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Abstract 

Inelastic phenomena such as softening and unrecoverable inelastic strains induced by 

loading have been observed experimentally in soft tissues such as arteries. These 

phenomena need to be accounted for in constitutive models of arterial tissue so that 

computational models can accurately predict the outcomes of interventional procedures 

such as balloon angioplasty and stenting that involve non-physiological loading of the 

tissue. In this study, a novel constitutive model is described that accounts for inelastic 

effects such as Mullins-type softening and permanent set in a fibre reinforced tissue. The 

evolution of inelasticity is governed by a set of internal variables. Softening is introduced 

through a typical continuum damage mechanics approach, while the inelastic residual 

strains are introduced through an additive split in the stress tensor. Numerical simulations 

of aorta and carotid arterial tissue subjected to uniaxial testing in the longitudinal, 

circumferential and axial directions 

reproduce the anisotropic inelastic behaviour of the tissue. Material parameters derived 

from best-fits to experimental data are provided to describe these inelastic effects for both 

aortic and carotid tissue. 
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1. Introduction 

Optimisation of vascular medical devices using computational tools such as the finite 

element method requires accurate constitutive models of arterial tissue. Developing such 

constitutive models is challenging due to the complex structure and composition of 

vascular tissue. At physiological levels of pressure, arteries exhibit highly nonlinear, 

anisotropic and viscoelastic responses to loading (Fung, 1981; Holzapfel et al., 2005). 

Furthermore, during procedures such as balloon angioplasty and stenting, arteries also 

experience non-physiological magnitudes of pressure and deformations. At these non-

physiological loads arteries display inelastic behaviour as a result of damage to the tissue, 

which can be observed as a softening of the stress-strain response between loading cycles 

(Alastrué et al., 2008; Pena et al., 2010). Such structural changes due to tissue damage 

need be considered when modelling surgical interventions. The damage mechanisms 

responsible for softening of arterial tissue are not fully understood, however it has been 

observed that in ligaments damage may occur as a result of tearing or plastic deformation 

of the fibrous component of the tissue or by a biomechanical degradation of extracellular 

matrix due to protease release associated with cell necrosis (Provenzano et al., 2002). The 

softening effect that occurs in fibrous soft tissue has been seen to largely depend on the 

previous maximum strain that the tissue has experienced. This behaviour is also observed 

in rubbers and is known as the Mullins effect (Mullins, 1948). Another phenomenon that 

occurs as a result of non-physiological loading is the presence of residual inelastic strains 

(or permanent set) on unloading. Both stress softening and permanent set have been 

observed for other soft tissues: such as skin, brain, venous and vaginal tissue (Ehret and 

Itskov, 2009; Franceschini et al., 2006; Peña, 2011); as  well as arterial tissue (Calvo et al., 

2007; Pena et al., 2010) and atherosclerotic plaque (Maher et al., 2011). 

 The mechanical behaviour of arterial tissue and plaque is commonly described 

using hyperelastic material models (Delfino et al., 1997; Holzapfel et al., 2000; Lally et al., 



2004; Maher et al., 2009); however these models typically do not incorporate damage 

effects and as a result are limited when modelling the effects of non-physiological loading 

during surgical interventions. The Mullins effect theory does not implicitly account for 

inelastic strains and many damage models omit permanent set from the formulation 

(Alastrué et al., 2007; Balzani et al., 2006; Calvo et al., 2007; Hokanson and Yazdani, 

1997). A number of models have been proposed to describe stress softening in biological 

tissues. These models are often based on continuum damage mechanics theory; where a 

reduction factor (Simo and Ju, 1987a; Simo and Ju, 1987b) related to the evolution of 

irreversible internal variables is applied to model damage to either isotropic (Hokanson and 

Yazdani, 1997; Maher et al., 2011) or anisotropic models (Alastrué et al., 2007; Balzani et 

al., 2006; Calvo et al., 2007; Pena and Doblare, 2009). In anisotropic models of soft tissue, 

damage can either be isolated to the anisotropic fibrous component (Balzani et al., 2006) or 

applied to both the isotropic matrix and fibrous components separately (Calvo et al., 2007). 

Hokanson and Yazdani (1997) proposed a model where a 4th order damage tensor was used 

to induce anisotropic softening to an isotropic material. Other approaches to modelling 

stress softening include pseudoelastic constitutive models (Franceschini et al., 2006; Pena 

and Doblare, 2009) or multi-mechanism models that describe failure or deactivation of 

tissue components (Li and Robertson, 2009; Wulandana and Robertson, 2005). Models of 

soft tissues have also considered fracture and viscoelastic dissipation in front of the crack 

tip to describe failure in the tissue (Forsell and Gasser, 2011). 

Relatively few constitutive models have been proposed to describe permanent set 

(Ehret and Itskov, 2009; Franceschini et al., 2006; Gasser, 2011; Gasser and Holzapfel, 

2002; Maher et al., 2011; Peña, 2011; Tanaka and Yamada, 1990). Gasser and Holzapfel 

