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A method is presented which can estimate the linear and nonlinear damping parameters in a lightly damped multidegree of
freedom system which allows the system to be decomposed into a set of single degree of freedom nonlinear systems. Only a single
response measurement from a free decay test is required as input ensuring that the magnitude of the damping parameters is not
compromised by phase distortion between measurements. The response is band-pass filtered in the time domain, around each of
the natural frequencies. While this provides a free response measurement for each mode, it introduces a restriction as the natural
frequencies must be distinct and separated. The instantaneous energy of each trace is used to describe the long-term evolution of
the mode. This is achieved by using only the peak amplitudes in each period, and so the stiffness and inertial forces are effectively
ignored, and only the damping forces are considered. Thus, the method is not unlike the familiar decrement method, which can
estimate the viscous damping in linear systems. The method is developed for a weakly nonlinear, lightly damped two-degree-of-
freedom system, with both linear and Coulomb damping. Simulated response data is used to demonstrate the accuracy of the
technique.

1. Introduction

Weak nonlinear damping can play a crucial role in the long-
term behaviour of weakly nonlinear systems. For example,
in self-excited systems, such as fluidelastic systems where
the structural and fluid mechanics are strongly coupled,
the onset of instability (flutter) is governed largely by the
total linear damping in the system, but the amplitude of
the resulting self-excited limit cycle oscillations is deter-
mined by the nonlinear damping in the system. This has
been shown experimentally for tube arrays by Meskell and
Fitzpatrick [1], where the nonlinear damping has been
found to be cubic in nature. In structural systems, the most
likely form of nonlinear damping is Coulomb damping
which can be difficult to quantify due to uncertainty in the
supports. In this case, simply using an effective linearised
damping is unlikely to yield accurate predictions of vibration
amplitude under different excitation, as the relative effect
of the Coulomb damping will drop as response amplitude
increases. Therefore, a quantified nonlinear system model
would allow improved predictions of vibration response

amplitude which is an issue for accurate long-term fatigue
estimates. However, for many structural and fluid-coupled
systems (e.g., heat exchanger tubes, long pipework), the total
structural damping is very low. Identifying the functional
form of nonlinear damping and quantifying the relevant
coefficient in lightly damped systems, such as the those
discussed above, can be problematic because of the relatively
small contribution of the terms of interest to the overall force
acting on the structure. Sophisticated system identification
procedures for nonlinear system do exist. For example, in
the frequency domain, nonlinear spectral estimation has
been described by Rice and Fitzpatrick [2] and widely
applied to various nonlinear systems. Granger [3] developed
an estimation technique essentially based on a nonlinear
optimisation of a data model composed of damped sinu-
soidal basis functions (and so the scheme was nonlinear
in the identification parameters) and applied the method
specifically to fluidelastic systems. In the time domain, the
force surface mapping technique [4–7] has been successfully
applied to lightly damped fluidelastic systems [8]. A recent
survey of identification methods [9] cites mainly systems
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exhibiting relatively strong nonlinearities. However, these
approaches, and many not listed, are not robust when the
term of interest has a low contribution. Furthermore, if more
than one measurement instrument is required (e.g., in a
forced response test or in the case of force surface mapping),
then the value of damping coefficients obtained is extremely
sensitive to small relative phase distortion between the signals
[10].

Meskell [11] proposed a new technique applicable to
weak nonlinear systems with a single degree of freedom.
This method is similar to the decrement method used to
determine the logarithmic decrement and requires only a
single input signal. As this signal is a deterministic response,
ensemble averaging in the time domain can be used to
reduce the effect of noise and extraneous excitation. While
it is true that a decrement method for systems with viscous
and Coulomb damping has been developed by Feeny and
Liang [12], this technique is limited to Coulomb damping
only. A general identification procedure for nth power
damping was developed by Mottershead and Stanway [13],
but as the stiffness is identified as part of the procedure,
weak nonlinear damping terms cannot be reliably obtained.
The method proposed by Meskell has the advantage that
it can be applied to a system with low damping of any
functional form. Furthermore, Eret and Meskell [14] have
shown that it can be successfully applied to a fluidelastic
system, and the requirement to know the functional form
a priori can be resolved by first applying the FREEVIB
method of Feldman [15]. However, one of the limitations
is that the method is applicable only to a single degree of
freedom system. This paper presents an extension of the
approach to a system with multiple degrees of freedom.
Band-pass filters applied to a single response measurement
provides a technique for decomposing a multi-degree-of-
freedom system with light linear and nonlinear damping into
a number of uncoupled single-degree-of-freedom systems
with both linear and nonlinear damping.

The enhanced method is demonstrated with a numerical
simulation of a discrete two-degree-of-freedom system with
Coulomb damping as well as linear damping.

