TAYLOR SERIES FOR ADOMIAN DECOMPOSITION METHOD

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Computer Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>GCOM-2011-0596-B</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>22-Jul-2011</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Kutafina, Ekaterina; AGH Academy of Science and Technology, Faculty of Applied Mathematics</td>
</tr>
<tr>
<td>Keywords:</td>
<td>35C10, 35C05, 65D15, 65M, G.1.8</td>
</tr>
</tbody>
</table>
Research Article

TAYLOR SERIES FOR ADOMIAN DECOMPOSITION METHOD

Ekaterina Kuta

AGH University of Science and Technology
Faculty of Applied Mathematics
al. A. Mickiewicza 30
30-059 Krakow, Poland

(...)

In this paper we analyze the exact solutions to scalar PDEs obtained thanks to summable Taylor series provided by Adomian's decomposition method. We propose a modification of the method which makes the calculations of Taylor coefficients easier and more direct. The difference is essential for instance in case of non-homogenous equations or initial conditions and is illustrated by some examples.

Keywords: Adomian decomposition method; exact solutions; Taylor series

AMS Subject Classification: 35C10, 35C05, 65D15

1. Introduction

The area of exact solutions to nonlinear differential equations has become very popular in recent decades, when the development of personal computers enabled more efficient work with known algorithms. Adomian decomposition method [1, 2, 4, 5] in the matter of fact was developed to find approximated solutions to differential equations, but in many publications [5, 6] we can find interesting examples where obtained power series were actually summable to exact solutions. Typical way to obtain such solutions is to sum up certain Taylor series. In our paper we are going to present some situations when it seems reasonable to use modified techniques to obtain Taylor series. In mathematical physics we often have to deal with scalar PDEs of space and time variables \(x, t \in \mathbb{R} \). We will show that for non-autonomous equations of this type the method could be easily modified to get Taylor series directly. In order to explain our idea let us first briefly present the classical method, so it would be easier to show the differences.

2. Adomian decomposition method

Let us consider the following one-dimensional equation in Cauchy-Kovalevska form:

\[
 u_t(x, t) = F(u, u_x, u_{xx}, \ldots, u_{xn}) + g(x),
\]

\(n \)
where \(x, t \in \mathbb{R} \), \(u_t = \frac{\partial u}{\partial t} \), \(u_{x^i} = \frac{\partial^i u}{\partial x^i} \), \(F(p_0, p_1, p_2, ..., p_n) \) is a analytical function of its arguments and \(g(x) \) is an analytic non-autonomous term. The corresponding initial condition is \(u(x, 0) = f_0(x) \). This quite special case would be perfectly sufficient to present the advantages of proposed modification.

Let us introduce the auxiliary notation: \(G[u] = G(u, u_x, u_{x^2}, ..., u_{x^n}) \) for any functional \(G \) defined on jet-space. In classical approach LHS of (1) is usually split into two parts: \(F[u] = L_F[u] + N_F[u] \), where \(L_F[u] \) is a linear operator with respect to \(u, u_x, ..., u_{x^n} \) while \(N_F[u] \) is nonlinear part of \(F[u] \). Then the operator

\[
L^{-1}(.) = \int_0^t (.) \, dt
\]

can be introduced to express the solution of (1) in the form:

\[
u = f_0(x) + g(x) \, t + \int_0^t L_F[u] + N_F[u] \, dt.
\]

Next we assume \(u = \sum_{i=0}^{\infty} u_i \) and consequently \(L_F[u] = \sum_{i=0}^{\infty} L_F[u_i] \) and \(N_F[u] = \sum_{i=0}^{\infty} N_F[u_i] \) \(= \sum_{i=0}^{\infty} A_i \). The newly introduced terms \(A_i \) are so-called Adomian’s polynomials, which could be obtained e.g. with the help of following formula:

\[
A_i = \frac{1}{i!} \frac{d^i}{d\lambda^i} [F(\sum_{i=0}^{n} \lambda^i u_i)].
\]

In the paper [8] author present very intuitive way to obtain these polynomials. The idea could be easily understood from the example below.

Example 2.1 For instance if we take nonlinearity in the form \(N_F[u] = u u_x \) then

\[
N_F[u] = (u_0 + \epsilon u_1 + \epsilon^2 u_2 + ...) (u_0 x + \epsilon u_x + \epsilon^2 u_{2x} + ...) = u_0 u_0 x + \epsilon(u_1 u_{0x} + u_0 u_{1x}) +...
\]

and here \(A_i \) would be a coefficient at \(\epsilon^i \).

