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Abstract: In order to provide tractable bond pricing formulae, the arbitrage theories of the term struc­
ture make specific assumptions as to the number, identity and process generating the underlying forcing 
variables. This paper assesses the empirical plausibility of these common assumptions. It is found that 
there are three underlying factors, one more than is usually permitted. However, by careful examination 
of the dynamics of suitable instrumental variables to these factors, it is found that the further factor 
may be represented by the autoregressive conditional volatility of one of these factors. Thus, it can be 
readily integrated into existing two factor models. 

I INTRODUCTION 

T he term structure of interest rates measures the relationship between the 
prices of a collection of default free pure discount bonds that differ only 

in their time to maturity. The determinants of this relationship have long been 
of considerable importance to economists. By providing a complete spectrum 
of interest rates across time, the term structure represents the whole market's 
expectations of future events. An explanation of the term structure offers us 
a method to extract and interpret this information, and to predict how certain 
underlying factors will affect the whole maturity range of interest rates. 

*This paper is based upon Chapters 6-8 of my PhD thesis (1989). An earlier version appeared as paper 
FORC 89/2 in the Warwick Options Research Centre discussion paper series. I am very grateful to my 
supervisor Stewart Hodges and to Phil Dybvig, Robert J arrow, Stephen Schaefer, participants at the 
University of Warwick Options Conference 1989, and the referees and editor of this journal for helpful 
comments on the earlier draft. The usual disclaimer applies. Financial support from the ESRC and the 
Department of Economics at the University of Warwick is acknowledged. 



This paper is concerned with extracting and interpreting the information 
in the term structure when faced with a market comprised of coupon paying 
bonds, in particular, the market for long-term government fixed interest debt. 
The crucial difference between this type of market and the pure discount 
(zero coupon) market, is that the coupon payment feature means that the 
interest rates (or pure discount prices) are not directly observable. Further­
more, as we shall see, the irregularity of the dates on which coupons are paid 
compounds the problem further. 

Nevertheless, the problem can be overcome, and Section II contains a sum­
mary of a new method for extracting the term structure in a market for coupon 
bonds. This is explained in detail in Steeley (1991). Section III considers the 
evolution of the term structure curve over time, and employs factor analytic 
techniques to identify the number of underlying variables influencing the 
path of the interest rates. Some indirect evidence as to the identity of these 
factors is discussed. 

In order to produce tractable bond pricing formulae, the arbitrage theories 
of the term structure (Vasicek, 1977; Brennan and Schwartz, 1979; Cox, 
Ingersoll and Ross, 1985; Ho and Lee, 1986; and Heath, Jarrow and Morton, 
1987) typically proceed by making explicit assumptions as to the underlying 
variables and the processes generating them. These variables tend to be interest 
rates of particular maturities, and in Section IV, the dynamics of interest 
rates that could act as instruments to our term structure factors are examined. 
Section V considers the implications of the findings for the future course of 
term structure modelling at both the theoretical and practical level. 

II MEASURING THE T E R M STRUCTURE OF INTEREST RATES 

Studies to estimate the term structure of interest rates have used various 
methods of fitting the following discounting equation. 

p. = C M + 5*2 + . . . + *hm , v i . ( i ) 

(1 + R U ) (1 + R i > 2 ) 2 ( l + R i i N ( i ) ) N ( i ) 

Here, bond i makes cash flow payments Cj j at times j = 1, . . ,N(i), where 
N(i) is the maturity date of bond i. The set of corresponding spot rates, R ; j , 
Rj^ , R i 3 , . . . , will be regarded as the term structure of interest rates in this 
market. 

The particular measurement method chosen is largely determined by the 
intended use of the interest rate estimates, however, two techniques seem to 
prevail. Both estimate a linear approximation to the discount function, but 
differ in their choice of approximation function. McCulloch (1971) used 



polynomial spline functions, whereas Schaefer (1981) used a set of Bernstein 
polynomials. 

Unless spline functions are carefully chosen, certain matrices formulated 
for use in the estimation are likely to be ill-conditioned. This section briefly 
summarises work, detailed elsewhere, that provides a form of approximation 
function not subject to this problem and which provides reliable estimates of 
the term structure of interest rates.1 

2.1 Methodological Review 
Conceptually, term structure estimation is reasonably straightforward. If 

we define the discount factor (pure discount price) appropriate to the time 
point at which bond i makes its jth cash flow payment, as 

d ; j = 1 r (2) 

then it would seem natural to estimate the discount factors by applying the 
least squares algorithm to the standard discounting Equation (1). To apply 
this procedure, however, it is necessary that the number of bonds in the sample 
exceeds the number of payment dates in the sample. In the USA different 
bonds pay cash flows on about four key dates in a year, making this technique 
available, for at least a short-time horizon.2 However, in the UK there is no 
such regularity of payment dates and, consequently, the least squares approach 
is not a realistic option. 

