioural variations

of the software to specific user needs and adapt to context changes. The design and the

development of context-dependent and self-adaptable applications in mobile computing en-

vironments cannot rely on classical software-development methodologies, which assume that

the software execution environment is known a priori at design time, and the application

environment can be anticipated. Supporting the development and execution of self-adaptive

software systems raises numerous challenges, from development processes, design space and

development tools, to the adaptation mechanism that ensures adaptability and dependability

of the self-adaptive software that is targeted. This thesis explores how far we can support

the engineering of self-adaptive applications using generic development paradigm provided by

non-specialized language frameworks, and not being limited to a specific platform or mecha-

nism. This gives the software developers the flexibility to construct a self-adaptive application

using an object-oriented programming language and deploy it on several platforms.

The thesis is that the software developers must considered the context information and

context-dependent behaviour in the analysis, design and implementation of self-adaptive soft-

ware. In particular, software needs to consider the composition of its components in con-
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junction with the contextual changes. In order to overcome the problem and the challenges

of engineering self-adaptive software, this thesis contributes to the knowledge by present-

ing Context-Oriented Software Development (COSD), a generic development paradigm for

the construction of self-adaptive software from context-oriented components, which enables

dynamic composition of the context-dependent behaviours and provides the software with

capabilities of self-adaptability and dependability in mobile computing environments. Our

model is based on a decomposition strategy of self-adaptive software based on context, which

provides a flexible mechanism for modularising the software into several composable units of

behaviour and decouples the context-dependent from context-free parts. The context-oriented

component model encapsulates the implementation of the context-dependent parts in distinct

architecture units, which enables the software to adjust its functionality and/or behaviour

dynamically. This di↵ers from the majority of existing works, which seek to embed awareness

of context in the functional implementation of applications. The Context-Oriented Software

is developed using a Context-Oriented Component-based Application Model Driven Archi-

tecture (COCA-MDA). Afterwards, the context-oriented software is manipulated at runtime

by COCA-middleware, which performs a runtime behavioural composition of the context-

dependent functionality based on the operational context. The evaluation of context-oriented

software in comparison to existing work shows that context-oriented software development is

better suited for implementing context-dependent and self-adaptive applications. In addition,

the evaluation of COCA-middleware in terms of the modifiability and performance quality

attributes, shows better performance in performing the adaptation with less impact on the

allocated resources. This thesis shows that COCA-MDA has reduced the development e↵ort

in modelling the Platform Independent Model (PIM) and Platform Specific Model (PSM), as

it reduces the amount of configurations and maintenance needed to transform the PIM into

PSM. In addition, COCA-MDA produced a component-based architecture described by an

Architecture Description language (ADL), which reduces the e↵ort needed to implement the

architecture in di↵erent platforms.
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Glossary

Notation Description

advice Describes a class of functions which modify other

functions when the latter are run; it is a certain

function, method or procedure that is to be applied

at a given join point of a program.

aspect An aspect of a program is a feature linked to many

other parts of the program, but which is not related

to the program’s primary function. An aspect

crosscuts the program’s core concerns, therefore

violating its separation of concerns that tries to

encapsulate unrelated functions.

context Any information that is computationally accessible

and upon which behavioural variations depend.

context-aware application refer to a class of software systems that are able to

monitor and detect context changes in the

environment where they operate.

context-awareness The software system is aware of its context, which is

its operational environment.
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Notation Description

context-dependent A context-dependent application adjusts its

behaviour according to context conditions arising

during execution.

crosscutting Properties or areas of interest such as quality of

service, energy consumption, location awareness,

users’ preferences, and security.

desmet A methodology for evaluating software engineering

methods and tools.

heterogeneous A set of collaborated aspects (code fragments), that

extend the application behaviour in several parts of

the program and have an impact across the whole

software system.

homogeneous Applying the same code, that extend the application

behaviour in several parts of the program.

joinpoint A point in the control flow of a program. In

aspect-oriented programming a set of join points is

described as a pointcut. A join point is a

specification of when, in the corresponding main

program, the aspect code should be executed..

xx



0

Notation Description

pointcut Is a set of join points. Whenever the program

execution reaches one of the join points described in

the pointcut, a piece of code associated with the

pointcut (called advice) is executed. This allows a

programmer to describe where and when additional

code should be executed in addition to an already

defined behavior..

self-* properties The autonomic properties of a software, which

includes (self-organising, self-healing, self-optimising

and self- protecting).

self-adaptive A self-adaptive application modifies its own

structure and behaviour in response to changes in

its operating environment.

self-healing The capability of discovering, diagnosing and

reacting to disruptions. It can also anticipate

potential problems, and accordingly take proper

actions to prevent a failure.

self-optimising The capability of managing performance and

resource allocation in order to satisfy the

requirements of di↵erent users. End-to-end response

time, throughput, utilisation and workload are

examples of important concerns related to this

property.
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Notation Description

self-organising The capability of reconfiguring automatically and

dynamically in response to changes by installing,

updating, integrating, and composing/decomposing

software entities.

self-protecting The capability of detecting security breaches,

anticipating problems and recovering from their

e↵ects. It has two aspects, namely defending the

system against malicious attacks, and anticipating

problems and taking actions to avoid them or

mitigate their e↵ects.

separation of concerns Is the process of separating a computer program

into distinct features that overlap in functionality as

little as possible..
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Chapter 1

Introduction

Context-dependent applications refer to a class of software systems that are able to monitor

and detect context changes in an environment where they operate. They can autonomously

modify their own structure and behaviour in response to context changes [Oreizy et al., 1999].

Software in distributed and mobile computing environments needs to cope with variability as

software systems are deployed on an increasingly large diversity of computing platforms and

operate in di↵erent execution environments. Mobility induces context changes to the compu-

tational environment and therefore, changes to the availability of resources, and continuously

evolving requirements require software systems to be able to adapt to context changes [In-

verardi and Tivoli, 2009]. Moreover, because of the software pervasiveness, and in order to

make adaptation e↵ective and successful, adaptation processes must be considered in con-

junction with dependability and reliability by providing dynamic verification and validation

mechanism, which validates the adaptation output with the adaptation goals, objectives, and

architecture quality attributes [Cheng et al., 2008,de Lemos et al., 2011].

This thesis contributes to the knowledge by presenting Context Oriented Software De-

velopment (COSD), a generic development paradigm for the construction of self-adaptive

software from context-oriented components, which enables a runtime composition of context-

dependent behaviours and provides the software with capabilities of self-adaptability and

dependability in mobile computing environment.
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The thesis is that the software developers must considered the context information and

context-dependent behaviour in the analysis, design and implementation of self-adaptive

software. In particular, software needs to consider the composition of its components in

conjunction with the contextual changes, which provides context-driven adaptation and self-

adaptability.

This chapter is organized as follows: Section 1.1 highlight the needs for dynamic adapta-

tion of context-aware applications. Section 1.2 provides an overview of the research problems

and motivations of engineering self-adaptive software. The research objectives are discussed

in Section 1.3. The outline of the solution is presented in Section 1.4. The scope of this

research is demonstrated in Section 1.5. Finally, the thesis structure is shown in Section 1.6.

1.1 Background

A self-adaptive and context-dependent software system operating in a highly dynamic world

must adjust its behaviour automatically in response to changing environments or require-

ments, while shifting the human role from operational to strategic. Humans define adapta-

tion goals and new applications or domain requirements, and the system performs all nec-

essary adaptations autonomously at runtime. Throughout the system’s life-cycle, including

adaptation periods, the system needs to be available and provides functionality to users or

other systems, while keeping acceptable levels of Quality of Services (QoS) [Al-Begain, 2004].

However, several researchers have emphasized the need for a new development paradigm that

overcomes the complexity, mobility, and variability of this class of applications [Inverardi,

2007, Inverardi and Tivoli, 2009, Baresi and Ghezzi, 2010, Blair et al., 2009, Amoui et al.,

2011, de Lemos et al., 2011]. The authors argue that we have to reconceptualize the whole

software engineering process for modern software systems, and particularly for the case of

self-adaptive systems [de Lemos et al., 2011]. This is only achieved if software is designed to

be dynamic and o↵ers adaptability and variability in conjunction with mobility and hetero-

geneity of the computational environments in which it operates.
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In the last few years, Model Driven Development (MDD), Component-based Software

Development (CBSD), and context-oriented software have become interesting alternatives for

the design and construction of self-adaptive software systems. In general, the ultimate goal

of these technologies is to be able to reduce development costs and e↵ort, while improving the

modularity, flexibility, adaptability, and reliability of software systems [Clemente et al., 2011].

An analysis of these technologies shows them all to include the principle of the separation

of concerns, and their further integration is a key factor to obtaining high-quality and self-

adaptable software systems. Each technology identifies di↵erent concerns and deals with

them separately in order to specify the design and build applications, and, at the same time,

provides dynamic behavioural variations autonomously.

The Object Management Group (OMG) [Kleppe et al., 2003] proposes the Model Driven

Architecture (MDA), a set of standards that provides a practical implementation of MDD

approach. MDA provides a set of guidelines that focus on the explicit separation of platform-

independent from platform-specific concerns. In MDA, there are three di↵erent views for the

software: the computation-independent view (CIV), the Platform Independent View (PIV),

and the Platform Specific View (PSV). The Computation Independent View (CIV) focuses

on both the environment and the requirements of the system and hides the details of the

software structure and processing. The PIV focuses on the operation of the system and hides

details that are dependent on the deployment platform. The PSV combines the CIV and

PIV, with an additional focus on the details of a specific platform [Kleppe et al., 2003].

CBSD targets the construction of large, high-quality, evolvable software systems in a

timely and a↵ordable manner by assembling independent and reusable software modules

known as components [Clemente et al., 2011]. A software component is a unit of composition

with contractually specified interfaces and explicit context dependences [Szyperski, 2002].

CBSD emphasizes on the separation of concerns among the software modules that encap-

sulate a set of related functionalities, or, in the case of Service-oriented Architecture [Papa-

zoglou et al., 2007], a component is converted into a service and subsequently inherits further

characteristics beyond those of an ordinary component definition.
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Context-Oriented Programming (COP) has emerged as a dynamic fine-grained behavioural

adaptation, which uses a programming-level techniques for performing the context han-

dling [Gassanenko, 1998, Keays and Rakotonirainy, 2003]. COP has dedicated support for

defining and composing variations to basic program behaviour. A variation, which is defined

within a layer, can be deactivated/activated for the dynamic extent of a code block. For

a more complex context-aware system, the same context information would be triggered in

di↵erent parts of an application and would trigger the invocation of additional behaviours.

In this way, context handling becomes a concern that spans several application units, essen-

tially crosscutting into the main application execution. A programming paradigm aiming at

handling such crosscutting concerns (referred to as aspects) is Aspect-Oriented Programming

(AOP) [Kiczales et al., 1997]. Dynamic Aspect Oriented Programming (DAOP) has emerged

to enforce separation of concerns and support runtime adaptations through weaving code

blocks in the application execution [Popovici et al., 2002].

1.2 Runtime Context-Dependent Behaviour Variability Man-

agement

Mobile computing environments are heterogeneous and dynamic. Everything from the devices

used and resources available to network bandwidths and user context can change drastically

at runtime [Belaramani et al., 2003]. This presents the software developers with the challenge

of tailoring behavioural variations both to specific user needs and to the context information.

The design and development of context-dependent and self-adaptable software applications in

mobile computing environments cannot rely on classical software-development methodologies,

which assume that the software execution environment is known a priori at design time and

that the application environment can be anticipated at the development time [Inverardi and

Tivoli, 2009]. Supporting the development and execution of software systems raises numerous

challenges, from development processes, design space, and tools for the system’s thorough

development, to the adaptation mechanisms that ensure adaptability and dependability of
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the targeted self-adaptive systems [de Lemos et al., 2011]. However, these challenges, taken

in isolation, are not new in the software domain. Several approaches attack this domain by

providing a model-centric, middleware-centric, or programming-level technique that enables

the software to be more context-aware and self-adaptive [Kapitsaki et al., 2009]. This research

observes the following challenges in engineering self-adaptive software systems.

1.2.1 Upfront autonomic design.

Engineering a self-adaptive system from scratch requires the support of dynamic and be-

havioural views of the software design; the software developers should focus on 1) the parts

of the application that need to adapt accordingly as a response to a specific context change;

and 2) each component must be able to perform the adaptation autonomously. This presents

a challenge for the software developers because self-adaptive applications, by their nature, can

be seen as the collaboration of individual context-dependent behaviour variations. Context-

dependent variations can be seen as a collaboration of individual features spanning the soft-

ware modules in several places [Hirschfeld et al., 2008], and they are su�cient to qualify as

heterogeneous crosscutting in the sense that di↵erent code fragments are applied to di↵erent

program parts [Apel et al., 2006]. Before encapsulating crosscutting context-dependent be-

haviours into a software module, the developers must first identify the behaviours in the soft-

ware requirements. This is di�cult to achieve because, by their nature, context-dependent

behaviours are entangled with other behaviours, and are likely to be included in multiple

parts (scattered) of the software modules [Lincke et al., 2011]. Using intuition or even do-

main knowledge is not necessarily su�cient for identifying their volatile behaviour; instead,

a formal analysis procedure is needed for the software requirements and a separation of their

individual concerns [Carton et al., 2007].

1.2.2 Runtime variability management.

Mobile computing infrastructures make it possible for mobile users to run software services

on heterogeneous and resource-constrained platforms. Heterogeneity and device limitedness

5



create a challenge for the development and deployment of mobile services that are able to

adapt to context changes and are able to ensure that users experience the ‘best’ quality of

services possible, according to their needs and specific contexts of use. Thus, it is desir-

able that self-adaptive software is able to reconfigure and reoptimize itself by recomposing

components or services dynamically, according to the operational context [Salehie and Tahvil-

dari, 2009,Salvaneschi et al., 2011]. The assumptions made by the COP approaches proposed

in [Gassanenko, 1998,Costanza, 2005,Costanza et al., 2006,Hirschfeld et al., 2008,Salvaneschi

et al., 2011], i.e. that the developer knows all the possible software adaptations in advance

and designs the application accordingly, is not su�cient to fulfil this need. In addition, in

COP and context-aware aspects [Tanter et al., 2006], the context model and the adaptation

logic are explicitly hard-coded in the application’s business code [Lincke et al., 2011]; this

often leads to poor scalability and maintainability [Kapitsaki et al., 2009].

1.2.3 Unanticipated adaptation.

Mobility induces changes in the computational environment and therefore changes in the

availability of the allocated resources and services; this often requires the adaptation engine

to decide which behaviour must be deactivated/activated in the presence of unforeseen con-

text changes. Unforeseen refers to context changes that cannot be predicted at the design

time. Adaptation must be considered in conjunction with dependability, i.e. no matter what

adaptation is performed, the software system must continue to guarantee a certain level of

quality of services and meet the user’s performance needs. Anticipated adaptation is defined

by Keeney [Keeney, 2004] as an adaptation behaviour that is foreseen by the developers

at development time. On the other hand, semi-anticipated is defined as an adaptation be-

haviour that can be partially foreseen by the developers during the development process, then

a middleware is used for executing an adaptation plan, which specifies application variability

models [Rouvoy et al., 2008b]. The assumption is that the developers can provide a prelim-

inary adaptation plan which is able to reason about a certain environmental condition. An

unanticipated adaptation is very di↵erent and is defined as an adaptation behaviour which
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incorporates components, possibly from a number of di↵erent developers to adjust the appli-

cation behaviour at runtime [Keeney, 2004,Khan, 2010,Ding et al., 2009]. An unanticipated

adaptation requires the software to consider a trade-o↵ between the adaptation goal and

the quality attributes of the architecture. To increase the anticipatory capability of a self-

adaptive system, code units need to be loaded dynamically i.e. a late binding of a particular

component implementation or services. However, the capability of software to perform late

binding requires a clear modularization of the self-adaptive software system; this leads us to

the next challenge in engineering self-adaptive software using modularity techniques [Cheng

et al., 2008,de Lemos et al., 2011].

1.2.4 Modularization.

In the classical view of object-oriented software development, the modular structure for soft-

ware systems has rested on several assumptions. These assumptions may no longer charac-

terize the challenge of constructing self-adaptive software systems that are to be executed

in mobile computing environments [Harrison, 2011]. The most important assumptions in

object-oriented development methodologies are that the decision to use or reuse a particular

component/object is made at the time the software is developed.

However, the development of a variety of modern self-adaptive software architectures such

as mobile/ubiquitous computing, and component-based and context-oriented software has

emphasized on deferring these decisions about component selection until runtime. This might

increase the software capabilities in terms of variability, adaptability, and maintainability, and

increase the anticipatory level of the software by loading a particular component/service that

can handle unforeseen context changes dynamically. In addition, modularity can reduce the

development e↵ort and increase software comprehensibility [Munnelly et al., 2007]. However,

this is not always the case. DAOP supports dynamic weaving of aspects to modify the

software behaviour based on the modularity mechanism, supported by the AOP paradigm.

Using the AOP paradigm, context information can be handled through aspects that interrupt

the main application execution.

7



The idea behind AOP is to implement crosscutting concerns as aspects whereas the core

features are implemented as components. Using pointcuts and advice, an aspect weaver

glues aspects and components together. Pointcuts specify the join points of aspects and

components, whereas advice define which code is applied to these points. However, design-

ing context-dependent behaviour using aspect oriented programming paradigm requires a

platform support for activating aspects driven by the context states. Such implementation

requires the AOP platform to evaluate each joinpoint in conjunction with the associated con-

text state and the passive context values. This means that the AOP framework needs to keep

track of past context conditions and their associated states [Tanter et al., 2006]. Evaluating

each joinpoint with the passive and active context many times leads to poor performance and

consumes the allocated resources. Unfortunately, the existing AOP languages tend to add

a substantial overhead in both execution time and code size, because all pointcuts must be

registered by the aspect framework and parsed each time the advice methods are executed.

This restricts their practicality for small devices with limited resources [Hundt et al., 2010].

In addition, it is infeasible for an AOP-based framework to support dynamic de-/activation

of collaborative context-dependent behaviours that entangle with each other, as stated by

Mezini et al. [Mezini and Ostermann, 2004], Salvaneschi et al. [Salvaneschi et al., 2011], and

Lincke et al. [Lincke et al., 2011].

1.2.5 Behavioural composition.

The selection of a particular component at runtime by context-dependent and self-adaptive

applications is presumably made based on the active or passive context in addition to the

context state and its dependency [Tanter et al., 2006, Lincke et al., 2011], and the possible

composition of a context-dependent functionality [Salvaneschi et al., 2011,Hirschfeld et al.,

2008], which will exhibit volatile behaviour in the face of context changes. One could ask

whether the current software domain techniques have su�cient support or the mechanism

for performing such dynamic selection and composition of a software component based on its

context-dependent functionality. Behavioural composition and configuration concerns require
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the software modules to be loosely coupled, and their behaviour variations can be combined

and activated autonomously, according to the context changes. Such a challenge has been

tackled by a composition strategy that was performed through the development process and

depended totally on a static view of the self-adaptive software design. Such a view implies that

the developers have to explicitly predict the final composition of the software and possible

variations of the application using a programming-level technique such as COP [Schuster

et al., 2011] or AOP [Tanter et al., 2006]. In model-based approaches, the composition is

produced by proposing application variability models at the design time, then at runtime the

middleware uses a utility function to select the best variant to be executed [Geihs et al., 2011].

Alternatively, the composition is shifted one step further to be performed through model-to-

model transformation, assuming that a workflow script can provide multiple variations of the

application design [Carton et al., 2007].

1.2.6 Platform- or framework-specific adaptation.

The generation of multiple self-adaptive software systems to be implemented on heterogeneous

software platforms raises the need for a generic development process that enables the software

developer to build a self-adaptive application without being limited to a specific programming

framework and/or particular middleware technology. Instead, software developers can use

a standard development process and implement the application using an object-oriented

programming language that requires a lower level of programmer familiarity and results in

less of a gap between the middleware designer and the software developers. Our work, which

investigates MDA approaches that target self-adaptive component-based software systems,

has found that the real potential behind MDA is not being fully employed either by current

MDA-based tools or by the proposed MDA approaches. In addition, MDA-based approaches

generate an architecture that is tightly coupled to the middleware or platform technology

that they used [Asadi and Ramsin, 2008].
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1.3 Objectives and Research Questions

In this thesis, we wish to explore how far we can support the engineering of self-adaptive

applications using generic development paradigms provided by non-specialized programming

language such as COP, and AOP, and not limited to a specific platform or mechanism. This

gives the software developers the flexibility to construct a self-adaptive application using an

object-oriented programming language and deploy it on several platforms. Additionally, from

the software developer’s perspective, it is vital to know the productivity of the development

paradigm that might be used in constructing the self-adaptive application.

In addition, it is important to explore the best practices in designing and implementing

the adaptation engine (middleware), which is expected to provide adaptability and depend-

ability. Productivity evaluation of the development methodology and the middleware can

assist developers in selecting a methodology from those proposed in the literature to achieve

adaptability and dependability of the software system. Finally, modularity properties are

key determinants of quality in software, so we wish to explore the best decomposition strat-

egy that can facilitate dynamic behavioural composition of the context-dependent variations.

Our research has shown that MDD, CBSD, and COP may be appropriately combined to com-

plement each other, improving the development of self-adaptive software systems. However,

such combination in the form of COSD is a subject for further investigation and evaluation

in terms of software adaptability, variability, and dependability, in conjunction with their

expected improvements with respect to software performance and modifiability.

1.3.1 Research questions

To attain these objectives, this thesis addresses the following research question:

Does engineering self-adaptive applications using a decomposition strategy based on the

context-dependent functionality support adaptability and variability in several levels of gran-

ularity and reduce the development e↵ort from the software developers’ point of views? If

it does not, which development methodology by its own or combined with others, can be
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used to develop this class of applications targeting the mobile computing environments and

considering the mobility constraints without being limited to a language framework? Which

decomposition strategy can facilitate the development of context-aware applications? It is

unknown if a better and significant advance in modularity based on context information can

break through the complexity of constructing self-adaptive software, and its costs and bene-

fits remain uncovered. What is the e�cacy of using the proposed MDA on the development

e↵orts and the developer productivity? Does any model-driven methodologies reduce the

development cost and the e↵ort to maintain the application code, or in some cases they will

increased the development e↵ort ? What are the pros and cons of implementing the proposed

platform in resource constrained environment like mobile devices? What are the optimisation

gains from implementing the Context-Oriented Component-based Applications Middleware

(COCA-middleware) on comparison to other adaptive middleware architectures?

1.4 Contributions

In order to overcome the problem and the challenges of engineering self-adaptive software,

this thesis contributes to the knowledge by presenting COSD methodology. The result of

COSD methodology is a component-based architecture described by a Context-Oriented

Component-based Applications Architecture Description Language (COCA-ADL). COCA-

ADL is a platform-independent model transformed by a tool support into the desired platform-

specific model. This provides code mobility for the same application into various deployment

platforms.

The context-oriented component model encapsulates the implementation of the context-

dependent parts in distinct architectural units, which enables the software to adjust its func-

tionality and/or behaviour dynamically. This di↵ers from the majority of existing work, which

seek to embed awareness of context in the functional implementation of applications. The

context-oriented software is developed using a Context-Oriented Component-based Applica-

tions Model-Driven Architecture (COCA-MDA). Afterwards, the context-oriented software
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is manipulated at runtime by a COCA-middleware that performs a runtime behavioural

composition of the context-dependent functionality based on the operational context. The

self-adaptive software dependability is achieved through the COCA-middleware capability

in considering its own functionality and the adaptation impact/costs. A dynamic decision-

making based on a policy framework is used to evaluate the architecture evolution and verifies

the fitness of the adaptation output with the application’s objectives, goals and the architec-

ture quality attributes. A case study application is implemented and deployed in an IPhone

device as proof of concept. The implementation demonstrates the application’s ability to

modify its behaviour based on the execution context. The implementation demonstrates how

the platform maintains the quality attributes by adapting a self-tuning and self-configuring

mechanisms in response to multiple context changes.

The self-adaptive context-oriented component-based software has been evaluated in two

distinct phases. The first phase includes pre-implementation evaluation using the Architec-

ture Trade-o↵ Analysis Method (ATAM) [Kazman et al., 2002]. The objective of this evalu-

ation is to consider the COCA-middleware architecture’s sensitivity points and the trade-o↵

among the quality attributes, which the COCA-middleware design must maintain. This

provides evidence that the proposed middleware architecture does maintain the quality at-

tributes by trade-o↵s among the quality attributes while achieving the adaptation goals.

The second phase evaluates the Context-Oriented Software Development paradigm and the

COCA-middleware and the case study in terms of the architecture performance and mod-

ifiability. The evaluation compared the performance gain from implementing a case study

application using the COSD paradigm and COCA-middleware with several approaches pro-

posed in the literature like Aspect Oriented Software Development (AOSD) [Filman et al.,

2004] and Context-Oriented Programming [Appeltauer et al., 2008,Schuster et al., 2011]. In

addition, the performance of COCA-middleware implementation was evaluated with other

middleware architectures proposed in the literature.

Finally, a state-of-the-art case study was selected to demonstrate the COCA-MDA ca-

pability in facilitating the development of a self-adaptive and context-dependent applica-
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tion. The development of the case study demonstrates how the methodology adapts a policy

framework for achieving and assuring the adaptation results among unforeseen changes. In

addition, it demonstrates how the modularization technique can reduce the complexity of

the self-adaptive application design. The Constructive Cost Model II (COCOMO II) [Boehm

et al., 2000] is used to evaluate the impact on the development cost of using the COCA-

MDA methodology. It shows how COCA-MDA does reduce the required development e↵ort

compared to other MDAs. It also demonstrates how COCA-MDA has reduced the software

maintenance ratio through the architecture deployment and transformation.

1.5 Scope

This thesis focuses on studying dynamic software composition using model-driven develop-

ment, component-based software and a dedicate adaptive middleware. On another hand,

there are several approaches in the literature that target self-adaptability and dependability

of software systems. The model-free adaptation is one of them. In this approach the mech-

anism does not have a predefined model for the environment and the system itself. In fact,

by knowing the requirements, goals, and alternatives, the adaptation mechanism adjusts the

system. Such an approach is out of the scope of this thesis, because it focuses more on col-

laborative reinforcement learning mechanism, which enables groups of reinforcement learning

agents to solve system optimisation problems in dynamic and decentralized networks.

In addition to that, context-awareness can be achieved via ontology model and rule-based

engine. The ontologies usage exploits the principles of the semantic web to produce ontologies

that describe context information and its associations and provide means for reasoning and

inference. We have also omitted this category from our study, because ontologies usually

model context information specific to a chosen application domain.

Regarding rule-based reasoning approaches, a rule-based system is a combination of a

number of rules and a set of activation conditions for these rules. This category has not

been analysed further in this thesis, since only few and quite early studies are presented with
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respective approaches specific to context management for services adaptation [Daniele et al.,

2007].

1.6 Road Map

The reminder of this thesis is structured as follows:

Chapter 2 summarises and discusses the current state-of-the-art approaches for self-

adaptive software and their limitations, and also identifies critical challenges that arise when

engineering self-adaptive systems. Context adaptation approaches and techniques are dis-

cussed in this chapter in terms of the modelling approach, self-adaptability requirements,

and run time infrastructure.

Chapter 3 proposes a development methodology, that applies to the Model-driven Ar-

chitecture style. The COCA-MDA methodologys phases and tasks are described in detail

and show the process of constructing a case study application.

Chapter 4 describes the implementation of the COCA-middleware and the case study

applications.

Chapter 5 provides results of architecture evaluation. The proposed architecture is

evaluated using the ATAM method, which has been adapted and used to evaluate the

COCA-middleware capability in terms of several quality attributes. In addition, the COCA-

middleware is evaluated with other architectures proposed in the literature in terms of its

adaptability and modifiability.

Chapter 6 demonstrates the capabilities of COCA-MDA in supporting the development

of context-aware applications by describing a state-of-the-art case study and evaluating the

development e↵ort involved in adapting the COCA-MDA in constructing the application.

Chapter 7 presents conclusions and outlines possible future works.
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1.7 Summary

This chapter highlights several challenges in building self-adaptive software from a conceptual

view to the level of runtime infrastructure middleware components. In order to support

context-binding mechanisms, a platform solution is needed to legitimately deal with the

heterogeneity of context-dependent behaviours. The results of the decomposition mechanism

are a clear, modularised, component model, which separates the context-dependent from

context-independent concerns.
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Chapter 2

Engineering Self-adaptive Software

Supporting the development and execution of self-adaptive software systems raises numerous

challenges. These challenges include the development processes for building them, the design

space, which describes the design patterns and the best practices of designing their building

blocks, i.e. component model or code fragments. The adaptation mechanism, which describes

the best adaptation action that can be used under the limited resources of the execution

environment.

The proposed approaches in the literature can be classified into model-centric, middleware-

centric, and programming-level techniques, as shown in Figure 2.1. The ultimate goal of these

approaches was to support adaptability, variability and increase the software quality by man-

aging the context-dependent functionality at the programming level, middleware layer, or

architecture model. In addition to that, they were trying to provide an adaptation mecha-

nism, that have less impact on the allocated resources under the mobility constrains of the

execution environments.

This chapter summarises and discusses the current state-of-the-art approaches for engi-

neering self-adaptive software systems. Specifically, we intend to focus on the management of

the context-dependent concerns, the model-driven development methodologies, component-

based software development, and middleware centric-development that support dynamic self-

adaptive software. In addition, self-adaptability assurance and verification approaches are
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discussed, as they tend to support runtime verification and validation mechanisms of the

adaptation output.

Fig. 2.1: Self-adaptive software challenges and approaches

However, self-adaptive software and their self-* properties are defined in Section 2.1.

Section 2.2 discusses behavioural variability support in the programming level. Section 2.3

addresses the challenges of modelling self-adaptive software. A comparison of the related work

on model-based adaptation is presented in Section 2.4. Section 2.5 focuses on component-

based adaptive applications. Section 2.6 addresses the middleware support for self-adaptive

software. Self-adaptability assurance and runtime verification is discussed in Section 2.7.

2.1 Self-adaptive Software

There is a growing demand for developing applications with aspects such as context awareness

and self-adaptive behaviours. Context awareness [Parashar and Hariri, 2005] means that

the system is aware of its context, which is its operational environment. Hirschfeld et al.
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[Hirschfeld et al., 2008] considered context to be any information that is computationally

accessible and upon which behavioural variations depend. A context-dependent application

adjusts its behaviour according to context conditions arising during execution. A self-adaptive

application modifies its own structure and behaviour in response to changes in its operating

environment [Oreizy et al., 1999].

Self-adaptive software has certain characteristics, known as the autonomic properties

or the self-* properties which include self-organising, self-healing, self-optimising and self-

protecting [Horn, 2001].

Self-organising is the capability of reconfiguring automatically and dynamically in re-

sponse to changes by installing, updating, integrating, and composing/decomposing software

entities [Salehie and Tahvildari, 2009].

Self-healing is the capability of discovering, diagnosing and reacting to disruptions. It

can also anticipate potential problems, and accordingly take suitable actions to prevent a

failure [Robertson and Laddaga, 2005,Kuwadekar et al., 2010].

Self-optimising, which is also called self-tuning or self-adjusting [Hinchey and Sterritt,

2005], is the capability of managing performance and resource allocation in order to satisfy

the requirements of di↵erent users. End-to-end response time, throughput, utilisation and

workload are examples of important concerns related to this property. Self-protecting is the

capability of detecting security breaches, anticipating problems and recovering from their

e↵ects. It has two aspects, namely defending the system against malicious attacks, and an-

ticipating security problems by taking actions to avoid them or mitigate their e↵ects [Salehie

and Tahvildari, 2009]. Self-awareness, self-monitoring, self-situated and context-awareness

are the underlying primitive properties of the self-autonomic properties based on the auto-

nomic computing paradigm specified by Horn [Horn, 2001].

Some other properties were also mentioned at this level, such as openness and anticipatory

[Parashar and Hariri, 2005], which are optional. Self-awareness [Hinchey and Sterritt, 2005]

means that the system is aware of its self states and behaviours. This property is based on

self-monitoring, which reflects what is monitored.
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Implementing a self-adaptive software system in a resource-poor environment faces a

wide rang of variance in platforms’ specifications and Quality of Services (QoS) [Kuwadekar

et al., 2010]. Mobile devices have di↵erent capabilities in terms of CPU, memory, and network

bandwidth [Kuwadekar et al., 2008]. Everything from the devices used and resources available

to network bandwidths and user context can change drastically at runtime [Belaramani et al.,

2003].

In general, architecture-driven dynamic system adaptation has several challenges such as

maintaining the correspondence between architectural models and system implementation in

order to ensure that architecture-based adaptation is appropriately executed. The second

issue is providing the necessary evolution facilities in the implementation infrastructure. An

appropriate way to study the challenges is to classify them on the basis of adaptation features

that they support and how they manage software variability in the architecture level [Salehie

and Tahvildari, 2009]. In the following sections, several approaches that target engineering

self-adaptive software system are discussed.

2.2 Variability Management with Context-oriented Program-

ming and Aspects

Compositional adaptation enables an application to adapt its structure or behaviour for

anticipating concerns that were unforeseen during its original design and implementation.

Normally, compositional adaptation can be achieved using the separation of concerns tech-

nique, computational reflection, component-based design, and adaptive middleware [McKin-

ley et al., 2004]. The separation of concerns enables the software developers to separate

the functional behaviour and the crosscutting concerns of self-adaptive applications. The

functional behaviour refers to the business logic of an application [McKinley et al., 2004].

Context-driven behavioural variations are heterogeneous crosscutting concerns and a set of

collaborating aspects that extend the application behaviour in several parts of the program

and have an impact across the whole system. Such behaviour is called crosscutting concerns.
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Crosscutting concerns are properties or areas of interest such as quality of service, energy

consumption, location awareness, users’ preferences, and security. This work considers the

functional behaviour of an application as the base-component that provides the user with

context-free functionality. On the other hand, context-dependent behaviour variations are

considered as crosscutting concerns that span the software modules in several places.

Context-Oriented Programming (COP) is an emerging technique that enables context-

dependent adaptation and dynamic behaviour variations [Gassanenko, 1998,Keays and Rako-

tonirainy, 2003]. In COP, context can be handled directly at the code level by enriching the

business logic of an application with code fragments responsible for performing context ma-

nipulation, thus providing the application code with the required adaptive behaviour [Salehie

and Tahvildari, 2009].

Costanza et al. [Costanza et al., 2006] proposed the design of context-aware systems

following a layered approach. The term ” layer ” refers to a specific context-dependent

functionality, which might include a partial implementation of a class or a set of methods

[Costanza et al., 2006], or the whole class is encapsulated inside a layer [Hirschfeld et al., 2008].

Hirschfeld et al. argued that the class-in-layer approach is more e↵ective than the layer-in-

class approach for encapsulating the context-dependent functionality, starting from the claim

that context-dependent behavioural variations occur separately or in any combination, and in

most cases they are collaborating and entangled with each other. A layer can be dynamically

activated and composed with other layers, allowing fine-grained control of an application’s

runtime behaviour [Hirschfeld et al., 2008]. An example for using COP for implementing

context-aware applications was proposed by Schuster et al. [Schuster et al., 2011]. Schuster

et al. proposed Java Context-Oriented Programming (JCOP), which uses a layered approach

for achieving behavioural de-/activation for a prototype mobile application. The application

was implemented based on a simple context model, which was implicitly encoded with the

application code. Such approach, shows the feasibility to use COP for implementing self-

tuning context-aware application for mobile computing environments.

COP supports context handling internally on the source code, which supports behavioural
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variations using the layered approach mentioned above. The assumption made by the COP

prototype is the context information is processed and delivered by the infrastructure and

the focus was on providing an add-hoc mechanism of the context-dependent behaviour at

the programming level. However, supporting the self-* autonomic properties requires the

software systems to support the MAPE-K autonomic computing loop, which includes moni-

toring, analysing, planning and executing [Salvaneschi et al., 2011]. This requires the context-

oriented software to have a runtime infrastructure that supports context monitoring, detec-

tion, deciding, and acting processes.

In the JCOP approach proposed by Schuster et al. [Schuster et al., 2011], the developers

have to predict all possible behaviour inside the source code. As an outcome, the anticipated

adjustment is restricted to the amount of code stubs on hand o↵ered by the creators [Kapitsaki

et al., 2009]. In this case, the amount of behavioural variations introduced in the application is

limited by the developer’s ability to predict the piece of code that might extend the application

behaviour [Salvaneschi et al., 2011]. On the other hand, it is impractical to forecast all

likely behaviours and program them at the source code. In addition, this method does not

separate the adaptation mechanism from the application’s business logic, which provides

poor scalability and maintainability [Kapitsaki et al., 2009]. Furthermore, the context model

is implicitly coupled inside the source code, which requires rewriting and recompiling the

code whenever a new context-dependent behaviour or context provider is introduced to the

application’s platform. To a certain degree, it is very di�cult for the developers to decide

when and where the context-dependent behavioural variations are needed, particularly in the

presence of unanticipated contextual changes that were unforeseen during the original design

and construction of the COP software.