Let us notice that “\(\epsilon \)”-notation was not used in cited paper, but in our opinion it makes the choice of \(A_i \) more clear. Similar notation was also used in [3]. Let us underline that each polynomial \(A_i \) is dependent only on the functions \(u_0, ..., u_i \). No higher orders are involved. Going back to the decomposition algorithm:

\[
u = f_0(x) + g(x) \, t + \int_0^t \sum_{i=0}^{\infty} L_F[u_i] + \sum_{i=0}^{\infty} A_i \, dt,
\]

therefore the following recurrence could be defined:

\[
u_0 = f_0(x) + g(x) t
\]

\[
u_1 = \int_0^t L_F[u_0] + A_0 \, dt
\]
Taylor Series for Adomian Decomposition Method

...\[
 u_n = \int_0^t L_F[u_{n-1}] + A_{n-1} \, dt \\
 ...
\]

\[
u = \lim_{k \to \infty} \sum_{i=0}^k u_i.
\]

Remark 1 If \(g(x) = 0 \) then there exists a sequence of functions \(h_i(x) \) such as \(u_n = h_n(x) \, t^n \).

Proof By induction \(u_0 = f_0(x) =: h_0(x) \). Let us assume, that \(u_i = h_i(x) \, t^i \) so \(t \) appears in the same power as \(\epsilon \) in the example 2.1 which means that \(A_i = k_i(x) \, t^i \) and

\[
u_{i+1} = \int_0^t L_F[h_i(x) \, t^i] + k_i(x) \, t^i \, dt = \frac{t^{i+1}}{i+1} (L_F[h_i(x)] + k_i(x)) =: h_{i+1} \, t^{i+1}.
\]

Remark 2 If \(f_0(x) = 0 \) then there exists a sequence of functions \(h_i(x) \) such as \(u_n = h_n(x) \, t^{n+1} \).

Proof By induction \(u_0 = t \, g(x) =: h_0(x) \). Let us assume, that \(u_i = h_i(x) \, t^{i+1} \) which means that \(A_i = k_i(x) \, t^{i+1} \) and

\[
u_{i+1} = \int_0^t L_F[h_i(x) \, t^{i+1}] + k_i(x) \, t^{i+1} \, dt = \frac{t^{i+2}}{i+2} (L_F[h_i(x)] + k_i(x)) =: h_{i+1} \, t^{i+2}.
\]

These remarks imply that in case of autonomous equation or zero initial condition the algorithm leads straight to Taylor series.

3. Main Results

In our following research it would be comfortable to skip dividing \(F[u] \) into two parts. The whole functional \(F[u] \) could be as well approximated by Adomian polynomials. Let us also denote by \(u^{(k)} = \sum_{i=0}^k u_i \). The key difference would be the fact that now we choose polynomials in different way. Let \(B_0 = F[u_0] \), but

\[
B_i = F[u^{(i)}] - F[u^{(i-1)}]
\]

for \(i = 1, 2, \ldots \). Let us notice, that similar approach can be found in [4]. Comparing to the example 2.1 now we obtain \(B_0 = A_0 = u_0 u_0 x \), but for a change \(B_1 = F[u_0 + u_1] - F[u_0] = u_0 u_1 x + u_1 u_0 x + u_1 u_1 x \). However it is obvious that still \(\lim_{i \to \infty} B_i = F[u] \). The new recurrence is:

\[
u_0 = f_0(x) + g(x) \, t
\]
THEOREM 3.1 Let us consider a partial differential equation in the form $u_t(x,t) = F[u(x,t)] + g(x)$, together with the initial condition $u(x,0) = f_0(x)$ where $x, t \in \mathbb{R}$, $u : \mathbb{R}^2 \rightarrow \mathbb{R}$, $F[u(x,t)] = F[u(x,t), u_x(x,t), ..., u_x^n(x,t)]$, $u_x = \frac{\partial u}{\partial x}$. We also assume, that $F[u(x,t)]$ is analytical of its arguments and $F[0] = 0$. Then formal Taylor series for the solution $u(x,t)$ could be found using formula (2).