Instead, the use of approximation functions means that rather than estimat­
ing each discount factor directly, we substitute the following linear approxi­
mation to the continuous discount function, 

d(t) - £ a,f,(t) (3) 

and estimate the a{ coefficients that are applied to the L approximating 
functions chosen. On substitution of this function into our price Equation (1) 
we obtain, 

p i = Si * ' j l i c u W - ( 4 ) 

We still have a linear regression equation but now we can choose how many 
coefficients we wish to estimate. 

1. SeeSteeley (1991). 
2. See Carleton and Cooper (1976). 



In using spline functions for the linear approximation, extreme care is 
required when choosing the form of the component (basis) functions. Not all 
basis functions are capable of defining regressors useful for reliable estimation. 
Indeed, Powell (1981, pp. 227-228) shows that it is extremely bad practice 
to work with a function equivalent to that used by McCulloch (1971) as 
inaccuracies arise from the subtraction of large numbers, because it generates 
a regressors matrix that is nearly perfectly collinear. 

2.2 B-splines 
Instead, it is recommended that a basis of B-splines, which are identically 

zero over a large portion of the approximation space, be used.3 The function 

B£(t) = P + S + 1 r P + n 1 1 ] max[0,(t-t,)] - ~ < t < ~ (5) 
1=p L ^ P ( t h _ t l ) J 

.is,-known as a k-order B-spline. The subscript p denotes that the function is 
only non-zero if t (here, time to a payment date) is in the interval (section of 
the approximation space) [t , t p + k + 1 ] . The borders between the n sections 
of the approximation space are known as knots, any approximation space 
will be spanned by n + k basis functions, and there will be non-zero portions 
of k + 1 functions in each section of the approximation space. Figure 1 pro­
vides example graphs for first, second and third order B-splines. 

2.3 Estimation and Results 
The details of the estimation procedure using B-splines are given in Steeley 

(1991) and are not reproduced here. However, certain choices made during 
this process will be discussed here as they directly influence the dimensionality 
properties of the interest rate data; a key factor in the ensuing analysis. 

The dimensionality of the estimated term structure is determined by the 
number of approximation function coefficients as, deliberately, we are approxi­
mating a whole spectrum of rates by a limited number of basis functions. The 
reason for limiting the number of basis functions was to ensure sufficient 
degrees of freedom in estimation. The number of basis functions is given by 
the sum of the order of the B-splines used and the number of sections within 
the approximation space. Therefore, an increase in either of these two par­
ameters, given a fixed supply of bonds, is made at the expense of reduced 
degrees of freedom during estimation. 

3. Here, the approximation space is the interval across time from zero to the term of the longest 
maturity bond in the sample. 



Figure 1: B-splines of degrees one, two and three 

Cubic B-splines were used. This is the minimum to permit the estimation 
of forward rate curves with continuous first derivatives. The sectioning of the 
approximation space was chosen to minimise the standard errors of the esti­
mated interest rates.4 These choices provide six approximation function co­
efficients to estimate and set the dimensionality of the interest rate estimates 
to the same number. 

4. The details of this procedure are provided in Steeley (1991). 



Figure 2 shows the time path of the B-spline coefficients when the term 
structure is fitted week by week over the two years from 31 October 1985 to 
15 October 1987.5 We used a sample of 45 UK government gilt-edged stocks, 
chosen to have fixed coupon and repayment structures and to avoid the type 
of tax effects examined by Schaefer (1981). The data on prices (closing values 
for the day), coupons and redemption dates were obtained from Datastream. 

Figure 2: Time Path of B-spline Coefficients 
31/10/85 - 15/10/87 

5. This amounts to 103 observations. 



The time path of the term structures of spot rates derived from these coef­
ficients is shown in Figure 3. The graph is drawn for annually spaced maturities, 
from 1 to 18 years.6 The term structure appears humped and to have moved 
extensively in a parallel fashion. 

1 11 

Weeks from 3 1 / 1 0 / 8 5 

Figure 3: Time Path of the Term Structure 
31/10/85 - 15/10/87 

From Figure 2, we see that of the six basis functions driving the term struc­
ture, two seem to experience much more flunctuation than the others. This 
suggests that the co-movements in the set of spot interest rates may be ade­
quately characterised by fewer than six factors. This question is addressed in 
the next section. 