For more complex context-aware systems, the same context information would be trig-

gered in di↵erent parts of an application and would trigger the invocation of additional

behaviour. In this way, context handling becomes a concern that spans several application

units, essentially crosscutting into the main application execution. A programming paradigm

aiming at handling such crosscutting concerns, referred to as aspects, is Aspect-Oriented Pro-
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gramming (AOP) [Kiczales et al., 1997]. Using the AOP paradigm, context information can

be handled through aspects that interrupt the main application execution.

In order to achieve self-adaptation to context in a manner similar to COP [Gassanenko,

1998,Keays and Rakotonirainy, 2003], the context-dependent behavioural variations and the

context monitoring and handling must be addressed in separate aspects. Unfortunately, the

aspect-oriented development methodology can be used to handle homogeneous behavioural

variations where the same piece of code can be invoked in several software modules [Apel

et al., 2006,Mezini and Ostermann, 2004], and it does not support adaptation of aspects to

context in what is called context-driven adaptation [Kapitsaki et al., 2009].

Context-aware aspects proposed by Tanter et al. [Tanter et al., 2006], which provides

these functionality by designing pointcuts which depend on di↵erent contexts, so that advices

would only be executed in specific context conditions. Current AOP languages are limited

regarding to context condition expression. First, they are not able to consider past context.

Second, they are not able to express context-dependencies in aspects. Designing aspects

that become active when particular contexts are verified, require the possibility to refer to a

context definition in a pointcut construction. This means that the AOP framework should

allow the programmers to specify the context condition in the syntax of joinpoint definitions.

For example, BeInContext(Context LocationCtx) would allow the programmer to react to

context changes based on the user’s location.

Another important ability of a framework should be giving an overview about all actual

and past activated contexts, so that pointcuts can be designed on the base of this information.

This means that the AOP framework needs to keep track of past context conditions and their

associated states. This is called context snapshotting [Tanter et al., 2006], and the saved

state of one context condition at a given point of time is called context snapshot. A global

context snapshot is therefore a snapshot of all context conditions at a given point in time.

Context snapshots are only made at a special point of time, because otherwise it would

lead to high memory problem. So the main problem is to define the right points of time

to take such context snapshots. The actual current solution is to take snapshots of con-
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text conditions only if necessary as stated in the Reflex framework [Tanter, 2006]. However,

anticipating context changes at runtime may require new behaviour or functionality to be

invoked in the application execution and a runtime composition of several collaborating as-

pects. Another approach supported by AOP is called Dynamic Aspect Oriented Programming

(DAOP) [Popovici et al., 2002].

Dynamic weaving of aspects can be used for adjusting the software behaviour at runtime.

However, existing DAOP techniques tend to add a substantial overhead in both execution time

and code size, which restricts their practicality for small devices with limited resources [Hundt

et al., 2010]. Researchers in the DAOP community keep building self-adaptive software using

AOP, and they were relying too much on optimising the performance of AOP frameworks

in the Virtual Machine Layer (VML) [Hundt et al., 2010]. The major reason for this poor

performance is that the DAOP architectures like PROSE 2 [Popovici et al., 2002] provide an

AOP engine running at VML. This engine accepts aspects at runtime, then transforms them

into basic entities like joinpoint requests. The joinpoints are activated by registering them

to the execution monitor. When the execution reaches one of the activated joinpoint, the

execution monitor notifies the DAOP engine, which execute the advice method.

In general, source-code approaches can handle context information directly at the code

level. However, in many instances, the delivery of new context-dependent behaviour or intro-

ducing a new context provider to the platform require the developers to start a new software

engineering process, which includes analysing, designing and implementing the software sys-

tems [Salehie and Tahvildari, 2009]. In AOP and COP the whole set of context models

and adaptation processes are mixed with the application code, which often leads to poor

scalability and maintainability [Kapitsaki et al., 2009].

2.3 Modelling Self-adaptive Applications

In recent years, model-driven architecture techniques have been applied by both researchers

and developers. A significant number of model-driven architecture approaches were proposed
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for the construction of context-aware and self-adaptive applications. In most cases, they have

adapted the Unified Modelling Language (UML) to represent the software model. The UML

model can be used in di↵erent domains of interest when supported by a model-to-model or

model-to-code transformation, the so-called Model Driven Development (MDD).

The Object Management Group (OMG) presented a set of guidelines Model Driven Ar-

chitecture (MDA) for building software systems based on the use of the MDD methodol-

ogy [Kleppe et al., 2003]. MDA focuses primarily on the functionality and behaviour of a

distributed application or system across platforms. With MDA, the functionality and be-

haviour are modelled once and only once. Thus, MDA defines the notions of a Computation

Independent Model (CIM), Platform Independent Model (PIM) and Platform Specific Model

(PSM). CIM describes the software requirements in computational free fashion. A PIM de-

scribes the parts of a solution that do not change from one platform to another, and a PSM

includes descriptions of parts that are platform dependent [Kleppe et al., 2003].

The Enterprise Collaboration Architecture (ECA) [ECA OMG, 2004], is another standard

presented by the OMG. ECA aims to provide a development methodology to simplify the

development of the component-based system, using the Enterprise Distributed Object Com-

puting (EDOC), by means of a modelling framework and by conforming to the OMG’s MDA.

The Component Collaboration Architecture (CCA) describes how to model the structure and

the behaviour of components at varying and mixed levels of granularity. The components’

structure and behaviour are defined by partitioning the system specification into several view-

points. The application’s architecture is described by a recursive decomposition and assembly

of parts that enables its application to several domains. The Entities, Events, and Business

Process Model are a set of UML models proposed by ECA to define platform-independent

models of component-based software systems [ECA OMG, 2004]. The following sections

are describing several MDA-based approaches, that were proposed for the construction of

context-aware and self-adaptive software system using a component model and an adaptive

middleware.
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2.3.1 Model Driven Development and AOP

Carton et al. [Carton et al., 2007] proposed the Theme/UML, a model driven approach sup-

ported by aspect-oriented programming in an attempt to model various crosscutting concerns

of context-aware applications at an early stage of the software development. Theme/UML

provides a systematic means to analyse the requirements’ specification in order to identify

base and crosscutting concerns, and the relationships between them. However, to the best of

our knowledge, there is no similar approach that can help the developers to analyse and un-

derstand the context-dependent behaviours in the requirements, design and implementation

of the self-adaptive applications.

The Theme/UML approach was based on the use of the Meta Object Facility (MOF)

extension and the Eclipse CORE meta-model (ECORE) [Eclipse, 2010]. The MOF meta

model for the development of context-aware mobile applications proposed by de Farias et

al. [de Farias et al., 2007] was structured according to the core and service views of the

software system. This approach provides a contextual model that is independent from the

application domain. However, it does not provides high level abstraction of the software

models, which express conceptual characteristics of the context-dependent behaviours. From

a software developer’s perspective, it does not take into account architectural or deployment

issues, because it is based on the service-oriented architectures. In addition, it has focused on

the model-to-model transformation for generating the software composition. Such approach

adds substantial overhead over the development for writing and configuring the MOF scripts.

The Theme/UML methodology limits the development of self-adaptive applications to a very

specific framework that supports the Aspect-oriented Java extension (AspectJ) and Eclipse

Modelling Framework (EMF) [Kiczales et al., 2001]. Extending this paradigm for another

platform requires a specific compiler that supports AOP and toolset that follow the EMF.

Plastic is another development approach, which uses the MDD paradigm for developing

and deploying adaptable applications, implemented in Java language [Inverardi and Tivoli,

2009]. The Plastic development process focuses on the model verification and validation

and service composition of java service stubs. The methodology shows a very interesting
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feature of runtime model verification and validation mechanism. Unfortunately, the generated

software is tightly coupled with the target deployment platform and cannot be used with a

standard development process supported by a standard object-oriented language other than

the JAVA and AspectJ languages. However, the two paradigm Theme/UML and Plastic

face challenges with regard to the model manipulation and management. These challenges

arise from problems associated with (1) defining, analysing, and using model transformations,

(2) maintaining traceability links between model elements to support model evolution and

roundtrip engineering, (3) maintaining consistency among viewpoints, (4) tracking versions,

and (5) using models during runtime [France and Rumpe, 2007].

2.3.2 A-MUSE

An MDA-based approach for behaviour modelling and refinement is introduced by Daniele

et al. [Daniele et al., 2009]. Daniele et al. proposed the Architectural Modeling for Service

Enabling in Freeband (A-MUSE) approach, which focuses on the decomposition of the PIM

model into three levels; each level is used to automate a behavioural model transformation

process. Daniele et al. [Daniele et al., 2009] applied their approach to a Mobile System

Domain Specific Language (DSL) (called M-MUSE). Therefore, the platform independent

design phase has been decomposed into the service specification and platform-independent

service design steps. The platform-independent service design model should be a refinement

of the service specification, which implies correctness and consistency, particularly of be-

havioural issues, which have to be addressed in the refinement transformation. However,

when trying to realize this refinement transformation, a gap between service specification

and platform-independent service design was wide, so that correctness and consistency were

hard to guarantee in a single refinement transformation. The authors approach this problem

by proposing multiple rounds of transformation between the PIM and PSM, which requires

the developers to switch simultaneously between the PIM, PSM and the service specifications

several times.
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2.3.3 CAMEL

Context Awareness ModEling Language (CAMEL) is an MDD-based approach proposed by

Sindico and Grassi [Sindico and Grassi, 2009]. The approach uses a domain-specific language

called Java COntext Oriented Language (JCOOL), which provides a metamodel for context

sensing with the supports of the context model designed using the JCOOL meta model.

However, Sindico and Grassi implemented the context binding as the associate relationship

between context value and context entity. On the other hand, context-driven adaptation refers

to a structure or behaviour elements, which are able to modify the behaviour based on context

values. The structural or behavioural insertion is accomplished whenever a context value

changes; it uses AOP inter-type deceleration, where the behavioural insertion is accomplished

by means of an AOP advice method to inject a specific code into a specific joinpoint.

The CAMEL paradigm provides insu�cient details with regard to the underlying com-

ponent model or the application architecture. The authors used their former domain-specific

language to support the COP approach proposed by Hirschfeld et al. [Hirschfeld et al., 2008].

Moreover, CAMEL has no formal MDD methodology that possesses a generic life cycle that

a developer can use. Irrespective of these problems, JCOOL is specific to an AOP frame-

work called the Simple Middleware Independent LayEr (SMILE) [Bartolomeo et al., 2008].

SMILE platform used for distributed mobile applications [Bartolomeo et al., 2008]. The

model approach in JCOOL supports only ContextJ, which is an extension of the Java lan-

guage proposed by Appeltauer et al. [Appeltauer et al., 2009]. The CAMEL methodology

requires the software to be re-engineered whenever a new context provider is introduced into

the context model. The developers must build a complete context model for the new values

and maintain the underlying JCOOL DSL and the UML model. The CAMEL methodology

has adapted AOP and the EMF to produce a context-oriented software similar to the layered

approach proposed by Hirschfeld et al. [Hirschfeld et al., 2008]. This makes CAMEL limited

to the EMF tool support and the ContextJ language [Appeltauer et al., 2011]. From our

point of view CAMEL tightly coupled the software with modelling language, modelling tool

and the target deployment platform.
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2.3.4 MUSIC MDD

The Mobile USers In Ubiquitous Computing (MUSIC) development methodology [Floch

et al., 2006, Rouvoy et al., 2008a, Rouvoy et al., 2009] adapts a model-driven approach to

construct the application variability model. In MUSIC, applications are built using a compo-

nent framework, with component types as variation points. The MUSIC middleware is used

to resolve the variation points, which involves the election of a concrete component as a real-

ization for the component type. The variability model defines the component types involved

in the application’s architecture and describes their di↵erent realizations. This comprises

either a description of collaborating component types and rules for a composite realization,

or a reference to a concrete component for an atomic realization. To allow the realization

of a component type using external services, the variability model also includes a service

description, which is used for service discovery.

The software architecture in MUSIC is a pluggable architecture for self-adaptive applica-

tions. It proposes middleware featuring a generic and reusable context management system.

The architecture supports context variation and resource utilization by separating low-level

platform-specific context from higher-level application-specific concerns. The resource utiliza-

tion is improved through intelligent activation and deactivation of context-related plug-ins

based on the needs of the active application. The MUSIC middleware architecture defines

multiple components that interact with each other to seamlessly enable self-adaptive be-

haviour in the deployed applications. These components include context management, adap-

tation reasoner, and a plug-in life-cycle management based on the Open Services Gateway

initiative framework (OSGI) [OSGI framework, 2010].

At runtime, a utility function is used to select the best application variant; this is the so-

called ’adaptation plan’. The utility function is defined as the weighted sum of the di↵erent

objectives based on user preferences and QoS. Realistically, it is impossible for the devel-

oper to predict all possible variations of the application when unanticipated conditions could

arise. In addition, mobile computing devices have limited resources for evaluating the many

application variations at runtime and can consume significant amounts of device resources.
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As an outcome, the benefit gained from the adaptation is negated by the overhead required

to achieve the adaptation [Salehie and Tahvildari, 2009].

2.3.5 Paspallis MDD

Paspallis [Paspallis, 2009] introduced a middleware-centric development of a context-aware

applications with reusable components. Essentially, his work is based on the MUSIC platform

[Reichle et al., 2008]. According to Paspallis, an MDA-based context-aware application is

built by separating the concerns of the context provider from those of the context consumer.

For each context provider, a plug-in or bundle is planned and designed during the design

phase. At runtime, a utility function is used to consider the context state and perform

decision making. Once the plug-in is selected to be loaded into the application, middleware

support performs dynamic runtime loading of the plug-in.

However, it is impossible for the developers to predict all the context providers that might

produce context information at runtime. In addition, using this methodology means that the

developer is required to design a separate plug-in architecture for each context provider, which

is proportional to the available number of context providers. Additionally, this methodology

does increase the development e↵ort as each plug-in requires an separate development process.

2.3.6 U-Music MDD

Khan [Khan, 2010] proposed Unanticipated dynamic-adaptation for Mobile USers In Ubiq-

uitous Computing (U-MUSIC) methodology. U-MUSIC adapts a model-driven approach to

constructing self-adaptive applications and enabling component model-based, unanticipated

adaptation. However, the author has modified the MUSIC methodology to support semi-

anticipated adaptation; also called planning-based adaptation, which enables the software

to adapt among foreseeable context changes. U-MUSIC enables developers to specify the

application variability model, context elements, and data structure. The developers are able

to model the component functionalities and quality of service (QoS) properties in an ab-

stract, platform-independent way. In U-MUSIC, dynamic decision-making is supported by
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the MUSIC middleware mentioned above. However, this approach su↵ers from a number of

drawbacks. First, it is well-known that correct identification of the weight for each goal is a

major di�culty for the utility function. Second, the approach hides conflicts between mul-

tiple goals in its single, aggregate objective function, rather than exposing the conflicts and

reasoning about them. It would be optimistic to assert that the process of code generation

from the variability models can become completely automatic or that the developer’s role lies

only in application design.

2.3.7 CAUCE

Context-aware Applications for Ubiquitous Computing Environments (CAUCE) proposed as

a model-driven development approach [Tesoriero et al., 2010]. The authors defined an MDA

approach that focuses on three layers of models. The first layer confirms to the computational

independent model for capturing the conceptual properties of the applications. The second

layer defines three complementary points of view of the software systems. These views include

deployment, architecture and communication. The third layer focuses on converting the

conceptual representation of the context-aware application into a software representation

using a multi model transformation. The Atlas Transformation Language (ATL) is used

to interpret the model and convert them into a set of models conforming to the platform

independent model. The final model is transformed using the MOF Script language based

on the EMF paradigm [Eclipse, 2010]. The CAUCE methodology focuses more on the CIM

by splitting this layer into three layers of abstraction, which confirms to the tasks, social and

space meta models. The task model focuses on modelling a set of tasks and the relationships

among them that any entity in the system is able to perform. The social meta model defines

the social environment of the entities in the system and is directly related to the entity

task and entity information that identify of the context-aware application behaviour. The

space meta model defines the physical environment of the entities in the system. Therefore,

this meta model is directly related to the physical conditions, infrastructure and location

characteristics of the context-aware applications.
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However, the CAUCE methodology provides a complete development process for building

context-aware applications. Despite that, CAUCE is limited to specific modelling tool and

language, in this case the UML is integrated with EMF. The generated application can only be

implemented using Java language as it is supported by the ATL and MOF Script languages.

However, it is impossible for the developers to adapt CAUCE for building heterogeneous

and distributed mobile applications, which might have multiple deployment platforms and

requires variant implementation languages.

2.3.8 ContextUML

Generally, UML profiles and metamodels are used to extend the UML language semantics.

ContextUML was one of the first approaches that targeted the modelling of the interaction be-

tween context and web service applications [Sheng and Benatallah, 2003]. ContextUML was

extended by Prezerakos et al. [Prezerakos et al., 2007], using aspect-oriented programming

and service-oriented architecture to fulfil the user’s needs. and context awareness. Another

UML profile that is similar to ContextUML has been proposed by Grassi and Sindico [Grassi

and Sindico, 2007]. However, contextUML used a UML metamodel that extended the reg-

ular UML by introducing appropriate artifacts that created a context-aware application. A

class diagram is produced, which corresponds to the context class and to specific services.

They mitigate the UML relationship and dependency to express the interaction between the

context information and the respective services. A means of parameter injection and ser-

vice manipulation are used to populate specific context-related parameters in the application

execution loop.

However, the UML profiles and metamodels lack from several features required for mod-

elling the self-adaptive software system. Ignoring the heterogeneity of the context informa-

tion, they based their claims on the nature of the context values, which can fluctuate and

evolve significantly at runtime. It is not feasible to this study how the behaviour is modelled

when multiple context values have changed at the same time.
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2.4 Feature Analysis and Comparative Study of MDA-based

Approaches

From the software developer’s perspective, it is vital to know the features of the development

paradigm which might be used in constructing a self-adaptive application. Feature evaluation

of the development methodology can assist the developers in selecting among the proposed

methodologies in the literature for achieving adaptability and dependability of the software

systems. Improving the development of self-adaptive software systems using model driven

approach has attained several research e↵orts. The target was in general to introduce software

with adaptability and variability while focusing on reducing the software complexity and

optimising the development e↵ort.

The examination of software system performance, dependability and availability is of

greatest importance for tuning software system in conjunction with several architecture qual-

ity attributes. Such performance analysis was considered by the MOdeling Specification and

Evaluation Language (MOSEL) [Begain et al., 2001]. The system modelling using MOSEL

illustrates how easily it can be used for modelling real-life examples from the fields of com-

puter communication and manufacturing systems. However, extending the MOSEL language

towards the modelling and performance evaluation of self-adaptive software system can esti-

mate several quality attributes of model-based architecture and provides early results about

how e�cient is the adaptation action.

Kitchenham et al. in [Kitchenham et al., 2002] proposed the DESMET method, which

evaluates software development methodologies using an analytical approach. Asadi et al. have

adapted the DESMET method to analyse several MDA-approaches. The authors adapted

several evaluation criteria that can be used to compare MDA methodologies based on MDA-

related features and MDA-based tool features [Asadi and Ramsin, 2008].

However, Calic et al. [Calic et al., 2008] proposed an evaluation framework to evaluate

MDA-based approaches in terms of four major criteria groups, as follows: I) MDA-related

features: The degree to which the proposed methodologies are compliant with OMG’s MDA
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specification [OMG, 2010]. II) Quality: Evaluation of the overall quality of the MDA-based

approaches including their e�ciency, robustness, understandability, ease of implementation,

completeness, and ability to produce the expected results [Kitchenham et al., 2002]. III)

Usability: Simplicity of use and ease of implementation by the developer, which covers

clear information about the impact of the methodology on the development e↵ort [Norman,

2002,Preece et al., 2002]. IV) Productivity: The quality of benefits derived from using the

methodology and its impact on the development time, complexity of implementation, code

quality, and cost e↵ectiveness [Calic et al., 2008]. Calic at al. [Calic et al., 2008] presents

the COPE tool, to evaluate the MDA productivity by automate the coupled evaluation of

metamodels and model by recording the coupling history in an history model.

Lewis et al. [Lewis and Wrage, 2005] have evaluated the impact of MDA on the develop-

ment e↵ort and the learning curve of the MDA-based development tools based on their own

experiences. The authors concluded that the real potential behind MDA is not completely

employed either by current tools or by the proposed MDA approaches in the literature. In

addition, the developers have to modify the generated code such that it is suitable for the

target platform. The degree to which the generated code needs modification is a↵ected by

the MDA tools used. In the same way, the developer’s understanding of the MDA tasks and

familiarity with the target platform have direct impacts on MDA productivity.

The Constructive Cost Model II (COCOMO II) [Boehm et al., 2000] emerged as a soft-

ware cost estimation model which considers the development methodology productivity. The

productivity evaluates the quality of benefits derived from using the development method-

ology, in terms of its impact on the development time, complexity of implementation, code

quality, and cost e↵ectiveness [Calic et al., 2008]. COCOMO II allows estimation of the

e↵ort, time, and cost required for software development. The main advantage of this model

over its counterparts such as the Software LIfe-cycle Management (SLIM) model [Estell,

1976] and the System Evaluation and Estimation of Resources Software Estimation Model

(SEER-SEM) [Galorath and Evans, 2006] is that COCOMO II is an open model with various

parameters which e↵ect the estimation of the development e↵ort. Moreover, the COCOMO
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II model allows estimation of the development e↵ort in Person-Months (PM) and the Time

to Develop (TDEV) a software application. A set of inputs such as software scale factors

(SF) and 17 e↵ort multipliers is needed. A full description of these parameter is given in

the COCOMO II model definition manual, which can be found in [Boehm et al., 2000]. An

example of an evaluation of MDA approaches with COCOMO II can be found in [Achilleas,

2010].

In this research, we intend to use an evaluation framework that can test and qualify the

ability of MDA-based approaches to produce the expected results [Kitchenham et al., 2002]

in terms of dynamic adaptation in general, and self-adaptability, in specific. These features

are evaluated in the following sections.

2.4.1 Existence of MDA-related Features

MDA features refers to the degree to which the proposed methodologies are compliant with

the OMG’s MDA specifications; these specifications can be divided into the support of CIM,

PIM, PSM, model validation, and transformation [OMG, 2010]. In terms of MDA features, we

adapt the criteria proposed by Asadi and Ramsin [Asadi and Ramsin, 2008], which highlights

the methodology’s conformance to the original OMG standard, as shown in Table 2.1. Feature

analysis can be performed in two ways: scale form and narrative form. The scale form attaches

the methodology complaint to a specific feature, which is divided into three ranks, from A

to C, as shown in each table. The narrative form captures whether the methodology covers

a specific feature based on the level of involvement.

2.4.2 Tool-related feature analysis

The major challenges that developers face when attempting to realize the MDD vision is

the selection of a modelling language and modelling tool. Modelling languages challenges

arise from concerns associated with providing support for creating and using an appropriate

modelling abstraction for analysing and designing the software [France and Rumpe, 2007].

A second challenge posed by Asadi and Ramsin [Asadi and Ramsin, 2008], that each de-
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Table 2.1: MDA-related criteria evaluation

Group 
criteria 

Features
Criterion

 Type
Description of level 

UML-based 
meta model

CAMEL A-MUSE MUSIC Paspalis U-MUSIC CAUCE

Tool suit 
and implementation: 

Scale form A. The methodology does not 
provide a specific tool and there are 
no explicit guidelines as to how to 
select an appropriate alternative.                                                            
B. The methodology does not 
provide a complete toolset, or only 
general guidelines are provided for 
selecting alternative tools.  
C. The methodology provides a 
complete toolset, or provides 
precise guidelines for selecting 
appropriate alternative tools.

A A A C B B A

Computational independent 
model

Scale form A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

A A A B B B C

Platform independent model Scale form 

A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

B B B C B C C

Platform specific model Scale form 

A. Production of the model are not 
addressed by the methodology. 
B. The methodology provides 
general guidelines for creating the 
model; creation steps are not 
determined precisely. 
C. The methodology explicitly 
describes steps and techniques for 
creating the model.

B B C B C C

Verification and validation Scale form The activity is not defined and is 
devolved to the developers. 
. The activity is defined by the 
methodology, but not in detail. 
 The methodology provides explicit 
and detailed guidelines and 
techniques for performing the 
activity.

B A B C A A A

Source model. 
Target model
synchronisation

Scale form 

The activity is not defined and is 
devolved to the developers. 
. The activity is defined by the 
methodology, but not in detail. 
 The methodology provides explicit 
and detailed guidelines and 
techniques for performing the 
activity.

A A B C A B A

Use of UML profiles  Narrative Involved: the Methodology depend 
on the UML Profile  
Devolved: Methodology is not using  
UML profile

Involved involved Devolved Devolved Devolved Devolved Devolved
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velopment methodology generates more specific technical details that suit the underlying

modelling language or modelling tool they used, as each tool requires a learning curve, and it

might have some limitation with regard to the platform and the number of implementation

languages they support [Lewis and Wrage, 2005]. This implies that a MDD approach should

be decoupled from using a specific tool or modelling language. The developers have to be

free on selecting the tool(s) that fits their needs and the software under development.

On the other hand, MDD approaches should focus more on describing standard develop-

ment processes without relaying on a specific technology or platforms like EMF and ECORE.

In terms of the tools the methodology used, the features that highlight the methodology

dependency on the modelling languages and tools are shown in Table 2.2.
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Table 2.2: MDA tool-related criteria

Criterion 
Name

Feature Description of level 
UML-based 
meta model

CAMEL A-MUSE MUSIC Paspalis U-MUSIC CAUCE

Model To Model transformation Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Involved Involved Involved Involved Involved Involved

Model to code transformation

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Involved Involved Involved Involved Involved

Meta-model maintainability

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Involved Involved Involved Devolved Involved Devolved

Verification of the generated 
model and code

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Devolved Involved Involved Involved Devolved

Traceability between models

Involved : The 
methodology explicitly 
participates in the 
activity and provides 
precise techniques/ 
guidelines

Devolved: The activity is 
developed to the tools 
and the methodology 
does not prescribe the 
steps that should be 
performed by the tools 

Devolved Devolved Involved Involved Involved Involved DevolvedE
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2.4.3 Quality of the MDA-based Approaches

Quality refers to the overall quality of the MDA-based approaches, including their e�ciency,

robustness, understandability, ease of implementation, completeness, and ability to produce

the expected results [Kitchenham et al., 2002]. However, in this research, we have focused

on the ability of the MDA-based approaches to provide the expected results that support the

adaptability of the generated software, whether these results are derived from the code or the

architecture. Moreover, we have split these criteria into four groups: requirements engineer-

ing, unanticipated awareness, context model, and modelling context-dependent behavioural

variations.

2.4.3.1 Requirements Engineering of Context-dependent Behavioural Variations

Requirements engineering refers to the causes of adaptation, other than the functional be-

haviour of the self-adaptive system. Whenever the system captures a change in the context,

it has to decide whether it needs to adapt. The MDA-based approaches in the related work

were evaluated regarding whether they support the modelling of context requirements as a

specific feature and whether they support the requirements’ engineering in general, as shown

in Table 2.3.
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In addition, the methodology’s ability to analyse and models the context-dependent be-

haviour variations requires the MDD supports at three levels. The first is the requirement

analysis at the computational independent model. The second is the representation of these

requirements by means of UML objects at the platform independent model and platform spe-

cific model. The third is the representation of the context-dependent behaviour as runtime

objects, which are a code representation of these requirements [Bencomo et al., 2010,de Lemos

et al., 2011]. However, the evaluation of these criteria is shown in Table 2.3.

Table 2.3: Supporting context-dependent behaviour variations on the analysis, design and

implementation

Criterion 
Name

Features
Criterion 

Type
Description of level 

UML 
metmodel

CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE

Requirements 
analysis in 
the CIM 

Narrative 

Involved : The methodology supports 
context-dependent behaviour 
concerns.  

Devolved : The methodology does not 
support context-dependent behaviour 
concerns. !

Devolved Involved Devolved Devolved Involved Devolved Devolved

Modelling 
Context-
dependent 
behaviour at 
PIM

Narrative 

Involved : The methodology has 
supports for modelling the context-
dependent behaviours at the PIM.   

Devolved : The methodology has no 
supports for modelling the context-
dependent behaviours at the PIM.  

Devolved Involved Devolved Devolved Devolved Devolved Devolved

Modelling 
Context-
dependent 
behaviour at 
PSM.

Narrative 

Involved : The methodology has 
supports for modelling the context-
dependent behaviours at the PSM.   

Devolved : The methodology has no 
supports for modelling the context-
dependent behaviours at the PSM.  

Devolved Involved Devolved Devolved Devolved Devolved Involved
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2.4.3.2 Unanticipated Awareness

This feature captures whether a context change can be predicted ahead of time [Cheng

et al., 2008]. Anticipation can be classified into three degrees: foreseen, foreseeable, and

unforeseen changes. Foreseen refers to the changes that are handled in the implementation

code. Foreseeable refer to the context changes that were predicted at the software design.

Unforeseen refers to the changes that are not modelled at the design or the implementation
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stage, but are to be handled at runtime [Laprie, 2004]. The evaluation criteria are shown in

Table 2.4 with their related scale form.

Table 2.4: Anticipation of context change-related criteria and evaluation results

Criterion 
Name

Features
Criterion 

Type
Description of level 

UML 
metamodle

CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE

Foreseen 
changes  

Scale form A. The methodology takes care of the context 
changes implicitly by the code. 

B. The methodology takes care of the context 
changes explicitly by means of UML model

C. The methodology takes care of the context 
changes explicitly enabling the developer to 
model them in abstract level. 

B A B C B C C

foreseeable 
changes 

Scale form A. The methodology enables the developer to 
plane for the context changes implicitly by 
maintaining the code.!
B. The methodology! planned for! the context 
changes explicitly by the variation model 
supported by planning-based adaptation at 
runtime.!
C. The methodology takes care of the context 
changes and enables the developer to model 
them in an abstract level. !

B A B C B C B

Unforeseen 
Changes 

Scale form A. The methodology anticipates the context 
changes implicitly by! maintaining the code to 
handle them , static adaptation.!
B. The methodology anticipates the context 
changes explicitly and enables the developer 
to specify several!application variations 
models supported by refining the base model.!
C. The methodology anticipates the context 
changes at runtime by means of requirements' 
reflection and allows the developers to 
represent them as runtime objects.!

A A B B B B B
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2.4.3.3 Context Model

This captures the ability of the methodology to incorporate the context information using the

’separation of concerns’ technique between the context information model and the business

logic. The first criterion focuses whether the methodology supports/uses the separation of

concerns in the development processes. The second criterion refers to the ability to bind the

context source to the context provider, as proposed by Sen and Roman [Sen and Roman,

2003] and Broens et al. [Broens et al., 2007] and Paspallis [Paspallis, 2010]. The binding

mechanism enables the developers to map each context cause to the a↵ected architectural

units. The binding mechanism also enables the application to determine which part has to

manage the context changes, by means of the adaptation mechanism.
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The evaluation criteria for the context model are shown in Table 2.5.

Table 2.5: Context model-related criteria and evaluation results

Criterion 
Name

Features
Criterion 

Type
Description of level 

UML 
metmodel

CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE

separation of 
concerns between 
the context model 
and the  business 
logic code.

Narrative Implicitly: The context model is 
implicitly handled by the 
generated code.

Explicitly: The context model is 
explicit separated from the 
generated code.

Implicitly Implicitly Implicitly Explicitly Explicitly Implicitly Implicitly

Context Binding Narrative Involved : The methodology 
binding the context information  
to architectural units

Devolved: The methodology is 
does not support context 
binding 

Involved Involved Devolved Devolved Involved Devolved Devolved
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2.4.3.4 Modelling Context-dependent Behaviour

These criteria refer to the ability of the model to capture the impact of context changes on

the self-adaptive application’s behaviour. However, Hirschfeld et al. [Hirschfeld et al., 2008]

classified these changes into three kinds of variations: actor dependent, system dependent,

and environment dependent behavioural variations. These behavioural variations requires a

separation between their concerns, by separating the context handling from the concern of

the application business logic. In addition, a separation between the application-dependent

parts from the application-independent parts can support behavioural modularization of the

application, thereby simplifying the selection of the appropriate parts to be invoked in the

execution, whenever a specific context condition is found. The behavioural modelling criteria

are shown in Table 2.6.

2.4.4 Evaluation Results

Based on the analysis results shown in Figures 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6, we find that

the discussed methodologies in the related work su↵er from several critical failings in terms

of their conformance to the OMG’s guidelines for MDA methodology [Kleppe et al., 2003].

First, it is well known that correct identification of the weight of each goal is a major
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Table 2.6: Modelling context-dependent behaviour variations and evaluation results

Criterion 
Name

Features
Criterion 

Type
Description of level 

UML 
metmodel

CAMEL A-MUSE MUSIC Paspallis U-MUSIC CAUCE

Actor-dependent 
behaviour 

Scale form A. The methodology does not capture 
the actor-dependent behaviour   

B. The methodology capture actor-
dependent, implicitly by means 
code weaving and advise.   

C.The methodology capture actor-
dependent behaviour in abstract 
level, manipulating the behaviour 
performed at runtime by means of 
compositional reflection

A A A A A A A

System-
dependent 
behaviour 

Scale form A. The methodology does not capture 
the system-dependent behaviour. 

B. The methodology capture system-
dependent, implicitly by means of 
code weaving and advise methods.   

C.The methodology capture system-
dependent behaviour in abstract 
level, manipulating the behaviour 
performed at runtime by means of 
compositional reflection

A A A B A B B

Environment-
dependent 
behaviour 

Scale form A. The methodology does not capture 
the environment-dependent 
behaviour   

B. The methodology capture 
environment-dependent, implicitly 
by means of code weaving and 
advise methods.   

C.The methodology capture 
environment-dependent behaviour 
in abstract level, manipulating the 
behaviour performed at runtime by 
means of compositional reflection

A A A A A A A
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di�culty for the utility functions as shown in the MUSIC, U-MUSIC and Paspallis method-

ologies.

Second, these approaches hide conflicts among multiple adaptation goals by combining

them into a single, aggregate objective function, rather than exposing the conflicts and rea-

soning about them. On the other hand, it would be optimistic to assert that the process

of code generation from models can become completely automatic or that the developer’s

role lies only in application design, as discussed in the above with regard to CAMEL and

A-MUSE.

Third, it is impossible for the developers to predict the possible application variations,

that will extend the application behaviour when unanticipated conditions arise, this applied

to all methodologies mentioned in the above.

In addition, mobile devices have limited resources for evaluating many application vari-
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ations at runtime, which might consumes significant amounts of the allocated resources. As

a result, the benefits gained from the adaptation are negated by the overhead required to

achieve the adaptation. Fourth, the previously mentioned methodologies produce an archi-

tecture with a tight coupling between the context provider and the context consumer, which

may cause the middleware to notify multiple components about multiple context changes.

Finally, all the methodologies seem to generate an architecture that is tightly coupled with

the target platform for deployment and the modelling tools they used.

In addition, the developers have to explicitly predict the final composition of the software

and the possible variations of the application, whether at the platform independent model or

through the model transformation. Moreover, the developers have to modify the generated

code to be suitable for deployment on the target platform and to be integrated with the

middleware implementation, which is in the best case made a hug gap between the middleware

designer and the application developer. In the same way, the developer’s understanding of

the MDA tasks and familiarity with the target platform have limited the ability to adapt the

MDA-approaches in several domains.

2.5 Component-based Software Development

Component-based software engineering focuses on shifting the developers’ attention from

lines-of-code to coarse-grained components and their interconnection structure. Unlike fine-

grained objects, these components typically encompass business functionality uses a sep-

aration of concerns technique to modularise the software. Although, context information

can drive the changes on the software functionality and behaviour, context-awareness has not

considered through the development or deployment of component-based software [Lau, 2006].

The component-based self-adaptive applications require an architecture and framework

that support their modelling and implementation. Several adaptation techniques concentrate

on providing a mechanism to compose them based on their structure intersection and their

dynamic behaviour introspection. This section discusses a few of the most closely related
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component-based model, which targeting dynamic component-based adaptation and runtime

composition of software modules.

2.5.1 LEAD++

Amano and Watanabe [Amano and Watanabe, 1999] proposed a framework based on a de-

scription language called LEAD++. LEAD++ creates a software model, called DAS, that

structures a dynamic adaptive component-based system. In the DAS model, adaptability

is achieved based on the mechanism of the adaptable procedure. Each procedure refers to

a variant of methods, which are selected according to the execution context. The adapta-

tion is controlled using an adaptable procedure mechanism, which uses methods for selecting

adaptation strategies.

LEAD++ can be considered as an example of parameter-based adaptation. Although

it covers the state of the environment as a runtime object, it does not capture the impact

of the context state on the application behaviour in either a proactive or reactive manner.