2. Extension to 2 Degrees of Freedom

At the outset, it should be emphasized that the type of system
of interest is lightly damped and has only weak nonlinearity.
As the systems are lightly damped, only the response at the
natural frequencies will be significant. Thus, the objective is
not to isolate the nonlinearity but rather to account for the
effect of the nonlinear damping on the system response at
each natural frequency.

In order to investigate the applicability of the nonlinear
decrement method to a system with more than one degree of
freedom, consider the two-degree-of-freedom system shown
in Figure 1. The system is linear except for a weak nonlinear
damping directly coupling the two masses. For the purposes
of this study, this nonlinearity is a Coulomb damper.

m2 x2

k2 c2 α

m1 x1

F1c1k1

Figure 1: Schematic of nonlinear 2-degree-of-freedom system.

As the system is nonlinear, it is convenient to consider the
discussion in the context of a specific example. The system
parameters used in this study are specified in Tables 1 and 2.

Ignoring the damping (both linear and nonlinear), the
natural frequencies of the system (i.e., the eigen frequencies)
are 6.9 Hz and 18.2 Hz; the modal matrix is

v =
⎡
⎣0.74 −1.20

1.20 0.74

⎤
⎦. (1)

As the linear and nonlinear damping are small compared
to the stiffness and inertial forces, the frequencies of
vibration will be almost identical to the eigen frequencies.

2.1. Modal Decomposition. For a linear system (i.e., α = 0),
if the viscous damping is proportional (i.e., a linear com-
bination of the mass and stiffness matrices), then the
system could be decomposed exactly into two uncoupled
single-degree-of-freedom systems. However, it can be easily
shown that if the damping is not proportional, but the
system is lightly damped, then the modal decomposition
of the undamped system offers a good estimate of both
the natural frequencies and the apparent mode shapes of
the damped system. As the total damping is low and the
nonlinearities are weak, it is assumed that this engineering
approach can be applied to the nonlinear system. In other
words, it is assumed that the system shown in Figure 1
can be replaced with two mass-normalized single-degree-of-
freedom systems, each with a weak nonlinearity as shown in
Figure 2 (i = 1, 2).

Note that the nonlinear parameter in each mode, αi,
is also mass normalized, as is the modal excitation force,
fi. This will necessitate that the modal matrix (rather than
just the mode ratios) for the undamped system is known.
While this is not a trivial requirement, as it requires some
knowledge of the distribution of mass and stiffness in the
system, it is not impractical.

While the natural frequencies ωi can easily be obtained
directly from the system response, the other modal parame-
ters are more difficult.
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Figure 2: Mass-normalized mode.

Table 1: System mass and stiffness values.

m1 (kg) m2 (kg) k1 (N/m) k2 (N/m)

0.5 0.5 2500 2500

Table 2: System damping parameters.

c1 (Ns/m) c2 (Ns/m) α (N)

1.5 2.0 0.5

If the system is disturbed from equilibrium, so that the
initial displacements are not in the ratio of only one mode,
then the free response will exhibit both natural frequencies
and hence both modes. Obviously, if both system responses
(x1 and x2) are recorded, the modal matrix can be used
to construct the normal coordinates and hence achieve the
modal decoupling envisaged by Figure 2. The system param-
eters could then be obtained using parameter identification
techniques developed for SDOF systems. However, it may
not be practical to measure all the responses directly if the
system has more than two degrees of freedom, and even if it is
possible, magnitude and phase distortion in the instruments
are likely to lead to substantial errors in estimating the
damping parameters. Thus, it is desirable to obtain the
damping parameters of each mode of the system from just
a single response measurement. Given one measured free
response of the system to a disturbance, say x1, the problem is
now to decompose that response into the uncoupled modal
responses.

2.2. Mode Separation. As the system is lightly damped,
the system free response in the frequency domain will be
confined to narrow bands at the natural frequencies. If
the natural frequencies are distinct, the response at each
natural frequency, and hence at each mode, can be easily
separated using a series of band-pass filters. As the signal is
inherently transient and the relatively long-term evolution of
the response is of primary concern, this filtering can best be
achieved in the time domain.

Figure 3 shows the free response x1. It is apparent that the
response contains vibration at both natural frequencies.

Two third-order elliptic filters with a pass band ripple
of 1 dB and a stop-band attenuation of 50 dB, with narrow
pass bands 4 Hz wide centered on each natural frequency,
are used. A practical issue is that the filter itself will
introduce transients, which is caused by the nonzero initial
conditions. This can be seen in Figure 4. Obviously, it would
be impossible to estimate the damping from such a signal.
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Figure 3: Free response of mass 1.
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Figure 4: Free response corrupted by filter transient.