I l l COMMON FACTORS IN THE DYNAMICS OF THE 
TERM STRUCTURE 

To establish the number of common factors affecting the movements in the 
term structure, we apply a principal components decomposition to the co-
variance matrix of the B-spline coefficients.7 The eigenvalues and vectors of 

6. Given the paucity of data at the long end of the gilt-edged market, 18 years is the maximum maturity 
for reliable estimation. 

7. The method of principal components formally resembles factor analysis. See Lawley and Maxwell 
(1971) for further details. 



this matrix are given in Table 1. The eigenvectors measure the sensitivity of 
the B-spline coefficients to the underlying factors, and the eigenvalues divided 
by the number of variables measure the fraction of the variance of the co­
efficients explained by the factors. The factors themselves have the property 
that they are mean zero, have unit variance and are orthogonal. 

Table 1: Principal Components Analysis of B-spline Coefficients 

Eigenvalues of Covariance Matrix of B-spline Coefficients 
B-spline 

Coefficient 4.14672 1.31376 0.33384 0.18485 0.02084 0.00000 B-spline 
Coefficient 

Corresponding Eigen vectors (columns) 

1 0.89126 0.40308 0.18420 0.09607 0.00596 0.00013 
2 -0.88470 -0.39402 -0.21249 -0.12989 -0.00520 -0.00013 
3 -0.81456 -0.44512 0.18772 0.32577 -0.01345 -0.00012 
4 -0.87482 0.14210 0.42049 -0.19008 0.03953 -0.00012 
5 0.75425 -0.64768 0.01700 -0.00592 0.10731 0.00011 
6 -0.75629 0.60118 -0.20598 0.12826 0.08790 -0.00012 

The results of the principal components decomposition are striking. There 
is one component that dominates the co-variation in the B-spline coefficients. 
This one component accounts for almost 70 per cent of the variance of the 
six coefficients. The second and third largest components explain a further 
22 per cent and 5 per cent of the variance. Thus over 95 per cent of the vari­
ation in the B-spline coefficients can be explained by three component factors. 

As with all principal component analyses, the components themselves are not 
directly identified. However, it is possible to provide some indirect evidence 
of their impact on the term structure. The eigenvectors represent the sensitivity 
of the B-spline coefficients to changes in the underlying components. As the 
components are normalised on calculation, we can interpret the addition (or 
subtraction) of the eigenvectors to the sample average of the coefficients, as 
the effect on the mean coefficients of a change in the underlying factors of 
magnitude two standard errors. By appropriate transformation through 
Equation (3), we can find the impact of changes in the components on the 
term structure. 

A more direct way, which avoids a number of scaling difficulties with the 
above indirect route, is to conduct a principal components analysis on the 
spot rates themselves, thereby obtaining the sensitivities of the term structure 
to changes in the components (i.e., the eigenvectors) without further transfor­
mations. By providing, albeit indirectly, a further factor analysis of the B-spline 



coefficients, this procedure can also be used to verify the earlier findings. 
The choice of interest rates to use in the principal components analysis is 

essentially arbitrary, but to be consistent with the earlier decomposition, 
should contain at least six interest rates that also reflect the full spread of 
maturities in the sample. For caution, we chose to analyse the set of 18 annually 
spaced spot rates, shown in Figure 3. Once again, only three components are 
significant. But, the degree of explanation is increased to almost 100 per cent. 
This is not surprising as, effectively, we have less variation to explain in the 
eighteen specified points on the curve than in the six coefficients that are 
intended to represent all points on the curve. The eigenvalues and eigenvectors 
for the first three components are,provided in Table 2. 

Table 2: Principal Components Analysis of the Spot Rates 

Eigenvalues 1-3 for Spot Rates 
Maturity 
(years) 

17.43960 0.37931 0.12885 
Maturity 
(years) 

Eigenvectors (columns) 

1 0.93789 0.30396 0.15790 
2 0.96451 0.24627 0.09352 
3 0.98130 0.18818 0.03210 
4 0.98950 0.13468 0.02155 
5 0.99223 0.09146 0.06219 
6 0.9931.2 0.06183 0.08675 
7 0.99377 0.04060 0.09939 
8 0.99426 0.02256 0.10320 
9 0.99453 0.00409 0.09913 