Whenever the environment state changes, the strategy objects dispatch control objects; this

is not su�cient to select a valid variation from among multiple behaviour variations because

each control object considers only one environment state. In general, this framework is not

aware of the context information and no context gathering is provided. Context monitoring

is not supported by this framework.

2.5.2 FRACTAL

The fractal component model, FRACTAL, was proposed by Bruneton et al. [Bruneton et al.,

2002]; it allows a component to be nested at an arbitrary level. A fractal component consists of

content and controller parts. Each content part can consist of a finite number of components;

each component is controlled using the controller part of the fractal component. In the

same way, a component’s content can be shared among multiple distinct fractal components.

Moreover, components can interact with their environment through operations at identified

access points, called interfaces, which might be a server or a client interface. The fractal
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component can interact using multiple interfaces, which satisfies a client-server architecture

style.

A component controller embodies the component behaviour for the associated fractal com-

ponent. The controller performs operation interception for both the outgoing and incoming

operation invocations and their operation results. In general, FRACTAL shows a compo-

nent model that supports recursive and internal components to satisfy two-way operation

invocation. It is clear that context information is not supported at any level. Moreover, the

sub-components inside a FRACTAL component are not realized based on their behaviour,

instead, they are included by the controller whenever they are visible to the environment and

emit operation invocation. This may lead to the exclusion of an important sub-component

from the adaptation strategy when it has a direct dependency on other components.

2.5.3 One.world

Grimm [Grimm, 2004] developed an architecture based on the pressing need to cover the

dynamicity of context information, information that is constantly increasing in size as users

move through the physical space and as users collaborate and share data in distributed

systems. One.world emerged to provide an architecture that o↵ers four services. First, a Java

virtual machine is used to support multiple heterogeneous user devices that are available in the

distributed environment. Second, all data are represented as tuples, which are records with

name and (optional) type fields that provide self-description for the application structure.

Third, event synchronization is provided for local and remote connections. Fourth, each

environment host executes an application and isolates applications from one another.

In general, One.world supports contextual changes, ad-hoc composition, and information

sharing among environment hosts. Applications are able to inspect their structure using the

self-description property of the data tuple. One.world partially supports contextual informa-

tion in a distributed environment, but has no context monitoring, detection, or reasoning.

Another issue is the degree to which the framework can handle a fluctuating device, i.e. one

that might appear or disappear at arbitrary times. Context handling requires a mechanism
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that supports the physical and logical context and their dynamicity at runtime.

2.5.4 PCOM

PCOM is a component system presented by Becker et al. [Becker et al., 2004]. It enables

the developer to capture the dependencies among components at the abstract level using

contracts. As a result, the application architecture is a tree formed by components and their

dependencies. The component model supports dynamic adaptation based on context. Appli-

cations in PCOM are composed of components that interact with each other. Components are

atomic to the distributed environment; however, they can rely on local or remote components.

The application tree reflects the dependencies among components. Each component encloses

contracts that describe both their provided functionality and their requirements regarding

the platform and other components.

Finally, the PCOM component model can be categorized as a programmable component

model, in that it relies on the developer for the structuring the software components in

a suitable way. The model relies on functional decomposition of the software into service

oriented components. In addition, the composition mechanism relies on the user and the

developers to decide the kinds of services the application can adapt. In addition, PCOM

relies on a known network topology, which, in most cases, limits the application’s ability be

used on a specific platform.

2.5.5 A Comparative Analysis of Component-based Frameworks

A comparison of the above-mentioned component frameworks is shown in Table 2.7. The

table outlines the features supported by each component model in terms of objects which

they adapt: realisation approaches, proactive or reactive adaptation, context monitoring,

and human interaction. This comparative study is adapted from previous work conducted by

Salehie and Tahvildari [Salehie and Tahvildari, 2009]. The findings related to this comparative

analysis based on each component framework, can be analysed column-wise in the table. The

values corresponding to di↵erent columns in the table are as follows:
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Table 2.7: Component model comparative analysis

Artifact & Granularity, Impact & Cost: S/W Strong/Weak, M/A: Making/Achieving, Adaptation logic E/I: External/Internal, Decision-Making S/D: Static/
Dynamic, Open for adaptation O/C: Open/Close, Platform S/G: Specific/Generic, Adaptation type MB/F: Model-Based/-Free, Adaptation action R/P: Reactive/
Proactive, Context monitoring C/A M: Continuous/Adaptive Monitoring, HI: Human Involvement, I: Interoperability
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• Application layer: This feature captures which layer of the software system can be

changed during the adaptation action. The adaptation action can be applied to the

application/middleware layer or distributed in the infrastructure nodes (decentralized).

As shown in Table 2.7, in LEAD++ and One.World, the adaptation is achieved in the

application layer. In FRACTAL and PCOM, the adaptation is performed with support

of the infrastructure and decentralized on the network nods.

• Artifacts & granularity: This feature captures at which level of granularity, the artifact

can be changed. The adaptation can change the modules or the architectural units;

and the way they are composed. The artifact & granularity column in the table shows

that LEAD++ and FRACTAL support both fine- and coarse-grained adaptations. The

One.World and PCOM frameworks can adapt the whole component or the data centre

of the application.

• Impact & cost: The adaptation impact and cost describes the scope of the after e↵ects,

while cost refers to the execution time, resources required and complexity of the adap-

tation actions. The adaptation actions can be categorised into Weak (W) and Strong

(S) classes. Weak adaptation involves modifying parameters (parameter adaptation)

or performing low-cost/limited-impact actions, whereas strong adaptation deals with
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high-cost/extensive-impact actions such as replacing components with those that im-

prove system quality [McKinley et al., 2004]. In these terms, the weak adaptation may

include changing parameters or other actions with local impact and low cost.

On the other hand, strong adaptation may changes, adds, removes or substitutes sys-

tem artifacts. LEAD++ and One.World have limited impact on the architecture com-

ponents and their interconnections. FRACTAL have unlimited impact/cost on the

architecture. The four frameworks compose the components at the design time and

recomposed them at runtime based on the adaptation action.

• Making/Achieving: Self-adaptability can be introduced into software systems on the

development phase (M: Making) or the adaptation is achieved at runtime through dy-

namic composition (A: Achieving). In the four frameworks, the adaptation is achieved

at runtime.

• External/Internal Adaptation: The adaptation can be divided into two categories with

respect to the separation between the adaptation mechanisms from the application

logic.

The internal approaches mixed the application and the adaptation logic. This approach

is based on programming language features such as conditional expressions, parametri-

sation and exceptions [Oreizy et al., 1999,Floch et al., 2006].

A complex self-adaptive software system requires a mixed approach between internal

and external adaptation, which provides a composition of elements in an appropriate

architecture, and an infrastructure support for interoperability. Unfortunately, the

four frameworks in this study support an internal adaptation only, which limited their

flexibility and scalability to adapt context changes.

• Static/Dynamic decision making: This feature captures how the decision process can

be constructed and modified. Static refers to the frameworks that use a hard-coded

decision and its modification requires recompiling and redeploying the software system

46



or some of its components.

In dynamic decision-making, policies, rules or QoS are externally defined and man-

aged, so that they can be changed during runtime. One.World framework is the only

framework that supports dynamic decision-making. The others support static decision

making, which limited their adaptability and dependability.

• Open/Close: A closed-loop software system has only a fixed number of adaptive actions,

and no new behaviours and alternatives can be introduced during runtime.

On the other hand, in open-loop software system, the self-adaptive software can be

extended, and consequently, new alternatives can be added, and even new adaptable

entities can be introduced into the adaptation mechanism. The four frameworks are

classified as closed-adaptive systems, because they use a closed execution loop supported

by a feedback from the computational environment, which limits their adaptability to

a fixed number of adaptation actions.

• Specific/Generic: Some of the component frameworks address only specific domain/ap-

plication. However, generic framework can be configured by customising the component

model for di↵erent domains. The four frameworks are designed to suit only a specific

domain and they can not be configured to address di↵erent domains. In this con-

text, PCOM targets a distributed environment that has various heterogeneous devices.

FRACTAL and LEAD++ target context-aware applications in embedded systems and

has no support for self-adaptability. One.world supports context-awareness in the vir-

tual machine layer of Java applications.

• Model based/Free: In model-free adaptation, the mechanism does not have a predefined

model for the environment and the system itself. In fact, by knowing the requirements,

goals, and alternatives, the adaptation mechanism adjusts the software structure and/or

behaviour dynamically. On the other hand, in model-based adaptation, the mecha-

nism utilizes an architecture model of the software system and its context information

for adjusting the behaviour/functionality dynamically using compositional adaptation
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techniques. The four frameworks were designed as a model-based framework which can

support a specific computational environment.

• Reactive/Proactive: This feature captures the anticipatory property of the self-adaptive

software. In the reactive mode, the system responds when a change has already hap-

pened, while in the proactive mode, the system predicts the changes and suitable adap-

tation actions before it happened. This issue impacts the detecting and the deciding

processes. The frameworks support a reactive response for upcoming events, they sense

the environment and then propose reaction in response to the incoming events. In this

analysis, the four frameworks support reactive adaptation.

• Continuous/Adaptive Context Monitoring: This feature captures, whether the context

monitoring process is continuously collecting and processing data, or the software sys-

tem adapts the process of context monitoring based on the state of the environment

and the allocated resources. This decision a↵ects the process of context monitoring

and detecting in terms of cost and the amount of context changes they sense and anal-

yses. The LEAD++, One.World, and PCOM frameworks continuously monitor the

environment. FRACTAL has no support for monitoring the context.

• Human Involvement: The four frameworks do not o↵er the end user with a facility for

controlling the adaptation strategy and deciding which adaptation output might suit

the user needs.

• Interoperability: Self-adaptive software often consists of elements, modules, and sub-

systems. Interoperability is always a concern in distributed software systems for main-

taining the behaviour across all constituent elements and subsystems. In self-adaptive

software, the elements need to be coordinated with each other to achieve the desired

self-* properties and to fulfil the expected adaptation objectives. Component inter-

operability is not supported in the LEAD++ and One.World frameworks, but it is

recursively integrated in FRACTAL component framework, and it is totally supported

by PCOM framework.
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2.6 Middleware-centric Development

The middleware approach uses an external adaptation engine to carry out the adaptation

processes. In this approach, the self-adapting software system consists of an adaptation engine

and adaptable software. The external engine implements the adaptation logic, primarily with

the aid of middleware [Floch et al., 2006,Mukhija and Glinz, 2005, Chusho et al., 2000], a

policy engine [Anthony et al., 2009], or other application-independent mechanisms. The

middleware flexibility when adapting a suitable adaptation approach helps to achieve the

adaptation results at a lower cost and at several levels of granularity [Salehie and Tahvildari,

2009].

The middleware proposed in the literature [Capra, 2003,Dowling and Cahill, 2001,An-

thony et al., 2008b,Mukhija and Glinz, 2005] does not consider the e↵ects of context moni-

toring on the device’s resources. The second aspect of context detection is the need to detect

changes and notify the interested context consumer about them. These enhancements of

context monitoring and detection can improve the e�ciency of adaptation processes.

Another aspect that the middleware must consider is the decision process. Decision

making determines which parts need to be changed and how to change them to achieve

the best output. Some middleware such as Mobility and ADaptation enAbling Middle-

ware (MADAM) [Mukhija and Glinz, 2005], Contract-based Adaptive Software Architecture

(CASA) [Noble et al., 1997], and QUO [Loyall et al., 1998] has used static decision-making, i.e.

the decision process is hard-coded and its modification requires recompiling and redeploying

the whole system or some of its components. Dynamic decision-making is externally defined

and managed; therefore, it can be changed at runtime to create or adjust the behaviour of

either functional or behavioural adaptations.

Anthony et al. [Anthony et al., 2009] used policies for maintaining and evaluating the

adaptation results at runtime, a policy framework that is managed by a policy manager,

which verifies the policies among contradictions and evaluates the architecture evolution

among constraints specified by the policy.
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The middleware must be able to switch autonomously between weak adaptation and

strong adaptation types. In some cases, adaptation can be achieved by modifying parameters

or performing low-cost/limited-impact actions, whereas, in other cases, adaptation requires

either replacing components with those that improve system quality or performing high-

cost/extensive-impact actions [McKinley et al., 2004]. The cost in this classification refers

to how much time and resources the adaptation action requires. The adaptation costs have

a direct impact on architecture quality attributes; therefore, the middleware has to consider

the trade-o↵ between these attributes during an adaptation.

2.6.1 DySCAS

Anthony et al. [Anthony et al., 2009] proposed DySCAS, which is dynamically self-configuring

middleware for automotive control systems. The middleware facilitates context-aware dy-

namic reconfiguration. The framework focuses on the context-aware logic and the selection of

context information used in dynamic decision-making and is runtime changeable. This yields

a highly flexible system in which the functionalities of its applications are not restrained by

the (limited) design-time vision. The DySCAS component model for runtime configuration

is based on embedded Decision Points (DPs) in the software component into which poli-

cies are loaded at runtime. Thus, the configuration logic can be distributed throughout the

middleware and application components wherever deferred logic or runtime context-sensitive

configuration is required. The logic modules are loaded into DPs in the form of policies

written in AGILE policy grammar [Anthony et al., 2009]. The decision points encapsulate a

runtime supervisor in which the policy operates. The wrapper detects and handles any prob-

lems that arise during policy evaluation. during the policy loading procedure, the context

requirements are identified for a specific policy.

However, the DySCAS model is better suited for the design of embedded systems than

it is to mobile computing environment, where the context model can dynamically evolve at

runtime. In addition, it has no support for an abstract model of the policy or the component,

which requires the developer to focus on the policy language syntax and in the implementation
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code. Furthermore, DySCAS adaptation relies only on policy evaluation and has no support

for dynamic decision-making that considers the interoperability between the architecture

components. However, DYSCAS can supports policy evolution using a policy engine, but it

failed to support completely the architecture evolution.

2.6.2 CASA

Mukhija and Glinz [Mukhija and Glinz, 2005] proposed CASA that provides a framework for

enabling the development and operation of adaptive applications by separating adaptation

concerns from business concern. The focus is on providing a runtime infrastructure to meet

a broad range of applications. Additionally, CASA supports adaptation at several levels,

ranging from lower services to the application code. The adaptation policy for specific appli-

cations is defined using a contract that facilitates changes in the adaptation policy at runtime.

In CASA, adaptation techniques address a dynamic change in lower-level services, dynamic

weaving and unweaving of aspects, dynamic recomposition of application components, and

dynamic changes in application attributes. Additionally, the application might use any com-

bination of the above techniques based on the adaptation needs. The CASA runtime system

(CRS) is responsible for monitoring the execution environment and triggering the adaptation

process for the a↵ected application. During the adaptation, the user has direct control over

the process, which is intended to serve as a user-transparent mechanism.

CASA uses the Odyssey framework [Noble et al., 1997] for monitoring the network re-

sources and relies on the PROSE runtime framework [Nicoara and Alonso, 2005] for aspect

weaving. In addition, it does handle homogeneous functional crosscutting concerns that can

be weaved into the application. Context-awareness and self-adaptability is not supported

in CASA. Furthermore, aspectual decomposition of functional concerns does not suit the

context-driven adaptation that is needed by a context-aware application.
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2.6.3 Kinesthetics eXtreme (KX)

Kinesthetics eXtreme is a mobile, agent-based infrastructure for runtime monitoring and

reconfiguration of component-based distributed systems [Valetto et al., 2001]. The architec-

ture aims to handle global situations, perhaps involving heterogeneous components obtained

from multiple sources, where it would be di�cult if not impossible to retrofit self-assurance.

The occurrence of a context-related condition within the target system is detected and re-

ported by the monitoring part of the meta-architecture. The process engine is notified about

the condition and may dynamically instantiate, initialize, and finally dispatch one or more

software agents, called worklets, to perform the adaptation process. Each worklet contains

multiple mobile code snippets, called worklet junctions, to actuate the required adaptation

of the target system. The data structures of a junction can be initialized with data, typically

incoming from the task definition, process context, and information contained in the events,

which represents the triggering condition. Another part is called a worklet jacket; it allows

scripting of certain aspects of the worket behaviour in the course of its route. The process

engine requests junctions for the dynamic adaptation task at hand from a worklet factory,

which has access to a categorized semantic catalogue of junction classes and instantiates them

on its behalf.

Their work was driven by adding autonomic properties to legacy systems, i.e. existing

systems that were not designed with autonomic properties in mind. Indeed, it is sometimes

not possible to modify these systems, thus requiring both the addition of autonomic properties

that are completely decoupled, and autonomic monitoring sensors to be installed, on top of

the existing system APIs and monitoring functionality. Their work is more focussed on

the collection and processing of monitoring data from legacy systems and the execution of

adaptation and repairs, rather than algorithms and policies for adaptation planning. This

makes KX unsuitable for the implementation of self-adaptive applications that require an

intensive operation over the context environment.
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2.6.4 MADAM

Mobility and ADaptation enAbling Middleware (MADAM) was created to build adaptive

applications for mobile devices using architecture models [Mikalsen et al., 2006,Floch et al.,

2006]. MADAM claims to facilitate adaptive application development by separating the con-

text provider concern from the context consumer concern. MADAM provides a framework

for developers to design component-based applications and support their execution in a dis-

tributed environment. MADAM requires an application to be divided into a hierarchical

set of components. The architecture model presented at runtime allows generic middleware

components to reason about and control the adaptation strategy.

In the MADAM middleware, context changes are detected using context providers. It rea-

sons about the changes and makes decisions about what adaptation is to be performed based

on the application variation model, and implements the adaptation choices. The configura-

tion manager reconfigures the component-based application to put the decided adaptations

into e↵ect. To support adaptation, the architecture must encode variation and selection cri-

teria so that the middleware can automate the derivation of a variant for a specific context

at runtime. The component framework describes the composition of the component types.

The application variability is achieved by plugging in di↵erent component implementations.

Each component’s externally observable behaviour conforms to its type. The component can

be atomic or composite, which is built as a component framework itself. In this way, the

application is assembled from a recursive structure of components frameworks.

The MADAM middleware can support planning-based adaptation by instantiating a plug-

in architecture that fulfils the utility function evaluations. The middleware is responsible for

constructing and analysing several variability models at runtime, which adds an extreme

overhead to a mobile device with limited resources. It is very expensive to evaluate the

context state then executing a preloaded plug-in, especially when context changes occur

frequently.

Mobile USers In Ubiquitous Computing (MUSIC) middleware [Rouvoy et al., 2008a,Geihs

et al., 2011] is an extension of the MADAM component-based planning framework that opti-
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mizes the overall utility of applications when context-related conditions occur. The planning-

based adaptation of MADAM employs dynamic configuration of component frameworks. In

MUSIC, the planning extends further, to support seamless configuration of component frame-

works based on both local and remote components and services. Thus, both components and

services are plugged in interchangeably to provide functionalities defined by the component

framework.

In addition to what MADAM has achieved, MUSIC also models and realises service

bindings and extended situational contexts as part of the context dependencies based on a

service-oriented approach. This means that if some appropriate service is detected at runtime

in the execution environment, it can automatically be integrated and can replace another

software component. This flexible dynamic reconfiguration may apply to service components

at both the platform and the application levels [Rouvoy et al., 2008a,Geihs et al., 2011].

The decision-making process in MUSIC is similar to MADAM middleware, both use a

utility function to evaluate all the reasoning dimensions used by the adaptation reasoner to

select and deploy the component implementation, thereby providing the best utility. Mobile

devices have limited resources to devote to the evaluation of many application variations

at runtime and can consume significant amounts of device resources. As result, the benefit

gained from the adaptation is negated by the overhead required to achieve the adaptation.

Furthermore, the generated architecture can allow fine-grained adaptation or coarse-grained

adaptation, where, in some cases, both types of adaptation action are required to anticipate

the context changes. Finally, this form of the decision-making process does not allow the user

to interfere with the decision-making process; the user has no control over the adaptation

e↵ect.

2.6.5 CARISMA

Capra [Capra, 2003] proposes Context-aware Reflective Middleware System for Mobile Appli-

cations (CARISMA). CARISMA proposed as a mobile computing middleware that enhances

the construction of adaptive and context-aware applications. The middleware enables the
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developer to describe context information in name/value pairs by means of XML, which is

defined as a policy. Policy conflict is handled at runtime using a microeconomic approach

that relies on a particular type of sealed-bid auction. As a result, the application is allowed

to dynamically inspect the middleware behaviour and dynamically change its behaviour by

means of a meta-interface that enables runtime modification of the internal representation

that was previously made explicit. CARISMA exploits the use of computational reflection to

achieve dynamic adaptation to context changes.

The CARISMA middleware is responsible for maintaining a valid representation of the

execution context by directly interacting with the underlying network operating system.

CARISMA uses aspects weaving of functional concerns, which does not suit the context-driven

behaviour. As described before, this requires context-driven aspects supported by context

handling aspects in the platform. In addition, it supports parameter-based adaptation using

internal adaptation approach. Furthermore, CARISMA is specific to applications in which

context changes are foreseen and planned for their anticipation at the design time of the

software.

2.6.6 Middleware Comparative Study

A comparison of the above-mentioned middleware is shown in Table 2.8. The table outlines

the features supported by di↵erent middleware architectures, including the adapted objects,

the adaptation realization, the temporal feature, which refers to the middleware response

among context changes, and the human interaction in controlling the adaptation process.

Each column in the table can be described as follows:

• Application layer: This feature captures which layer of the software system can be

changed during the adaptation action. The adaptation action can be applied to the

application/middleware layer or distributed in the infrastructure nodes (decentralized).

As shown in Table 2.8, in CARISMA and MADAM, the adaptation is achieved in the

application layer. In other middleware architectures, the adaptation is performed with

the support of the infrastructure and decentralized on the network nods.
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Table 2.8: Middleware comparative study
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Dynamic, Open for adaptation O/C: Open/Close, Platform S/G: Specific/Generic, Adaptation type MB/F: Model-Based/-Free, Adaptation action R/P: Reactive/
Proactive, Context monitoring C/A M: Continuous/Adaptive Monitoring, HI: Human Involvement, I: Interoperability
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DySCAS

CASA

KX

MADAM

MUSIC

CARISMA

Application Component S A E D C S MB P AM No I

Application Services S M E D C S MB R C No -

Application Application W/S M E D O G MB R Semi-AM - -

Middleware architecture S M E S C componen
t-based

MB R C - -

Application Plug-in S M E D C componen
t-based

MB R AM - I

Middleware Asepcts W M I S C S MB R C - -

• Artifacts and granularity: This feature captures at which level of granularity the ar-

tifact can be changed. The adaptation can change the modules or the architectural

units; and the way they are composed. The artifact and granularity column in the

table shows that DySCAS support adaptation at component level. The CASA mid-

dleware supports adaptation for services found in the distributed environment. The

KX supports adaptation at the application level. The MUSIC midleware uses a plug-in

architecture for performing components’ composition. The CARISMA middleware uses

aspects weaving for performing the adaptation actions.

• Impact & cost: The adaptation impact describes the scope of the after e↵ects, while

cost refers to the execution time, resources required and complexity of the adaptation

actions. The adaptation actions can be categorised into Weak (W) and Strong (S)

classes. In these terms, weak adaptation may include changing parameters or other

actions with local impact and low cost. On the other hand, strong adaptation may

changes, adds, removes or substitutes software artifacts. DySCAS, CASA, MADAM

and MUSIC middleware architectures support strong adaptation action with high im-

pact over the allocated resources. The KX middleware has the ability to switch between
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strong and weak adaptation actions. The CARISMA middleware supports weak adap-

tation only with low impact over the application code, because it uses aspects weaving.

• Making/Achieving: Self-adaptability can be introduced into software systems on the

development phase (M: Making) or the adaptation is achieved at runtime through dy-

namic composition (A: Achieving). The DySCAS is the only middleware that achieves

the adaptation at runtime, because it uses decision policies for controlling the adapta-

tion action and it provides support for policies evolution.

• External/Internal Adaptation: The adaptation can be divided into two categories with

respect to the separation between the adaptation mechanisms and the application logic.

The internal approach encodes the adaptation action in the application logic. This

approach is based on programming language techniques such as conditional expressions,

parametrisation and exceptions [Oreizy et al., 1999,Floch et al., 2006]. In the internal

approach, the whole set of sensors, e↵ectors and adaptation processes are mixed with the

application code, which often leads to poor scalability and maintainability. The external

approaches use an external adaptation engine, which provides the adaptation actions.

In this approach, the self-adaptive software system consists of an adaptation engine

and adaptable software. The external engine implements adaptation logic, mostly with

the aid of middleware [Chusho et al., 2000,Mukhija and Glinz, 2005], a policy engine

[Anthony et al., 2009], or other application-independent mechanisms. The DySCAS,

CASA, KX, MADAM, and MUSIC have a dedicated software component for performing

the adaptation actions, and it is separated from the application business code. In

CARISMA, the adaptation mechanism is mixed with the application business logic,

because it uses an AOP framework.

• Static/Dynamic decision making: This feature captures how the decision process can

be achieved and modified. Static refers to the middleware that uses a hard-coded

decision and its modification requires recompiling and redeploying the software or some

of its components. In dynamic decision-making, policies, rules or QoS are externally
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defined and managed, so that they can be changed during runtime. Both MADAM

and CARISMA support static decision making, which limited their adaptability and

dependability properties. The DySCAS, CASA, KX and MUSIC support dynamic

decision making. The DySCAS uses a policy framework for architecture evolution.

Both KX and CASA middleware use rule-based engine to control the adaptation action.

The MUSIC middleware uses a utility function to calculate the best adaptation plan.

• Open/Close: A closed-loop software system has only a fixed number of adaptive actions,

and no new behaviours and alternatives can be introduced during runtime. On the other

hand, in open-loop software system, the self-adaptive software can be extended, and

consequently, new alternatives can be added, and even new adaptable entities can be

introduced into the adaptation mechanism. The DySCAS, CASA, MADAM, MUSIC,

and CARISMA are classified as closed-adaptive systems, because they use a closed

execution loop with pre-defined number of adaptation actions. The KX middleware is

open to its environment and it can includes new behaviours or services without pre-

knowledge about their implementation.

• Specific/Generic: Some middleware architectures address only a specific domain/ap-

plication. However, generic middleware architecture can be customised by configur-

ing the decision making process, and adaptation processes for di↵erent domains. The

DySCAS, CASA, and CARISMA target context-aware applications in embedded sys-

tems and has no support for self-adaptability. The MADAM and MUSIC middleware

target component-based software for mobile and ubiquitous computing.

• Model based/Free: In model-free adaptation, the mechanism does not have a predefined

model for the environment and the software itself. In fact, by knowing the requirements,

goals, and alternatives, the adaptation mechanism adjusts the software structure and/or

behaviour. On the other hand, in model-based adaptation, the mechanism utilizes a

model of the system and its context. The middleware architectures discussed in this

study were designed as a model-based architecture, which makes them support a specific
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environment only.

• Reactive/Proactive: This feature captures the anticipatory property of middleware.

In the reactive mode, the middleware responds when a change has already happened,

while in the proactive mode, the middleware predicts the changes and provides suitable

adaptation actions before it happened. This issue impacts the detecting and deciding

processes. The middleware support a reactive response for upcoming events, they sense

the environment and then propose reaction in response to them. In this analysis, we

find that the DySCAS middleware can support a reactive adaptation among the others.

• Continuous/Adaptive Context Monitoring: This feature captures whether the context

monitoring process (and consequently sensing) is continually collecting and processing

context information, or it is being adaptable in the sense that it monitors a few selected

context changes. This decision a↵ects the cost of the context monitoring and detection

process. The CASA, MADAM, and CARISMA middleware architectures continuously

monitor the environment. DySCAS and MUSIC have the ability to adapt the monitor-

ing process and utilize the allocated resources.

• Human Involvement: The middleware architectures do not o↵er the end user a facility

for controlling the adaptation strategy and deciding which adaptation output might

suits user needs. The four middleware architectures discussed in this analysis do not

allow the users to control in the adaptation actions.

• Interoperability: Adaptive middleware often consists of elements, modules, and subsys-

tems. Interoperability is always a concern in distributed complex systems for maintain-

ing the behaviour across all elements and subsystems. In self-adaptive software, the

elements need to be coordinated with each other to achieve the desired self-* properties

and to fulfil the expected adaptation objectives. Interoperability is not supported in

CASA, KX, MADAM and CARISMA middleware architectures, but it is recursively

supported in the DySCAS and MUSIC middleware.
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2.7 Self-adaptability Assurance and Verification

The goal of self-assurance is to provide evidence that the set of functional and extra-functional

properties are satisfied during a system’s operation. In general, verification and validation

methods depend on stable descriptions of software models and properties. Methods can

include performance through runtime evaluation of constraints [Garlan et al., 2004], trade-o↵

of quality attributes [Yang et al., 2009], or policy syntax grammar [Anthony et al., 2008a]

Anthony et al. proposed a policy definition language (AGILE) that uses simple expressive

syntax and semantics [Anthony et al., 2009]. The language structure and components are

policy suite, policy, rule, action, and return values. The inputs to the policy are internal

and external variables. The former refers to internal values between polices, whereas the

later refers to variables that are passed from environmental and contextual conditions to the

policy at decision points. However, the policy refers to a sequence of rules that implements

the self-management behaviour of the software. A rule refers to a statement that can be

evaluated as either true or false. An action is taken by the architecture whenever a true or

false value is found.

Self-adaptive systems have multiple context-sensitive parts (highly context dependent).

Whenever a change in the context is detected, the software has to decide the need for adap-

tation based on three primary factors: (1) the extra functionalities that the software is

providing, (2) the quality attributes that are a↵ected by the change and their related self-*

properties, and (3) the user’s perspectives and/or the application goals. All of these factors

prompt the need for verification activities to provide continual assessment. Deciding the fit-

ness of the adaptation results may require the verification activities to be embedded in the

adaptation mechanism.

However, in the literature, there are two classes of models in terms of adaptation as-

surance. The first class comprises static decision-making models based on the architecture

constraints found either in the RAINBOW framework [Garlan et al., 2004] or in later RAIN-

BOW e↵orts, which evaluate the e↵ectiveness of deploying RAINBOW in specific platform.
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The study conducted by Cheng et al. [Cheng et al., 2009] evaluated the e↵ectiveness at main-

taining the quality attribute, runtime overheads for the adaptation, and the engineering e↵ort

involved in deploying the RAINBOW framework.

In general, RAINBOW attempts to evaluate the adaptation results among predefined

architecture constraints that are not su�cient to decide the fitness of the adaptation at

runtime (a time at which goals, requirements, and quality attributes evolve and are dynamic).

The use of external adaptation mechanisms allows the explicit specification of adaptation

strategies for multiple system concerns [Garlan et al., 2004]. The RAINBOW framework uses

a closed control loop that monitors an executing system’s runtime properties and evaluates

the model for constraint violation. Whenever this kind of problem is considered, a module-

level adaptation is performed.

Another approach to statical middleware system verification can be found in [Keung

et al., 2010]. Keung et al. used a statical procedure that performs a sensitivity analysis over

quality attributes, identifies and removes influential data points, estimates system stability,

and evaluates system load capacity. Such approach is not su�cient to evaluate a self-adaptive

system, where quality attributes may have several trade-o↵s between them in a short time.

Yang et al. [Yang et al., 2009] referred to a dynamic decision model that uses the trade-o↵

of quality attributes to validate and verify the adaptation method at runtime. The method

measures the quality attributes at runtime and makes a trade-o↵ change dynamically. The

goal of this approach is to guarantee the quality attributes of the target system. Yang et al.

extended the traditional quality attributes process, which consists of (1) the estimation of

the Quality-of-Service (QOS) using a mathematical model, simulation, or experience-based

reasoning; (2) architecture analysis to identify conflict among di↵erent QOS; (3) a trade-o↵

solution proposed by the architect for every conflict identified; and (4) a reconstruction of

the architecture with the applied solution.
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2.8 Summary

With the current state-of-the-art, it is possible to design a system that could adapt its be-

haviour. However, any adaptation would either have to be pre-defined at design time, or

would have to be a reflective response to some monitored parameters, perhaps by using the

available techniques. An e↵ective pre-defined response would be dependent on the require-

ments analyst anticipating and enumerating all the possible environmental states and the

corresponding behaviour required. A drawback of the reflective response is that the relation-

ship between the adaptation and the objective goal would be at best implicit, making the

verification of goal satisfaction hard or even impossible. The design and the development

of context-dependent and self-adaptable software applications in the mobile computing en-

vironment cannot rely on the classical software development methodologies, which assume

that the software execution environment is known a priori at design time and the application

environment can be statically anticipated.

Programming-level adaptation approaches handle context information directly at the code

level. Which implies that the context models and adaptation processes are mixed with the

application code, which often leads to poor scalability and maintainability. Self-adaptability

requires both an anticipation method that enables the application to reason about unforeseen

context changes and a reasonable mechanism of the adaptation action, which considers the

allocated resources and the quality attributes.The MDD-based approaches proposed in the

literature su↵er from a number of drawbacks. First, it would be optimistic to assert that the

process of model transformation and code generation from the software models can become

completely automatic and that the developer’s role lies only in application design. Second,

it is impossible for the developer to predict all possible variations of the application when

unanticipated conditions will arise. In addition, mobile devices have limited resources for

evaluating many application variations at runtime and can consume significant amounts of

device resources. As result, the benefit gained from the adaptation is negated by the overhead

required to achieve the adaptation. Third, each development methodology generates more
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specific technical details that suit the underlying implementation language or modelling tool

they used. These challenges motivate this study to explore the possibility for engineering self-

adaptive software using a standard and generic development methodology. In addition, the

adaptation cost must be sustainable and a↵ordable in conjunction with mobility constraints

of the mobile computing environment.
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Chapter 3

Context-Oriented Software

Development

In this thesis, we explore the level of support of the engineering of self-adaptive applications

using a general and standard development paradigm provided by non-specialized language

framework like Context-Oriented Programming (COP) [Gassanenko, 1998], Aspect-Oriented

Programming (AOP) [Kiczales et al., 1997] and Dynamic Aspect Oriented Programming

(DAOP) [Popovici et al., 2002] and not limited to a specific platform or technique, which

gives the software designer the flexibility to construct self-adaptive application using a stan-

dard programming language and be deployed in several platforms. In addition to this, we will

explore design practices that can be used to implement the middleware architecture with-

out relying on a specific framework for performing behavioural activation and dynamic code

loading. To address this issues, this chapter focuses on describing the context-oriented soft-

ware development paradigm. The result of this software methodology is a component-based

architecture described by a Context-Oriented Component-based Applications Architecture

Description Language (COCA-ADL), that is a platform-independent model transformed by

a tool support into the desired platform-specific model. This provides code mobility for the

same application into various deployment platforms.
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The rest of the chapter is structured as follows. Section 3.1 describes the rationale

for providing a development paradigm for context-oriented software. Section 3.2 describes

the Context-Oriented Component model (COCA-component). Section 3.3 describes the

COCA-ADL elements. Section 3.4 provides an overall description of the Context-Oriented

Component-based Applications Middleware (COCA-middleware). The model-driven devel-

opment methodology, the Context-Oriented Component-based Applications Model-Driven

Architecture (COCA-MDA) is described in Section 3.5. Section 3.6 demonstrates a case

study designed using the COCA-MDA.

3.1 Rationale

A context-driven adaptation requires self-adaptive software to anticipate its context-dependent

variations. A context-dependent variation can be classified into actor-dependent, system-

dependent, and environment-dependent behaviour variations. The complexity behind mod-

eling these behaviour variations lies in the fact that they can occur separately or in any com-

bination, and cannot be encapsulated because of their impact across all software modules.

Context-dependent variations can be seen as collaboration of individual features expressed

in requirements, design, and implementation, and are su�cient to qualify as heterogeneous

crosscutting concerns. Heterogeneous crosscutting concerns refers to a set of collaborating

aspects, code fragments, that extend the application behaviour in several parts of the pro-

gram and have an impact across the whole software system, in the sense that di↵erent code

fragments are applied to di↵erent program parts. Before encapsulating crosscutting context-

dependent behaviours into a software module, the developers must first identify them in

the requirements documents. This is di�cult to achieve because, by their nature, context-

dependent behaviours are tangled with other behaviours, and are likely to be included in

multiple parts of the software modules. Using intuition or even domain knowledge is not nec-

essarily su�cient for identifying the context-dependent parts of self-adaptive applications.

This requires a formal procedure for analysing them in the software requirements and sepa-
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rating their concerns. Moreover, a formal procedure for modelling these variations is needed.

Such analysis and modelling procedures can reduce the complexity in modelling self-adaptive

applications. In this sense, a formal development methodology can facilitate the development

process and provide new modularization of a self-adaptive software system in order to iso-

late the context-dependent from the context-free functionalities. Such a methodology, it is

argued, can decompose the software system into several behavioural parts that can be used

dynamically to modify the application behaviour based on the execution context.

Behavioural decomposition of a context-aware application can provide a flexible mecha-

nism for modularizing the application into several units of behaviour. Because each behaviour

realizes a specific context-dependent functionality, the development methodology requires sep-

aration of the concerns of context handling from the concern of the application business logic.