As the filtering is applied off line, the entire time record is
available, and so a simple strategy can be employed to negate
this filter transient. As the time record of the free response
inherently decays to zero, simply reversing the order of the
time record before filtering and reversing again afterwards
removes any filter characteristics from the area of interest
(i.e., close to t = 0). The separated modes obtained from
this processing is shown in Figure 5.

In practice, the acceleration is often the quantity mea-
sured, as accelerometers are reliable, robust, and relatively
cheap. As the acceleration has been band-passed filtered, it
is straightforward to numerically integrate the acceleration
trace to obtain the displacement. The filtering process
ensures that the low frequency noise often associated with
numerical integration does not arise.

3. Parameter Identification Method

Once the normal coordinates have been extracted, the system
response has been decomposed into that of two single-
degree-of-freedom systems. Thus, the method proposed by
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Figure 5: Free response of each mode.

Meskell [11] for a single-degree-of-freedom system can be
applied directly. For completeness, the technique is briefly
presented below and the formulation for a system with
Coulomb damping is developed.

3.1. General Formulation. Consider a single-degree-of-free-
dom system which has a linear spring and a general nonlinear
element. The system is in free response, and so no external
force is acting on it. The method proposed here makes use of
successive peaks in the free response of the system to indicate
the rate of energy dissipation and hence the relative strength
of the various damping components.

The mass normalized equation of motion is

ẍ + ω2x + fD(x, ẋ) = 0, (2)

where ω = √
k/m and fD is the mass-normalizeddamping

force, including both linear and nonlinear damping. Assum-
ing that nonlinear forces are relatively small, the free response
can be assumed to be a simple sinusoid with a time-varying
amplitude

x(t) ≈ A(t) sin
(
ωdt + φ

)
. (3)

In other words, the sub- and superharmonics which would
be expected from nonlinear components are neglected.
Furthermore, if the damping is now assumed to be small
in comparison to the stiffness and inertial forces, the rate of
energy dissipation must be small, and so the rate of change
of the amplitude of vibration is also small (i.e., Ȧ ≈ 0). In
addition, the frequency of vibration ωd ≈ ω. Using these
assumptions, the response of the system can now be written
as

x = A(t) sin
(
ωt + φ

)
,

ẋ = A(t)ω cos
(
ωt + φ

)
,

ẍ = −A(t)ω2 sin
(
ωt + φ

)
.

(4)

The mass normalized (specific) instantaneous mechani-
cal energy in the system

e(t) = 1
2
ω2x2(t) +

1
2
ẋ2(t). (5)

Substituting (4) into this relates the instantaneous specific
energy to the instantaneous amplitude of vibration

e(t) = 1
2
ω2A2(t). (6)

Alternatively, the specific energy can be obtained by con-
sidering the energy dissipated by the nonconservative (i.e.,
damping) force fd. The instantaneous energy is simply

e(t) = e0(t)−w(t), (7)

where e0 is the initial energy at t = 0. The specific work done
by the damping force is

w(t) =
∫ t

0
fD(τ)ẋ(τ)dτ. (8)

Combining (6), (7), and (8) yields

A2(t) = A2
0 −

2
ω2

∫ t
0
fD(τ)ẋ(τ)dτ, (9)

where A0 is the amplitude at t = 0. Substituting the system
velocity (4), changing the variable in the integral to θ =
ωτ + φ, and evaluating this equation over one period of
vibration yields the basic equation for the decrement method
employed

A2
1 = A2

0 −
2
ω3

∫ 2π

0
fD(θ)ẋ(θ)dθ. (10)

The values A0 and A1 are successive peak amplitudes in
the response signal for the system undergoing a free decay
from an initial perturbation. The damping force fD(θ) and
response ẋ(θ) depends on the instantaneous amplitude A(θ),
but as the system is lightly damped, this will change slowly,
and so can be assumed to be a constant value over one
cycle, the value of which is obtained from the response
measurement. The presence of fD(θ) within the integral
means that the application of this general formulation to
a particular system depends on the functional form of
nonlinearity present. Meskell [11] describes the formulation
for a system with cubic damping, while the current work is
concerned with a Coulomb nonlinearity.

3.2. Formulation for Coulomb Damping. Consider a single-
degree-of-freedom system with both viscous (linear) and dry
friction (Coulomb) damping. The damping force is given by

fd = cẋ + α sign(ẋ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cẋ + α, ẋ > 0,

0, ẋ = 0,

cẋ − α, ẋ < 0.

(11)
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Note that the damping coefficients are already mass nor-
malized. Assuming a constant response amplitude of Ac, the
work done over one period of vibration is

∫ 2π

0
fD(θ)ẋ(θ)dθ = cA2

cω
2
∫ 2π

0
cos2θdθ

+ αAcω

[∫ π/2
−π/2

cos θdθ −
∫ 3π/2

π/2
cos θdθ

]

= πω2cA2
c + 4ωαAc.