10 0.99478 -0.01853 0.08731 
11 0.99507 -0.04803 0.06735 
12 0.99436 -0.08328 0.04010 
13 0.98141 -0.12069 0.00694 
14 0.97596 -0.15558 0.02945 
15 0.97975 -0.18125 0.06541 
16 0.97631 -0.18951 0.09536 
17 0.97806 -0.17021 0.11227 
18 0.97896 -0.11072 0.10617 

These eigenvectors are directly the sensitivities of the spot rates to the fac­
tors. So, we impact the average spot rate curve by ±2 times the eigenvector 
for each of the three factors. The graphs representing these effects are given 
in Figures 4-6. It appears that the first component corresponds to roughly 
parallel shifts in the spot rate curve. This strongly accords with the manner in 



which the spot rate curve moved throughout this sample (see Figure 3). The 
second factor appears to represent changes in the slope of the spot rate curve, 
while the third factor corresponds to changes in the curvature of the spot rate 
curve, the well-documented term structure "twist". Two recent unpublished 
US studies, by Dybvig (1989) and Litterman and Scheinkman (1988) present 
similar conclusions for US Treasury issues. 
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Figure 4: Impact of Component 1 on Mean Term Structure 
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Figure 5: Impact of Component 2 on Mean Term Structure 
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Figure 6: Impact of Component 3 on Mean Term Structure 

IV MODELLING THE TERM STRUCTURE 

In order to generate tractable bond pricing formulae, the arbitrage theories 
of the term structure make specific assumptions as to the underlying factors 
and the processes driving them. These variables tend to be interest rates of 
particular maturities. In this section we examine the dynamic properties of 
certain interest rate processes that could act as instruments to our underlying 
factors. Although, working in the spirit of these term structure theories, our 
modelling process permits a much more general class of stochastic process for 
the interest rates than is usually assumed. In particular, we consider in detail 
the variance of the innovations in the interest rate process. 

In the one factor models of, for example, Vasicek (1977) and Cox, Inger-
soll and Ross (1985), the driving force behind the term structure is assumed 
to be the instantaneous short interest rate. In the two factor models of, for 
example, Brennan and Schwartz (1979) and Schaefer and Schwartz (1984), 



the two factors are represented by the long rate and the short rate, and the 
long rate and the spread (the difference) between the long rate and the short 
rate, respectively. The use of the spread rate by Schaefer and Schwartz, which 
is essentially no more than a redefinition of variables compared to the Brennan 
and Schwartz model, follows from their proof that a key simplification to 
obtaining an approximate analytical solution can be obtained if the two state 
variables are orthogonal. This was after Ayres and Barry (1979, 1980), who 
had noticed the regularity with which these two rates were uncorrelated. 
Schaefer (1980) and Nelson and Schaefer (1983) provide further support of 
this phenomenon.8 

In the spirit of these one and two factor "interest rate" based models, we 
will analyse the dynamics of the shortest maturity rate in our sample (the 
one year rate), the longest maturity rate (the eighteen year rate) and the 
spread between the two rates. We shall denote their value at time t as r t , 
l t , s t, respectively. Summary statistics for the series, of 103 observations, 
are given in Table 3. Time series graphs of the three series appear in Figure 7. 

Table 3: Summary Statistics for Interest Rate Series 

Variable Mean Std. Err. Skewness Kurtosis Normality* Corr# 

r 10.4082 1.0867 0.2656 5.0033 5.3147 0.624 
1 9.5005 0.5192 0.0095 4.8798 4.2299 1.000 
s ^0.9078 0.6617 -0.5162 5.4020 5.9312 -0.077 

Notes: + Bera-Jarque Normality Test statistic distributed as X (2). The 5 per cent critical 
value is 5.99. 
# The correlation between first differences in the interest rate and the long rate: 

the orthogonality test. 

8. Models incorporating non-interest rate variables have been considered, by Richard (1978) and 
Cox, Ingersoll and Ross (1985). See Brennan and Schwartz (1979) for a comparison of the solution 
properties of those models with their "interest rate" based model. 
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Figure 7: Path of Short, Long and Spread Rates 
31/10/85-15/10/87 

From Table 3, it can be seen that, as illustrated by Figure 3, the mean 
long rate is below the mean short rate. This is characteristic of a humped term 
structure, and gives rise to a negative mean spread rate.9 Although the kurtosis 
figures are all in excess of the value 3 that would be expected if the distri­
butions were normal, by the Bera-Jarque (1982) Lagrange Multiplier test, we 
cannot reject the hypothesis that the interest rates are normally distributed. 
It is the hypothesis of normal distributions that is essential for the construction 
of hypothesis tests and maximum likelihood estimators of the parameters of 
the interest rate stochastic processes, that are to follow. 