In addition, separation of the application’s context-dependent and context-independent parts

can support a behavioural modularization of the application, which simplifies the selection

of the appropriate parts to be invoked in the execution whenever a specific context condition

is captured. The adaptive software operates through a series of substates. The substates

are represented by j, and j might represent a known or unknown conditional state k. Exam-

ples of known states in the generic form include detecting context changes in a reactive or

proactive manner, so the developers are able to specify decision policy (k), which controls

the adaptation in the associated state (Si). Each decision policy (k) is attached to a decision

point DPj, which controls the transformation T(jk) of the self-adaptive software form statei

into statei+1, when the application receives context changes (Ci) from the computational

environment, as shown in Figure 3.1.

In the presence of uncertainty and unforeseen context changes, a self-adaptive application

might be notified about an unknown condition prior to the software design. Such adaptation is

reflected in a series of context-system states. (C+S)ji denotes the ith combination of context-

dependent behaviour, which is related to the Decision Point (DP)j by the notion mode Mjk.

In this way, the development methodology decomposes the software into a set of context-

driven and context-free states. At runtime, the middleware transforms the self-adaptive
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Fig. 3.1: Behavioural Decomposition Model

software form statei into statei+1, considering a specific context condition tjk, as shown in

Figure 3.1. This enables the developer to clearly decide which part of the architecture should

respond to the context changes tjk, and provides the middleware with su�cient information

to consider a subset of the architecture during the adaptation. This enhances the adaptation

process, impact, and cost and reduces the computation overhead from implementing this class
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of applications in mobile devices.

Context-driven adaptation requires dynamic composition of context-dependent parts,

which enables the middleware to add, remove, or reconfigure components within an ap-

plication at runtime. Each component embeds a specific context-dependent functionality

(C + S)ji, realized by a COCA-component. Each COCA-component realizes several layers

that encapsulate a fragment of code related to a specific software mode layer(Mjk), as shown

in Figure 3.1. The developers have the option to provide a decision policy (k) for each DPj for

a specific context-related condition. Hereafter, the COCA-components are dynamically man-

aged by COCA-middleware and their internal parts to modify the application behaviour. The

COCA-middleware performs context monitoring, dynamic decision-making, and adaptation,

based on policy evaluation.

Model-driven approaches provide a mechanism for designing a self-adaptive software us-

ing an abstract model and facilitate development by means of code generation. As a result

of combining a decomposition mechanism with COCA-MDA, a set of behavioural units are

produced. Each unit implements several context-dependent functionalities. This requires

a component model which encapsulates these code fragments in distinct architecture units.

Each component embeds a specific context-dependent functionality realized by a COCA-

component. Each COCA-component realizes several layers. Each layer encapsulates a frag-

ment of code produced by the COCA-MDA. Hereafter, the COCA-components are dynam-

ically managed by COCA-middleware and their internal parts to modify the application

behaviour.

3.2 Context-oriented Component Model (COCA-component)

The COCA-component model was proposed by Magableh and Barrett [Magableh and Bar-

rett, 2009], based on the concept of a primitive component introduced by Khattak and Bar-

rett [Khattak and Barrett, 2009] and COP [Hirschfeld et al., 2008]. COP provides several

features that fit the requirements of a context-aware application, such as behavioural compo-
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Fig. 3.2: COCA-component Conceptual Diagram

sition, dynamic layer activation, and scoping. This component model dynamically composes

adaptable context-dependent applications based on a specific context-dependent functional-

ity. The developers build the application model by designing components as compositions

of behaviours, embedding DP in the component at design time to determine the component

behaviours, and supporting reconfiguration of Decision PoLicys (DPLs) at runtime to adapt

behaviours.

The COCA-component has three major parts: a static part, a dynamic part, and ports.
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The component itself provides information about its implementation to the middleware. The

COCA-component has the following attributes: ID, DPs, policy id and a protocol methods.

These methods are used by the middleware to read the attached PolicyID and manipulate

the application behaviour by manipulating the DPL.

The COCA-component handles the implementation of a context-dependent functionality

through employing the delegate design pattern [Buck and Yacktman, 2010]. Using the del-

egate pattern allows the adaptation manager to invoke a subdivision of COCA-component

sub-layer implementation when a specific condition is found in the execution. A delegate is

a component that is given an opportunity to react to changes in another component or influ-

ence the behaviour of another component. The basic idea is that two components coordinate

to solve a problem. A COCA-component is general and intended for reuse in a wide vari-

ety of contextual situations. The base-component stores a reference to another component,

i.e. its delegate, and sends messages to the delegate at the same time. The messages may

only inform the delegate that something has happened, giving the delegate an opportunity

to de/activate a layer implementation, or the messages may ask the delegate for critical in-

formation that will control what happens. The delegate is typically a unique custom object

within the controller subsystem of an application [Buck and Yacktman, 2010].

At this stage, each COCA-component must adapt the COCA-component model design.

A sample COCA-component is shown in Figure 3.2. Each COCA-component is modelled

as a control class with the required attributes and operations. Each layer entity must

implement two methods that collaborate with the context manager. Two methods inside

the layer class, namely ContextConditionDidChange and ContextConditionWillChange, are

called when the context manager posts the notifications in the form [NotificationCenter

Post:ContextConditionDidChange]. This triggers the class layer to invoke its method Con-

textConditionDidChange, which embeds a subdivision of the COCA-component implementa-

tion.
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3.3 COCA-ADL: A Context-oriented Component-based Ap-

plication ADL

The aim of this section is to introduce the architecture description language COCA-ADL

[Magableh and Barrett, 2010]. COCA-ADL is an XML-based language used to describe the

architecture produced by the development methodology COCA-MDA. COCA-ADL is used

to bridge the gap between the application design and the runtime model of the application.

Thus, it enables the architecture to be implemented by several programming languages.

Fig. 3.3: COCA-ADL Elements

COCA-ADL is designed as a three-tier system. The first level consists of the building

blocks, i.e., the components, including the COCA-component and base-component. The

second refers to connectors, and the third refers to the architecture configuration, which

includes a full description of the architecture configurations, which describes using an activity

diagram plus the DPLs’ syntax and architecture constraints. Figure 3.3 shows the main

elements of COCA-ADL. Each element is associated with an architecture template type. The

main features provided by the element types are instantiation, evolution, and inheritance.

Each element is inherited from a complex entity type, for example, a component inherited
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from the COCA-component model. The component model is described in the meta-model

in Figure 3.2. The component element is used to define the application base-component as

well as the COCA-component. The connectors are used to connect components through the

interfaces. The configuration element describes the external composition, which is achieved

through the connectors and the internal composition, which is used to describe the realization

of component’s sub-layers through the delegate interface.

3.4 Overview of the COCA-middleware

Fig. 3.4: COCA-platform Architecture.

The COCA-platform o↵ers a context-aware middleware environment for adjusting the

application’s behaviour dynamically [Magableh and Barrett, 2011]. Figure 3.4 shows the

COCA-middleware architecture. The platform is layered into four major layers. Each layer
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provides an abstraction of the underlying technology. Each layer is platform independent of

any given technology. The first layer represents the context-aware application. It provides

the user with GUI, functional properties, and non-functional properties. The second layer in

the platform represents the COCA-middleware. The COCA-middleware subcomponents are

shown in Figure 3.4. The OS sensor retrieves information about the OS. Function calls are

used to retrieve information about CPU, memory, and disk space [Magableh and Barrett,

2009].

3.4.1 Context Manager

The first component of the COCA-middleware is the context manager, as shown in Figure

3.4. The context manager gathers and detects context information from the sensors. If the

context is changed, the context manager notifies the adaptation manager and the observer

COCA-component about the changes. Each COCA-component is designed to be an observer

for one or more context entities. This type of interaction is called context binding.

Fig. 3.5: Observer Design Pattern

The observer pattern reduces the tight coupling between the context provider, e.g. con-

text entity, and the context consumer, e.g. COCA-component. In addition, it enables the

middleware to identify which COCA-component has to be manipulated in response to context

changes. Figure 3.5 demonstrates the observer design pattern with one context entity and two
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observers. At runtime, the COCA-component registers itself as an observer for the context

entity by sending a registration request to the notification centre. The context-change event

is sent to the notification centre queue instead of the COCA-component, then the notifica-

tion centre broadcasts the context changes, and only the registered component receives the

notification. COCA-components 1 and 2 have registered as an observer for the context entity.

Whenever the context changes, COCA-components 1 and 2 are notified by the notification

centre. In this way, the adaptation manager can identify COCA-components 1 and 2 to be

included in the adaptation action, which embeds a subdivision of their implementation by

de/activating the associated sub-layer.

Supporting context-binding mechanisms with observer pattern provides a clear separation

between the context provider and consumer. In addition, it modularizes the application

component based on context. This makes identifying which component must respond to a

specific context condition an easy task in the design phase. To achieve this integration, the

developers have to consider the following two aspects in the application design: how to notify

the adaptation manager about context changes, and how the component manager can identify

the parts of the architecture that have to respond to these changes.

3.4.2 Component Manager

The component manager performs three major functions in the middleware: It searches for

a COCA-component in the component repository, adds components from the repository,

and provides COCA-component instantiation. The intercession operation is achieved by the

component manager by adding a component, or a component sub-layer, to the application

structure. To add a component, the adaptation manager asks the component manager to

instantiate a specific component. The component manager performs several inspections of

the application components through the operation time of the software.
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3.4.3 Policy Manager

The COCA-MDA provides the developers with the ability to specify the adaptation goals,

actions, and causes associated with several context conditions using a policy-based framework.

For each COCA-component, the developers can embed one or more DPLs that specify the

architecture properties. The DPL is described by a state-machine model based on a set of

internal and external variables and conditional rules. The rules determine the true action or

else an action based on the variable values. The action part of the state diagrams usually

involves invoking one or more of the component’s layers. A single layer is activated if a specific

context condition is found, or deactivated if the condition is not found [Anthony et al., 2009].

The policy manager uses the DPL objects to store policies in the policy repository. The

DPL is stored in the policy repository, which conforms to the Associative Storage design

pattern [Buck and Yacktman, 2010]. This pattern organizes the policies into data and keys;

this reduces the computation overhead from processing them at runtime.

3.4.4 Adaptation Manager

The adaptation manager starts the adaptation process after receiving the notifications that

identified the context changes and the COCA-components that observed the notification. The

first function of the adaptation manager is to produce the composition plan. The composition

plan recursively describes the composite components and the connections between them by

describing several connectors and interfaces. To construct a composition plan, the following

information is needed by the adaptation manager. 1) A component graph: The component

graph is generated by the decomposition manager after parsing the COCA-ADL XML file.

At development time, the application’s models are transformed into a COCA-ADL XML

file. At runtime, the decomposition manager reads the COCA-ADL XML file, then adds

the architecture instances, including the components, connectors, and configuration, to the

application graph. 2) Decision PoLicy (DPL): The DPL rules determine the true action

or the else action based on the values of its variables. 3) Runtime structure style: When

several context conditions are found at the same time, the DPL proposes a runtime instance
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of a design pattern, which may imply combination of multiple components or their internal

parts to fulfil the execution context. The structure style describes a structure modification

combining a set of the component’s layers.

The adaptation process starts the adaptation action, including two types of composition

mechanism: internal composition and external composition. In internal composition, the

adaptation manager switches a component’s layers on or o↵, based on the composition plan,

using the delegation and decorator patterns. The decorator pattern can be used to extend,

decorate, the functionality of a certain object at run-time, independently of other instances

of the same component. In internal composition, the adaptation manager introspects the

application’s graph. The component sub-layers are activated by redirecting the COCA-

component delegate to the desired layer.

In external composition, the adaptation manger adds or replaces components from the ap-

plication structure, based on the composition plan. The decomposition component builds the

application graph by reading the COCA-ADL. In external composition, a COCA-component

is loaded into the application. This require the adaptation manager to confirm to the bun-

dle pattern [Buck and Yacktman, 2010]. The bundle pattern achieves the following goals:

1) Keep executable code and related resources together even when there are multiple ver-

sions and multiple files involved in the underlying storage. 2) Implement a flexible plug-in

mechanism that enables dynamic loading of executable code and resources. In addition, the

invocation design pattern is used to provide a means of capturing runtime messages so that

they can be stored, rerouted, or treated and manipulated according to the context state,

and allows new messages to be constructed and sent at runtime without requiring code re-

compilation process [Buck and Yacktman, 2010]. For example, when a component receives

a message, a method implementation is usually invoked to handle the message. However,

this is not always the case. As an illustration, if a component does not implement a par-

ticular method, then there is no method, which can be invoked and a runtime exception is

raised instead. Because of the Invocation design pattern, it is possible for a message to be

delayed, rerouted to other components, or even ignored at runtime without re-compiling the
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application’s code.

In addition, the adaptor design pattern lets components work together, even if they have

incompatible interfaces [Buck and Yacktman, 2010]. Assume a base-component needs to

communicate with a COCA-component, but its interfaces make that unachievable. To solve

this problem, the COCA-component applies to the delegate pattern by defining a protocol,

which is essentially a series of method declarations unassociated with the component. The

base-component then adapts the protocol and confirms this by implementing one or more of

the protocol’s methods. The protocol may have mandatory or optional methods. The base-

component can then send a message to the protocol interface. At this stage, the adaptation

manager can verify whether the COCA-component is responding to the message, before

invoking the message call by adapting the chain of responsibility pattern. This pattern

verifies whether the component can respond to the method call using the responder pattern,

which avoids coupling between the sender of a request and its receiver by giving more than

one COCA-component sub-layers a chance to handle the request.

3.4.5 Verification Manager

As long as the COCA-middleware is aware of the architecture configuration, which is sup-

ported by the COCA-ADL configuration element. The COCA-middleware can anticipate the

associated configuration with specific context changes. In each DP, the COCA-middleware

transforms the software from statei into statei+1, considering the properties of the self-

adaptive software. These properties include the following: 1) The set of DPLs attached to

the COCA-components that participate in the adaptation; 2) the architecture configuration

elements in the COCA-ADL, which include the description of the DPLs and the behavioural

model of the architecture, and the external and internal variables specified in the DPLs em-

bedded in the COCA-components that are evolving through the adaptation process; and 3)

the adaptation goals, actions, rules, and causes specified by the DPLs.
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3.5 COCA-MDA Development Approach

The COCA-MDA follows the principles of Object Management Group (OMG) model-driven

architecture. In Model Driven Architecture (MDA), there are three di↵erent viewpoints of

the software: the Computation Independent View (CIV), the Platform Independent View

(PIV), and the Platform Specific View (PSV). The CIV focuses on the environment of the

system and the requirements for the system, and hides the details of the software structure

and processing. The PIV focuses on the operation of a system and hides the details that

are dependent on the deployment platform. The PSV combines the CIV and PIV with an

additional focus on the details of the use of a specific platform by a software system [Miller

and Mukerji, 2003].

Fig. 3.6: Context-oriented component-based application model-driven architecture (COCA-

MDA)

In Enterprise Collaboration Architecture (ECA) [ECA OMG, 2004]. the component struc-
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ture and behaviour are defined by partitioning the system specification into several view-

points. The application’s architecture is described by recursive decomposition and assembly

of components, that can be applied to several domains. The ECA comprises a set of five

models. Each model consists of a set of model elements that represent concepts needed to

model specific aspects of the software system. However, COCA-MDA has adapted the Com-

ponent Collaboration Architecture (CCA) and the entity model. The CCA details how to

model the structure and behaviour of the components that comprise a system at varying and

mixed levels of granularity. The entity model describes a meta-model that may be used to

model entity objects that are a representation of concepts in the application problem domain

and define them as composable components [ECA OMG, 2004].

The design of a context-oriented component-based application according to the COCA-

MDA generally involves the six phases shown in Figure 3.6. COCA-MDA partitioning the

software into three viewpoints: the structure, behaviour, and enterprise viewpoints. The

structure viewpoint focuses on the core component of the self-adaptive application and hides

the context-driven component. The behaviour viewpoint focuses on modelling the context-

driven behaviour of the component, which may be invoked in the application execution at

runtime. The enterprise viewpoint focuses on remote components or services, which may be

invoked from the distributed environment.

Modelling self-adaptive software using COCA-MDA can be summarised as shown in Fig-

ure 3.7. The figure summarizes the modelling tasks using the associated UML diagrams. The

developer can start the analysis of an application scenario to capture the requirements.

Analysis: The requirements of the system are modelled in a computation-independent

model (CIM), thus describing the situation in which the application will be used and pre-

dicting the exact behaviour of the application as a result of runtime context changes. In this

phase, the developers perform a separation of concerns between the functional and contextual

requirements.

Modelling and design: The PIV focuses on the operation of a system while hiding the

details necessary for use of a particular platform. In this phase, the requirements diagram is
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combined into a use-case model. The use-cases describe the interactions between the software

system and the actors. The system-dependent and environment-dependent behaviours are

modelled as an extension of the functional use-cases. The functional use-cases are modelled

in a class diagram describing the application core functions. The extended use-cases are

modelled as another class diagram that describes the application’s behavioural view.

The use-case diagram is split into two distinct class diagrams. The first diagram describes

the basic application components that are executed regardless of the execution context. The

core structure is integrated with the extra-functional class model in the final architecture

model. The extra-functionality class diagram provides a detailed view of the application

COCA-component and the COCA-middleware. In addition, these diagrams model the desired

behaviour that can be used to anticipate context changes.

COCA-MDA has adapted CCA [ECA OMG, 2004] at the Platform Independent Model

(PIM) phase by partitioning the software into two models: The structure model and the

behavioural model. The structure model focuses on the core components of the self-adaptive

application and hides the context-dependent components. The behavioural model focuses

on modelling the context-driven behaviour of the component, which may be invoked in the

application execution at runtime, which may satisfy the execution context. The application

behavioural model is used to demonstrate the decision points in the execution that might

be reached whenever internal or external variables are found. This decision point requires

several parameter inputs to make the correct choice at this time. Using the activity diagram,

the developers can extract numerous decision polices.

Model-to-model transformation: The platform-independent model and behavioural

model are translated into COCA-ADL. This phase includes model-to-model transformation

and model verification for the application’s structure and behaviour views. The COCA-

ADL is implemented by extending the xADL schema, which is an extensible XML language.

ArchStudio is a modelling tool, that helps the developers to model the architecture using

three grouped models: activity diagram, state diagram, and structure diagram [Dashofy

et al., 2007].
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Testing and validating: This process used to test the model and verifies its fitness for

the application goals and objectives.

Platform-specific model: The platform-specific model produced by the transformation

is a model of the same system specified by the PIM; it also specifies how that system makes

use of the chosen platform. A Platform Specific Model (PSM) may provides more or fewer

details, depending on its purpose. A PSM will be an implementation if it provides all the

information needed to construct a system and to put it into operation. Alternatively, it may

act as a PIM used to further refine the PSM so that it can be directly implemented.

3.6 Context-Oriented Component-based Application Exam-

ple

I-TrinityTour is a tourist guide application that helps the user to explore the historical cam-

pus of Trinity College Dublin, Ireland (TCD). I-TrinityTour o↵ers a map–client interface

maintained by an Augmented Reality Browser (ARB). The browser exhibits many Places Of

Interests (POIs) inside the physical outlook of the tool’s camera. Information related to ev-

ery POIs is exhibited inside the camera overlay outlook. The POIs comprise edifices, tourist

services sites, restaurants, hotels, and ATMs in Trinity college. The AR browser o↵ers an

instantaneous live direct physical display inside the portable camera. When the client posi-

tions the portable camera in the direction of a building, an explanation confined to a small

area related to that edifice is shown to the client.

Constant use of the device’s camera, backed with attainment data from many sensors,

can consume the tool’s resources. This requires the application to self-tune its behaviour

among several contexts to maintain quality of services without disrupting the function’s

tasks. To demonstrate the I-TrinityTour ability to self-adjusting its behaviour among the

battery usage, and self-configuring its structure for adapting a service with better quality,

the following scenarios are proposed:

A1: I-TrinityTour is required to adapt its behaviour and increase the battery life. This
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is achieved by adapting a location service that consumes less power. For example, if the

battery level is low, the I-TrinityTour application switches o↵ the GPS location services and

uses the cell-tower location services. Using the cell-tower for updating the location reduces

the accuracy of the location but saves battery energy. In addition, the application may reduce

the number of POIs it displays to the most recent device location. Moreover, the application

reduces the frequency of the location updates. On the other hand, if the battery level is

high and healthy, I-TrinityTour uses the GPS service with more accurate locations. The

application starts listening for all events in the monitored region inside Trinity College.

A2: The user takes photographs for the locations inside Trinity College, using the cameras

flash because of the low quality of light. At the same time, the devices battery is drained

and needs recharging. In such a situation, I-TrinityTour reconfigures itself so that it stops

taking photographs and using the cameras flash. The ability to use the flash depends on

the level of light inside the room when the application senses a low level of light. This

will enable the flash automatically, unless the battery is drained. To reason about these

conditions, the application could search for photographs taken by any nearby devices. In

addition to the previous set of contexts, the devices storage capacity has to be monitored

by the application. While performing the adaptation action, the remaining battery power

is insu�cient for selecting from the available photographs in the distributed environment,

so the application adapts a sorting component, which is able to select photographs based

on their quality, picture tags. Once the photographs are stored in users device, he/she can

upload a few of them to one of the social networking sites.

A3: The application must be able to guide the user towards the place of interest. The

route directions can be delivered to the user in several output formats: video, still image, and

voice command. The application should change the direction output while also considering

the device resources.

Figure 3.7 summarizes the modelling tasks, using the associated UML diagrams. The

developer starts the analysis of an application scenario to capture the requirements. The

requirements are combined in one model in the requirements diagram. The requirements dia-
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gram is modelled using a use-case diagram that describes the interaction between the software

system and the context entity. The use-case is partitioned into two separate views. The core-

structure view describes the core functionality of the application. The extra-functionality

object diagram describes the COCA-component interaction with the core application classes.

The state diagram and the activity diagram are extracted from the behavioural view. Finally,

the core structure, the behavioural models, and the context model are transformed into the

COCA-ADL model.

1. Requirements Capturing by 
Textual Analysis

2. Capturing 
Functional Requirements 3. Capturing Extra-functional 

Requirements

5a. Core Functionality Use-cases 5b. Modelling Extended Use-cases

COCA-component 
Model Design

7. Extra-functionality  
COCA-Components Object 

6. Core-structure 
Objects Diagram 

8. Behavioural View
Activity Diagram

9. Decision Policies
State Machine Diagram 

Model-To-Model Transformation

COCA-ADL Architecture 
Model (PSM)

4. Context & 
Resources

 Meta-Model
Computational Independent Model

CIM Analysis phase

Modelling and design
Platform Independent Model

PIM 

Platform Specific Model
PSM Model-to-Model

Code Generation

Fig. 3.7: Modelling tasks

3.6.1 Analysis: Capturing Context and User Requirements

In the analysis phase, the developers analyse several requirements using separation of concerns

technique, which focus on separating the functional requirements from the extra-functional
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requirements as the first stage. Extra-functional refers to contextual requirements [Broens

et al., 2007] that extend the application behaviour when a specific condition found in the

execution context [Hochmuller, 1999, Geihs et al., 2006, Paspallis, 2009]. Extra-functional

includes the context, non-functional and technological requirements. There are two subtasks

in the analysis phase.

3.6.1.1 Task 1: Requirements capturing by textual analysis

In this task, the developers identify the candidate requirements for the application using a

textual analysis of the application scenario. In this task, the developers identify the candidate

actors, use-cases, classes, and activities, as well as capturing the requirements in this task.

This can be achieved by creating a table that lists the results of the analysis.

3.6.1.2 Task 2: Identifying the middleware functionality:

Fig. 3.8: Requirements UML profile

The first step in the process is to understand the application’s execution environment.

The context is classified in the requirements diagram, based on its type, and whether it
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comes from a context provider or consumer. A context can be provided by a physical or

logical source, i.e. available memory, or resources, i.e. battery power level and bandwidth.

Context consumer refers to a software component, which provides a representation of context

information to the application. Context consumer refers to the parts of the application, which

handles, manipulates, or analyses the context information.

The next level of requirements classification is to classify the requirements based on their

anticipation level; this can be foreseeable, foreseen, or unforeseen. This classification allows

the developer to model the application behaviour as much as possible and to plan for the

adaptation actions. However, to facilitate this classification framework, a UML profile is

designed to support the requirements analysis and to be used by the software designer, as

shown in Figure 3.8.

Fig. 3.9: Functional and extra-functional partial requirements diagram

As shown in Figure 3.9, extra-functional requirements are captured during this task, for
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example, requirement number 3: adapt the location service. I-TrinityTour is required to

adapt its behaviour and increase the battery life. This is achieved by adapting a location

service that consumes less power. For example, if the battery level is low, the I-TrinityTour

application switches o↵ the GPS location services and uses the cell-tower location services.

Using an IP-based location reduces the accuracy of the location but saves battery energy.

In addition, the application may reduce the number of POIs it displays to the most recent

device location. Moreover, the application reduces the frequency of the location updates. On

the other hand, if the battery level is high and healthy, I-TrinityTour uses the GPS service

with more accurate locations. The application starts listening for all events in the monitored

region inside Trinity College.

In order to meet the middleware functionality that extends the application behaviour

based on the battery level. The software designer associates a trace relationship with the con-

text requirement “Battery level”. Requirements tracing was proposed by Jarke et al. [Jarke,

1998], to help the developers to align software system evolution with changing stakehold-

ers needs. However, The “Battery level” requirement needs a middleware functionality to

manage its context changes and take the adaptation actions that satisfy them. For example,

displaying the POIs in the camera browser is a functional requirement that drives the extra-

functional requirement number 4: use GPS-based location. This requirement is classified as

a foreseeable anticipation level. The middleware traces the battery level and the bandwidth

connectivity. If the bandwidth speed is greater than a specific limit, a WIFI-based location is

used to save the battery energy, otherwise the middleware will decide to use the GPS-based

location if the battery is not drained.

3.6.1.3 Task 3: Capturing user requirements

This task is combined with the previous requirements diagram. This task focuses on capturing

the user’s requirements as a subset of the functional requirements, as shown in the UML

profile in Figure 3.8. This task is similar to a classical requirement-engineering process where

the developers analyse the main functions of the application that achieve specific goals or
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objectives.

3.6.2 Modelling: Platform-Independent Model

In order to be aware of possible context variations and the necessary adaptation actions,

a clear analysis of the context environment is the key to building dynamic context-aware

applications. As result of the analysis phase, the developers should be able to provide a design

for the context entities and their dependences, and separate the model of the application core-

structure from the context-driven behavioural variations.

3.6.2.1 Task 4: Resources and context entity model

Resources and context model refer to a generic overview of the underlying devices resources,

sensors, and logical context provider. Such a diagram models the engagement between the

resources and the application under development. It helps the developer to understand the re-

lationship between them and their dependences. Figure 3.10 shows the general resources and

context for a mobile device. All resources, physical sensors, and logical context providers are

modelled. In addition, the developers identify provisional assumptions about their expected

conditions or values.

The dependencies between context entities are also specified in this model. This task

helps developers to understand the relationship between each context provider, such as an

accelerometer, and the context representation, which is the speed value. In the same way,

memory is a device resource providing context, but the available memory is a context entity

representing the context value. The context-entity representation can be modelled using the

context model shown in Figure 3.11.

3.6.2.2 Task 5: Use-cases

The requirements diagram in Figure 3.9 represents the main inputs for this task. Each

requirement is incorporated into a use-case, and the developers identify the actor of the

requirement. An actor could be a user, system, or environment. The use-cases are classified
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Fig. 3.10: Resources and context entities model

into two distinct classes, i.e., the core functionality and extended use-cases, by the context

conditions. The first step is to identify the interaction between the actor and the software

functions to satisfy the user requirement in a context-free fashion. For example, the displaying

POIs functionality in the figure is context independent in the sense that the application must

provide it, regardless of the context conditions. All these use-cases are modelled separately,

using a class diagram that describes the application core-structure or the base-component

model, as shown in the following task.
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Fig. 3.11: Context meta-model

The use case ”enables the stream-receiving functionality” is a use case extended by the

context, and it extends other use cases. In the same way, the use case ”Stop the camera

flashes” is extended by the context change battery energy. Such an interaction is called

an environment-dependent variation. The developers scan and search the use-case model

for the use case that are extended by the context changes, then each use case is modelled

separately in a sequence diagram. The sequence diagram shows the lifeline and the message

interaction among the application, middleware, and the context environment, while achieving

the desired functionality of the use case. The three use-cases, ”Enables the stream-receiving

functionality”, ”Searches for pictures”, and ”Stop the camera flashes”, are identified as an

extra-functionality managed by the middleware.

3.6.2.3 Task 6: Modelling the application core-structure

In this task, a classical class diagram models the components that provide the application’s

core functions. These functions are identified from the use-case diagram in the previous task.

However, the class diagram is modelled independently from the variations in the context
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Fig. 3.12: Use case model

information. For this scenario, some classes, such as “Displaying POIs”, “Route-planningUI”,

“CameraUI”, “MapUI”, and “User Interface”, are classified to be on the application core

components. These classes provide the core functions for the user during his tour inside

Trinity College. Figure 3.13 shows the core-structure class-model without any interaction

with the context environment or the middleware.
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Fig. 3.13: I-TrinityTour Core-Classes structure

3.6.2.4 Task 7: Identifying application behavioural variations (behavioural model)

In this phase, the developers specify how the application can adapt to context conditions

to achieve a specific goal or objectives. This task identifies when and where an extra-

functionality can be invoked in the application execution. This means the developer has to

analyze the components involved, their communication, and possible variations in their sub-

divisions, where each division realizes a specific implementation of that COCA-component.

To achieve this integration, the developers have to consider two aspects of the context-

manager design: How to notify the adaptation manager about the context changes, and how

the component manager can identify the parts of the architecture that have to respond to

these changes. These aspects can be achieved by adapting the notification design pattern

in modeling the relation between the context entity and the behavioural component. Here-

after, these extra-functionalities are called the COCA-components. Each component must

be designed on the basis of the component model described in Section 3.2.

The I-TrinityTour application is modularized into several COCA-components. Each com-

ponent models one extra-functionality such as the LocationCOCA � component in Figure

3.14. The COCA-component sublayers implement several context-dependent functionalities

that use the location service. Each layer is activated by the middleware, based on context
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changes. After applying the observer design pattern and the COCA-component model to

the use-cases, the class diagram for the middleware functionality “Update Location” can be

modelled as shown in Figure 3.14.

Figure 3.14 shows a COCA-component modelled to anticipate the ’direction output’.

The COCA-component implements a delegate objects and sub-layers; each layer implements

a specific context-dependent function. The COCA-middleware uses this delegate object to

redirect the execution among the sub-layers, based on the context condition.

Fig. 3.14: Extra-functionality Object Diagram of the Context Oriented Components

Invoking di↵erent variations of the COCA-component requires identification of the appli-

cation architecture, behaviour, and the DPLs in use. As mentioned before, these DPLs play
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an important role for the middleware functionality, which use them in handling, the archi-

tecture evolution, and the adaptation action. The model in Figure 3.14 helps the developer

to extract the DPLs and the DPs from the interactions between the context entities and the

COCA-components.

To reduce the development e↵ort and increase the understanding of the policy framework,

a UML profile for specifying a DPL was provided. The UML profile adapts the policy-

definition language introduced by Anthony et al. [Anthony et al., 2009]. These DPLs are

modelled using a state diagram; each state diagram is controlled by a class entity from the

previous objects diagram. We can extract the following policies from the behavioural model.

1. Policy 1: Use flashes if the location is dark or the time is after 5 pm and if the battery

power level is > 50. This policy is modelled using the UML activity diagram shown in

Figure 3.15a.

2. Polciy 2: If the user enables video streaming, search for components in nearby devices

if connectivity uses wifi, bandwidth speed > 56 kbit, battery power 50, no low memory,

and CPU not busy. This policy is demonstrated in Figure 3.15b.

3. Policy 3: Search for photographs taken by nearby devices. If sorting is not available

locally, search for sorting component. Use sort component to select the photograph

based on its quality, size, and location. Store policy in local devices if connectivity uses

wifi, bandwidth speed > 56 kbit, battery power > 50, no low memory, and CPU is not

busy. This policy is demonstrated in Figure 3.15c.

The application behavioural model is used to demonstrate the DPs in the execution that

might be reached whenever internal or external variables are found. This DP requires several

parameter inputs to make the correct choice at this time. Using the behavioural model of

the application, the developers can extract numerous decision polices. Each policy must be

modelled in a state diagram, for example, the Policy: Camera flashes is attached to the

’Camera flashes’ COCA-component. The policy syntax can be described by the code shown

in listing 3.1 and the state model shown in 3.15a.
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(a) Policy 1 (b) Policy 2 (c) Policy 3

Fig. 3.15: Decision policies

3.6.3 Modelling the Platform Specific Model

The three diagrams modelled in the previous tasks are transformed into COCA-ADL, as

shown in Figure 3.16; these models are used as input for ArchStudio proposed by Dashofy

et al. [Dashofy et al., 2007] as architecture modelling tool. The ArchStudio takes the follow-

ing inputs: 1) The behavioural model includes the COCA-component object diagram, the
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Listing 3.1: Decision Policy Example

If ( direction is Provided && Available memory >= 50

&& CPU throughput <= 89 && light level >= 50

&& BatteryLevel >= 50) then {EnableFlashes();}

else If ( BatteryLevel < 50 || LightLevel < 50 )

then {DisableFlashes(); SearchForPhotos();}

else If( BatteryLevel < 20) then DisableFlashes();

Fig. 3.16: Overall model

behavioural view, and the state diagram of the three policies, Figure 3.15 exemplifying the

DPLs extracted from the previous phase. 2) The core structure of the application is shown

in Figure 3.13. 3) The context meta-model includes the context model itself and the context

and resource models, that describes the available context entities and their representation on

the target platform.

The first task in the transformation phase is transferring the models produced in the
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design and model phases into the architecture description language. The ADL can be trans-

formed into multiple platforms using XMI Exporter supported by a COCA-ADL XSLT style-

sheet. A general description of the transformation process is shown in Figure 3.16. The final

architecture of the application is shown in Figure 3.17. This task is bidirectional. The de-

signer checks the transformation result by validating the generated Architecture Description

language (ADL) among the original models.

3.6.4 Code Generation

The final step is generating the code from the ADL into the target implementation language.

Model-to-code transformation is supported by several tools such as Visual Paradigm [Visual

Paradigm, 2010], Lattice [Lattice Business Software, 2010], and the Enterprise Architecture

[SPARX Enterprise Architecture, 2010]. The ADL-XML code can be transferred to Java

and Objective-C using the Visual Paradigm tool [Visual Paradigm, 2010] to generate an

Objective-C code. In the next chapter the implementation of the case study is illustrated

and the code is discussed.

3.7 Summary

This chapter described a development paradigm for building context-oriented applications us-

ing a combination of model-driven architecture that generates an ADL, which presents the ar-

chitecture as a components-based system. Specifically, a model-driven architecture is used to

demonstrate a generic and standard approach to building context-dependent and self-adaptive

applications by adapting a model-driven architecture (COCA-MDA). COCA-MDA enables

developers to modularize applications based on their context-dependent behaviours, enables

developers to separate context-dependent functionalities from the application’s generic func-

tionality, and enables the developers to support the context-driven adaptation.
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Fig. 3.17: I-TrinityTour architecture
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Chapter 4

Implementation

The main objective of this chapter is to describe the implementation of the COCA-middleware

using one of a standard object-oriented programming languages. Objective-C has been se-

lected to implement the COCA-component framework and the COCA-middleware. The

proposed I-TrinityTour application is implemented in an IPhone device. The application has

been evaluated with respect to achieving self-configuring and self-tuning properties.

The implementation of the platform is divided into two major branches. The first is

implementation of the COCA-middleware in a mobile platform, as described in Section 4.1.

The second branch, is implementing the case study I-TrinityTour, as described in Section 4.2

4.1 The COCA-platform Implementation

The final step of the COCA-MDA is to generate the code and the COCA-ADL XML file.

The runtime functions start once these two inputs are in place. The major component in the

COCA-middleware is the adaptation manager. On a broader scale, the adaptation manager

defers as many decisions as it can from compile time and link time to runtime. Whenever

possible, it performs actions dynamically and executes the compiled code. Handling the

COCA-component framework, the composition plan, the application singleton, and the way

in which several components interact with the runtime system is the focus of the following
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sections. Figure 4.1 shows a class diagram for the COCA-middleware.