Proof
Let us start with the summation:

$$u^{(k)} = \sum_{i=0}^{k} u_i = u_0 + \int_0^t F[u^{(k-1)}] \, dt.$$

Therefore using Taylor’s formula

$$u^{(k+1)} = u_0 + \int_0^t F[u^{(k)}] \, dt =$$

$$= u_0 + \int_0^t F[u^{(k)}]_{t=0} + \left[\frac{\partial F[u^{(k)}]}{\partial u^{(k)}} \frac{\partial u^{(k)}}{\partial t} + \frac{\partial F[u^{(k)}]}{\partial u_x^{(k)}} \frac{\partial u_x^{(k)}}{\partial t} + \cdots + \frac{\partial F[u^{(k)}]}{\partial u_x^n^{(k)}} \frac{\partial u_x^n^{(k)}}{\partial t} \right]_{t=0} t +$$

$$+ \left[\frac{\partial^2 F[u^{(k)}]}{\partial (u^{(k)})^2} \left(\frac{\partial u^{(k)}}{\partial t} \right)^2 + \cdots + 2 \frac{\partial^2 F[u^{(k)}]}{\partial u^{(k)} \partial u_x^{(k)}} \frac{\partial u^{(k)}}{\partial t} \frac{\partial u_x^{(k)}}{\partial t} + \cdots + \frac{\partial F[u^{(k)}]}{\partial u_x^n^{(k)}} \frac{\partial^2 u_x^n^{(k)}}{\partial t^2} \right]_{t=0} \frac{t^2}{2!} + \cdots =$$

$$= u_0 + F[u^{(k)}]_{t=0} t + \left[\frac{\partial F[u^{(k)}]}{\partial u^{(k)}} \frac{\partial u^{(k)}}{\partial t} + \frac{\partial F[u^{(k)}]}{\partial u_x^{(k)}} \frac{\partial u_x^{(k)}}{\partial t} + \cdots + \frac{\partial F[u^{(k)}]}{\partial u_x^n^{(k)}} \frac{\partial u_x^n^{(k)}}{\partial t} \right]_{t=0} \frac{t^2}{2!} +$$

$$+ \left[\frac{\partial^2 F[u^{(k)}]}{\partial (u^{(k)})^2} \left(\frac{\partial u^{(k)}}{\partial t} \right)^2 + \cdots + 2 \frac{\partial^2 F[u^{(k)}]}{\partial u^{(k)} \partial u_x^{(k)}} \frac{\partial u^{(k)}}{\partial t} \frac{\partial u_x^{(k)}}{\partial t} + \cdots + \frac{\partial F[u^{(k)}]}{\partial u_x^n^{(k)}} \frac{\partial^2 u_x^n^{(k)}}{\partial t^2} \right]_{t=0} \frac{t^3}{3!} + \cdots =$$

Before we continue let us formulate the following lemma:
LEMMA 3.2 If \(u^{(i)} = a_0 + a_1 + a_2 t^2 + \ldots \) and \(u^{(i+1)} = b_0 + b_1 + b_2 t^2 + \ldots \) then \(a_s = b_s \) for \(s \leq i \).

Proof The statement holds if and only if \(u_{i+1} = t^{i+1} h_{i+1}(x, t) \) for some analytical function \(h_k \) and \(k \geq 1 \).

Basis: for \(k = 1 \) \(u_1 = \int_0^t F[u_0] \, dt \). Since \(F \) is analytical, it could be written in series form:

\[
F(u, u_x, \ldots, u_{x^n}) = \sum_{i_0, i_1, \ldots, i_n} b_{i_0, i_1, \ldots, i_n} u_{i_0} u_x^{i_1} \ldots u_{x^n}^{i_n}.
\]

Thus \(F \) also could be written as series with respect to \(t \), \(F[u_0] = c_0 + c_1 t + \ldots \) and after integration \(u_1 = c_0 t + \frac{c_1}{2} t^2 + \ldots \).

Inductive step: we assume, that \(u_k = t^k h_k(x, t) \), then

\[
u_{k+1} = \int_0^t F[u_0 + u_1 + \ldots + u_k] - F[u_0 + u_1 + \ldots + u_{k-1}] \, dt = \int_0^t F[S + t^k h_k(x, t)] - F[S] \, dt,
\]

where \(S = u_0 + u_1 + \ldots + u_{k-1} \). Using the series form:

\[
u_{k+1} = \int_0^t \sum_{i_0, i_1, \ldots, i_n} b_{i_0, i_1, \ldots, i_n} ((S + t^k h_k(x, t))^{i_0} (S + t^k h_k(x, t))^{i_1} \ldots (S + t^k h_k(x, t))^{i_n} - S^{i_0} S_x^{i_1} \ldots S_{x^n}) \, dt
\]

In the main theorem we assumed \(F[0] = 0 \) so \(b_{00,0} = 0 \). Thus the smallest possible power of \(t \) in the sum is \(t^k \) and after integration the proof is completed.