The correlations given in Table 3 indicate that we cannot dispute the widely 
observed result that the spread interest rate and long rate are orthogonal, 
while the same is not true of the short and long rates. 

9. Such humped structures with negative spreads are, of course, not the most usual shape of term 
structure found in fixed interest security markets. 



Tests of the arbitrage term structure theories, for example Brennan and 
Schwartz (1982) and Brown and Dybvig (1986), use those particular interest 
rate stochastic processes specified in the original theoretical development, in 
order to test the implied pricing formulae. Here, I wish to deviate from this 
traditional starting point and consider more general dynamic processes from 
the outset. This form of modelling, the general-to-specific approach, is becom­
ing more widely adopted in much econometric analysis.10 It begins by speci­
fying a very general dynamic model as the maintained hypothesis, and con­
tinues by sequentially imposing economically meaningful restrictions on this 
hypothesis. By modelling from general-to-specific rather than the reverse, 
we avoid the well-established biases and inefficiencies from accepting an 
under-parameterised model, yet maintain the property of consistency in our 
estimated parameters. 

Hence, the general process that will be estimated for each of the three series 
is, 

Ax t = a(x*- x t_j) + V /3 j Ax t _ j +u t (6) 

where x { is the value of the state variable at time t, u t is the random inno­
vation to the process at time t, a is the coefficient of mean reversion, and x* 
is the long-run mean value of the process. The restriction |3j = OVj gives the 
discrete time equivalent of the simple diffusion process used in many of the 
theoretical models, that is, 

dx = a(x* - x)dt + a(x)dz (7) 

which has instantaneous drift x*, instantaneous variance a 2 (x) , and where 
z(t) is a Wiener process with zero mean and variance dt. The Vasicek (1977) 
model has a(x) = a, a constant; the Cox,Ingersoll and Ross (1985) model has 
a(x) = aVx; and the Dothan (1978) model has a(x) = ax. 

We may distinguish empirically between the various possible forms of Equa­
tion (7), by determining the form of the variance term. The Breusch-Pagan 
(1979) test for heteroscedasticity may be used for this purpose. Under the 
null hypothesis of homoscedasticity in the u t process, T . R 2 , where T is the 
number of observations and R 2 is the coefficient of determination, from the 
regression of u 2 on the k variables thought likely to influence the variance, is 
distributed as x 2 (k -1). Appropriate choice of variables allows us to distinguish 
between different forms of heteroscedasticity. 

10. This type of modelling, due to Sargan (1964) and Hendry (1979), does not enjoy universal sup­
port. Alternative approaches have been developed by, for example, Sims (1980), Learner (1978) and 
Zellner(1971). 



The above procedure ignores the possibility that the variance term may be 
influenced by other variables and in more complex ways. A recent class of 
models, that are enjoying much current support as models for asset prices, 
are the autoregressive conditional heteroscedasticity (ARCH) models, first 
proposed by Engle (1982). The attractive property of these models is that 
they seem to capture the leptokurtosis observed in many unconditional distri­
butions of financial market price variables. Furthermore, a recent study by 
Nelson (1989) has presented the general conditions for a sequence of finite 
dimensional discrete time Markov processes to converge to an Ito process, 
and has derived the diffusion limit of certain models of the ARCH class. This 
suggests that this type of discrete time process may be abetter approximation, 
than simple Markov discrete time processes, to the simple diffusion processes 
assumed in many arbitrage theories. 

An ARCH(q) model in the variance term (applied, for example, to Equa­
tion (7)) is given by 

Ax t = a ( x * - x t _ 1 ) + u t , • u t | n t M ~ NI(0,h t) (8) 

where ^ t _ j is the information set at time t - 1 and h t is the conditional vari­
ance which is a linear function of the last q squared innovations. A Lagrange 
Multiplier test for the presence of an ARCH(q) model is obtained by calculating 
T . R 2 from a regression of u^ on U j _ 1 ; . . . , u j . q . Under the null hypothesis 
of no ARCH effects, this statistic will have an asymptotic chi-squared distri­
bution with q degrees of freedom. 