Fig. 4.1: COCA-middleware

The COCA runtime platform is a dynamic shared library with a public interface, consist-

ing of a set of functions and a data structure in the header file, located within the framework in

the ”COCA.h” file. Many of these functions allow the application to perform the adaptation

actions through the adaptation manager.
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4.1.1 The COCA Runtime Platform

The COCA runtime platform starts once it has the compiled code for the application base-

components and the COCA-component framework plus the COCA-ADL XML file. When

the application is launched, the COCA-middleware components are executed first. The adap-

tation manager then calls the decomposition manager to build the application composition

graph and the inheritance tree. The decomposition manager parses the COCA-ADL XML file

for the component elements. The decomposition manager adds the components to the graph

and the component repository. Each graph node has a component dispatch table. This table

has entries which associate method selectors with the component-specific addresses of the

methods they identify. In the same way, the decision policies are attached to the associated

COCA-component and added to the policy repository. Figure 4.2 shows a decomposition

mechanism. Each component and its subdivisions are added to a graph in the bu↵er.

4.1.2 Adaptation Manager Runtime Functions

Once the decomposition is finished, the adaptation manager asks the context manager for

the context state. At the same time, the adaptation manager runs the component instance

for the base-component type. Each base-component is a subclass from the super-class. The

adaptation manager checks each class by parsing the graph. In each node, the adaptation

manager performs the following operations: 1) creating the application singleton, 2) adding

the base-components to the singleton, and 3) constructing the primary composition plan.

Afterwards, the context manager notifies the adaptation manager about the context state.

Based on the context state, the adaptation manager reads the description of the component

from the dispatch table. It confirms whether the component has the right objects, and

methods which suit the context state. This is accomplished by asking the object to identify

its classes using isKindOfClass and isMemberOfClass. This verifies an object’s position

in the inheritance tree. The COCA-middleware design confirms to the delegation design

pattern. This requires each COCA-component to define a protocol or a formal interface,

as in JAVA language. During the composition, the adaptation manager identifies whether
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Fig. 4.2: Application Adaptation Runtime Model

a specific component does conform to a protocol by calling conformsToProtocol :, which

indicates whether an object claims to implement the methods in a specific protocol, then the

operation RespondToSelector : is performed, which indicates whether an object can accept

a particular message. After that, the adaptation performs methodForSelector :, which

provides the address of a method’s implementation. These methods enable the adaptation

manager to to introspect the application structure. The class diagram in Figure 4.1 shows the

relation between the adaptation manager class and the other COCA-middleware components.
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Potentially, the COCA-ADL provides a description of the components, connectors, and

configuration. Parsing the XML file to construct the graph has some drawbacks with respect

to device performance. A reasonable approach to parsing the XML file with less impact on

the quality attributes is the use of the Flyweight design pattern and the NSXMLParser [Buck

and Yacktman, 2010].

The Flyweight pattern minimizes the amount of memory and/or processor overheads

required to use objects [Buck and Yacktman, 2010]. The Flyweight pattern enables instance

sharing, to reduce the number of instances needed, while preserving the advantages of using

objects. Classes which implement the Flyweight pattern are called ‘flyweights’. Flyweights

encapsulate non-object data so that the data can be used in contexts where objects are

required. Flyweights reduce storage requirements when a large number of instances are

needed. Flyweights act as stand-ins for other objects [Buck and Yacktman, 2010].

In addition to Flyweight, another pattern which can be used during implementation is

the Associative Storage pattern. The most important feature of this pattern is the e�cient

storage of arbitrary data associated with objects; this promotes flexibility by delaying the

selection of which data to access until runtime.

The NSMutableDictionary is used to implement the composition plan and the decision

policies [Apple IPhone Operating System IOS, 2011]. The use of NSXMLParser implements

an event-driven approach with a delegate object implementing methods for handling each of

the ‘events’ the parser encounters during its single pass over the XML data [Apple IPhone

Operating System IOS, 2011]. Events most commonly of interest are the beginning and

ending of ADL elements and attribute data within elements. The NSXMLParser reads the

XML elements, then uses NSMutableDictionary to store them in the dictionary. The setO-

bject:ForKey: method is used to create new associations in the dictionary. When keys and

values are added and removed from a mutable dictonary, the memory allocated for storing

objects grows and shrinks automatically. If setObject:ForKey: is called with a key which is

already in the dictionary, the object associated with that key is replaced by the new object.

Each key is stored at most once [Apple IPhone Operating System IOS, 2011].
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After completing the composition plan, the adaptation manager implements the dynamic

creation pattern to load and execute the application’s components. Once the composition

plan is completed, the adaptation manager introspects the application’s structure. The com-

ponent sublayers are activated by redirecting the COCA-component delegate to the desired

layer. In some cases, a COCA-component is loaded into the application. This requires the

adaptation manager to employ the bundle design pattern [Buck and Yacktman, 2010]. The

bundle pattern achieves the following goals: 1) keeping executable code and related resources

together, even when there are multiple versions and multiple files involved in the underlying

storage; and 2) implementing a flexible plug-in mechanism which enables dynamic loading of

executable code and resources.

In addition, the Invocation design pattern is used to provide a means of capturing runtime

messages so that they can be stored, rerouted, or treated and manipulated as objects, and

allows new messages to be constructed and sent at runtime without requiring a compiler.

When an object receives a message, a method is usually invoked to handle the message.

However, this is not always the case. For example, if an object does not implement a particular

method, then there is no method which can be invoked, and a runtime exception is raised

instead. Because of the Invocation design pattern, it is possible for a message to be delayed,

rerouted to other receivers, or even ignored. In some cases, the adaptation manager uses the

mechanism of forwarding to surrogate objects [Buck and Yacktman, 2010].

The forwardInvocation : method is used to give a default response to the message, or

to avoid the error in some other way. For example, suppose that the adaptation manager

receives a message call for a method SalarySummation. First the verification manager

verifies whether the receiver object can respond to this message using respondToSelector

[Apple IPhone Operating System IOS, 2011]. When the object cannot respond to the message

because it does not have a method matching the selector message, the COCA runtime system

informs the object by sending it a forwardInvocation : message. Every object inherits the

method forwardInvocation : from the super-class COCA-component.

However, the object version of the method simply invokes doesNotRecognizeSelector. In
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this case, the adaptation manager forwards to other objects. First, the adaptation manager

determines where the message should go and sends the message with its original arguments.

The message can be sent with the invokeWithTarget : method, as shown in the code listing

4.2. If the invocation has failed in the desired sublayer, the method forwards the invocation

to the COCA-component, which forwards it into its sublayers until one of the sublayers

responds to it. If the sublayers do not respond to it, the adaptation manager introspects

the component graph and reconstructs the composition plan. Once an object found in the

distributed environment in a remote component.

The adaptation manager performs NSInvocation by obtaining the method signature and

the selector [Apple IPhone Operating System IOS, 2011]. The code example illustrated in

the listing 4.1 shows a dynamic method invocation. When a message is sent to an object

which does not implement it, the actual implementation assumes that the stack frame for the

arguments of the method already exists. All further changes to the method’s arguments using

NSInvocation’s methods are performed on that stack frame. After the method invocation

returns, you can access the return value and possibly change it, using the getReturnValue:

and setReturnValue: methods.

Listing 4.1: Forward invocation to other objects

BOOL flag = YES;

int anInt = 1234;

float aFloat = 12345.0;

double aDouble = 98765.0;

id invocation = [[NSInvocation new] autorelease];

[invocation setSelector:

@selector(setFlag:intValue:floatValue:doubleValue:)];

[invocation setTarget:object];

[invocation setArgument:&flag atIndex:2];

[invocation setArgument:&anInt atIndex:3];

[invocation setArgument:&aFloat atIndex:4];

[invocation invoke];
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Listing 4.2: Forward invocation to other objects

�(void) forwardInvocation:(NSInvocation ⇤) anInvocation

{

if ([COCAcomponentLayer respondToSelector:[anInvocation selector]])

[anInvocation invokeWithTarget:COCAcomponent];

else

[super forwardInvocation:anInvocation];

}

4.1.3 Context Manager

Once the composition plan is finished and the application singleton is constructed, the adap-

tation manager executes the first application instance. At this stage, the context manager

monitors and detects context changes and the adaptation action is started as discussed in

Chapter 3. After running the COCA-component in the application instance, each COCA-

component registers itself with the context manager as an observer of two or more notifications

using the notification centre. If any context condition is changed, the adaptation manager

is notified to find the associated COCA-component by identifying the notification observers.

Each component registers itself as an observer for one or more notifications using the code

in the listing 4.3. After the registration is accomplished, the context manager notfies the

Listing 4.3: COCA-component registers itself as observer for a specific context condition

[[NSContextManagerCenter defaultCenter]

addObserver:Self

selector:@selector(ContextConditionDidChange:)

name:NSCOCAComponenetDidChangeSelectionNotification

object:NSCocaComponent;
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adaptation manager and the COCA-component about the context change using the code in

the listing 4.4

Listing 4.4: Context manager notification sent to COCA-component

// Register for battery level and state change notifications.

[[NSNotificationCenter defaultCenter] postNotification:NotificationName

Selector:ContextDidChanged

Object:COCA�component

Controller:AdaptationManager];

The methods addObserver and removeObserver are used at runtime by the adaptation

manager to register new objects. In addition, the context manager has the ability to post

distributed context information. This is accomplished using the NSDistributedContextMan-

ager default notification queue class. The NSDistributedContextManager is a subclass of

NSContextManager, so the notifications are posted to the default queue in the same way as

they are posted to a regular context manager notification queue.

4.1.4 COCA-components Framework

A general overview of the COCA-component is shown in Figure 3.2. The benefit of using the

subclassing method is that the class properties are inherited by the sublayer. This simplifies

modifications of the class sublayer implementation and provides an easy mechanism for the

adaptation manager to use the Invocation design pattern. In some cases, when the adaptation

manager sends a message call to an object, the component manager implements the method

as shown in Figure 4.1.

When a message is sent to an object, the messaging function follows the object’s isa

pointer to the class structure, where it looks up the method selector in the dispatch table. If

it cannot find the selector there, objc msgSend follows the pointer to the super-class and tries

to find the selector in its dispatch table. Successive failures cause objc msgSend to climb

the class hierarchy until it reaches the COCA-component class. Once it locates the selector,
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the function calls the method entered in the table and passes it the receiving object’s data

structure. In this way, methods are dynamically bound to messages.

Sending a message to an object which does not handle that message is an error. However,

before announcing the error, the runtime system gives the receiving object a second chance to

handle the message [Buck and Yacktman, 2010]. In this case, the adaptation manager sends a

forwardInvocation message with an NSInvocation object as its sole argument [Apple IPhone

Operating System IOS, 2011]. The NSInvocation object encapsulates the original message

and the arguments which were passed with it. This technique is used for preserving the states

of messages, arguments, and return values. Invocation can be used to completely decouple the

sender of a message from the receiver. The sender and receiver can be in di↵erent processes

or separated by time. This is used whenever the adaptation manager executes a proactive

adaptation. A delayed Invocation message is sent to the object in the component manager.

When the time comes for the method to be executed, the adaptation manager invokes the

objects in the application instance.

Fig. 4.3: COCA-component conceptual diagram

The intercession operation is achieved by the component manager by adding a component,

or a component sublayer, to the application structure. To add a component, the adaptation
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manager asks the component manager to instantiate a specific component. The component

manager performs several inspections of the component, e.g. getName:, getSuperCompo-

nent:, getInstanceSize:, getMethodImplementation:, getSubLayers:, setVersion:, getProperty:,

addComponent:, removeComponent:, updateComponent:, and registerComponent:. The com-

ponent manager performs the method init with the component instance and, in the same way,

it performs dealloce : to destroy the instance from the memory. Once the component instance

is running, the component manager can work with these instances through the methods in

4.5:

Listing 4.5: Component framework methods

�(COCAcomp ⇤) Comp copy:(COCAcomp ⇤);

�(id) setLayerActive:(COCAcomp ⇤) CompLayer;

�(id) Comp getLayerMethod:(COCAcomp ⇤) CompLayer;

�(NSString ⇤) Comp getName:(COCAcomp ⇤) CompLayer;

In addition, the component manager manipulates the COCA-component instance life-

cycle. Each component passes through several stages, as shown in Figure 4.4. A component

is in the running state in three events: OnStart, OnResumed, or OnRestart. When a running

component is paused, its status changes to pause, then it is stopped, and then killed. When

a component is killed, it is immediately destroyed. When a stopped component is killed and

then destroyed, it is deallocated from the memory.

4.1.5 Policy Manager

Figure 4.1 demonstrates a class diagram for the COCA-middleware, showing its components

and data stores. The policy manager uses the decision policy objects to store policies in

the policy repository. The policy dictionary stores each policy in loosely coupled objects,

which are accessed through the method getObjectForKey. Once the object is retrieved, the

policy manager obtains the policy actions, attributes, rules, external variables, and internal

variables. Then it passes them back into the verification manager. The verification manager
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Fig. 4.4: Components life-cycle

evaluates the current value for the variables among the predefined values in the policy syntax.

Whenever the application execution reaches decision points and/or the context manager

has notified the adaptation manager of a context change, the decision points must be executed

to advise the application of pre- or post-actions among specific notifications. The manager

implements the necessary methods to manipulate the decision policy syntax. The policies are

stored in an array of objects. Each object is accessed through the method getPolicyForKey.

The key refers to the policy ID which is attached to every COCA-component. In the same

way, the policy manager is used to upgrade the policy by calling the methods setObjectForKey,

SetPolicySuit, SetRule(), setAction, and setElseAction.

The decision policy is stored in the policy repository, which conforms to the Associative

Storage design pattern. A binary representation for each policy is stored in the NSMutable-

Dictionary data structure, where the key value is used to access the desired policy. The

method addPolicy is used to add a new policy to the repository. In the same way, policies

can be removed using the method RemovePolicy. Once the policy is updated by the policy

manager, the method setPolicy is used to update the policy syntax in the repository. The
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policy syntax is retrieved through the method getPolicyForKey(). This implementation of

the Associative Storage design pattern reduces the computation overhead for retrieving the

policies and evaluating them.

4.1.6 Verification Manager

A context-aware application is self-configurable if it is able to adapt autonomously to changing

environmental conditions or internal status by altering its structures, behaviours, and data

to meet its functionality and quality requirements. From a middleware perspective, such a

feature relies on the following key characteristics: A) The middleware’s ability to monitor and

define its internal status and external conditions e.g. application modes, CPU and memory

use, and attachment of external devices; B) its built-in knowledge of configuration variability

and related policies/rules for deciding and planning changes; and C) its ability to perform

dynamic configuration changes without violating the constraints relating to overall system

functionality, performance, and dependability.

The Flyweight pattern is used to guarantee that the verification process does not a↵ect

the quality attributes. This is accomplished by adapting the feature of instantiation in the

Flyweight. Moreover, if there are many external and internal variables in the decision policy,

all these variables will be instantiated once and share this instance to multiple values. In

addition, the Flyweight acts as a temporary place holder for other more heavyweight objects.

Figure 4.5 shows a sequence diagram of the self-assurance verification. The verification

manager evaluates the policies by calling the verifyPolicy:(NSInteger) PolicyID method. This

method asks the policy manager to retrieve the stored policy by its key. The policy man-

ager searchs the array of objects for the specific policy ID. The evaluation result, which

contains the proposed action to be performed, is passed back to the adaptation manager.

Afterwards, the adaptation manager locates the desired component and/or sublayers which

need to be executed. Then it asks the verification manager to verify them using the meth-

ods methodForSelector, confirmToProtocl, RespondToSelector. Once the verification has been

accomplished, the verification manager sets the boolean variable PolicyVerified to be true.
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Fig. 4.5: Adaptation self-assurance verification

The motivation behind the use of selectors is to postpone specifying the message which

will be sent to an object until runtime. This reduces coupling between objects by limiting

the information which message senders need about the message sent. In the same way,

whenever the adaptation manager needs to verify the implementation of a COCA-component
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or a subdivision, the selector will be used to determine whether the object has the proposed

method. The verification manager can load bundles/components by executing the method

bundle = [NSBundle bundleWithPath:theBundlePath];. However, after loading the bundle

which contains a COCA-component, the verification manager testifies to its ability to respond

to the desired method call using the code in the listing 4.6.

Listing 4.6: Retreving bundle information

NSBundle ⇤bundle = [NSBundle bundleWithPath:componentRepository];

NSDictionary ⇤infoDictionary = [bundle infoDictionary];

[NSBundle bundleForClass:[NSString COCA�componentClass]];

[COCA�componentClass respondToSelector:ContextConditionDidChanged];

[COCA�componentClass respondToSelector:ContextConditionWillChanged];

4.2 I-TrinityTour Case Study Implementation

The case study has been selected to demonstrate the capability of the COCA-platform to

perform external and internal compositions to maintain an architecture quality attribute.

This section focuses on demonstrating the variations in application behaviour, based on

context changes at runtime. The final Objective-C code for the architecture was generated by

the Visual Paradigm tool [Visual Paradigm, 2010]. However, the application is implemented

on an IPhone mobile device, as shown in Figure 4.6, using the IOS SDK 4.3 [Apple IPhone

Operating System IOS, 2011].

To demonstrate variation in the application behaviour, a simulator was included with

the I-TrinityTour implementation. The simulator, shown in Figure 4.6b, is used to allow the

user to simulate specific context changes, which are used to test the application’s ability to

adapt the desired behaviour. As shown in the figure, the user may select any of the buttons

to generate the same context condition as that which triggers the adaptation. For example,

when the user presses low battery, a notification is posted into the notification centre in the
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(a) Map UI for Trinity College Region (b) Simulator UI

Fig. 4.6: I-Trinity application running on IPhone device

context manager. The context manager notifies the adaptation manager. In such a case, the

adaptation manager activates the desired adaptation action. The middleware console shows

the output log from the simulator.

MapUI in Figure 4.6a displays the region which is monitored by the application. This

demonstrates the context-monitoring process performed by the context manager. The im-

plementation demonstrates the application’s ability to adapt itself with respect to video

streaming, sorting components, camera flashes, and location services.

Achieving the self-adaptive property ‘Self-tuning’ can be demonstrated by implement-

ing the COCA-component ‘location Update’. The location manager COCA-component was
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Fig. 4.7: COCA-component Location-update sublayer activation

proposed as an extra functionality which demonstrates the application’s ability to adapt

a location service, based on the battery level. Such an adaptation action can extend the

durability of the battery and demonstrates the application’s ability to use battery resources

e�ciently. Figure 4.7 shows a sequence diagram which describes the middleware operation

for achieving this kind of adaptation. As shown in the figure, the context manager posts the

notification BatteryLevelDidChanged. This notifies the adaptation manager and the COCA-

component location manager about the context changes. The adaptation manager decides,

based on the battery level, which location service to use. If the battery level is less than 30%

the adaptation manager activates the IP-based layer. If the battery level is between 60%

and 40%, the Wifi-based location is updated. If the battery level is greater than 60%, the

GPS-based adaptation is activated.

Implementing the self-adaptive property ‘Self-configuring’ can be demonstrated by imple-
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Fig. 4.8: Sequence Diagram for Streaming Component Adaptations

menting the COCA-component ‘Video Streaming’. The implementation demonstrates how

the application can invoke a streaming component dynamically at runtime. The sequence

diagram in Figure 4.8 demonstrates the possible reasoning for adapting the streaming com-

ponent. Figure 4.9 shows a streaming component invoked in the execution. The user enables

the video streaming feature. The middleware searches for the streaming host in a nearby

device. Before starting the streaming services, the middleware evaluates the current context

state. If a Wifi connection is available, http streaming is started. If a Wifi connection is

not available, the middleware enables the service discovery protocol e.g. Bonjour and the

Bluetooth connection.

Once the Bonjour service is activated, and no devices found to provide the streaming

service. The application alerts the user about how expensive it is to perform the streaming
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through the GPRS connection. At this stage, the user can decide if he wants to proceed

with streaming or not. Such an adaptation for a network connection supports the desired

functionality and provides the user with low-cost streaming. The streaming component is

invoked in the application using the external composition mechanism.

A bundle is a collection of executable code and related resources such as images, sounds,

strings, and localization information. In general, bundles are able to store multiple versions

of each resource so that a developer or user can use one set of executable code with di↵erent

resource versions, based on user preferences and context conditions. The most obvious benefit

of using the bundle pattern is a mechanism for organizing and dynamically loading executable

code and resources.

To demonstrate the power of the NSBundle in Objective-C, assume that the application

will need to invoke a component ‘VideoStreaming’. The adaptation manager gets the name

of the component and its URL through the service discovery. Afterwards, the adaptation

manager executes the code in 4.7 to execute the component.

Listing 4.7: Loading COCA-component from remote url

NSBundle ⇤bundle= nil;

bundle = [NSBundle bundleWithURL:RemoteUrl]; //alternavilly to load the bundle using the identifier

NSBundle⇤ myBundle = //in the Application ADL the following code might be used

[NSBundle bundleWithIdentifier:@‘dsg.tcd.VideoStreaming’];

The adaptation manager must be sure about which bundle it might run to execute the

desired functions. If the application is looking for a bundle which has a method for invoking

a component for sorting photosgraphs, the code in 4.8 can be used to accomplish this task.

Listing 4.8: Verifying COCA-component for a specific class

NSBundle⇤ myBundle = [NSBundle bundleForClass:@‘VideoStreaming’];

The second COCA-component which is invoked is the photograph-sorting component.
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Fig. 4.9: Streaming component invoked in the execution

This component is adapted according to the sequence diagram shown in Figure 4.10. The

same sequence diagram demonstrates how the application simultaneously adapts to the light

level to activate camera flashes. Adaptation to the light level is achieved through internal

composition by activating the associated layer. On the other hand, adapting the photograph-

sorting component is achieved through external compositions which add, remove, or update

a component instance from the architecture.

While the user is taking photographs, the context manager posts the notification Bat-

teryLevelDidChangedNotification to the adaptation manager; the adaptation manager re-
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Fig. 4.10: Adapting Sorting Component and Camera flashes using external and internal

adaptations

tains the notification to the COCA-component Camera Flashed. The adaptation manager

calls the policy manager to evaluate policy 1. This policy is demonstrated in Figure 3.15a.

However, the policy manager informs the adaptation manager to deactivate the flashes, then

the COCA-component ‘camera flashed’ alerts the user about disabling the flashes. The se-

quence diagram for disabling the flashes is shown in Figure 4.10. The adaptation manager

asks the verification manager to verify the ‘camera flashed’ COCA-component, and whether

it responds to the selector ‘DisableFlash’. The verification manager returns a successful ver-

ification of the COCA-component ‘camera flashed’. The adaptation manager then delegates

the disable flash message to the flash delegate, which disables the flash by calling the disable
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flash layer. The policy manager requests the policies from the COCA-component; there ap-

pears to be a dependence between policy 1 and policy 2. In this case, the policy manager

evaluates policy 2 and notifies the adaptation manager about the required actions of policy 2.

The true action of policy 2 specifies adapting a photograph-sorting component when several

context conditions exist. Policy 2 is demonstrated in 3.15b, Chapter 3.

(a) Sending User Interface (b) Receiver User Interface

Fig. 4.11: Two devices communicating using the Bonjour service

In the same way, the policy manager informs the adaptation manager to invoke the COCA-

component, sorting component. The adaptation manager asks the component manager to in-

stantiate and load the component bundle. Then the verification manager verifies whether the

component bundle is responding to the class ‘PhotoSorting’ using the method bundleForClass.
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Then the class testifies as to whether it responds to the selector SortingCOCA-Component

RespondToSelector:SortingPhotos. Once the verification has been passed successfully, the

adaptation manager passes the delegate message to the sorting component bundle. Then

the adaptation manager launches the bundle. The photograph-sorting component is used to

sort the component and send or receive the photosgraphs. Figure 4.11 shows two devices

communicating using the Bonjour service. The first device, A, is used to select the picture to

send. The second device enables the user to receive photographs from the network stream.

4.3 Summary

This chapter showed the COCA implementation on IPhone devices. The COCA-middleware

and the proposed case study, the I-TrinityTour application, were implemented and evaluated.

The application successfully achieved self-configuring and self-tuning properties without. The

COCA-middleware preserved the device resources during the adaptation. The use of a notifi-

cation pattern for context binding reduced the computation overhead in context monitoring,

and reduced the tra�c from notifying a high volume of context changes. The I-TrinityTour

application has proved its ability to tune itself and conserve energy. This implementation

of the Associative Storage design pattern reduced the computation overhead of retrieving

policies and evaluating them. The verification manager played a major role in assuring and

verifying that the adaptation output does not intertwine the architecture attributes. The

invocation and delegation patterns support introspection and intercession at the level of the

architecture.
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Chapter 5

COCA-Middleware Architecture

Evaluation

Software architecture evaluation has become a familiar practice in the software engineering

community for developing quality software. Architectural evaluation reduces software devel-

opment e↵ort and cost and enhances the quality of software by verifying the addressability

of quality requirements and identifying potential risks. Several methods and techniques have

been used to evaluate software architecture with respect to desired quality attributes such as

maintainability, usability, and performance [Kazman et al., 2002].

This chapter presents an evaluation of the COCA-middleware design based on its capabil-

ity to maintain several quality attributes and achieve the self-* properties of the self-adaptive

software systems. Surveys of the state of the art are used to select an appropriate method for

evaluating the COCA-middleware. The best-suited method described in the literature seems

to be the Architecture Trade-o↵ Analysis Method (ATAM) presented by Bass et al. [Bass

et al., 2003]. ATAM can be executed without additional training for the evaluation team and

provides a principled approach for evaluating the fitness of software architecture with respect

to multiple competing quality attributes.

This chapter is organized as follows. Section 5.1 addresses the evaluation objectives. The
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self-adaptive application quality attributes are characterized in section 5.2. The evaluation

of the COCA architecture with ATAM is discussed in Section 5.3. Section 5.4 describes the

lessons learned from the ATAM evaluation and the manner in which the evaluation results

are reflected in the architecture implementation. Finally, the Context-Oriented Software is

evaluated in terms of energy utilisation and adaptation time compared to other approaches

proposed in the literature, the evaluation results are discussed in Section 5.5. The COCA-

middleware performance and adaptability is evaluated in Section 5.7.

5.1 COCA-middleware Evaluation Objectives

The challenges of implementing adaptable COCA-middleware present a set of dimensions

that captures the system’s reaction to context changes. These dimensions are related to

the adaptation process itself. The objectives of this evaluation experiment are to verify the

middleware’s ability to fulfil the requirements associated with the self-adaptation action, the

level of autonomy of self-adaptation, the manner in which self-adaptation is controlled, the

impact of self-adaptation in terms of space and time, the extent to which self-adaptation

is responsive, and the manner in which self-adaptation reacts to change. In addition, this

evaluation considers the middleware’s ability to perform dynamic decision making among

decision policies and the COCA-middleware’s ability to assure and verify the adaptation

output among the quality attributes in terms of software dependability. The evaluation

objectives can be summarized as follows:

• O1: The COCA-middleware’s ability to perform context monitoring and detection,

while, at the same time, the middleware is utilizing the device’s resources in an e↵ective

manner.

– A1.1: The COCA-middleware’s ability to deliver context change notifications to

the interested architecture elements.

– A1.2: The COCA-middleware’s ability to evaluate its own functionality. Context

monitoring and detecting are not overwhelming the device performance.
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• O2: The COCA-middleware’s ability to verify or select the adaptation results dynam-

ically (by dynamic decision making). The fitness of the COCA-middleware to consider

the system contribution to the context environment and the interoperability of its com-

ponents. Evaluating the COCA-middleware’s ability to handle a trade o↵ analysis

among several quality attributes and the self-* properties. The attributes to evaluate

this objective can be summarized as follows:

– A2.1: The COCA-middleware can construct the composition plan without over-

whelming the device resources.

– A2.2: The COCA-middleware’s ability to perform introspection and intercession

of the architecture through the operations of adaptation action, adaptation assur-

ance, and interoperability of its components.

– A2.3: The ability to resolve conflict among several adaptation actions. This

refers to the ability to perform dynamic decision policy mismatches and sub-layer

manipulations.

• O3: The ability to achieve coarse-grained and fine-grained adaptation.

– A3.1: The ability to add, remove, or update components’ instances dynamically.

– A3.2: The ability to activate or deactivate components’ sub-layers dynamically.

• O4: Evaluating the middleware’s ability to anticipate unforeseen change dynamically.

– A4.1: Dynamic decision making.

– A4.2: Adaptation assurance and verification.

• O5: Evaluating the architecture’s performance and maintainability.

– A5.1: Achieving the autonomic property ”self-tuning”, by utilising the allocated

resources and the quality attributes of the architecture.

– A5.2: Achieving the autonomic property ”self-configuring”, by optimising the

adaptation process with less re-configuration and adaptation time.
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5.2 Self-adaptive Application Quality Attribute Characteri-

zation

The quality attributes of a self-adaptive system are determined by its architecture. On the

other hand, the architectural decisions have profound impact on the achievement or non-

achievement of quality attributes; therefore, they are the focus of architecture evaluation.

However, a prerequisite to the evaluation is to have a clear statement of the quality attribute

requirements, which are motivated by key goals, and a specification of the architecture,

including a clear articulation of the architectural design decisions. These quality attribute

requirements and the architecture documentation are often incomplete, vague, or ambiguous.

Therefore, by necessity, two of the major goals of architecture evaluation are to elicit both a

precise statement of the quality attributes and a precise statement of the architectural design

decisions. Moreover, a major goal of architecture evaluation is to evaluate the architecture

design decisions so as to determine whether they address the quality attributes [Kazman

et al., 2002].

However, clarifying the relationship between architecture and quality attributes greatly

extends the design and analysis process. Kazman et al. [Kazman et al., 2002] have proposed

a characterization framework for the quality attribute based on three categories:

• External stimuli, i.e., the events that cause the architecture to respond to changes:

These events need to be expressed in terms that are measurable or observable.

• Response: These measurable/observable quantities are described in the responses sec-

tion of the attribute characterization.

• Architectural decision: These are the aspects of an architecture that have a direct

impact on achieving attribute responses.
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Table 5.1: Relating quality attributes with self-* properties

SELF-ADAPTIVE PROPERTIES QUALITY 
ATTRIBUTE 

QUALITY ATTRIBUTE  
DEFINITION [SCHNEIDEWIND, 1998]

Self-configuring: is the capability of reconfiguring automatically 
and dynamically in response to changes by installing, updating, 
integrating, and composing/decomposing software entities 
[Salehie and Tahvildari, 2009]

Modifiability  
Modifiability encompasses two aspects:

A) Maintainability: (1) The ease with which a 
software system or component can be modified 
to correct faults, improve performance or other 
attributes, or adapt to a changed environment. (2) 
The ease with which a hardware system or 
component can be retained in, or restored to, a 
state in which it can perform its required 
functions.

 B) Flexibility: The ease with which a system or 
component can be modified for use in 
applications or environments other than those for 
which is was specifically designed.

Availability: The degree to which a system or 
component is operational and accessible when 
required for use.

Performance: The degree to which a system or 
component accomplishes its designated 
functions within given constraints, such as 
speed, accuracy, or memory usage 

Survivability: A system that can repair itself or 
degrade gracefully to preserve as much critical 
functionality as possible in the face of attacks 
and failures is called a survivable system 
 

Self-optimising: which is also called self-tuning or Self-adjusting 
[Hinchey and Sterritt, 2005], is the capability of managing 
performance and resource allocation in order to satisfy the 
requirements of different users. End-to- end response time, 
throughput, utilisation, and workload are examples of important 
concerns related to this property.

Availability 

Efficiency 

Performance

Modifiability. 

 
Modifiability encompasses two aspects:

A) Maintainability: (1) The ease with which a 
software system or component can be modified 
to correct faults, improve performance or other 
attributes, or adapt to a changed environment. (2) 
The ease with which a hardware system or 
component can be retained in, or restored to, a 
state in which it can perform its required 
functions.

 B) Flexibility: The ease with which a system or 
component can be modified for use in 
applications or environments other than those for 
which is was specifically designed.

Availability: The degree to which a system or 
component is operational and accessible when 
required for use.

Performance: The degree to which a system or 
component accomplishes its designated 
functions within given constraints, such as 
speed, accuracy, or memory usage 

Survivability: A system that can repair itself or 
degrade gracefully to preserve as much critical 
functionality as possible in the face of attacks 
and failures is called a survivable system 
 

Self-healing: which is linked to self-diagnosing [Robertson and 
Laddaga 2005] or self-repairing, is the capability of discovering, 
diagnosing, and reacting to disruptions. It can also anticipate 
potential problems, and accordingly take proper actions to 
prevent a failure. 

Self-awareness: refers to diagnosing errors, faults, and failures, 
while self-repairing focuses on recovery from them [Hinchey and 
Sterritt 2006].
Self-awareness means that the system is aware of its self states 
and behaviours. This property is based on self- monitoring which 
reflects what is monitored.

Availability 

Survivability 

Maintainability 

Reliability

 
Modifiability encompasses two aspects:

A) Maintainability: (1) The ease with which a 
software system or component can be modified 
to correct faults, improve performance or other 
attributes, or adapt to a changed environment. (2) 
The ease with which a hardware system or 
component can be retained in, or restored to, a 
state in which it can perform its required 
functions.

 B) Flexibility: The ease with which a system or 
component can be modified for use in 
applications or environments other than those for 
which is was specifically designed.

Availability: The degree to which a system or 
component is operational and accessible when 
required for use.

Performance: The degree to which a system or 
component accomplishes its designated 
functions within given constraints, such as 
speed, accuracy, or memory usage 

Survivability: A system that can repair itself or 
degrade gracefully to preserve as much critical 
functionality as possible in the face of attacks 
and failures is called a survivable system 
 

Self-assurance: The definition of self-assurance in Oxford 
dictionary: Freedom from doubt; belief in yourself and your 
abilities. 
The ability of self-adaptive system  to verify and validate the 
adaptation results by providing a continual assessment 
depending on the dynamic change 

Efficiency 

Performance

Availability

 
Modifiability encompasses two aspects:

A) Maintainability: (1) The ease with which a 
software system or component can be modified 
to correct faults, improve performance or other 
attributes, or adapt to a changed environment. (2) 
The ease with which a hardware system or 
component can be retained in, or restored to, a 
state in which it can perform its required 
functions.

 B) Flexibility: The ease with which a system or 
component can be modified for use in 
applications or environments other than those for 
which is was specifically designed.

Availability: The degree to which a system or 
component is operational and accessible when 
required for use.

Performance: The degree to which a system or 
component accomplishes its designated 
functions within given constraints, such as 
speed, accuracy, or memory usage 

Survivability: A system that can repair itself or 
degrade gracefully to preserve as much critical 
functionality as possible in the face of attacks 
and failures is called a survivable system 
 

Self-protecting (anticipated adaptation): is the capability of 
detecting security breaches and recovering from their effects. It 
has two aspects, namely defending the system against malicious 
attacks, and anticipating problems and taking actions to avoid 
them or to mitigate their effects. [Salehie and Tahvildari, 2009]

Survivability 

Maintainability

 
Modifiability encompasses two aspects:

A) Maintainability: (1) The ease with which a 
software system or component can be modified 
to correct faults, improve performance or other 
attributes, or adapt to a changed environment. (2) 
The ease with which a hardware system or 
component can be retained in, or restored to, a 
state in which it can perform its required 
functions.

 B) Flexibility: The ease with which a system or 
component can be modified for use in 
applications or environments other than those for 
which is was specifically designed.

Availability: The degree to which a system or 
component is operational and accessible when 
required for use.

Performance: The degree to which a system or 
component accomplishes its designated 
functions within given constraints, such as 
speed, accuracy, or memory usage 

Survivability: A system that can repair itself or 
degrade gracefully to preserve as much critical 
functionality as possible in the face of attacks 
and failures is called a survivable system 
 

5.2.1 Relating Quality Attributes with Self-adaptive Properties

To define the quality attributes of a self-adaptive system, a relation between the self-* prop-

erties of self-adaptiveness and the quality attributes must be created. Salehie and Tahvil-

dari [Salehie and Tahvildari, 2005] discuss the potential links between these properties and

the quality attributes. The link can help to define and elucidate self-* properties and to utilize

the existing body of knowledge and quality factors, metrics, and requirements in developing

and operating self-adaptive systems. In this research, we describe the line between the self-*

property and the quality attributes as shown in Table 5.1.
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The Table 5.1 shows the relation of self-* property along with its definition with the

associated quality attribute (and its definition), as shown in the third column, that has been

proposed by the IEEE standard [Schneidewind, 1998].

Self-configuration is related to modifiability, which can be classified into maintainability

and flexibility, as shown in the definition column. Self-optimization is related to availability,

e�ciency, performance, and modifiability, as can be concluded from their relation to the

application’s ability to optimize its resources. Self-optimization has a strong correlation with

e�ciency. As minimizing response time is often one of the primary system requirements, it

too impacts functionality. On the other hand, self-protecting has a strong correlation with

reliability and can also be linked to functionality.

In addition, self-awareness refers to the system’s ability to monitor its own structure

and behaviour and can be related to availability and reliability. Context awareness refers to

the system’s ability to monitor its context and can be linked to availability and reliability.

Self-awareness and self-healing are related to availability, survivability, maintainability, and

reliability. In self-healing, the main objective is to maximize the availability, survivability,

maintainability, and reliability of the system [Ganek and Corbi, 2003].

