The Economic and Social Review, Vol. 26, No. 1, October, 1994, pp. 69-74

Artificial Regression Based Mis-Specification
Tests for Discrete Choice Models
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Abstract: Lagrange Multiplier (LM) tests for omitted variables, neglected heteroscedasticity and
other mis-specifications in general discrete choice models may be simply and conveniently cal-
culated using an artificial regression. This artificial regression approach is likely to have better
small sample properties than the more common outer product gradient (OPG) form of LM test.

I INTRODUCTION

D avidson and MacKinnon (1984b) derive convenient Lagrange Multi-
plier (LM) tests for omitted variables and neglected heteroscedasticity
in logit and probit models.! Their LM tests are convenient since they are
based on artificial regressions. They are also likely to have good small sample
properties since they do not use the outer product gradient (OPG) form of the
LM test.2 Instead the information matrix is calculated as the expectation of
the outer product of the score and is not just approximated by the outer
product of the score. The Davidson and MacKinnon approach may be used to
derive many other mis-specification tests in both binary choice models (e.g.
tests of normality in probit models and asymmetry in logit models) and some
more general discrete choice models (e.g. normality in censored bivariate
probit models).

Paper presented at the Eighth Annual Conference of the Irish Economic Association.

1 Engle (1984) also suggests using this approach.

2. See Engle (1984) and Godfrey (1988) for an extensive survey of LM tests and Davidson and
MacKinnon (1983; 1984a; 1993), Godfrey, (1988) and MacKinnon (1992) for a discussion of
limitations of the OPG form of LM test.
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In this paper artificial regression based LM tests for general discrete
choice models are derived. The tests are likely to have good small sample
properties since the OPG form of the LM test is not used. The proposed LM
tests may be used to detect a range of mis-specifications such as omitted
variables, neglecfed heterogeneity, incorrect functional form and non-
normality/asymmetry in ordered probit/logit models.

II GENERAL DISCRETE CHOICE MODEL

Consider a discrete choice model with a random sample of N individuals,
denoted by subscript i, and J+1 alternatives numbered from 0 to J. Let y; be
an indicator variable for individual i and alternative j. Thus, y,; equals one if
individual i selects alternative j; otherwise y; equals zero. Let p;; be the
probability that i selects alternative j. p;; depends on the parameter vector 6.
The true parameter is assumed to be in the interior of the parameter space.
For any individual both the sum of the yi's and the p;’s across the J+1
alternatives equal one.

With a random sample the log likelihoed is:
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which may be recast as:
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since 3;8p;;/80=0. The u;;’s may be thought of as standardised residuals.

They havle zero means, variances equal to 1 — p;; and covariances equal to
—(p;j Pix)? When j # k. The information matrix is:
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since the sample is random, Ey;?> = Ey;; = p;; and Ey,y;, = 0 when j # k. The
information matrix is assumed to be non-singular in the neighbourhood of the
true parameter value.

III LM TEST STATISTIC
The LM test statistic of the null 6 = 6 is:
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where both the score and the observed information matrix Igé are evaluated
using the restricted parameter estimates 6.

The observed information matrix is:
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Under standard weak regularity conditions, the LM test statistic has a chi-
squared distribution with degrees of freedom equal to the number of
restrictions under the null.

IV ARTIFICIAL REGRESSION BASED LM TEST STATISTIC
The LM test statistic may be calculated as:

’ -1
LM=[;>;aijzijJ (zzzﬁz;j) (Za,2;) (D
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where 1;; and Z;; are the estimates of u;; and z;; at the restricted parameter
estimates:



72 THE ECONOMIC AND SOCIAL REVIEW

G = Y —f’ij
)~ \[7—
Py
Sp::
3, =3Py

f)ij 89ij

In (7) the LM test statistic is simply the explamed sum of squares from the
uncentred aux111dry regression of the 0;'s on the z;'s across all J+1
alternatives and N individuals.

The LM test statistic is also asymptotically equal to NJ times the R2 from this
auxiliary regression. The proof is the same as in McFadden, 1987. Note that:
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Use the mean value theorem to expand the first term as the product of a
stochastically bourided expression and 6 -6 which has a plim of zero. Thus
the first term hasia plim of zero. Finally, note that the expectatlon of the
second term is one,;since Eu = 1- —Pj; and Y, %; Eu /NJ =1, and the variance
tends to zero as N tends to 1nﬁmty Thus the phm of NJ times the R2 from the
auxiliary regression-equals the LM test statistic.

V BINARY CHOICE MODEL

In the special case of two alternatives 0 and 1, the log likelihood equals:
N
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and the score equals:
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where y, is an indicator variable (i.e. y; is one if alternative one is chosen and
zero otherwise) and p, is the probability that alternative one is chosen. The r;
are just the scaled residuals — they have a zero mean and a unit variance.
Note that, using the notation of the previous section:
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The information matrix is:
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and the LM test statistic is:
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where the observed scaled residuals and regressors are:
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As Davidson and MacKinnon (1984) point out, the LM test statistic is just the
explained sum of squares from the uncentred auxiliary regression of 4; on X;.
Asymptotically N times the R2 from this regression equals the LM test
statistic.

VI CONCLUSION

LM test statistics for omitted variables, neglected heteroscedasticity and
other mis-specifications in general discrete choice models may be readily
calculated using an artificial regression, the same as in binary choice models.
However the form of the artificial regression is different in the general case.
This artificial regression approach is both convenient and likely to have
better small sample properties than the more common outer product gradient
form of LM statistic.
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