An alternative more parsimonious model than the ARCH(q) model is the 
Generalized ARCH or GARCH model of Bollerslev (1986). The GARCH(p,q) 
model (also, for demonstration, applied to Equation (7)) is 

Ax t = « ( x * - x H ) + u t , u j n ^ - N I f O . h J (9) 

q p 
h = 0n + 2 6.u2

f . + 2 <p.h2

t . 
t 0 j = l J f J j = i * J ' " J 

Pantulla (1986) has shown that the variance equation can be expressed as 

o m o o (10) 

where m = max(p,q) and vt is serially uncorrected. Thus, u\ will have the 
usual properties of an ARMA(m,p) process, so that identification tests for 



the orders of p and m can be carried out on the u 2 series. The GARCH model 
can be shown to be an infinite order ARCH model with exponentially declin­
ing weights and, therefore, allows the estimation of high order ARCH models 
in a parsimonious manner. 

There are three structural changes during our sample period and simple 
dummy variables are introduced to capture these changes. At the beginning 
of March 1986, the accrued interest on gilts became an item of income rather 
than capital for tax purposes. This paved the way for the abolition of capital 
gains tax on gilts on 2nd July 1986. The third change was the Big Bang de­
regulation of the market on Monday, October 27th 1986. The value of these 
variables at time t will be denoted dAcc t, dTax t and dBB t . 

Table 4 provides the estimates of the parameters of Equation (6), esti­
mated by ordinary least squares, for each of our three interest rate series. 

Clearly, from Table 4, the general dynamic equation over-fits all the three 
interest rate processes, that is, there are a number of statistically insignificant 
variables in each equation. 

A feature common to all the processes is that the dummy variable capturing 
any effect on the market following the Big Bang deregulation of October 
1986 is statistically insignificant. As this dummy variable splits the sample 
period in approximately equal halves, it also acts as a useful check (maximis­
ing degrees of freedom) on the stability of the parameter estimates across the 
whole sample period.1 1 Further, and more rigorous, diagnostic tests will be 
applied to the final versions of each of the interest rate processes. 

The general-to-specific modelling process consists of conducting likelihood 
ratio tests comparing successively simplified specifications. If the sum of 
squared residuals from the regression of the next simplification is RRSS, and 
the sum of squared residuals from the current simplification (initially the 
general model) is URSS, then the likelihood ratio test comparing the two is 
given by 

LR(k) = T X ln[RRSS/URSS] ~ x 2 (k) (11) 

where T is the number of observations, and k is the number of restrictions 
imposed on the current simplification to achieve the next meaningful simpli­
fication. If the value of the statistic is less than the appropriate critical value, 
the next simplification is not rejected. Intuitively, this test determines whether 
the next simplification is significantly different from the current specification. 

11. The usual Chow test is not appropriate where a hypothesis of constant variance is not being main­
tained. 



Table 4: Least Squares Estimates of the Parameters of the General Dynamic Model 
for the Three Interest Rate Series 

RHS Variable A ' f 

A'f 
A *, 

Constant* 1.0638 0.9620 -0.2627 
(3.196) (2.453) (-2.741) 

a 0.0891 0.0971 0.1181 
(3.198) (2.506) (2.708) 

A x t - 1 0.1285 0.0997 0.1341 A x t - 1 
(1.337) (0.034) (0.988) 

A x t - 2 0.1291 0.5216 -0.0174 
(1.214) (0.546) (-0.169) 

A x t - 3 0.0157 0.9392 -0.0766 
(0.155) (0.952) (-0.899) 

A x t - 4 0.0982 0.1664 0.2214 
(0.944) (1.657) (0.294) 

dAcc { -0.2387 -0.0820 0.2614 
(-1.989) (-1.445) (2.547) 

dTax t 0.1627 0.0831 -0.1437 dTax t 

(1.839) (1.673) (-1.756) 

d B B t -0.0895 -0.0501 0.0667 d B B t 

(-1.202) (-1.169) (1.115) 

a 0.275 0.158 0.217 

R 2 0.09 0.04 0.07 

Notes: Figures in parentheses are [zero -centred] "t-statistics", corrected for heteroscedas-
ticity by White's (1980) heteroscedasticity-consistent covariance matrix estimator. 
+This is the long run mean x* scaled (multiplied) by a. 
The variable a is the sample estimate of the volatility [standard deviation] parameter 
of the process, as though this were a constant value for all time. 

If it is not, we choose the next simplification for the obvious reasons of parsi­
mony. This test is the asymptotic equivalent of the familiar "F-test" for 
the addition of variables, though we are operating in reverse in this situation. 

Following the above process, final specifications were settled upon for the 
three interest rate series, see Table 5. 