Self-assurance refers to the application ability to verify and validate the adaptation re-

sults by providing a continual assessment of the dynamic changes. This concept has been

introduced by Cheng at al. [Cheng et al., 2008], which addresses the adaptation assurance

challenge. In the same way, it is necessary for the application to trust its own behaviour,

achieved using the available assurance mechanism, as described in section 2.7 of chapter 2.

We have adapted the definition of the Oxford English Dictionary of self-assurance: ’Free-

dom from doubt; belief in yourself and your abilities’. Self-assurance is related to e�ciency,

responsiveness, and availability. Finally, Self-protection refers to the quality attribute surviv-

ability and maintainability. Survivability can be defined as ’A system that can repair itself or

degrade gracefully to preserve as much critical functionality as possible in the face of attacks

and failures is called a survivable system’ [Schneidewind, 1998].
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5.3 Evaluation of COCA-middleware with ATAM

The ATAM [Kazman et al., 2002] has evolved as a structured way of analysing the trade-o↵s

in software architecture. ATAM provides a principled approach for evaluating the fitness of

software architecture with respect to multiple competing quality attributes. ATAM consists of

nine activities. Some of these activities are executed in parallel. The major three activities are

present the ATAM, identify the architectural approaches, and present the ATAM evaluation

results. The concept of ATAM is presented to the stakeholders and the ATAM steps are

outlined, in brief, as shown in the following:

5.3.1 ATAM Evaluation Steps

1. Present Business Drivers - Everyone in this step presents and evaluates the business

drivers for the system in question, including presenting its important functional require-

ments, constraints, business, goals, context, and major architectural drivers, including

defining the major quality attribute goals that shape the architecture. These goals

have been discussed in Section 5.1. In what follows, we have summarized the quality

attribute, which measures the self-adaptability of the architecture.

2. Present the Architecture - The architect presents the high-level architecture to the team

at an ’appropriate level of detail’. The architecture was presented in-depth in chapter

3. The focus of this section is to evaluate the architecture using ATAM. Technical

constraints such as those from OS, hardware, or middleware prescribed for use on

other systems with which the system must interact are overcome using architectural

approaches to meet quality attribute requirements.

3. Identify architectural approaches - Di↵erent architectural approaches to the system are

presented by the evaluation team i.e. stockholders, end users, developers, and archi-

tects, and are discussed. These architectural approaches define the important structures

of the software system and describe the ways in which it can grow, respond to changes,

specifically foreseen and unforeseen changes, achieve the level of self-configuring, and
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integrate with other services distributed in the environment. In general, the architec-

tural approach can be identified by the self-* properties of the self-adaptive system.

These properties are manifold and substantial; they cannot be adapted to capture spe-

cific quality attributes in the architecture, based on the division of these properties into

more specific features, as shown in the Table 5.2.

Table 5.2: Architecture approach/quality attribute

SELF-* PROPERTY ARCHITECTURE 
QUALITY ATTRIBUTES 

# SCENARIO THE DEGREE OF 
DIFFICULTY POSED BY 
THE ACHIEVEMENT OF 
THE SCENARIO, BASED 
ON THE ARCHITECTS 

ESTIMATION

NUMBER 
OF VOTES

Self-configuring Modifiability S1 ADL transparency  H 20Self-configuring Modifiability 

S2 Update Component L 2

Self-configuring Modifiability 

S3 Update decision policy L 4

Self-configuring Modifiability 

S4 Invoke /Revoke Component L 16

Self-configuring Modifiability 

S5 Activate/Deactivate Layer L 14

Self-configuring Modifiability 

S6 Add new Policy or remove policy  L 10

Self-configuring Modifiability 

S7 Binding connector L 8

Self-configuring Modifiability 

S8 Application functionalities and 
user tasks M 10

Self-configuring Modifiability 

S9 Component Graph parsing L 4

Self-optimization 
(Performance) 

Availability 
Efficiency
Performance
Modifiability

S10 Adaptation assurance  and 
verification L 18Self-optimization 

(Performance) 
Availability 
Efficiency
Performance
Modifiability

S11 Adaptation monitoring L 6

Self-Awareness Availability

Survivability

Maintainability

Reliability

S12 Foreseen changes M 8Self-Awareness Availability

Survivability

Maintainability

Reliability

S13 UnForeseen Changes H 20

Self-Awareness Availability

Survivability

Maintainability

Reliability

S14 Dynamic decision making M 6

Self-Awareness Availability

Survivability

Maintainability

Reliability

S15 Context-dependent behaviour  
realization M 18

Self-Awareness Availability

Survivability

Maintainability

Reliability
S16 External Composition M 14

Self-Awareness Availability

Survivability

Maintainability

Reliability

S17 Internal Composition L 4

Self-Awareness Availability

Survivability

Maintainability

Reliability

S18 Context requirements binding L 4

Self-Awareness Availability

Survivability

Maintainability

Reliability

S19 Context requirements reflection M 12

Adaptability Assurance Efficiency
Performance 
Availability

S20 Policy mismatch M 17Adaptability Assurance Efficiency
Performance 
Availability

S21 Multi Layers conflict resolution M 15

The table outline the self-* property, the architecture quality attribute, the scenario

tile and the description of the proposed scenario. However, the main focus of this

research is the self-tuning properties of the software system: self-optimising and self-

configuring. In addition, the architecture’s ability to perform component composition

and configuration based on context-related conditions implies fine-grained tuning and

coarse-grained tuning based on the context.
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4. Generate quality attribute utility tree - Define the core business and technical require-

ments of the system, and map them to an appropriate architectural property. Present

a scenario for this given requirement. This step identifies, prioritizes, and refines the

system’s most important quality attribute goal. This is a crucial step in that it guides

the reminder of the analysis. The output of the utility tree generation step is a pri-

oritization of specific quality attribute requirements, realized as scenarios. The utility

tree makes the quality attribute requirements concrete, thus forcing the architecture to

define the relevant quality requirements precisely.

The quality attribute scenarios at the leaf node of the utility tree are now specific enough

to be prioritized relative to each other and be analysed. The prioritization may be on a

scale from 0 to 10 or may use relative ranking such as high (H), medium (M), and low

(L). The utility tree is prioritized along two dimensions (1) by the importance of each

scenario to the success of the system and (2) by the degree of di�culty posed by the

achievement of the scenario, based on the architecture’s estimation. The scenarios that

are marked with (H,H) are prime candidates for the analysis. Thereafter, the scenarios

marked with (M,H) and (H,M) are analysed. The scenarios labelled (L) are not likely

to be examined, as they have little importance and have low expected di�culty. The

utility tree is shown in Figure 5.1

5. Analyse architectural approaches - Analyse each scenario, giving priority ratings. The

architecture is then evaluated against each scenario. However, this evaluation focuses

on the self-adaptive ability in the unanticipated condition, self-configuration of the ap-

plication structure (based on the current context in both layers of granularity), and

self-optimization of its behaviour (in response to context changes and decision poli-

cies rules violation). The analysis concluded that several quality attributes should be

included in the evaluation, as shown in Table 5.3.

Architectural introspection and intercession are important attributes of any self-adaptive

system. They must be included in the analysis. However, the property of self-optimization
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Fig. 5.1: Quality attribute utility tree

can be characterized by the responsiveness and e�ciency of the system. Self-awareness

can be addressed using behavioural introspection and intercession and the ability to

achieve unanticipated adaptation dynamically at runtime, which includes dynamic

decision-making, context monitoring and continuous adaptation. Self-adaptation as-

surance can be evaluated in terms of the ability to reason about policy mismatch and

multi-layer conflict.

6. Brainstorm and prioritize scenarios - The proposed scenarios are presented to the larger

stakeholder group and expand on them. Table 5.3 shows the number of votes made by
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Table 5.3: Scenario ratings and number of votes

# SCENARIO 

THE IMPORTANCE OF 
EACH SCENARIO TO 

THE SUCCESS OF 
THE COCA 

FRAMEWORK

THE DEGREE OF 
DIFFICULTY POSED BY 
THE ACHIEVEMENT OF 
THE SCENARIO, BASED 
ON THE ARCHITECTS 

ESTIMATION

NUMBER 
OF VOTES

S1 ADL transparency  H H 20

S13 UnForeseen Changes H H 20

S10  Adaptation assurance  and verification M L 18

S15 Context-dependent behaviour  realization H M 18

S20 Policy mismatch H M 17

S4 Invoke /Revoke Component M L 16

S21 Multi Layers conflict resolution H M 15

S5 Activate/Deactivate Layer M L 14

S16 External Composition M M 14

S19 Context requirements reflection M M 12

S6 Add new Policy or remove policy  M L 10

S8 Application functionalities and user tasks H M 10

S7 Binding connector M L 8

S12 Foreseen changes L M 8

S11 Adaptation monitoring L L 6

S14 Dynamic decision making M M 6

S3 Update decision policy L L 4

S9 Component Graph parsing L L 4

S17 Internal Composition M L 4

S18 Context requirements binding M L 4

S2 Update Component L L 2

the evaluation team for each scenario and their importance for the evaluation process.

Scenarios S1, S5, S8, S13, S14, S15, S20, and S21 have been marked with higher im-

portance and have gained the highest number of votes, as shown in the Table. The

next group of scenarios, i.e. S4, S6, S10, S16, S19, S20, and S2, come next in impor-

tance. The remaining scenarios marked with less priority, have been ignored during the

evaluation because of their importance rank.

7. Present results - The scenarios that have the highest importance (S1, S5, S8, S13, S14,

S15, S20, and S21) are shown in the following sections.
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5.3.2 ATAM Evaluation Results

The evaluation team presents the ATAM analysis for each scenario and illustrates the results

in the tables by performing the following steps:

Step 1: Identifying the quality attributes. For each scenario the evaluation team

identified the related quality attributes to the scenario based on the utility tree illustrated in

Figure 5.1 and the architecture approach illustrated in Table 5.2.

Step 2: Identifying the environment conditions. This field describes the execution

environment conditions and proposes a set of context conditions.

Step 3: Identifying the environment stimulus. This field identifies the events that

cause the architecture to respond to changes. These events need to be expressed in terms

that are concrete (measurable or observable).

Step 4: Identifying the architecture response. This field identifies measurable/ob-

servable quantities, which addresses how the architecture responds to the environment stim-

ulus.

Step 5: Identifying the architecture decision This field identifies the aspects of

the architecture that have a direct impact on achieving attribute responses. The evaluation

team proposes the action that might be taken by the architecture for reasoning about the

architecture ’s stimulus.

Step 5: Identifying the sensitivity points. The evaluation team starts identifying

the sensitivity points, related decisions, and quality attributes related to each scenario. A

sensitivity point is a property of one or more components (and/or component relationships)

that is critical for achieving a particular quality attribute [Kazman et al., 2002]. Sensitivity

points tell a designer or analysts where to pay more attention when trying to understand the

achievement of a quality goal.

Step 6: Identifying the tradeo↵ points. After identifying the sensitivity points, the

evaluation team considers the tradeo↵ points between the quality attributes. A tradeo↵ point

is a property that a↵ects more than one attribute and it is a sensitivity point for more than

one attribute.
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Step 7: Identifying the risks and non-risks points The risk points are identified on

the basis that when the decision taken might have a risk over the quality attributes.

Step 8: Identifying the reasoning mechanism. The reasoning provides valid mecha-

nisms that can be used to reason about sensitive points and risk points identified in previous

steps.

Table 5.4: Evaluation results of scenario 1. ADL transparency

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #: 1

Attribute(S)

Environment 

Stimulus

Response 

Architecture Decisions:
‣ Push ADL updates by utilising the Network 

bandwidth 

‣ Update the ADL file on ideal time 

‣ Postpone updates until required resources are 
available 

‣ Connection to remote server is not available

‣ Postpone the updates until major tasks and functions 
are completed

Reasoning 

Scenario:  ADL Transparency Scenario:  ADL Transparency Scenario:  ADL Transparency Scenario:  ADL Transparency 

Survivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, Availability

Load time and Runtime Normal operationsLoad time and Runtime Normal operationsLoad time and Runtime Normal operationsLoad time and Runtime Normal operations

System-related functionalities, Upgrade of architecture elements 
(components, connectors, configuration, and decision policies) and 
modifying the application platform independent model. 

System-related functionalities, Upgrade of architecture elements 
(components, connectors, configuration, and decision policies) and 
modifying the application platform independent model. 

System-related functionalities, Upgrade of architecture elements 
(components, connectors, configuration, and decision policies) and 
modifying the application platform independent model. 

System-related functionalities, Upgrade of architecture elements 
(components, connectors, configuration, and decision policies) and 
modifying the application platform independent model. 
‣ Adaptation Manager: Validate ADL file version at load time. 
‣ Configuration Manager: Synchronized updates.
‣ Adaptation Manager:  Postpone updates  until network connectivity 

is handled.
‣ Adaptation Manager: Postpone updates until ideal time. 
‣ Adaptation Manager:  Keep the all ongoing users tasks, do not 

interrupt application major functionalities.

‣ Adaptation Manager: Validate ADL file version at load time. 
‣ Configuration Manager: Synchronized updates.
‣ Adaptation Manager:  Postpone updates  until network connectivity 

is handled.
‣ Adaptation Manager: Postpone updates until ideal time. 
‣ Adaptation Manager:  Keep the all ongoing users tasks, do not 

interrupt application major functionalities.

‣ Adaptation Manager: Validate ADL file version at load time. 
‣ Configuration Manager: Synchronized updates.
‣ Adaptation Manager:  Postpone updates  until network connectivity 

is handled.
‣ Adaptation Manager: Postpone updates until ideal time. 
‣ Adaptation Manager:  Keep the all ongoing users tasks, do not 

interrupt application major functionalities.

‣ Adaptation Manager: Validate ADL file version at load time. 
‣ Configuration Manager: Synchronized updates.
‣ Adaptation Manager:  Postpone updates  until network connectivity 

is handled.
‣ Adaptation Manager: Postpone updates until ideal time. 
‣ Adaptation Manager:  Keep the all ongoing users tasks, do not 

interrupt application major functionalities.

Sensitivity Tradeoff Risk Non risk 

S1 T1 N1

T2 R1

S2 T3 N2

S3 R2

T4 R3

‣ Perform upload when network connectivity is rich.
‣ Use the device ideal time to update the ADL. 
‣ Utilise CPU time during the upgrade 
‣ Self-configuring at risk when network bandwidth low or remote 

server is not available.
‣ Perform data mining algorithm during the ADL update. 
‣ Complete major user’s tasks first. 

‣ Perform upload when network connectivity is rich.
‣ Use the device ideal time to update the ADL. 
‣ Utilise CPU time during the upgrade 
‣ Self-configuring at risk when network bandwidth low or remote 

server is not available.
‣ Perform data mining algorithm during the ADL update. 
‣ Complete major user’s tasks first. 

‣ Perform upload when network connectivity is rich.
‣ Use the device ideal time to update the ADL. 
‣ Utilise CPU time during the upgrade 
‣ Self-configuring at risk when network bandwidth low or remote 

server is not available.
‣ Perform data mining algorithm during the ADL update. 
‣ Complete major user’s tasks first. 

‣ Perform upload when network connectivity is rich.
‣ Use the device ideal time to update the ADL. 
‣ Utilise CPU time during the upgrade 
‣ Self-configuring at risk when network bandwidth low or remote 

server is not available.
‣ Perform data mining algorithm during the ADL update. 
‣ Complete major user’s tasks first. 

Table 5.4 shows the results of the evaluation of scenario 1, referring to the transparency

of architecture description language ADL. This refers to the ability of the architecture to

generate and update the ADL based on the abstract model provided in the MDA phase, i.e.

the platform independent model (PIM). The synchronization process between the PIM and

the ADL must be performed in a manner that is separate from the application functionality

and without interrupting user tasks.

The results of an evaluation of scenario number 5 are shown in Table 5.5. These re-
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Table 5.5: Evaluation results of scenario 5. Components composition

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #: 5

Attribute(S)
Environment 

Stimulus

Response 

Architecture Decisions
‣ A component is invoked using a connector  based 

on a composition plan 

‣ Self-tuning for CPU time and Memory consumed

‣ Invoking the component  failed due unexpected 
condition 

‣ Component implementation have new version, not 
updated yet .

‣ The available memory is not enough to finish the 
composition 

‣ Constructing a composition plan

‣ Revoke component

Reasoning 

Scenario: Invoke/Revoke ComponentScenario: Invoke/Revoke ComponentScenario: Invoke/Revoke ComponentScenario: Invoke/Revoke Component

Survivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, AvailabilitySurvivability, Modifiability, Performance, Availability

Runtime adaptation (coarse grained composition)Runtime adaptation (coarse grained composition)Runtime adaptation (coarse grained composition)Runtime adaptation (coarse grained composition)

The context-related condition has been changed from one state to 
another (i.e battery power level switch from high to low) Adaptation 
manager proposes a component composition to satisfies the execution 
context. 

The context-related condition has been changed from one state to 
another (i.e battery power level switch from high to low) Adaptation 
manager proposes a component composition to satisfies the execution 
context. 

The context-related condition has been changed from one state to 
another (i.e battery power level switch from high to low) Adaptation 
manager proposes a component composition to satisfies the execution 
context. 

The context-related condition has been changed from one state to 
another (i.e battery power level switch from high to low) Adaptation 
manager proposes a component composition to satisfies the execution 
context. 
‣ Adaptation manager:  Select component
‣ Component Manager:  Realise component implementation and 

connector. 
‣ Adaptation manger: Invoke the composite component in the 

application structure and inform verification manager 
‣ Verification Manager: verifies the composition results.

‣ Adaptation manager:  Select component
‣ Component Manager:  Realise component implementation and 

connector. 
‣ Adaptation manger: Invoke the composite component in the 

application structure and inform verification manager 
‣ Verification Manager: verifies the composition results.

‣ Adaptation manager:  Select component
‣ Component Manager:  Realise component implementation and 

connector. 
‣ Adaptation manger: Invoke the composite component in the 

application structure and inform verification manager 
‣ Verification Manager: verifies the composition results.

‣ Adaptation manager:  Select component
‣ Component Manager:  Realise component implementation and 

connector. 
‣ Adaptation manger: Invoke the composite component in the 

application structure and inform verification manager 
‣ Verification Manager: verifies the composition results.

Sensitivity Tradeoff Risk Non risk 

S4 N3

S5 T5

S6 T6  R3

S7 T7 R4

S8 T8 R5 

T5 N2

S9 T6 R6

‣ Connector is established in < 1ms
‣ Utilise more CPU and memory time to finish the adaptation, if 

necessary performance driven adaptation should be triggered when 
invoke time > 10ms.

‣ Postpone the invoke operation until component version is updated.
‣ Use fine-grained for self-tuning the application performance. 
‣ Trigger unanticipated adaptation Scenario.
‣ Revoke component when only its release all resources and services.

‣ Connector is established in < 1ms
‣ Utilise more CPU and memory time to finish the adaptation, if 

necessary performance driven adaptation should be triggered when 
invoke time > 10ms.

‣ Postpone the invoke operation until component version is updated.
‣ Use fine-grained for self-tuning the application performance. 
‣ Trigger unanticipated adaptation Scenario.
‣ Revoke component when only its release all resources and services.

‣ Connector is established in < 1ms
‣ Utilise more CPU and memory time to finish the adaptation, if 

necessary performance driven adaptation should be triggered when 
invoke time > 10ms.

‣ Postpone the invoke operation until component version is updated.
‣ Use fine-grained for self-tuning the application performance. 
‣ Trigger unanticipated adaptation Scenario.
‣ Revoke component when only its release all resources and services.

‣ Connector is established in < 1ms
‣ Utilise more CPU and memory time to finish the adaptation, if 

necessary performance driven adaptation should be triggered when 
invoke time > 10ms.

‣ Postpone the invoke operation until component version is updated.
‣ Use fine-grained for self-tuning the application performance. 
‣ Trigger unanticipated adaptation Scenario.
‣ Revoke component when only its release all resources and services.

sults reveal that a component invoked based on a composition is a performance-related at-

tribute. There is a trade-o↵ between reaching the quality attribute self-configuration and

self-optimization that requires the application to adapt a self-tuning mechanism when the

associated architecture decision has risk points R3, R4, R5 or R6. The non-risk points N3

and N2 show the architecture ability with no risk on the device performance.

The evaluation results of scenario number 8 are shown in Table 5.6. The result from the

evaluation reveals that during adaptation, application functionalities and users tasks should

not be interpreted. Invoking components based on a composition plan is considered as a

trade-o↵ between performance and modifiability. The sensitivity of this kind of architecture

decision, S6, refers to the consumption of memory, which might, therefore, a↵ect the func-

tionality, responsiveness, and the e↵ectiveness of the application. The same decision has a
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trade-o↵ point between the e�ciency of the adaptation and the responsiveness of the archi-

tecture, T8 in the table. The risk R11 incurred from adapting such a decision can lead to

a risk of postponing the user’s tasks for long period of time until the adaptation is com-

pleted; the users’ tasks can be estimated to finish before the adaptation is accomplished or

the application adaptation is interrupted to allow the user to finish. In the reasoning field, a

description of a valid mechanism to handle such a risk is provided; this mechanism must be

reflected in the COCA platform design, as shown in the following section.

Table 5.6: Evaluation results of scenario 8. User tasks

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #: 8

Attribute(S)

Environment 

Stimulus

Response 

Architecture Decisions:
‣ Delay the user tasks

‣ The current running application have long running tasks 
(i.e downloading a movie ) 

‣ Postpone  running the adaptation output

‣ Interrupt the adaptation process. Rune new adaptation 
after the user finished his tasks. 

Reasoning 

Scenario: Application functionalities and user tasks Scenario: Application functionalities and user tasks Scenario: Application functionalities and user tasks Scenario: Application functionalities and user tasks 

Reliability, Efficiency, PerformanceReliability, Efficiency, PerformanceReliability, Efficiency, PerformanceReliability, Efficiency, Performance

Adaptation started while the user is performing some tasks Adaptation started while the user is performing some tasks Adaptation started while the user is performing some tasks Adaptation started while the user is performing some tasks 

During adaptation the application must keep all ongoing tasks with 
no interruption
During adaptation the application must keep all ongoing tasks with 
no interruption
During adaptation the application must keep all ongoing tasks with 
no interruption
During adaptation the application must keep all ongoing tasks with 
no interruption

The middleware generate the adaptation result as new instance.The middleware generate the adaptation result as new instance.The middleware generate the adaptation result as new instance.The middleware generate the adaptation result as new instance.

Sensitivity Tradeoff Risk Non risk 

S13 T11 N5

T12 R11

S14 T13

S15 T14 R12

‣Tune the memory using a fine-grained adaptation if possible.
‣Postpone the application instance until the current tasks finished, 
otherwise.  
‣Add the tasks to saved point queue new application then destroy 
the old instance, then run the new instance by resuming the tasks 
from the saved point. 

‣Tune the memory using a fine-grained adaptation if possible.
‣Postpone the application instance until the current tasks finished, 
otherwise.  
‣Add the tasks to saved point queue new application then destroy 
the old instance, then run the new instance by resuming the tasks 
from the saved point. 

‣Tune the memory using a fine-grained adaptation if possible.
‣Postpone the application instance until the current tasks finished, 
otherwise.  
‣Add the tasks to saved point queue new application then destroy 
the old instance, then run the new instance by resuming the tasks 
from the saved point. 

‣Tune the memory using a fine-grained adaptation if possible.
‣Postpone the application instance until the current tasks finished, 
otherwise.  
‣Add the tasks to saved point queue new application then destroy 
the old instance, then run the new instance by resuming the tasks 
from the saved point. 

The evaluation results of scenario number 13 are shown in Table 5.7. This scenario

captures the architecture’s ability to provide adaptation assurance, thus satisfying the unan-

ticipated adaptation quality attribute. The analysis has shown that realization of the context-

dependent behaviour, that is, to combine the related policies, has a sensitive point in self-

awareness, with no risk to the quality attribute. On the other hand, a trade-o↵ between re-

sponsiveness/e�ciency and unanticipated adaptation/self-awareness is detected by risk points

R12, R13, R14, and R15. In other words, to reach this level of self-adaptability and self-

awareness, the application must trade performance and e�ciency, by paying less attention

to them while paying higher attention to the self-adaptability. This does not mean that the
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performance and responsiveness are neglected, rather, they will be a↵ected during unantic-

ipated adaptation. The reasoning field in the Table provides valid procedures that must be

adapted when facing such risk points. In some cases, the application might prompt the user

control the decision policy when the self-assurance process failed to verify the fitness of the

policy among the application goals and objectives. On other cases, the adaptation manager

requests, the context state from the context manager to verify the fitness of the taken decision

among them.

Table 5.7: Evaluation results of scenario 13. Adaptation assurance and verification

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #:13

Attribute(S)

Environment 

Stimulus

Response 

Architecture Decisions:
‣ Application adaptation is failed 

‣ The new application pass the adaptation 
assurance test 

Reasoning 

Scenario: Adaptation assurance  and verification Scenario: Adaptation assurance  and verification Scenario: Adaptation assurance  and verification Scenario: Adaptation assurance  and verification 

Adaptability Assurance , Self-AwarenessAdaptability Assurance , Self-AwarenessAdaptability Assurance , Self-AwarenessAdaptability Assurance , Self-Awareness

Runtime- Post adaptation and pre-executing the adaptation outputRuntime- Post adaptation and pre-executing the adaptation outputRuntime- Post adaptation and pre-executing the adaptation outputRuntime- Post adaptation and pre-executing the adaptation output

When the adaptation finished, the new application instance has to be verified. When the adaptation finished, the new application instance has to be verified. When the adaptation finished, the new application instance has to be verified. When the adaptation finished, the new application instance has to be verified. 
The middleware uses the verification manager to verify the new application 
instance among the decision polices.
The middleware uses the verification manager to verify the new application 
instance among the decision polices.
The middleware uses the verification manager to verify the new application 
instance among the decision polices.
The middleware uses the verification manager to verify the new application 
instance among the decision polices.

Sensitivity Tradeoff Risk Non risk 

S16 T15

R13 N6

‣Trigger new adaptation results. 
‣ Destroy the former application instance and resume the new instance 
transparent manner to the user 

‣Trigger new adaptation results. 
‣ Destroy the former application instance and resume the new instance 
transparent manner to the user 

‣Trigger new adaptation results. 
‣ Destroy the former application instance and resume the new instance 
transparent manner to the user 

‣Trigger new adaptation results. 
‣ Destroy the former application instance and resume the new instance 
transparent manner to the user 

The analysis in Table 5.8 shows that dynamic decision making has a sensitivity point to

self-awareness because of continuous context monitoring, a result which has a direct impact

on the performance and responsiveness (T12). The risk from making architecture decisions of

a filer on achieving a decision implies the whole process of adaptation failed. As a reasoning

mechanism, the architecture proposes an action of promoting the user to upgrade the related

decision policy as the first action. If it is not valid, the middleware retrieves the context

condition and restarts the decision making. During this process, all policies are upgraded

and then evaluated; conflicts are removed within the specified time.

The analysis shown in Table 5.9 indicates that the context-dependent behaviour of com-

bining the related policies has a sensitive point to the self-awareness with no risk to the

quality attribute. On the other hand, a trade-o↵ between responsiveness/e�ciency and unan-
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Table 5.8: Evaluation results of scenario 14. Unforeseen changes

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #:14

Attribute(S)

Environment

Stimulus

Response 

Architecture Decisions:

‣ Polices conflict resolutions failed

‣ Realising the context-dependent 
behaviour and combined the related 
policy together.‣ Uncertainty, the new context-related 
changes are imperfect or Inaccurate 

‣ Combining the decision policies 
failed 

‣ Failed to realise new behaviour for 
the unforeseen condition 

Reasoning 

Scenario: UnForeseen Changes Scenario: UnForeseen Changes Scenario: UnForeseen Changes Scenario: UnForeseen Changes 

Survivability, Maintainability, PerformanceSurvivability, Maintainability, PerformanceSurvivability, Maintainability, PerformanceSurvivability, Maintainability, Performance

Runtime: Anticipates recovers an faults caused by up normal context-related 
conditions dynamically, and detected faults, then recover
Runtime: Anticipates recovers an faults caused by up normal context-related 
conditions dynamically, and detected faults, then recover
Runtime: Anticipates recovers an faults caused by up normal context-related 
conditions dynamically, and detected faults, then recover
Runtime: Anticipates recovers an faults caused by up normal context-related 
conditions dynamically, and detected faults, then recover

When unforeseen changes just happened at runtime , that have not been 
handled at design time 
When unforeseen changes just happened at runtime , that have not been 
handled at design time 
When unforeseen changes just happened at runtime , that have not been 
handled at design time 
When unforeseen changes just happened at runtime , that have not been 
handled at design time 

‣Adaptation manager realised the related COCA-components to the that 
context-related condition. 
‣Component Manager : Realised their context-dependent behaviour. 
‣Adaptation Manager: Retrieves their related configurations and constraint 
from the ADL file.
‣Policy Manager: Retrieve their related decision policies, Then it will Resolve 
conflict. 
‣Adaptation Manager: Construct adaptation strategy. prioritise the adaptation 
action in sequence. trigger new composition plan, upgrade the new generated 
polices. Start new adaptation process.

‣Adaptation manager realised the related COCA-components to the that 
context-related condition. 
‣Component Manager : Realised their context-dependent behaviour. 
‣Adaptation Manager: Retrieves their related configurations and constraint 
from the ADL file.
‣Policy Manager: Retrieve their related decision policies, Then it will Resolve 
conflict. 
‣Adaptation Manager: Construct adaptation strategy. prioritise the adaptation 
action in sequence. trigger new composition plan, upgrade the new generated 
polices. Start new adaptation process.

‣Adaptation manager realised the related COCA-components to the that 
context-related condition. 
‣Component Manager : Realised their context-dependent behaviour. 
‣Adaptation Manager: Retrieves their related configurations and constraint 
from the ADL file.
‣Policy Manager: Retrieve their related decision policies, Then it will Resolve 
conflict. 
‣Adaptation Manager: Construct adaptation strategy. prioritise the adaptation 
action in sequence. trigger new composition plan, upgrade the new generated 
polices. Start new adaptation process.

‣Adaptation manager realised the related COCA-components to the that 
context-related condition. 
‣Component Manager : Realised their context-dependent behaviour. 
‣Adaptation Manager: Retrieves their related configurations and constraint 
from the ADL file.
‣Policy Manager: Retrieve their related decision policies, Then it will Resolve 
conflict. 
‣Adaptation Manager: Construct adaptation strategy. prioritise the adaptation 
action in sequence. trigger new composition plan, upgrade the new generated 
polices. Start new adaptation process.

Sensitivity Tradeoff Risk Non risk 

S17 R13

S18 T16 N7

T17 R14

R15

R16

‣Each component have layers that embeds the context-dependent behaviour. 
Each layer can be realised from  COCA-ADL xml file and the configuration 
graph.
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve the 
execution context environment.  
‣Re pars the policy from the ADL file. re-analysis their dependancies. re-start 
the combination process in < 1 m.  classifies their related context-dependent 
behaviour. 
‣ Restart the control loop , monitoring, handling, decision making, and 
adaptation. That may require upgrade the middleware , the components, and 
the decision policies. ‘
‣Invoke configuration and adaptation assurance process. 

‣Each component have layers that embeds the context-dependent behaviour. 
Each layer can be realised from  COCA-ADL xml file and the configuration 
graph.
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve the 
execution context environment.  
‣Re pars the policy from the ADL file. re-analysis their dependancies. re-start 
the combination process in < 1 m.  classifies their related context-dependent 
behaviour. 
‣ Restart the control loop , monitoring, handling, decision making, and 
adaptation. That may require upgrade the middleware , the components, and 
the decision policies. ‘
‣Invoke configuration and adaptation assurance process. 

‣Each component have layers that embeds the context-dependent behaviour. 
Each layer can be realised from  COCA-ADL xml file and the configuration 
graph.
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve the 
execution context environment.  
‣Re pars the policy from the ADL file. re-analysis their dependancies. re-start 
the combination process in < 1 m.  classifies their related context-dependent 
behaviour. 
‣ Restart the control loop , monitoring, handling, decision making, and 
adaptation. That may require upgrade the middleware , the components, and 
the decision policies. ‘
‣Invoke configuration and adaptation assurance process. 

‣Each component have layers that embeds the context-dependent behaviour. 
Each layer can be realised from  COCA-ADL xml file and the configuration 
graph.
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve the 
execution context environment.  
‣Re pars the policy from the ADL file. re-analysis their dependancies. re-start 
the combination process in < 1 m.  classifies their related context-dependent 
behaviour. 
‣ Restart the control loop , monitoring, handling, decision making, and 
adaptation. That may require upgrade the middleware , the components, and 
the decision policies. ‘
‣Invoke configuration and adaptation assurance process. 

ticipated adaptation/self-awareness is detected by risk point R17. In di↵erent words, to reach

this level of realization, the application must trade the performance and e�ciency, by paying

less attention to them while paying higher attention to the self-adaptability. This does not

mean the performance and responsiveness are neglected; however, they will be a↵ected during

unanticipated adaptation.

The analysis shown in Table 5.10 indicates that performance of policy conflict resolution

has a sensitive point within the adaptation assurance of the quality attribute with a trade-o↵

between self-awareness and performance. On the other hand, the trade-o↵ between having a
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Table 5.9: Evaluation results of scenario 15. Unanticipated adaptation

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #:15

Attribute(S)

Environment

Stimulus

Response 

Architecture Decisions:
‣ Utilise the performance during the ADL parsing 

‣ Realisation process failed

‣ analysed the dependent behaviour and modifies 
the composition plan 

Reasoning 

Scenario: Context-dependent behaviour realisationScenario: Context-dependent behaviour realisationScenario: Context-dependent behaviour realisationScenario: Context-dependent behaviour realisation

Self-awareness, Responsiveness, Efficiency Self-awareness, Responsiveness, Efficiency Self-awareness, Responsiveness, Efficiency Self-awareness, Responsiveness, Efficiency 

Manipulating manipulating COCA component’s based on  handling actor-
dependent, system-dependent, environment-dependent variations 
behaviours 

Manipulating manipulating COCA component’s based on  handling actor-
dependent, system-dependent, environment-dependent variations 
behaviours 

Manipulating manipulating COCA component’s based on  handling actor-
dependent, system-dependent, environment-dependent variations 
behaviours 

Manipulating manipulating COCA component’s based on  handling actor-
dependent, system-dependent, environment-dependent variations 
behaviours 

The related context-dependent must be realised by the middleware during 
the construction of the composition plan, decision making, and the overall 

adaptation process.

The related context-dependent must be realised by the middleware during 
the construction of the composition plan, decision making, and the overall 

adaptation process.

The related context-dependent must be realised by the middleware during 
the construction of the composition plan, decision making, and the overall 

adaptation process.

The related context-dependent must be realised by the middleware during 
the construction of the composition plan, decision making, and the overall 

adaptation process.
The middleware realise the context-dependent behaviour based on 
realising actor-dependent, system-dependent, environment-dependent 
variations behaviours , that are embedded inside  the layers from the ADL 
file 

The middleware realise the context-dependent behaviour based on 
realising actor-dependent, system-dependent, environment-dependent 
variations behaviours , that are embedded inside  the layers from the ADL 
file 

The middleware realise the context-dependent behaviour based on 
realising actor-dependent, system-dependent, environment-dependent 
variations behaviours , that are embedded inside  the layers from the ADL 
file 

The middleware realise the context-dependent behaviour based on 
realising actor-dependent, system-dependent, environment-dependent 
variations behaviours , that are embedded inside  the layers from the ADL 
file 

Sensitivity Tradeoff Risk Non risk 

S10 T13

R17

T14 N9

‣ Utilise the devices resources to pars and analyse the context-dependent 
behaviour from the policies 
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve 
the execution context environment, then restart the decision making.  

‣ Utilise the devices resources to pars and analyse the context-dependent 
behaviour from the policies 
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve 
the execution context environment, then restart the decision making.  

‣ Utilise the devices resources to pars and analyse the context-dependent 
behaviour from the policies 
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve 
the execution context environment, then restart the decision making.  

‣ Utilise the devices resources to pars and analyse the context-dependent 
behaviour from the policies 
‣ Promote user to upgrade the policies. in < 10 minute, otherwise retrieve 
the execution context environment, then restart the decision making.  

sensitive point in the adaptation-assurance quality attribute and performance/responsiveness

is T23. In other words, there is a risk of not achieving the adaptation due to a failure in

the policy mismatch mechanism (high risk in the adaptation action). As a precipitation

procedure, the architects propose a reasoning mechanism that includes prompting the user

to upgrade the policies in < 10 millisecond, otherwise will it will retrieve the execution context

environment and thereafter restart the decision making.

The analysis shown in Table 5.11 indicates that performing layers conflict with resolution

has a sensitive point to the adaptation assurance quality attribute with a trade-o↵ between

self-awareness and performance. The impact of policy retrieving has a tradeo↵ among self-

awareness, application e�ciency, and responsiveness.