Going back to the main proof:

\[
u(x, t) \approx a_0 + a_1 \frac{t}{1!} + a_2 \frac{t^2}{2!} + \ldots,
\]

where

\[
a_0 = f_0
\]

\[
a_1 = g(x) + F[f_0]
\]

\[
a_2 = \frac{\partial F}{\partial u} [f_0] a_1 + \frac{\partial F}{\partial u_x} [f_0] a_{1x} + \ldots + \frac{\partial F}{\partial u_x^n} [f_0] a_{1x^n}
\]

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com
Further terms could be easily obtained using formulae for higher differentials and the key fact, that \(u^k \) and \(u^{k+1} \) have the same coefficients up to \(k \)th power.

4. Examples

Example 4.1 Let us start with the example from [6]. Authors considered the following Fisher’s equation

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + 6u(1-u)
\]

(3)

and obtain the exact solution of (3) using Adomian decomposition method. Here

\[
F[u] = F(u, u_{xx}), \quad \frac{\partial F(u, u_{xx})}{\partial u} = 6 - 12 u, \quad \frac{\partial^2 F(u, u_{xx})}{\partial u^2} = 1, \quad f_0 = \frac{1}{(1+e^x)^2},
\]

\[a_0 = f_0 \]

\[
a_1 = F[f_0] = \left(\frac{1}{(1+e^x)^2} \right)'' + 6 \frac{1}{(1+e^x)^2} \left(1 - \frac{1}{(1+e^x)^2} \right) = \frac{10e^x}{(1+e^x)^3} \]

\[
a_2 = (6 - 12f_0)a_1 + a_{1xx} = 50 \frac{e^x(2e^x - 1)}{(e^x + 1)^4} \]

\[
a_3 = -12(a_1)^2 + (6 - 12f_0)a_2 + a_{2xx} = 250 \frac{4e^{2x} - 7e^x + 1}{(e^x + 1)^5} \]

\[\text{etc.} \]

The result after summation repeats the cited paper:

\[
u(x, t) = \frac{1}{(1+e^{-x-st})^2}.
\]
Example 4.2 Now let us consider the non-autonomous heat equation [5]:

\[u_t = u_{xx} + \sin x, \]

with the initial condition \(u(0, x) = \cos x \). Using classical approach we obtain:

\[u_0 = \cos x + t \sin x \]

\[u_1 = -t \cos x - \frac{1}{2!} t^2 \sin x \]

\[u_2 = \frac{1}{2!} t^2 \cos x + \frac{1}{3!} t^3 \sin x \]

\[\ldots \]

Applying theorem 3.1 we can directly obtain Taylor series (the only non-zero derivative is \(\frac{\partial F}{\partial u_{xx}} \)):

\[a_0 = \cos x \]

\[a_1 = \sin x + [\cos x]_{xx} = \sin x - \cos x \]

\[a_2 = \frac{\partial F}{\partial u_{xx}} a_{1xx} = -\sin x + \cos x \]

\[a_3 = \frac{\partial F}{\partial u_{xx}} a_{2xx} = \sin x - \cos x \]

\[\ldots \]

so finally

\[u(x, t) \approx \cos x + (\sin x - \cos x)(t - \frac{t^2}{2!} + \frac{t^3}{3!} - \ldots) = \cos x e^{-t} + \sin x (1 - e^{-t}). \]

To complete the illustration we choose the example with nonlinearity and non-autonomous term.

Example 4.3 The following inhomogeneous advection problem is solved in [5]:

\[u_t + uu_x = x, \quad u(x, 0) = 2. \]

With the help of decomposition method the following recursive relations was obtained:

\[u_0 = 2 + x t \]
\[u_1 = -t^2 - \frac{1}{3}xt^3 \]
\[u_2 = \frac{5}{12}t^4 + \frac{2}{15}xt^5 \]

\[\ldots \]

Meanwhile using theorem 3.1

\[f_0 = 2, \quad g(x) = x, \quad F_u[u] = -u_x, \quad F_u[2] = 0, \]

\[F_u^x[u] = -u \quad F_u^x[2] = -2, \quad F_u^{xx} = -1 \]

and all other derivatives vanish at \(a_0 \).

\[a_0 = 2, \quad a_1 = x, \quad a_2 = -2, \quad a_3 = -2x, \quad \ldots \]

In both methods we obtain

\[2 \left(1 - \frac{1}{2!}t^2 + \frac{5}{4!}t^4 + \ldots \right) + x \left(t - \frac{1}{3}t^3 + \frac{2}{15}t^5 \right) = \]

\[= 2 \text{ sech } t + x \text{ tanh } t. \]

Acknowledgements

I am in debt to Professor Randolph Rach for all the advices, comments and recommended papers as well as for access to some of them.

The presented research was partially supported by the Polish Ministry of Science and Higher Education.

References