Table 5: Least Squares Estimates of the Parameters of the Specific Dynamic Model 
for the Three Interest Rate Series 

RHS Variable Arf A / ( As{ 

Constant + 0.9112 0.5932 -0.2360 
(3.010) (2.026) (-3.165) 

a 0.0749 0.0624 0.1120 
(2.853) (2.034) (2.909) 

A x t _ 4 0.2026 
(1.924) 

dAcc t -0.2902 0.1614 
(-2.802) (2.664) 

clTax t 0.1609 
(2.204) 

X * 12.15 7% 9.493% -0.209% 

X * 
Acc 

8.285% -0.064% 

X Tax 
10.431% 

a 0.274 0.158 0.215 

R 2 0.06 0.04 0.06 

F-Stat(dfs) 1.729 (5,92) 0.907 (6,92) 1,385 (6.96) 

LR(df) 9.067 (5) 5.818 (6) 8.732 (6) 

DW 1.693 1.751 1.695 

LM(4) 5.529 4.004 3.365 

BP(df) 9.253 (6) 2.794 (5) 2.273 (4) 

A R C H ( l ) 2.198 0.017 10.358* 

ARCH(4) 3.357 0.579 12.631* 

ARCH(8) 5.488 2.215 13.478 

Notes: Figures in parentheses underneath the parameter estimates are White (1980) heter-
pscedasticity-consistent [zero-centred] "t-statistics". 
+ This is the long-run mean x* scaled (multiplied) by a. 
x*> x A c c x f a x 3 1 6 t n e v a u i e s ° f t n e long-run mean: before the change in tax 
treatment of accrued interest and removal of liability to capital gains tax; after the 
former but before the latter; and after both, respectively. 
The F-stat and L R figures are tests of whether these simple specifications are sig­
nificantly different from the general specifications (Table 4). 
L M (Lagrange Multiplier test for autocorrelation), BP (Breusch-Pagan test for 
heteroscedasticity) and A R C H (autoregressive-conditional heteroscedasticiy test) 
are distributed as X 2 - The regressors in the BP test were the regressors in the model, 
plus their squares (except for the dummy variables, which would cause perfect 
multicollinearity) and cross products. 
•Indicates statistical significance at the 5 per cent level. 



The three specific equations pass all the diagnostic tests, using a 5 per cent 
significance level, with two exceptions and one near miss. The exceptions are 
the tests for first and up to fourth order ARCH effects on the spread model. 
Here the statistics exceed the critical values by a substantial margin. As the 
latter test is inclusive of the former, these two statistics together indicate 
clear evidence of a first order ARCH process in the innovations of the spread 
model. An examination of the autocorrelation function and partial auto­
correlation function, in the manner suggested by Box and Jenkins (1976), 
confirms this view. The "near-miss" statistic is the Breusch-Pagan test for 
heteroscedasticity in the innovations in the short rate process. Indeed, although 
not picked up by the ARCH test, the autocorrelation and partial autocor­
relation functions of the squared residuals indicate some serial dependence 
present, and the coefficient on the squared r j variable in the Preusch-Pagan 
equation was statistically significantly different from zero. 

Clearly, the spread process should be jointly modelled as the specific pro­
cess in Table 5 together with a first order ARCH process. As the ARCH(l) 
process is a parsimonious model able to capture dependence in the variance 
of the innovations, and because the spread is a redefinition of the short rate, 
it is also used to model the short rate process, in the hope of flattening the 
squared residuals in that process also. 

Joint generalised maximum likelihood estimates of the conditional mean 
and variance parameters for each of the short rate and the spread rate are 
given in Table 6. The standard errors are calculated from analytical first and 
second derivatives by the method of Berndt, Hall, Hall and Hausman (1974). 

The ARCH models, Table 6, for both the spread and the short rate process 
pass all the diagnostic tests for non-constant variance. Thus these models have 
achieved the aim of flattening the residuals of the models in Table 5, the only 
specification problem with those models. Although the tax dummy variable 
appears insignificant in the short rate ARCH model, which would make both 
the short rate and spread rate follow similar processes, the same model with­
out this dummy variable is significantly different from one with it present. 