Another captured sensitive point is S20, which related to the policy manager and that

might consume more CPU time during the policies’ evaluation process. This point has a

trade-o↵ among adaptability assurance, performance, and responsiveness, called T23. In the

same point, a trade-o↵ point has been captured in scenario 20. For more information, please

refer to Table 5.10. In the same way, R3 and R21 have been captured in scenarios 5 and 21.
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Table 5.10: Evaluation results of scenario 20. Policy mismatch

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #:20

Attribute(S)

Environment

Stimulus

Response 

Architecture Decisions:
‣ Failed to retrieve polices 

‣ The policy manager evaluate the policies 
and resolve any conflict between them.

‣ Adaptation assurance process failed 

‣ Policies conflict resolution failed 

Reasoning 

Scenario: Policy mismatch Scenario: Policy mismatch Scenario: Policy mismatch Scenario: Policy mismatch 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

More than policy involved in the adaption contradicts by each other More than policy involved in the adaption contradicts by each other More than policy involved in the adaption contradicts by each other More than policy involved in the adaption contradicts by each other 

The policies have conflict that require activation/deactivation code fragments 
that are conflicted. 
The policies have conflict that require activation/deactivation code fragments 
that are conflicted. 
The policies have conflict that require activation/deactivation code fragments 
that are conflicted. 
The policies have conflict that require activation/deactivation code fragments 
that are conflicted. 

Policy manager evaluates polices and remove conflict by customising their 
action
Policy manager evaluates polices and remove conflict by customising their 
action
Policy manager evaluates polices and remove conflict by customising their 
action
Policy manager evaluates polices and remove conflict by customising their 
action

Sensitivity Tradeoff Risk Non risk 

S22 T20 R21

S23

S22 T23 N7

R3 N8

‣Pars the ADL file in <20MS.!
‣Realise the conflict from the components manager <1ms. !
‣Restart the evaluation process.
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣Retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS.!
‣Realise the conflict from the components manager <1ms. !
‣Restart the evaluation process.
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣Retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS.!
‣Realise the conflict from the components manager <1ms. !
‣Restart the evaluation process.
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣Retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS.!
‣Realise the conflict from the components manager <1ms. !
‣Restart the evaluation process.
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣Retrieve the execution context environment, then restart the decision making.

This provides a clear correlation between the same risk points that are generated by many

di↵erent scenarios.

Table 5.11: Evaluation results of scenario 21. Conflict resolution

ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH ANALYSIS OF ARCHITECTURE APPROACH 

Scenario #:21

Attribute(S)

Environment

Stimulus

Response 

Architecture Decisions:
‣  Failed to retrieve polices 
‣ The policy manager evaluate the policies 

and resolve any conflict between them.

‣ Adaptation assurance process failed 

‣ Policies conflict resolution failed 

Reasoning 

Scenario:  Multi Layers conflict resolution Scenario:  Multi Layers conflict resolution Scenario:  Multi Layers conflict resolution Scenario:  Multi Layers conflict resolution 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Adaptability assurance, Performance, Self-awareness, Efficiency, 
Responsiveness 

Runtime - Adaptation Time and verification time (Assurance)Runtime - Adaptation Time and verification time (Assurance)Runtime - Adaptation Time and verification time (Assurance)Runtime - Adaptation Time and verification time (Assurance)

During adaptation verification two or more layers contradicted. During adaptation verification two or more layers contradicted. During adaptation verification two or more layers contradicted. During adaptation verification two or more layers contradicted. 

The adaptation manger construct composition plan using conflict free policiesThe adaptation manger construct composition plan using conflict free policiesThe adaptation manger construct composition plan using conflict free policiesThe adaptation manger construct composition plan using conflict free policies

Sensitivity Tradeoff Risk Non risk 

S19 N9

S20 T18

S23 R17 N10

T19 R18

‣Pars the ADL file in <20MS
‣Realise the conflict from the components manager <1ms.
‣Restart the adaptation process. 
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS
‣Realise the conflict from the components manager <1ms.
‣Restart the adaptation process. 
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS
‣Realise the conflict from the components manager <1ms.
‣Restart the adaptation process. 
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣retrieve the execution context environment, then restart the decision making.

‣Pars the ADL file in <20MS
‣Realise the conflict from the components manager <1ms.
‣Restart the adaptation process. 
‣Promote user to upgrade the policies. in < 10 ms, otherwise
‣retrieve the execution context environment, then restart the decision making.
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5.4 Lessons Learned from ATAM Evaluation

1. The evaluation verifies the COCA middleware’s ability to perform dynamic assurance

and verification of the adaptation output. This is achieved by parsing the policies from

the ADL XML file, the polices located in the configuration element of the ADL. How-

ever, the COCA middleware subscribes to the context manager to be notified about

contextual changes that are related to the device resources. The policy manager eval-

uates the polices among the recently violated architecture properties. This is achieved

by adapting the notification pattern for the context manager. This achieves attributes

A1.2, A2.2, A4.1, and A4.2 of objectives 1, 2, and 4.

2. The COCA middleware can parse and upgrade the architecture ADL in a transpar-

ent manner. However, to enhance the architecture’s survivability, modifiability, perfor-

mance, and availability, it is recommended to adapt the Flyweight design pattern [Buck

and Yacktman, 2010] for implementing the adaptation manager, specifically, the func-

tions of parsing and constructing the composition plan. The Flyweight pattern min-

imizes the amount of memory and/or processor overhead required to use objects at

runtime. This achieves attribute A2.1 of objective 2.

3. The COCA middleware can invoke or revoke a specific component dynamically without

a↵ecting the device performance; however, then the component manager must testify

the component’s ability to provide/require specific methods, services, and resources.

This is achieved by adapting the bundle design pattern with the support of the verifica-

tion manager. The verification manager is recommended to adapt the ’responder chain’

design pattern and adapt the perform selector and delayed perform pattern that imple-

ments responses to the selector method [Buck and Yacktman, 2010]. However, dynamic

loading of component code is achieved by adapting the dynamic creation pattern, which

enables the COCA-middleware to create new instances of COCA-components, that did

not exist at the time the application was complied. This achieves attribute A3.1 of

objective 3.
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4. The interoperability of the application components and their sub-layers is a major fea-

ture of COCA middleware. The evaluation shows the architecture’s ability to deactivate

or activate sub-layer implementation when driven by a context change. However, this

feature is supported by adapting two design patterns when implementing the adapta-

tion manager. The invocation and delegation patterns can support introspection and

intercession at the level of the COCA component. Use of invocation patterns is a tech-

nique for preserving the state of messages, arguments, and return values. Invocations

can be used to completely decouple the sender of a message from the receiver. The

sender and receiver can be in di↵erent processes or be separated by time. The dele-

gate is an object that is given an opportunity to react to changes in another object or

influence the behaviour of another object [Buck and Yacktman, 2010]. This achieves

attributes A3.1 and A3.2 of objective 3.

5. The policy manager can perform decision policy mismatches; however, it has some

drawbacks in terms of device performance. Therefore, it is recommended that the deci-

sion policies adapt an associative storage design pattern that organizes the polices into

data and keys so that data can be quickly and easily accessed using the corresponding

key. In addition, the policy manager must adapt the archiving and unarchiving design

pattern that preserves polices objects, including any interrelationships or dependencies

among the archived policy. Archived policies are stored in a binary data, which tends to

be fast to read and write from a memory or a disk and fast to transmit over a network.

This reduces the overhead of continuous evaluation of the decision policies through the

adaptation action. This achieves attributes A2.3, A4.1, and A4.2 of objectives 2 and 4.

6. The evaluation showed that the architecture can anticipate unforeseen changes dynam-

ically. This is achieved by integrating policy mismatch resolution with architecture

introspection, as well as instantiating a composition plan. Then, the adaptation man-

ager verifies the fitness of the composition plan from among the unforeseen changes.

This achieves attributes A4.1 and A4.2 of Objective 4.
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7. Performance and modifiability do, in fact, trade-o↵ with each other. This requires the

evaluation of the COCA-middleware and a case study application of their ability to

perform self-tuning to maintain architecture performance and self-configuration, and

to maintain the modifiability property. This evaluation is performed in the following

section.

5.5 Context-oriented Software Evaluation

This section focuses on evaluating the performance and modifiability quality attributes of

context-oriented software, including the COCA-middleware and the case study implementa-

tion of the I-TrinityTour application. Aspect Oriented Software Development (AOSD) [Fil-

man et al., 2004] and Context Oriented Software Development (COSD) are the alternatives

for the design and construction of self-adaptive software. Their ultimate goal is to support

the adaptability and variability of software systems, and to be able to reduce development

cost and e↵ort, while improving the software modularity and complexity. This motivates us

to evaluate these technologies with respect to their ability to support software adaptability

(modifiability) and the performance gain from using these technologies to implement the

case study application in a mobile computing environment. This thesis claimed that COSD

is better suited to dynamic context-driven adaptation in the mobile computing domain. To

this end, an evaluation of the two major paradigms (AOSD and COSD) is required to find

out which one is better suited to developing self-adaptive applications.

5.5.1 Metrics

In the first experiment, the case study application I-TrinityTour was implemented as a real

iPhone application using the COSD and AOSD paradigms. The second experiments com-

pared the performance of the COCA-middleware implementation with several frameworks and

middleware architectures including Java Context-Oriented Programming (JCOP) [Schuster

et al., 2011], Java COntext Oriented Language (JCOOL) [Sindico and Grassi, 2009], Mobile
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USers In Ubiquitous Computing (MUSIC) [Geihs et al., 2011], and Mobility and ADaptation

enAbling Middleware (MADAM) [Mikalsen et al., 2006], as described in section 5.7. Then

the following questions were analysed. First, how expensive is it to perform context monitor-

ing? Secondly, what is the e↵ect on the allocated resources after the software has performed

context detection, particularly when multiple heterogeneous events are detected? Thirdly,

what is the performance gain of activating and executing multiple and collaborated aspects in

comparison with Context-oriented Component (COCA-component) composition, in response

to multiple context change events arriving at the same time. The following experiments focus

on evaluating each paradigm implementation of the I-TrinityTour to support adaptability and

dependability, based on the following criteria.

1. Battery Usage. This criterion evaluates the device’s battery durability while run-

ning the I-TrinityTour application and performing the adaptation processes, including

context monitoring, detecting, decision-making, and adaptation. The Instruments tool

provides a relative energy usage on a scale of 0 to 20. These values explain how ex-

pensive it is with respect to the battery life to run a specific process over the execution

time.

2. CPU Activity. This criterion analyses the CPU activities and CPU time required for

performing the adaptation processes, including context monitoring, detecting, decision-

making, and adaptation. This includes the time required for components/aspects com-

position in response to multiple and heterogeneous context change events.

3. Real Memory Allocation. This criterion measures the amount of memory allocated

by the application during the execution of particular functionalities, including context

monitoring, context detection, and adaptation.

4. Sleep/Wake. This parameter captures the I-TrinityTour application’s ability to adjust

its activity while the device is running in sleep mode. Normally, if the application

keeps running in the background and performs some kind of operation, for example,

updating the current location while the device is in sleep mode, the allocated resources
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are intensively degraded. This feature evaluates the architecture’s ability to adjust the

application behaviour, while considering the interoperability between the middleware

functionality and the allocated resources.

5. Adaptation/reconfiguration time. This criterion captures the required time for

the application to adapt its structure and behaviour by adding, removing, or updating

components/services. The adaptation time was measured from the start to the end

of the adaptation action. The reconfiguration time measures the time required by the

middleware to load and execute the plug-in (bundle) implementation.

5.5.2 Hardware and Software Configuration

The CPU activity, CPU time, real memory allocation, and energy usage are measured for

performing each adaptation process separately. These values were measured using the en-

ergy diagnostics and activity-monitoring tools, which analyses the running application on

the iPhone device [Apple IPhone Operating System IOS, 2011]. The Energy Diagnostic tool

was used to measure the battery while the device was not connected to an external power

supply; after the experiment was finished, the data were imported from the iPhone and

then analysed. For measuring the CPU activity, CPU time and the real allocated memory.

The I-TrinityTour application was executed on the same IPhone devices for each paradigm-

s/frameworks implementation in separate. The instrument tool was executed on Macbook

pro, which traces the data from the IPhone device using the activity monitoring tool. The

IPhone was connected wirelessly with the activity monitoring tool. This allows the tool to

capture more accurate data for the energy usage and the CPU activity with respect to each

process under evaluation. To testify variation in the application behaviour, a simulator was

included with each I-TrinityTour implementations. The simulator, UI in Figure 5.2, is used

to allow the user to simulate specific context changes, which are used to test the application’s

ability to adapt the desired behaviour. For each adaptation process, the experiment was

established as follows:

Context monitoring. The CPU activity, CPU time, real memory allocation, and energy
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(a) COCA-ITrinityTour SimulatorUI (b) DAOP-ITrinityTour SimulatorUI

Fig. 5.2: Simulator Control User Interface

usage are measured for performing context monitoring at two di↵erent time intervals. First,

when the application ”did Finish Launching With Options” and the UI views did loaded.

Second, the simulator interface shown in Figure 5.2 was used to trigger the context monitoring

process, this operation excluded any events related to the application load time. In addition,

it allows us to estimate the time required to process 10 contextual events enqueued at the

same time. The simulator generates these events generally in First In First Out (FIFO)

order. This experiment was executed 200 times, then the variance and standard deviation

were calculated for the above criteria.

Context detection. The CPU activity, CPU time, real memory allocation, and energy
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usage are measured for performing context detection with the aid of the simulator (see figure

5.2).When the context detection button was pressed, the simulator generates and en-queue

multiple events, which are executed in First In First Out (FIFO) order. This allows the ex-

periments to evaluate the required time to process these context events, and the time required

to perform the reasoning action (decision making) by the application. This experiment was

executed 200 times, then the variance and standard deviation were calculated for the above

criteria.

Adaptation time/re-configuration time. The CPU activity, CPU time, real memory

allocation, and energy usage are measured for performing the adaptation/re-configuration in

two modes. In the first mood, the application was executed for the same period of time (five

hours). Then, the adaptation time was measured once the adaptation action was started until

finished, the CPU time was taken from the activity monitoring tool. In the second mood,

the simulator was used to generate multiple context events, that measures the application

response with regrade to low battery context. This experiment was executed 200 times, then

the variance and standard deviation for each value were calculated. This allows us to identify

the positive error as described in the following experiments’ evaluation.

5.6 COSD Vs. AOSD Experiments

The assumption made by the AOSD communities is that dynamic aspect weaving can be

used to adjust the software behaviour dynamically, regardless of the complexity involved in

implementing Aspect-Oriented Programming (AOP) applications. Existing Dynamic AOP

techniques tend to add a substantial overhead in both execution time and code size [Hundt

et al., 2010].

The I-TrinityTour implementation was re-engineered to be integrated with the Objective-

C AOP framework [AspectCOCA, 2011]. As a result, several aspects were implemented which

implement context monitoring and detecting. In addition, the context-dependent behaviours

for the location service, battery level, and the camera flashes were implemented. These
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anticipation levels were described in the previous chapter. However, for the location service,

there are three nested aspects implemented to provide behavioural variation of the battery

level. These aspects are the GPS-based, WiFi-based, and IP-based location services. In

COSD, these aspects are implemented using three COCA-components, as demonstrated in

Chapter 4.

5.6.1 Experiment 1: Context Monitoring and Sensing

This experiment evaluates the processes of context monitoring and environment sensing,

based on the above criteria. Specifically, it evaluates how the software uses the allocated

resources such as battery, CPU, and memory. In the DAOP approach, context monitoring is

handled using separate aspects which span the application’s main execution. In COSD, this

is handled using the context manager, as explained in Chapter 3.

Designing aspects which become active when particular contexts are verified requires

the possibility of referring to a context definition in a pointcut construction. This means

that joinpoints such as BeInContext(Context BatteryLowCTX) should be provided by the

framework. In addition, the aspects composition in a framework like Reflex [Tanter, 2006]

needs to keep track of past context conditions and their associated states, which require more

CPU activity and memory allocation to perform the context monitoring functionality. This

adds so much overhead to the advice execution, because the AOP framework must perform

context snapshots through the monitoring and sensing process. The problem behind this is

the context snapshot is taken every time the context is changed. This makes the platform

storing and processing the context history for multiple events at multiple times. In addition,

the AOP framework must transform the context changes into basic entities like joinpoint

request. The joinpoints are activated by registering them to the execution monitor. When

the execution reaches one of the activated joinpoints, the execution monitor notifies the

DAOP engine, which executes the advice method. This implies, that the AOP framework

will evaluate each joinpoint with regard to the passive and active context through the context

detection and decision-making processes as shown in the next experiment.
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As a result, battery energy is consumed faster in comparison to the case using COCA-

middleware, which implements a dedicated context manager supported by a context reposi-

tory; the repository stores the past context information. In addition, each COCA-component

registers its interest on a specific context change. This makes the context manager sense the

environment for a particular set of context information.

The experiment on battery usage is shown in Figure 5.3. This shows that the COCA-

component uses less battery energy than the DOAP implementation uses. The COCA-

middleware optimizes the context-monitoring process by storing and processing the context

information which was considered by the COCA-component registration. Such enhancement

of the context monitoring preserves the battery energy by 11.5% of the total energy usage.

This value is supported by the evaluation results of the CPU activity shown in Figure 5.4.

For context monitoring, the DOAP-ITrinityTour requires more activity to be executed in

comparison to COCA-ITrinity; this consumes more battery energy. With regard to mem-

ory allocation, the DOAP-ITrinity allocated more real memory to execute and perform the

context snapshot i.e. storing and processing the past context than is needed by COCA-

ITrinityTour, as shown in Figure 5.5. This figure shows how expensive it is to allocate and

process the context snapshot with regard to the DOAP-ITrinity application.
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Fig. 5.3: Context Monitoring battery usage
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Fig. 5.4: Context Monitoring CPU Activity
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Fig. 5.5: Real Memory Allocation (MB)

5.6.2 Experiment 2: Context Detection

For the context detection process, both implementations were evaluated based on the above

criteria. The evaluation results for energy usage are shown in Figure 5.6. The evaluation

results show that DOAP-ITrinity consumes more energy to notify the application components

about multiple context changes which were detected in short frequency. This requires more

CPU activity to process the context changes and evaluate them with the passive context

values stored in the joinpoints. The CPU activity for both applications is demonstrated in

Figure 5.7. In addition, the DOAP application requires more memory for allocating the aspect

contexts and notifying them because each aspect must be allocated and executed. The AOP

framework then notifies the aspects about the context changes. Later, the decision is left to
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the aspect methods implementation to decide whether to adapt or not. Such implementation

of the context detection process using DOAP intensively consumes the allocated resources to

notify multiple aspects about multiple events. In some cases, the aspect implementation was

independent of the execution context, but it was executed and notified. The real memory

allocation for the context detection process is shown in Figure 5.8.
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Fig. 5.6: Context Detection Battery Usage
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Fig. 5.7: Context Detection CPU Activity

5.6.3 Experiment 3: Collaborated Aspect Activation

It is claimed that in AOSD, dynamic aspect weaving can inject tangle-free code in the pro-

gram execution; as explained before, context-dependent behaviours are collaborated aspects

entangled with each other. It is claimed that in COSD, COCA-components can be acti-
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Fig. 5.8: Context Detection Real Memory Allocation (MB)

vated dynamically to adjust the application behaviour, with a↵ordable costs, during the

adaptation. Designing context-dependent behaviour using an aspect-oriented programming

paradigm requires platform support for activating aspects driven by the context state; such

an implementation requires the AOP platform to evaluate each joinpoint in conjunction with

the associated context state and the passive context values. In addition, once the decision has

been made, the AOP platform must search for the associated method implementation which

implements the required context-dependent behaviour. Moreover, from our own experience,

it is very complex to decide which aspect should be woven first, because of the implicit de-

pendence among the aspect implementations. For example, the platform should decide when

the battery level is low, and which aspects must be activated. On the other hand, when

activating the location aspect, the platform must consider the battery level before deciding

which location service to use; such processes provide cyclic dependence among the aspects

implementations and lead to unguaranteed adaptation outputs.

Figure 5.9 shows the battery usage when multiple contextual aspects are activated and

executed compared with the composition of multiple COCA-components. The figure shows

that the DAOP-ITrinityTour consumes more energy to perform the adaptation as it requires

more energy to process the context state in each joinpoint. In addition, it requires the AOP

framework to resolve the dependence between several aspects before and after the advice

methods execution. The CPU activity is shown in Figure 5.10 and the real memory allocation

151



for performing the activation and execution is shown in Figure 5.11.
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Fig. 5.9: Activating Collaborated Aspects/COCA-components Battery Usage
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Fig. 5.10: Activating Collaborated Aspects/COCA-components CPU Activity
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The aspects composition needs to keep track of past context conditions and their associ-
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ated states; more CPU activity and memory allocation are needed to perform this function-

ality. This experiment describes how each platform responds to multiple events detected at

the same time. The adaptation/reconfiguration time for composing aspects/components is

shown in Figure 5.12. The values were taken every 2 min from the Instruments tool while

executing the application for 30 min continuously. As shown in Figure 5.12, the COCA-

ITrinityTour requires less CPU time for composing the components, but DOAP requires

more time for activating and executing the contextual aspects. The evaluation of aspects ac-

tivation and execution shows an increased adaptation time because each aspect requires more

memory allocation and CPU time to resolve the execution context with the context snap-

shot. On the other hand, the COCA-middleware requires more adaptation time for loading

and executing the bundle implementation, but it can switch between weak/strong adaptation

actions based on the execution context and the allocated resources. As shown in the figure,

COCA-components composition requires less adaptation/reconfiguration, based on the adap-

tation mechanism. Such variations in the adaptation time provided by COCA-middleware

can make use of the adaptation process and increase the device durability. The adaptation

time in DAOP, as shown in the figure, may increase over the execution time, which leads to

poor performance and lower e�ciency.
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5.7 COCA-middleware Evaluation

The case study was implemented with COCA-middleware and other approaches proposed in

the literature. These approaches include the context-oriented programming paradigm target-

ing mobile devices, called JCOP [Appeltauer et al., 2008, Schuster et al., 2011], JCOOL,

supported by CAMEL methodology, which used aspect-oriented programming and mid-

dleware for context-dependent behaviours de/activation [Sindico et al., 2008, Sindico and

Grassi, 2009], MUSIC-middleware [Rouvoy et al., 2008a,Geihs et al., 2011], and MADAM-

middleware [Mikalsen et al., 2006], which was fully implemented by Paspallis [Paspallis, 2009].

The implementation of the I-TrinityTour in JCOP followed the COP approach [Appeltauer

et al., 2008, Schuster et al., 2011]. The implementation in JCOOL was accomplished with

the aid of the aspect-oriented programming framework for Objective-C [AspectCOCA, 2011].

Both MUSIC-middleware and MADAM-middleware functionalities were implemented using

the MUSIC development paradigm proposed by Rouvoy et al. [Rouvoy et al., 2008a].

JCOP JCOOL MUSIC-
middleware

MADAM-
middleware

COCA-
middleware

Self-tuning

Self-reconfiguring

Fig. 5.13: Autonomic Properties Support

The objective of this experiment is to evaluate the proposed solutions in supporting

the autonomic properties, self-tuning and self-configuring, of the self-adaptive I-TrinityTour

application. The support of these properties in the above-mentioned solutions can be sum-

marized as shown in Table 5.13. JCOP and JCOOL support only fine-grained adaptations

using ad-hoc programming-level techniques; this is not able to change the application struc-

ture. MUSIC-middleware supports both autonomic properties using parametric tuning and

plug-in architecture. The plug-in implementation used for adding or removing services/com-

ponents. MADAM-middleware supports only self-configuring as it models a separate plug-in

architecture for each context provider. Table 5.13 summarizes the adaptability support in

each platform.
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5.7.1 Experiment 4: Self-tuning Evaluation
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Fig. 5.14: Energy Usage for I-TrinityTour Application

Figure 5.14 shows the experimental results for energy usage analysis for the I-TrinityTour

running on the five platforms: JCOP, JCOOL, MUSIC-middleware, MADAM-middleware,

and COCA-middleware. The experiment shows that the COCA implementation of the I-

TrinityTour application used 15% less battery energy than the MUSIC implementation used.

The I-TrinityTour implementation with JCOOL consumes more energy during the adaptation

processes because it does not consider the battery level or status during the adaptation ac-

tion. In JCOOL, the context values are only considered for evaluating the context-dependence

in each joinpoint implementation. In the same way, the MADAM-middleware drained the

battery faster because each location service was implemented in a distinct plug-in (bundle)

architecture, which requires more processing time for loading the bundle implementation. In

contrast, when the same application was adapted by the COCA-middleware, the application

was able to adapt its behaviour and use less energy because the COCA-middleware adapts

to the location service by redirecting the delegate object to activate the required service

implementation. In JCOP, the application was able to adjust its behaviour and adapt the re-

quired location service; unfortunately, the context monitoring was being relied on the mobile

device operating system to deliver and detect the context information; this leads to faster

consumption of the battery resource as a result of trying to process too many context events
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at the same time. The MUSIC-middleware performs better with respect to battery consump-

tion because MUSIC-middleware uses a fine-tuning mechanism for manipulating components

implementation. However, the application implemented using MUSIC-middleware consumes

more energy than that using COCA-middleware because MUSIC-middleware calculates the

fitness of the application variant using a utility function every time the context state changes.

Such verification at runtime requires more CPU time and memory allocation, which, as a re-

sult, consumes more energy.

Figure 5.15 shows the experimental results for CPU activities analysed for the I-TrinityTour

application in the five platforms previously mentioned. The evaluation considered adapta-

tion processes including context monitoring, detecting, decision-making, and adaptation. As

shown in Figure 5.15, context monitoring requires much more CPU activity in the JCOP

and JCOOL platforms as they have no dedicated context-monitoring process, and they rely

on the infrastructure to deliver the context information. The MUSIC and MADAM archi-

tectures come second with regard to context monitoring as they both implement a dedicated

context manager which is able to process and filter the context information. Unfortunately,

JCOP, JCOOL, MUSIC, and MADAM do not consider the e↵ect of a contentious and unbal-

anced monitoring process for the context environment. This implies notifying the application

several times about multiple context events, which requires more of the CPU time to pro-

cess and handle these events. On the other hand, adapting the observer pattern allows the

context manager in the COCA-middleware to notify the interested components about the

context changes when needed, so that the context-monitoring time drops from 57 ms in MU-

SIC-middleware to 33 ms in COCA-middleware. For the same reason, the context detection

process drops from 72 ms to 46 ms in COCA-middleware.

The decision-making in JCOP and JCOOL require less CPU activity as both platforms use

static decision-making. The JCOP and JCOOL approaches assume that the developers can

predict when and where the context-dependent behaviour is needed in the application source

code. For the same reason, the MADAM-middleware requires less time for decision-making

as it uses predefined rules supported by a rule engine to control the adaptation action. In
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the MUSIC-middleware, the decision-making process is performed at runtime with the aid of

a utility function; this requires more computation activities for analysing the architecture’s

constraints, adaptation goals, predefined rules, and the quality of services, plus the user’s

preferences. Afterwards, the application’s variations model (adaptation plan) is selected

based on the utility function results. In COCA-middleware, the decision-making process is

performed at runtime with the aid of the policy and verification manager, which both consider

the decision policies in conjunction with the available resources and the quality-of-services

(QOS). In general, the dynamic decision-making process requires more e↵ort from the CPU

than the static approach does, as shown in Figure 5.15.
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Figure 5.16 shows how the five platforms use the allocated resources while the device is

in Sleep/Wake mode. Such an evaluation reflects the middleware’s ability to adjust its own
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functionality as long as the application is running in the background. At the same time, it

shows how the COCA-middleware wakens the application to notify the user about events in

the monitored region. The other approaches have not considered the trade-o↵ between the

adaptation process and the allocated resources. The result of this is that the I-TrinityTour

implementations on JCOP, JCOOL, and MADAM were consuming battery life even when

the application was in sleep mode or running in the background. The applications keep

updating the current location of the device. Such an action was unnecessary, as the device

was in sleep mode, so they consumed 90% of the battery life after executing the application

for 5 h. With the COCA and MUSIC-middleware, the application was executed for the same

period of time, and consumed less battery energy.

5.7.2 Experiment 5: Self-reconfiguring Evaluation

As mentioned before, self-reconfiguring is the capability of the software to adapt and behave

autonomously in response to context changes. To evaluate this attribute, the I-TrinityTour

application has been implemented in three distinct versions, using the MUSIC-middleware,

MADAM-middleware, and COCA-middleware. The JCOP and JCOOL platforms were ex-

cluded from this experiment as they did not support architecture reconfiguration.

The adaptation/configuration time for adapting the anticipation scenarios were mentioned

before. The scenarios include adding a suitable location service according to the battery level,

adding a sorting component, and adapting to a video-streaming service. Figure 5.17 shows

the evaluation results for the three architectures. The MADAM-middleware requires more

time to perform the adaptation because three bundles are loaded and executed. The total

adaptation time was 210 ms. The MUSIC-middleware required less time for reconfiguring

the software as it adapted the location service using parametric tuning rather than loading a

complete bundle for it. The COCA-middleware comes third in the analysis as it can switch

autonomously between several location services by de/activating the associated layers. In

addition, it verifies whether the plug-in can provide the necessary services before physically

executing its implementation. In addition to this, according to the context state, the COCA-
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middleware performs a runtime composition of the software components so that only the

needed components are executed. In MUSIC, the adaptation takes longer as it evaluates

multiple application variations, then one variant is selected and executed. Loading a precom-

piled code from the component repository after instantiation is accomplished in a shorter time

than it takes to load the whole bundle implementation at once in the COCA-middleware.

This is illustrated in Figure 5.18, which shows the memory allocations for the three plat-

forms. It is worth mentioning here that when the battery level is low, the COCA-middleware

allocates less memory because of the size of the COCA-component, which is small compared

to the bundle implementation in the MUSIC- and MADAM-middlewares.
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5.8 Summary

Any architecture analysis method relies on the active and willing participation of the stake-

holders, particularly the architecture team, advance preparation by the key stakeholders, an

understanding of architectural design issues and analytic models, a clearly articulated set

of quality attribute requirements, and a set of business goals from which they are derived.

ATAM is appropriate for medium-sized systems where stakeholders can reach a consensus and

the architect can carefully and qualitatively compare each of the scenarios identified. Archi-

tecture quality attributes can be related to the self-adaptive system properties. Combining

the self-* properties with quality attributes helps the designers to enhanced self-adaptive

software engineering.

Evaluating the COCA-middleware through ATAM methods verifies its ability to evaluate

its functionality (A1.2 of objective 1), constructing the composition plan (A2.1 of objective

2), perform introspection and intercession of the adaptation action (A2.2 of objective 2), re-

solve conflict among several decision policies (A2.3 of objective 2), achieving fine-grained and

Coarse-grained adaptation (A3.1 and A3.2 of objective 3), and anticipate unforeseen changes

(A4.1 and A4.2 of objective 4. In practice, performance and modifiability trade-o↵ with each

other as showed in the middleware evaluation. The COCA-middleware achieves self-tuning

and self-configuring without degrading the allocated resources. With regards to the adap-

tation processes including context monitoring, detecting, decision-making and adaptation,

COCA-middleware shows better performance compared to other approaches proposed in the

literature. Thus, the evaluation of COCA-middleware shows its ability in achieving (A5.1

and A5.2) of objective O5.

The evaluation of the COSD paradigm in comparison to AOSD shows that COSD is

better suited to implementing context-dependent and self-adaptive applications. The per-

formance and energy usage in COCA-applications are better than in DAOP-applications.

There is no doubt that Aspect-oriented frameworks can be used for developing and imple-

menting self-adaptive applications, but their performance is very poor in comparison to that
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of COCA-middleware. The COCA-middleware implementation performs better with regard

to adaptation processes, including context monitoring, detecting, decision-making, and adap-

tation. The evaluation results shows that implementing self-adaptive applications with the

aid of COCA-middleware can support software adaptability and variability with a↵ordable

adaptation costs and less impact on the allocated resources. Programming-level approaches

like JCOP and JCOOL tend to support self-tuning of software systems with an acceptable

level of performance, but the overall support of adaptability and variability is very lim-

ited in comparison with architecture evolution approaches such as MUSIC, MADAM, and

COCA-middleware. However, the programming techniques are better suited to small-scale

context-dependent applications, and they require extensive modification for supporting con-

text monitoring, context detection, and dynamic decision-making.
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Chapter 6

Development Methodology

Evaluation

Anticipating context changes using a model-based approach requires a formal procedure for

analysing and modelling context-dependent functionalities, and a stable description of the ar-

chitecture which supports dynamic decision-making and architecture evolution. This chapter

demonstrates the capabilities of COCA-MDA in supporting the development of context-aware

applications by describing a state-of-the-art case study and evaluating the development e↵ort

involved in adapting the COCA-MDA in constructing the application. The benefits gained

from using techniques which separate component-based aspects in the modelling methodology

and the productivity of COCA-MDA are the core of this chapter.

The evaluation objectives are outlined in Section 6.1. The design of the case study, based

on COCA-MDA, is demonstrated in Section 6.2. Section 6.3 describes the implementation

and evaluation of the case study application. In Section 6.4, the COCA-MDA is evaluated

using Constructive Cost Model II (COCOMO II). The lessons learned from the methodology

evaluation are illustrated in Section 6.5.
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6.1 Evaluation Objectives

The objective of this chapter is to demonstrate the fitness of COCA-MDA in modelling

self-adaptive applications. In general, there are two groups of requirements: first, the MDA-

related criteria, which we believe are necessary to increase the cost-e↵ectiveness of developing

context-aware applications, and second, the capability to model the application at several

anticipation levels using a clear sepration of concerns and producing a component-based

model. The evaluation objectives can be summarized as follows.

• O1: The capability of the methodology to support a technique for clear separation of

concerns through the analysis phase:

A1: Ensure COCA-MDA is able to support a clear separation between the application

functional and extra-functional concerns.

A2: Separate the context model from the business logic model.

A3: Separate the context-dependent requirements from the context-independent re-

quirements.

A4: Enable the developers to identify the extra-functional requirements which are man-

aged by the middleware for behavioural variations and adaptation.

• O2: The capability of the methodology to generate a component-based model which

modularizes the context-dependent functionality. The methodology can decompose the

application into several architectural units to allow developers to decide which part

of the architecture should be notified when a specific context condition occurs. The

middleware is aware of which parts of the architecture components are a↵ected by the

changes.

A1: Model and modularize actor-dependent, system-dependent, and environment-

dependent behaviour variations into architectural components.

A2: Produce a portable architecture which can be deployed on several platforms with-

out the need for intensive configuration. Ensure ease of deployment on several platforms;
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this includes evaluating the e↵ort required to write the configuration code for the new

platform compared to that required for others.

• O3: Enable the developers to specify a stable description of software models and pro-

prieties. This enables the developers to specify a set of decision policies which describe

the architecture evolution for specific changes.

A1: Enable the developer to embed decision points in the application modules, based

on when the adaptation is needed and on which part the new behaviour is extended to.

Determine which changes the architecture responds to, thereby extending the applica-

tion behaviour.

• O5: Reduce the development e↵ort and the configuration time.

– A5.1: Reduce the configuration time, which implies the addition of fewer source

lines of code.

– A5.2: Reduce the e↵ort applied [person-months].

– A5.3: Reduce the development time [person-months].

– A5.4: Reduce the number of people required.

– A5.5: Sizing the software maintenance ratio for the COCA-ADL transformation

into the platform-specific model (PSM).

6.2 Self-adaptive Indoor Wayfinding Application for Individ-

uals with Cognitive Impairments

Some of the challenges for individuals with cognitive impairments in wayfinding are remain-

ing oriented, recalling routines, and travelling in unfamiliar areas while relying on limited

cognitive capacity. Whereas people without disabilities often use maps or written directions,

either as navigation tools or for remaining oriented, the cognitively impaired population is
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very sensitive to issues of abstraction (e.g. icons on maps or signage), which presents the ap-

plication designer with the challenge of tailoring navigational information to each specific user

and context. With the capacity to move and the desire to be socially included, mentally/cog-

nitively disabled individuals who are independently mobile but have di�culties reaching their

intended destination might benefit from the self-adaptive IWayFinder application proposed

in this study.

The IWayFinder provides distributed cognition support for indoor navigation to persons

with cognitive disabilities. Radio Frequency IDentification (RFID) tags and Quick Response

Codes (QR-codes) are placed at decision points such as hallway intersections, exits, elevators,

and entrances to stairways. After reading the encoded URL in the QR-codes, the Cisco

mobility engine provides the required navigation information and instructs the user [Cisco

context-ware software, 2011]. The Cisco mobility infrastructure has the ability to capture

and employ contextual information about mobile assets. Contextual information can be

collected automatically using the Wi-Fi connectivity of the asset (for example, laptops or

Wi-Fi phones) or, for assets that do not have intrinsic wireless, by attaching radio frequency

tags or QR-codes to the asset. QR-codes are a specific matrix barcode or two-dimensional

code that is readable by dedicated QR barcode readers and camera phones [Parikh, 2005].