(12)

Combining this with (10) yields

A2
1 = A2

0 − λ1Ac − λ2A
2
c , (13)

where

λ1 = 8
ω2
α,

λ2 = 2π
ω
c.

(14)

Using successive peaks of the free response, two sets of
“identification coordinates” can now be defined.

For Ac = A0,

p2 = p1(1− λ2)− λ1, (15)

where the quantities p1 and p2 are defined as

p1 = A0,

p2 = A2
1

A0
.

(16)

While for Ac = A1,

q2 = q1(1 + λ2) + λ1, (17)

where the quantities q1 and q2 are defined as

q1 = A1,

q2 = A2
0

A1
.

(18)

Fitting a straight line to these quantities will yield both an
overestimate (from (15)) and an underestimate (from (17))
of the system parameters λ1 and λ2.

It is worth emphasizing that the form of the quantities
pi and qi and (15) and (17) depend on the form of
the nonlinearity in the system. To illustrate this, Table 3
compares the current formulation for Coulomb damping
with that previously obtained for cubic damping [11].

4. Results

Figures 6 and 7 show the pi and qi quantities for modes 1
and 2 calculated from the filtered free response of x1 shown
in Figure 3. As can be seen, the data for both modes follows a
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Figure 6: Mode 1 identification coordinates:©: pi; �: qi.
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Figure 7: Mode 2 identification coordinates:©: pi; �: qi.

straight line with non-zero intercept (i.e., λ1 /= 0) indicating
that both modes exhibit Coulomb damping.

An estimate of the mass-normalized damping parameters
can now be obtained directly from the slope and intercept of
the fitted line through each data set using (15) and (17), and
the definitions of λi given by Table 3. This will yield an under-
and overestimate of the damping parameters for each mode.
Table 4 details the average of the under- and overestimates
for each mode.

5. Model Validation

In order to demonstrate the validity of this identification
approach, the response of the fully coupled 2-degree-
of-freedom system is compared with that obtained from
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Table 3: Comparison of formulations for two nonlinear systems.

λ1 λ2 p2 p1 q2 q1

cubic [11]
2π
ω
c

3πω
2

β
(
A1

A0

)2

−A2
0

(
A0

A1

)2

A2
1

Coulomb
8
ω2
α

2π
ω
c

A2
1

A0
A0

A2
0

A1
A1

Table 4: Identified damping parameters.

αi ζi

Mode 1 0.174 0.011

Mode 2 0.890 0.050
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Figure 8: Forced response of mass 2 at an rms excitation level of
10 N.

combining the response of the two identified single-degree-
of-freedom systems. A random excitation force is applied
to mass 1, as shown in Figure 1. This is band limited to
64 Hz, so both natural frequencies will be excited, and
various excitation levels have been examined. The excitation
forces, fi, for the single-degree-of-freedom systems, are
obtained from the modal matrix

[
f
] = [v][F], (19)

where [v] is the modal matrix given by (1) and [F] =
[F10]′. The displacement time histories of the 2 degrees of
freedom can be obtained from the single-degree-of-freedom
responses using the same modal matrix.

A section of the time response of mass 2 obtained from
the 2-degree-of-freedom simulation is compared in Figure 8
with the corresponding time record obtained from the
two single-degree-of-freedom systems. As can be seen, the
behaviour of the identified model agrees well with that of the
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original system. Similar results can be seen for the response
of mass 1 and at other excitation levels.

Figure 9 shows the predicted rms values for each mass
compared with the actual response for a range of excitation
levels. As can be seen, the identified model tends to under-
estimate the system response at low excitation amplitudes,
indicating that the effect of the nonlinear damping is system-
atically underestimated. Nonetheless, the identified single-
degree-of-freedom models do provide reasonable agreement
with the actual system response.

6. Conclusions

The feasibility of decomposing a lightly damped multi-
degree of freedom system with weak nonlinearity into a
number of single-degree-of-freedom systems has been inves-
tigated in the context of a discrete 2 dof system. It has been
shown that the free response at each mode can be obtained
from a single free response measurement by band-pass fil-
tering at each natural frequency. It has also been shown that
the resulting free decay traces exhibit nonlinear damping and
that it is possible to extract quantified damping parameters
for each mode. Importantly, as the nonlinear behaviour is
accounted for directly, the damping parameters obtained are
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independent of response amplitude. This would not be the
case if a simple apparent linear damping was estimated. In
the case of Coulomb damping, such an approach is likely to
yield an overestimate of the operational damping ratio, and
so an underestimate of vibration amplitudes. Further work
is required to demonstrate the practicality of the method
on experimental data and specifically to assess the range
of parameter values for which the limiting assumptions
are acceptable. Nonetheless, the method presented here is
a promising technique for system identification in fluid-
coupled systems.
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