Having arrived at preferred specifications for the three possible instrumental 
variables to our three factors generating the term structure, it is time to inter­
pret the results within this context. In Section III , it was found that the three 
underlying components could be interpreted as being variables having the 
following impacts on the term structure: a change in level, a change in slope 
and a change in curvature. Although we have analysed only two independent 
processes (because the spread is a combination of the short and long rates), 
by virtue of the ARCH variance processes in the short and spread rates, we 
can build a three factor model by combining the long rate with either of these 
two rates. But this does not imply that such processes necessarily make sense 



Table 6: Generalised Maximum Likelihood Estimates of the Parameters of the ARCH 
Models for the Short Rate and Spread Rate Series 

RHS Variable 

Constant* 1.0766 -0.2680 
(2.238) (-3.229) 

a 0.0856 -0.0937 
(2.195) (-2.737) 

dAcc t -0.3323 0.2374 
(-2.676) (3.588) 

dTax t 0.1413 
(1.711) 

0.2454 0.1642 
(10.463) (7.688) 

0.4244 0.6731 
(2.505) (3.672) 

X * 12.574% -2.860% 

X Acc 
8.693% -0.326% 

xax 
10.343% 

BP(df) 4.522 (6) 0.803 (4) 

LM(4) 1.696 1.118 

A R C H ( l ) 0.033 0.914 

ARCH(4) 0.382 1.149 

ARCH(8) 0.717 1.893 

Notes: Figures in parentheses are "t-statistics", calculated from analytical derivatives fol­
lowing Berndt, Hall, Hall and Hausman (19 74). 
+This is the long-run mean x* scaled (multiplied) by a. 
x*, x ^ c c and x ^ a x are the values of the long-run mean: before the change in tax 
treatment of accrued interest and removal of liability to capital gains tax; after the 
former but before the latter; and after both, respectively. 
L M (Lagrange Multiplier test for autocorrelation), BP (Breusch-Pagan test for 
heteroscedasticity) and A R C H (autoregressive-conditional heteroscedasticity test) 
are distributed as X 2 - The regressors in the BP test were the regressors in the model, 
plus their squares (except for the dummy variables, which would cause perfect 
multicollinearity) and cross products. 



as the three required instrumental variables. However, it is not unrealistic to 
suppose that a model comprising the long rate (for level), the spread rate (for 
slope), and the volatility of the spread rate (for curvature) might provide an 
adequate starting point. The development of such a model is beyond the 
bounds of this paper and, therefore, is left open to further research. 

It is worth noting, of course, that we may have detected ARCH effects 
because we are approximating a continuous time diffusion process by a dis­
crete time difference equation, as discussed earlier (see, also, Nelson (1989)). 
However, this does not detract from the view, of at least this author, that the 
conditional volatility of one of the state variables may well prove to be a 
useful third factor in established models of the term structure. 

V SUMMARY AND IMPLICATIONS 

This paper seeks to model the dynamics of the term structure of interest 
rates, that is, the set of prices of pure discount (zero-coupon) bonds that 
differ only in their time to maturity. However, the term structure that is to 
be modelled is that in a market for coupon-bearing bonds. In such a market, 
the pure discount prices are not directly observable, and this paper begins by 
outlining a new method for extracting the pure discount prices. The market 
chosen to illustrate this method, and analysed in subsequent sections was the 
market for British government fixed interest securities, or "Gilts". 

By using factor analytic techniques, it is possible to determine that there 
are three key factors underlying, and driving, the term structure in the gilt-
edged market. This result: is consistent with recent unpublished US studies of 
their Treasury market. These factors can be interpreted as causing the term 
structure to change its level, its slope, and its curvature. 

In the arbitrage theories of the term structure, such factors are usually 
represented by instrumental variables in the form of interest rates of particular 
maturities. This permits tractable bond pricing solutions to be generated. The 
most elaborate models, for which practical solutions have been obtained, con­
sist of two factors. The principal components analysis in this paper would 
suggest that these models are missing one key factor. By analyzing the 
dynamics of interest rates of particular terms, in the spirit of these models, 
and using the general-to-specific methodology, it is found that the dynamics 
of certain rates are well represented by ARCH (autoregressive conditional 
heteroscedasticity) models. It is believed that such stochastic volatility pro­
cesses may hold the key to generating three factor models of the term structure 



that can outperform the existing two factor models in bond pricing, bond port­
folio management (duration and immunisation) and bond option pricing^12 

12. Readers with a particular interest in this area of research may like to consult a recent paper by 
Engle, Ng and Rothschild (1989) that also considers ARCH processes and factor analytic techniques. 
They factor analyse the covariance matrix of the innovations of an assumed conditional mean process 
in order to determine how many factors are influencing the conditional variance alone. This assists 
the accurate construction of the conditional variance portion of the model. Their empirical results 
for pricing US Treasury issues appear very promising indeed. 
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