The benefit of integrating the application with the Cisco engine is the integration of several

assets that provide the contextual information. QR-codes or RFID tags are placed at the

DPs such as hallway intersections, exits, doors, elevators, or entrances to stairway identified

by the Cisco engine.

A user enters the building and points the mobile phone’s camera at any of the QR-codes

available at the DP. After reading the encoded URL in the QR-codes, the Cisco engine then

provides the required navigation information and instructs the user. To overcome the chal-

lenges of image rendering, the proposed self-adaptive application uses an augmented reality

browser (ARB) to display the navigation directions. The browser displays the directions on

the physical display of the tool’s camera. Using the device camera, the system reduces the

cognitive load and increases the user’s ability to realize the desired route. In addition, the
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application is able to provide the user with time-based events such as the opening hours of

the building, lunch time, closing hours of the o�ces, location access rights that control the

entrance of users to certain locations, and any real time alarm events. Moreover, the infras-

tructure support allows several persons to monitor and collaborate with the user en route.

Assuming the context information is delivered by the Cisco infrastructure, the following an-

ticipation scenarios are proposed:

A1: Self-tuning The application must track the user’s path inside the building. When

DPs are reached, the application places a marker for each DP the user passed. If the user

is unable to locate a decision point in the building, the application must be able to guide

the user towards a safe exit. The route directions can be delivered to the user in several

output formats: video, still images, and voice commands. The application should change

the direction output while also adapting to the device resources and the level of cognitive

impairment of the individual.

A2: Self-recovering Assuming that the user is trapped in a lift with no GPRS con-

nection (or in the case of a fire), the fire alarm is raised, the application is notified, and the

application adapts the shortest path to the nearest fire exit. In both cases, the application

submits the user’s current coordinates and an emergency help message to the emergency

number, parents, career team, and security sta↵. The communication is achieved using the

available connection, regardless of the resource cost, to alert any nearby devices to the emer-

gent need for help. If no connection is made, the device emits an alarm sound and increases

the device volume to maximum. The security sta↵ or fire fighters receive the emergency mes-

sage and can view the Closed-Circuit TeleVision (CCTV) video to identify the floor on which

the user is trapped. When the CCTV system locates the user, full information about the

user is displayed, including a personal and health profile. At the same time, the application

guides the user to a safe exit using a preloaded path (in case the CCTV camera is disabled

and the services engine is o↵). Fire fighters can use the received message to locate the user

within the building.
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6.2.1 Modelling the I-WayFinder Application with COCA-MDA

The COCA-MDA is used to decompose the application based on the context-driven be-

haviour. This case study has several anticipation levels, which must be realized by the

COCA-middleware at runtime. The COCA-MDA was described in detail in Chapter 3. This

section focusses on highlighting the modelling phase of COCA-MDA. Specifically, it provides

a full description of the behavioural decomposition among the extra-functionalities. These

extra-functionalities implement the desired behaviour based on their anticipation level.

The first model based on COCA-MDA is shown in the requirements diagram. This

diagram is used to classify the requirements based on their type and the anticipation level.

For example, Figure 6.1 shows several requirements that were derived by the case study

scenarios. The requirements classified into functional, extra-functional, and technological.

An example of the functional requirement is shown in the figure with requirements number 5

that provides time-based events to the user. Other examples of functional requirements are

’user current location’, ’display direction’, and ’user facing abstraction’. The extra functional

requirements are classified by the tagged value kind in the requirement diagram. For example,

’adapt the direction output’ is an extra functionality because it is driven by the availability

of the device resources. In the same way, ’alternative route’, ’user is trapped’, and ’send an

emergency message’ are classified as extra functional requirements, as shown in the figure.

The requirements are combined into a use case diagram. The use cases are classified into

two major classes. The first class comprises application use cases. The second class refers to

any use case that is extended by a contextual condition. Figure 6.2 shows the use case diagram

for this case study. The use case ’scan RFID’ is a use case describing a core functionality

delivered by the application. The fire alarm use case is a contextually-driven use case that

extends the application functionality to send an emergency message and provides a route to

the nearest fire exit. The use cases coloured blue refer to contextual use cases that describe

context providers. Adapting the user location in the ’symmetric places’ use case requires

extending the application behaviour to calculate an alternative route. In this diagram, the

parents, career team, security sta↵, and fire-fighters are classified as actors who are alerted
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Fig. 6.1: Case study requirements diagram
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Fig. 6.2: Use case diagram

by the application whenever the context-driven behaviours are adapted. For example, the

fire-fighters are notified only when there is a fire in the building. On the other hand, the

parents or career team and the building security sta↵ are notified with an emergency message

generated by the application.

The use case is split into two distinct class diagrams. The first diagram describes the

basic application components that are executed regardless of the execution context. The

base components’ class diagram is shown in Figure 6.3. This figure describes the relation
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Fig. 6.3: Core structure object diagram

between the application classes and the Cisco engine. For example, the UI is providing the

user prompts to scan the RFID tags, displaying the direction outputs, and displaying the

direction in the augmented reality browser. In addition, it integrates the application and the

Cisco mobility services engine API. This core structure is integrated with the extra-functional

class model in the final architecture model.

The extra-functionality class diagram in Figure 6.4 provides a detailed view of the ap-

plication COCA-component and the COCA-middleware. In addition, this diagram models

the desired behavioural layer that can be used to anticipate context changes. The COCA-

middleware notification queue is used to notify the COCA-components of context changes.

The diagram has four major COCA-components. Each component includes several layers that

are executed whenever their implemented behaviour is needed. The COCA-component ’user

trapped’ implements several selectors executed based on the context state, for example, when

the temperature level in the lift exceeds a specific value defined by the decision policy; in this
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Fig. 6.4: Behavioural Model

case, the selector method in the ’user trapped’ COCA-component is executed. However, the

method’s execution is controlled by the adaptation manager after evaluating the attached

DPLs. The other COCA-components are: ’routing manager’, ’direction output’, and ’fire

alarm’. The COCA-component ’fire alarm’ realizes the same delegation object, which is the

’emergency message’ shown in the Figure. Furthermore, the ’emergency message’ includes

five distinct layers; each layer implements a specific behaviour. For example, the sub layer
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Fig. 6.5: Activity diagram

’fire exit adaptation’ is activated in the execution whenever a fire alarm is raised; the appli-

cation must provide the nearest fire exit to the user. At the same time, the help message is

sent after adapting the available connection, regardless of the cost.

The application behavioural model is shown in Figure 6.5. This activity diagram is used

to demonstrate the decision points in the execution that might be reached whenever internal
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or external variables are found. However, the main activities of the application are scanning

the RFID, obtaining the route direction from the engine, and displaying the direction image in

the augmented reality browser. This describes the basic behaviour of the application. In some

cases, the user is trapped in the lift, this abnormal condition requires that the application

perform a decision in this situation. This decision point requires several parameter inputs

to make the correct choice at this critical time. The activity parameters shown in the figure

identify the building temperature, oxygen level, humidity, and pressure. At the same time,

this activity is required to adapt to the available condition. Additionally, the connection

status must be considered in the decision. From the activity diagram, the developers extract

several DPLs that are attached to the correspondent COCA-components.

From the activity diagram, the developers can extract the following DPLs. Each policy

must be modelled in a state diagram:

• Policy 1: This policy is attached to the ’routing manager’ COCA-component in Figure

6.4. The policy syntax can be explained as the code shown in Listing 6.1.

Listing 6.1: Decision policy1

If (locationDidChanged && RFIDisScanned )

then {GetRouteDirections(); TraceUserRoute();}

else if (!(RFIDScaned ) && !(UserFollowRoute))

then {LocateNearestRFID(); AlternativeRoute();}

else If (AbstractionDidFound)

then {AlternativeRoute(); StartTimer();TraceUserRoute(); }

else If (userInSymetricPlaces)

then AlternativeRoute();

• Policy 2: This policy is attached to the ’direction output’ COCA-component in Figure

6.4. The policy syntax can be described by the code shown in Listing 6.2.

• Policy 3: This policy is attached to the ’user trapped’ COCA-component in Figure

6.4. The policy syntax is as shown in Listing 6.3.
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Listing 6.2: Decision policy 2

If ( direction is Provided && Available memory >= 50

&& CPU throughput <= 89 && light level >= 50

&& BatteryLevel >= 50)

then {PlayVideo(); displayImage(); VoiceCommand();}

else If ( BatteryLevel < 50

|| memory level < 50 || CPU >92)

then {displayImage(); VoiceCommand();}

else If( Available Memory level < 20

&& CPU > 92 && light level > 88)

then VoiceCommand();

• Policy 4: This policy is attached to the ’fire alarm’ COCA-component in Figure 6.4.

The policy syntax is as shown in Listing 6.4.

The final architecture for this case study is shown in Figure 6.6. The architecture is shown

the base-components, COCA-components and the connectors used to extend the application

behaviour when a specific method in the interface is called.
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Listing 6.3: Decision policy 3

If ( UserIsTrapped() && HumidityLevel = 100

&& Body Temperature > 38 &&

BloodPressure between 120 and 180

&& LowOxygenLevel

&& RoomTemperature <= �15 and >= 50 )

then {

if(connection = GPRS)

{HelpMessage(); GetEmergencyNumber();}

else if (connection = WIFI) {WebToSMS();

SendEmail(); BoradcastNotification();}

else if (connection = bluetooth)

{ OpenBluetooth(); Add Bonjour Service();

HelpMessage(); BoradcastAlert(); }

PlayAlarmSound(); }

6.3 IWayFinder Implementation and Evaluation

The IWayFinder application has been implemented in two di↵erent versions, with and with-

out the COCA-middleware. The battery life has been measured by running each version on an

iPhone 4 device. The ’direction output’ COCA-component in Figure 6.7 registers itself with

the context manager to be notified when the BatteryLevelDidChanged, CPULevelDidChanged,

MemoryLevelDidChanged, DeviceOrientationDidChanged and/or LightLevelDidChanged. When

the context manager notifies [PostNotfication:BatteryLevelDidChanged] to the ’direction out-

put’ component, the adaptation manager reads the attached DPL in list 6.2. Based on the

policy action, the adaptation manager calls the delegate object DisplayDirection which for-

wards the method invocation to the desired sub layer, based on the battery level. If the

battery level < 20%, then the adaptation manager activates the sub layer VoiceCommand to

adapt this context condition.

The experiments show that the COCA IWayFinder application saved battery consumption
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Listing 6.4: Decision policy 4

If ( FireAlaramRasied && HumidityLevel < 10

&& Body Temperature > 38 &&

BloodPressure between 120 and 180

&& LowOxygenLevel

&& RoomTemperature >= 40 )

then {

if(connection = GPRS)

{HelpMessage(); GetEmergencyNumber();}

else if (connection = WIFI) {WebToSMS();

SendEmail(); BroadcastNotification();}

else if (connection = bluetooth)

{ OpenBluetooth(); Add Bonjour Service();

HelpMessage(); BroadcastAlert(); }

PlayAlarmSound(); FindFireExit(); DisplayRoute(); }

by 13%, despite its self-adaptability, as shown in Figure 6.8. One of the expected benefits

of using COCA-MDA in structuring the self-adaptive application is the enhancement of the

context monitoring and detection processes. The IWayFinder implementation without the

COCA-platform consumes more energy during context monitoring, thus draining the battery

faster, because context changes are sent to a large subset of components. On the other hand,

when the same application adapts the COCA-middleware, the application is able to adapt its

behaviour and enhance both context monitoring and detection. The adaptation/configuration

time and the context handling time are shown in Figure 6.9.

6.4 Evaluating COCA-MDA with COCOMO II

The IWayFinder application has been selected to determine the development e↵ort using

COCA-MDA compared with that using three MDA approaches proposed in the literature:

U-MUSIC-MDA proposed by Khan [Khan, 2010], Paspallis’s MDA proposed by Paspal-
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Fig. 6.6: I-WayFinder application architecture

lis [Paspallis, 2009], and MUSIC-MDA proposed by Wagner et al. [Wagner et al., 2011].

The enterprise architecture tool (EA) [SPARX Enterprise Architecture, 2010] was used to

develop the IWayFinder application using the four MDAs (COCA, MUSIC, U-MUSIC, and

Paspallis’s). Each MDA phase was carried out separately. COCOMO II [Boehm et al., 2000]

was used to find the development e↵ort in person-months for each MDA. There are two CO-

COMO II models, i.e. the post-architecture and early design models. The post-architecture
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Fig. 6.7: Direction Output Context Oriented Component
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model is a detailed model used once the project is ready to develop and sustain a fielded

system. The early design model is a high-level model which is used to explore alternative

architectures or incremental development strategies [Boehm et al., 2000]. Based on the above,

the post-architecture model has been selected to evaluate the four MDAs: COCA, MUSIC,

U-MUSIC, and Paspallis’s.

Based on the COCOMO II model, the sizing of new and reused code can be estimated

via three major methods, as described in Boehm et al. [Boehm et al., 2000]. These methods

are counting Source Lines Of Code (SLOC); counting Unadjusted Function Points (UFP);

and aggregating new, adapted, and reused code, i.e. Adapted source lines of code (ASLOC).

This type of reused code is estimated using the automatically translated code factor; this is

considered to be a separate activity from development.

With regard to counting SLOC. The code generated from the MDA tool (EA) is excluded

from the estimation. The e↵ort for modelling the architecture can be captured using UFP. In

such cases, COCOMO II is capable of relating UFP to SLOC in the implementation language.

Starting from the fact that a UML is used to draw the model, the UML is classified on the

same scale as a fourth-generation language. The relating process provides greater accuracy

during the estimation than is obtained by estimating the generated lines of code using the

MDA tool. Based on the above, the final SLOC for a module = the final application SLOC

- the generated SLOC. This increases the accuracy of estimating the development e↵ort.

COCOMO II is not only capable of estimating the cost and schedule for a development

starting from ‘scratch’, it is also able to estimate the cost and schedule for products which are

built upon already existing code, i.e. reused code. However, the third sizing measure, which

aggregates new, adapted, and reused code, is suitable for MDA-based approaches. Starting

from this fact, code taken from another source used in another product under development

also contributes to the product’s e↵ective size. Pre-existing code which is treated as a white-

box and is modified for use with a product is called adapted code. The e↵ective size of

reused and adapted code is adjusted to be its equivalent in new code. The adjustment on the

additional e↵ort it takes to modify the code for inclusion in the product. This method allows
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us to estimate the development e↵ort during the transformation and deployment phases,

phases which all MDA approaches have. When the developer transforms the application

from a PIM into a PSM, specific configurations are needed and this can be captured by the

percentage of code modified and the percentage of integration modified.

The following equations describe the e↵ort Person-Months (PM) and the Time to Develop

(TDEV), taking into consideration the aforementioned inputs, as shown in Equation 6.1. The

primary equation in 6.1 denotes the e↵ort in person-months derived from the software size

defined in thousands of lines of code (KLOC). The exponent E defines the sum of the scale

factors (SF), i.e. the Cartesian product of the e↵ort multipliers (EM) and the constant value

A, A value was calibrated from several software projects surveyed in Boehm et al. [Boehm

et al., 2000]. The second equation in Equation 6.2 depicts the time required to develop a

software, derived from the nominal e↵ort (PM), the sum of SFs, and the constant values

calibrated from several software projects evaluated in COCOMO II. The rating scale factors

and the e↵ort multipliers used in this work to derive the e↵ort and the time required to

develop the IWayFinder application using COCA-MDA.

PM = A⇥ (Size)E ⇥
17Y

i=1

EMi, (6.1)

whereE = B + (0.01⇥
17X

i=1

SFi),

A = 2.95, B = 0.91

TDEV = C ⇥ (PM)F , (6.2)

whereF = D + 0.2⇥ (E �B),

C = 3.67, D = 0.28 (COCOMOII.2000)

Thus, counting the SLOC is not adequate for evaluating the development e↵ort in MDA-

based methodology. Sizing software maintenance is better for MDA because, after the code is
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generated, the developer has to maintain the code and add the target platform configuration.

This is required in the PSM phase and in the deployment and transformation phases. So,

Equation 6.3 is used to calculate the sizing of code maintenance [Boehm et al., 2000]. The

initial maintenance size estimate is adjusted with a maintenance adjustment factor (MAF).

This relationship can estimate the level of e↵ort, using the Full Time Equivalent Software

Personnel FSPM , given TM as in annual maintenance estimates, as shown in Equation 6.4,

where TM = 12 months, or, given a fixed maintenance sta↵ level, FSPM , determine the

necessary time, TM , to complete the e↵ort [Boehm et al., 2000]. To estimate the adapted

code, the COCOMO II model uses an additional set of equations to calculate the final count

for source instructions and related costs and schedule. The equations in 6.3, 6.4, and 6.5 use

the following values as parameters.

• ASLOC. The number of source lines of code adapted from existing software used in

developing the new product.

• Percentage of design modification (DM). The percentage of the adapted software’s

design which received modifications to fulfil the objectives and environment of the

new product.

• Percentage of code modification (CM). The percentage of the adapted software’s code

which receives modifications to fulfil the objectives and environment of the new product.

• Percentage of integration required for modified software (IM). The percentage of e↵ort

needed for integrating and testing of the adapted software in order to combine it into

the new product.

• Percentage of reuse e↵ort resulting from software understanding (SU). Percentage of

reuse e↵ort resulting from assessment and assimilation (AA); programmer unfamiliarity

with software domain (UNFM). Boehm et al. [Boehm et al., 2000] provides a rating

scale for programmer unfamiliarity (UNFM) as shown in Table 6.10, .
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I
The other nonlinear reuse increment deals with the degree of Assessment and Assimilation (AA) needed to determine whether
a fully-reused software module is appropriate to the application, and to integrate its description into the overall product
description. Table II-6 provides the rating scale and values for the assessment and assimilation increment. AA is a percentage.

Table  II-6 : Rating Scale for Assessment and Assimilation Increment (AA)

AA Increment Level of AA Effort
0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

The amount of effort required to modify existing software is a function not only of the amount of modification (AAF)
and understandability of the existing software (SU), but also of the programmer’s relative unfamiliarity with the software
(UNFM). The UNFM parameter is applied multiplicatively to the software understanding effort increment. If the programmer
works with the software every day, the 0.0 multiplier for UNFM will add no software understanding increment. If the
programmer has never seen the software before, the 1.0 multiplier will add the full software understanding effort increment.
The rating of UNFM is in Table II-7.

Table II-7: Rating Scale for Programmer Unfamiliarity (UNFM)

UNFM Increment Level of Unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

(EQ II-1)

Equation II-1 is used to determine an equivalent number of new instructions, equivalent source lines of code (ESLOC).
ESLOC is divided by one thousand to derive KESLOC which is used as the COCOMO size parameter. The calculation of

Fig. 6.10: Rating Scale for Programmer Unfamiliarity (UNFM)

MAF = 1 +
✓
SU

100
⇥ UNFM

◆
, (6.3)

SU: Software Understanding (zero if DM = 0 and CM = 0),

DM: percentage of design modified,

CM: percentage of code modified,

UNFM = 0.4

PMM = TM � FSPM , (6.4)

where T = 12 months

PM = AX(Size)B +

&
ASLOC(AT

100)

ATPROD

'

(6.5)

In general, MDA-based approaches must apply Computation Independent Model (CIM),

PIM, PSM, transformation, deployment, and code generation. For each phase in the MDA

a sizing method was adapted for estimating the development e↵ort as shown in Table 6.1.

However, the code which is directly generated from the MDA tool (EA) is excluded from the

development e↵ort, but is used as an input to measure the software maintenance e↵ort. In

addition, the middleware code has to be adapted and maintained, or even configured, to suit

the new application platform.
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Phase Sizing Method Results 

CIM

PIM

PSM

Transformation 

Final code  

Deployment
 integration 

Counting Unadjusted 
Function Points (UFP)

Relating UFP into SLOC 

UFP UFP into SLOC

Quantifying the Maintenance
 Adjustment Factor (MAF)

(Size) PM

Quantifying the Maintenance 
Change Factor (MCF)

(Size) PM

Source Line of Code  SLOC =  Final SLOC - Generated SLOC   

Quantifying the Maintenance 
Change Factor (MCF)

SLOC 

Table 6.1: MDA phases and Size factors

6.4.1 COCOMO II Evaluation Results

The COCOMO II tool was used to estimate COCOA-MDA, U-MUSIC, MUSIC, and Paspal-

lis’s MDA. The evaluations produced the following results for COCA-MDA and the alterna-

tive methodologies.

Figure 6.11 provides the estimated e↵orts for the four MDAs. It also shows the total size

(SLOC) for the IWayFinder application after it has been developed in each MDA. The figure

shows that COCA-MDA requires less e↵ort in PM, despite the fact that the total SLOC

is greater than for Paspallis’s MDA. In Paspallis’s MDA, each context provider requires a

separate plug-in architecture, which requires new software engineering to build the plug-in.

The MDA tool does not generate the required code for the plug-in, but leaves the required

code to be composed and configured in the deployment stage. This requires more e↵ort

to configure and maintain the plug-in architecture. This e↵ort is captured using the UFP

analysis, so the total e↵ort for Paspallis’s MDA is one of the highest because the ratio

of the maintenance adjustment factor is very high. Such facts demonstrate the accuracy

obtained using COCOMO II in estimating self-adaptive software development methodology.

In addition, the figure shows that the e↵ort in MUSIC is the greatest; the reason for this

is a lower ratio of adaptive and reused code in MUSIC compared to that in its extensions

U-MUSIC and Paspallis’s MDA.
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Fig. 6.11: Total E↵ort for each MDA approach

Figure 6.12a provides more information for each MDA in terms of the estimated cost per

MDA phase. As shown in the figure, the cost of performing the PIM was large for all MDAs.

The reason for this is that all MDAs focus more on modelling the application variation model

through the PIM. The cost of adapting the PIM in MUSIC is the largest because of the

complexity of adapting the MUSIC PIM tasks; this requires the developer to produce more

UML models than in the others. For the same stage, Paspallis’s MDA comes with less cost.

In Paspallis’s MDA, the time spent by the developers in building the context-provider plug-

ins is greater than the e↵ort required to build the architecture itself. This is why Paspallis’s
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Fig. 6.12: Cumulative E↵ort per model/MDA in person-months

MDA comes second, after U-MUSIC, when evaluating the PSM phase.

Figure 6.12b provides the cummulative cost in PM for each MDA phase. As shown in

the figure, the cost of performing the PIM was large for all MDAs. COCA-MDA reduced

the e↵ort required to generate the PSM during deployment, as shown in Figure 6.12b. On

the other hand, Paspallis’s MDA increased the e↵ort required for software maintenance in

the transformation and deployment phases. Specifically, COCA-MDA and U-MUSIC reduce

the e↵ort needed to implement new or reused context provider i.e integrating a new sensor

in the platform. This result reflects the benefits gained from employing the COCA-ADL for

architecture deployment in several platforms. It is worth mentioning here that the ‘labour
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rate per month’ has been given the same value for all the MDAs throughout the evaluation.
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Fig. 6.13: MUSIC-MDA and U-MUSIC-MDA estimated e↵orts

In order to provides more information about each MDA approach, we have analysed the

e↵ort per phase for each MDA. Figure 6.13a shows the estimated e↵ort for each phase for

the MUSIC methodology. In tis case, the design of variability models and validation require

more e↵ort than in the others, but modelling the context model require less e↵ort. This

figure demonstrate that MUSIC requires more e↵ort and provides no cost e↵ectiveness in

developing the IWayFinder application.

In the same way, the U-MUSIC evaluation is illustrated in Figure 6.13b. The domain
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Fig. 6.14: COCA-MDA and Paspallis’s MDA estimated e↵orts

model propsoed by U-MUSIC MDA requires more e↵ort than the variability model does.

In U-MUSIC, the domain model requires the developer to split the context model into four

models: functionality ontology, service ontology, context and resource model, and context

provider. These models require more e↵ort than building a simple context model like MUSIC.

These models are collaborated into architecture constraints in the variability model, which

uses them as inputs for the utility functions. Such an e↵ort in domain modelling can increase

the developers’ understanding of the application domain, but it does not really enable them

to enhance the architecture design. In our experience, the results from the domain model are
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not reflected in the architecture variability model; the domain model is only used to obtain

information on the architecture constraints which are used as input for the utility function.

Figure 6.14a shows the estimated e↵ort for each phase in Paspallis’s MDA methodology.

The development of context providers and analysis are the phases which require most e↵ort

by the developers. The e↵ort in the deployment and maintenance phases are very high

compared to those in the others. Thus, a planning-based adaptation requires more e↵ort

in the requirements and the proposed methodology requires more e↵ort in developing the

required plug-ins which fit the planned adaptation. Although this methodology does not suit

self-adaptive applications when unanticipated conditions are in place, it does increase the

development and maintenance e↵orts.

Figure 6.14a shows the estimated e↵ort for each phase for the COCA-MDA methodology.

The figure illustrates that less e↵ort is required to construct the application through the

COCA-MDA phases. For example, to model the PIM of the architecture, 21 PM are required

in COCA-MDA, but MUSIC requires 102 PM, U-MUSIC requires 70.5 PM, and Paspallis’s

MDA requires 40.4 PM, assuming that the context providers are not changed at runtime with

respect to Paspallis’s MDA. The intensive analysis of the application requirements in COCA-

MDA simplified the process of modelling the variability model. Instead of modelling several

variation models, as in MUSIC and U-MUSIC, the developers model one extra-functionality

model and another core structure model. In addition, the methodology modularizes each

context-dependent functionality in a separate component model instead of designing a new

plug-in from scratch and then configuring it, as in Paspallis’s MDA.

Finally, Figure 6.15 shows the required sta↵ per phase in each methodology. The MUSIC

methodology requires the most sta↵ to develop the IWayFinder application, and COCA-MDA

requires the least. Next to MUSIC comes Paspallis’s MDA and then U-MUSIC. This analysis

reflects the e↵ort required in 12 months with respect to the ratio of code maintenance and

deployment plus the required e↵ort to model the architecture.
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Fig. 6.15: Project personnel for each phase for each MDA approach

6.5 Lessons Learned

COCA-MDA provides the following benefits.

• Intensive analysis of the application requirements simplified the process of modelling

the application’s behavioural model, so, instead of modelling several variation models

as in MUSIC and U-MUSIC, the developer models one behavioural model.

• It enables the architecture to anticipate several behavioural variations, based on the

context and the specific needs of individuals with cognitive impairments.

• It enables the application to proactively anticipate or reactively address unforeseen

changes through the support of a dynamic decision-making and policy framework. The

policy framework is based on a stable description of software models and proprieties.

• It can decompose the application into several architectural units to allow developers

to decide which part of the architecture should be notified when a specific context

condition occurs.

• Counting the SLOC is not adequate for evaluating the development e↵ort in MDA-

based methodology. Sizing software maintenance is better for MDA because, after the
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code is generated, the developer has to maintain the code and add the target platform

configuration.

• Clearly, COCA-MDA has reduced the development e↵ort and increased the architec-

ture’s ability to adapt to context changes.

• COCA-MDA decreases the development e↵ort because it uses a clear separation of

concerns and employs a decomposition mechanism to produce a context-oriented com-

ponent model. Using these technique reduces the modelling tasks and combines the

MDA phases in a simple way.

6.6 Summary

Self-adaptability requirement, modelling, architecture, implementation, and assurance ap-

proaches require a systematic solution which inter-relates all aspects on a single platform.

Requirements analysis can provide a great deal of information about the extra-functionalities

of the self-adaptive system. In the same way, requirements analysis can facilitate and simplify

architecture reflection by providing the information required by the software to manage itself.

Moreover, COCA-MDA can reduce the complexity of self-adaptive engineering through map-

ping requirements to actor-, system-, and environment-dependent behaviours. This study

shows how COCA-MDA reduces the required development e↵ort compared to other MDAs.

It also demonstrates how COCA-MDA reduces the software maintenance ratio through the

architecture deployment and transformation.
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Chapter 7

Conclusions

This thesis described COSD as a new way of building context-dependent and self-adaptive

applications using a combination of a model-driven architecture which generates an ADL

presenting the architecture as a components-based system, and a runtime infrastructure which

enables transparent self-adaptation with the underlying context environment.

Specifically, a model-driven architecture was used to demonstrate a new approach to build-

ing self-adaptive applications by adapting the COCA-MDA methodology. This methodology

enables developers to modularize an application, based on context-dependent behaviours,

and to separate context-dependent functionalities from the context-free functionality. It also

enables dynamic context-driven adaptation without overwhelming the quality attributes. In

addition, developers can design the system to proactively or reactively anticipate context

changes by providing a decision policy which triggers the adaptation whenever specific con-

text values cross lower or upper limits. This process is easy to accomplish as long as the mid-

dleware is aware of which parts of the architecture are a↵ected by the changes. A predefined

policy can provide the middleware with su�cient information to perform the adaptation.

COCA-middleware performs the adaptation processes, including context monitoring and

detecting and dynamic decision-making, and maintains the architecture quality attributes

during the adaptation. The COCA-middleware uses the operations among the device’s re-

sources and considers the interoperability among the architectural components. The middle-
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ware verifies the adaptation output among the available resources and the trade-o↵s among

the quality attributes of the architecture. The e↵ects of context monitoring and detecting on

the device’s resources are enhanced. The COCA-middleware considers a dynamic decision-

making process which determines the parts which need to be changed and how to change

them to achieve the best output. The COCA-middleware reduces the impact and costs of

the adaptation process with respect to the device’s resources and achieves the properties of

a self-adaptive system, specifically self-configuring and self-optimizing, without a↵ecting the

quality attributes of the architecture.

7.1 Achievements

The COSD has successfully modularized the self-adaptive application, based on the context-

dependent behaviour. It facilitate the development of this family of applications when context

anticipation is in place. The development methodology enables developers to design an ap-

plication as sets of context-free and context-dependent components. The COCA-component

encapsulates a context-dependent behaviour with variant implementations based on context.

Finally, the COCA-MDA generates an architecture described by COCA-ADL which is ready

to be deployed on several platforms. The finidings of this study can be summarised by the

following:

• Modularizing the software based on context-dependent functionality provides software

systems with adaptability and variability.

• Supporting context-binding mechanisms with observer patterns was impossible before

the introduction of COCA-MDA methodology; COCA-MDA provides clear separation

between the context provider and consumer. In addition, it modularizes the application

components, based on context. This makes identifying which component must respond

to a specific context condition an easy task in the design phase.

• The ATAM evaluation showed that the architecture can anticipate unforeseen changes
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dynamically by integrating policy mismatch resolution with architecture introspection,

as well as instantiating a composition plan. The adaptation manager then verifies

the fitness of the composition plan from the unforeseen changes. Performance and

modifiability do, in fact, trade-o↵ with each other.

• The dynamic decision is used for tuning the adaptation process, assuring the adap-

tation, and verifying its results. The COCA-middleware is therefore able to switch

autonomously between weak adaptation and strong adaptation types.

• The COCA-middleware can invoke or revoke a specific component dynamically without

a↵ecting the device performance; however, the component manager must then verify to

the component’s ability to provide/require specific methods, services, and resources.

• The interoperability of the application components and their sublayers are a major fea-

ture of COCA-middleware. The evaluation shows the architecture’s ability to deactivate

or activate sublayers implementation when driven by a context change. However, this

feature is supported by adapting two design patterns when implementing the adaptation

manager.

• The evaluation verifies the ability of the COCA-middleware to perform dynamic assur-

ance and verification of the adaptation output.

• COCA-middleware supports the self-adaptive application assurance by enabling the

developer to specify the decision policy through the development methodology and a

middleware that maintaining them at runtime. Providing dynamic verification and

validation methods rely on a stable description of software models and proprieties in

the configuration element in the COCA-ADL.

• The COSD paradigm increases the software-development productivity. This achieved

by employing a decomposition strategy and a model driven approach for building self-

adaptive software systems.
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• The COCA-middleware supports self-adaptability (Self-configuring and self-tuning) and

dependability in mobile computing environment.

• The evaluation of the COSD in comparison to AOSD shows that COSD is better suited

to implementing context-dependent and self-adaptive applications.

• Programming-level techniques like COP and AOP are not su�cient to build self-adaptive

software.

• The performance and energy usage in the software that implements DAOP engines are

very poor, because of the continuous evaluation between the passive and active context

state in each joinpoint.

• There is no doubt that AOP frameworks can be used for developing and implementing

self-adaptive applications, but their performance is very poor in comparison to that of

COCA-middleware.

• Programming-level approaches like JCOP and JCOOL tend to support self-tuning of

software systems with an acceptable level of performance, but the overall support of

adaptability and variability is very limited in comparison with architecture evolution

approaches such as MUSIC, MADAM, and COCA-middleware. However, the program-

ming techniques are better suited to small-scale context-dependent applications, and

they require extensive modification for supporting context monitoring, context detec-

tion, and dynamic decision-making.

• The COCA-middleware implementation performs better with regard to adaptation pro-

cesses, including context monitoring, detecting, decision-making, and adaptation. The

evaluation results shows that implementing self-adaptive applications with the aid of

COCA-middleware can support software adaptability and variability with a↵ordable

adaptation costs and less impact on the allocated resources.

• Separating the adaptation logic and the context model from the program business logic

increases software maintainability and scalability.
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• MDA-based approaches are not always increase the development productivity. MDA-

based approaches must pay more attention over the implication of PSM configurations.

• Self-adaptive software can be built using a generic development paradigm supported

by an adaptation engine that use generic design principles and patterns. As result self-

adaptive software can be implemented using a standard Object Oriented Programming

(OOP).

7.2 Future work

This section outlines the key areas identified for future work. Future work targets improving

the COCA-platform and its integration with more complex context models and applications.

The current COCA-component model can facilitate the development of context-aware appli-

cations in mobile devices. The COCA-components need improvements to be more generic

and customizable to suit a wide range of applications. Potentially, a generic component

framework which implements generic context-dependent behaviour can improve application

capability and introduce dynamic behaviour adaptations.

The decision policies require more e↵ort with respect to policy mismatch and resolution.

This is in line with improving the capabilities of self-assurance and dynamic evaluation of

the adaptation output. This thesis proposed a closed adaptation system; improving the

current COCA-platform toward an open adaptation system will increase its ability to adapt to

unanticipated context changes. Improving dynamic decision-making can increase the ability

to achieve several self-adaptability properties such as self-recovering and self-healing. In

addition, the introduced architecture needs to be tested with more practical case studies

to show its fitness in addressing anticipation and uncertainty in the context model. The

architecture evaluation used in this thesis can outline the fitness of the architecture with

respect to certain scenarios. However, an intensive architecture evaluation, for example using

the adaptability evaluation method (AEM) [Tarvainen, 2007], can inform designers with

regard to major modifications to the architecture.
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The extension of these processes to runtime involved moving the measurement of quality

attributes and performing the trade-o↵ analysis in runtime. This approach sounds promising

but further justification is required in terms of the measuring mechanism and the dynamic

decision-making evaluation, which are both challenging tasks for self-adaptive applications.

One can ask whether such an approach can ensure the accuracy of the data in terms of imper-

fection and uncertainty. The second concern is how a software makes decisions when several

quality attributes change at the same time. Identifying trade-o↵ points is not feasible because

of the complexity involved in identifying the dependence among several quality attributes of

sensitivity points.

The COCA-MDA requires an improvement supporting requirements reflection and mod-

elling requirements as runtime entities. This can be used to anticipate the evolution of both

functional and non-functional requirements. However, the requirements reflection mecha-

nism requires support at the modelling level and the architectural level. Moreover, to achieve

such a reflection, the COCA-ADL must support evolution over the operation time of the

software system. This thesis proposed a reflective middleware support for self-adaptability;

improving the middleware to support a reflection at the meta-level can provide a mechanism

for transparency between runtime context changes and the underlying context requirements.

Moreover, using COSD to build self-adaptive software might requires further investigation

related to the quality of user experience, which measures the end users satisfaction and their

experience of the adapted behaviour.

7.3 Summary

This chapter summarized the motivation for the research undertaken and the most significant

achievements of the work presented in this thesis. It outlined how this work contributed to the

state-of-the art in self-adaptive models, targeting context-aware applications by providing a

COCA-platform. The behavioural decomposition of a context-aware application modularizes

the application into two casually connected layers of component sets: the base-components

196



and the COCA-components. The COCA-components are managed by a middleware and in-

troduce context-dependent behaviour dynamically, based on the context state. Integrating

separation of concerns with a component-based framework through a model-driven architec-

ture support generates context-oriented component-based applications which have the ability

to modify their behaviour at runtime by invoking the COCA-components as needed.

Progress toward self-adaptation is realized by COCA-middleware, which ensures the fit-

ness of the adaptation results among the architecture quality attributes. Two case studies

have been selected to evaluate the development approach by COCA-MDA, and the gener-

ated architecture has been implemented in a mobile device to verify to its ability to achieve

the objectives of the proposed design. The implementation, architecture evaluation, and

methodology evaluation showed that the proposed tool suite can be used to support dynamic

context-dependent behaviours adaptation.
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