(2002) proposed a constitutive model for arterial tissue based on multisurface slip 

plasticity, where plastic deformations are due to slip in the collagen fibre component of the 

matrix. Tanaka and Yamada (1990) also proposed a plasticity model to account for 



permanent set and softening, formulating their model in a viscoplastic framework. Ehret 

and Itskov (2009) presented a model to describe the dissipative behaviour of soft tissue 

including softening, permanent set and preconditioning; although this model uses non-

standard invariants which results in a complex formulation. Gasser (2011) proposed a 

multi-scale microfiber approach, modelling collagen fibers as bundles of fibrils with 

crosslinks between in an isotropic matrix. This model described an approach that coupled a 

viscoplastic sliding mechanism with failure of the collagen cross-links to model permanent 

deformation and softening of a collagen fiber. The constitutive behaviour of the fibers is 

integrated over a unit sphere to determine the macroscopic tissue properties. Peña (2011) 

used a formulation based on the evolution of internal variables to introduce inelastic 

softening to the anisotropic components of the model. Franceschini et al (2006) adapted a 

pseudoelastic formulation for particle filled rubbers (Dorfmann and Ogden, 2004; Ogden 

and Roxburgh, 1999) to model softening and permanent set for brain tissue. Other models 

have also used a pseudo-elastic based approach to describe inelastic strains in carotid 

plaque (Maher et al., 2011). 

 Despite the significant progress that has been made in modelling the mechanical 

behaviour of arterial tissue, to the authors knowledge to date few models have been 

proposed to describe anisotropic stress softening and permanent set in arterial tissue 

(Gasser, 2011; Tanaka and Yamada, 1990). Without considering such phenomena it will 

not be possible to develop models to accurately predict lumen gain during clinical 

procedures such as angioplasty and stenting (Early and Kelly, 2011; Early and Kelly, 2010; 

Early et al., 2009; Pericevic et al., 2009). In this study an anisotropic inelastic constitutive 

model is formulated to describe stress softening and permanent set for arterial tissue. While 

stress-softening is commonly applied to the isotropic matrix and anisotropic fiber 

components (Alastrué et al., 2007; Calvo et al., 2007), models that also incorporate 

anisotropic permanent set generally only consider it in the fiber component of constitutive 



models (Gasser, 2011; Gasser and Holzapfel, 2002; Peña, 2011). Recently we have 

observed that higher magnitudes of permanent deformations occur in aortic or carotid 

tissue due to longitudinal tensile strains compared to circumferential tensile strains, with 

even greater magnitude permanent deformations observed due to radial compressive strains  

(Maher et al., in press), suggesting that the non-collagenous matrix in the artery is more 

easily damaged than the more circumferentially orientated collagen fibers during loading. 

In an attempt to describe this complex material behaviour, the objective of this study is to 

develop a constitutive model of arterial tissue that incorporates stress-softening and 

permanent deformations in both the isotropic ground matrix and anisotropic fiber 

components. The formulation is split into an elastic softening, equivalent to the Mullins 

effect, based on a typical damage mechanics approach and an inelastic softening effect, 

which results in residual strains, which is based on an additive split of the stress tensor and 

the irreversible evolution of internal variables. The efficacy of the model is demonstrated 

by fitting to experimental data. 

 

2. Materials and methods 

2.1. Anisotropic hyperelastic constitutive model 

As arterial tissue is generally viewed as a nearly incompressible tissue, a multiplicative 

decomposition of the deformation gradient tensor, , and the right Cauchy-Green 

strain tensor, , into volumetric (dilatational) and isochoric (volume preserving) 

parts is performed (Flory, 1961); where J is the determinant of the deformation gradient 

tensor. This allows a decoupled representation of the strain energy density function  to be 

used. 

  (Eqn. 1) 

 



The volumetric term,  is a function of the determinant of the deformation gradient 

tensor J and is defined here by the equation,   (Holzapfel, 2000). The 

isochoric part of the strain energy is a function of the modified right Cauchy-Green tensor 

 and the structural tensors,  and   (Spencer, 1971). The 

structural tensors are functions of the unit vectors in the preferred fibre directions in the 

undeformed tissue m0 and n0, with the square of the stretch in the fibre directions given by 

the modified invariants  and , see Eqn. 2. Other invariants can also be associated with 

the structural tensors, but are commonly excluded from constitutive formulations due to 

the difficulty in quantifying them, and are not considered here. 

 

              (Eqn. 2) 

 

We can now define the 2nd Piola-Kirchhoff stress S as: 

 

 

 

 

where  and  are the volumetric and isochoric parts of the stress respectively. The 

isochoric part of the strain energy density can be split into isotropic and anisotropic 

components. In structural models this represents anisotropically orientated fibres in an 

isotropic matrix. Here the isotropic component is described using an exponential function 

of the modified strain invariant , which has previously been used to model arterial 

(Eqn. 3) 



tissues as isotropic (Delfino et al., 1997; Maher et al., 2011). The anisotropic components 

are exponential functions of the invariants   and   (Holzapfel et al., 2002): 

 

 

 

 

 

where a, b, k1 and k2 are material parameters evaluated through fitting the model to data 

from mechanical testing and . The elasticity tensor in the material description  is 

similarly defined: 

 

 

 

2.2. Stress-softening damage model 

As is common in continuum damage mechanics theory when applied to soft tissues, 

damage is assumed to affect only the isochoric part of the constitutive model (Alastrué et 

al., 2007; Calvo et al., 2007; Simo, 1987). The isochoric stress-softened damaged strain 

energy density function  is defined for such materials as: 

 

        (Eqn. 7) 

 

(Eqn. 4) 

(Eqn. 5) 

(Eqn. 6) 



where  is the undamaged strain energy of the isotropic matrix and is a function of the 

modified first strain invariant. , j = 4, 6 are the strain energy densities of the undamaged 

anisotropic family of fibres and , i = m, 4, 6  are scalar functions, known as the 

reduction factors, that act as internal variables with  defined as damage variables 

for the matrix (Dm) and the two fibre directions (D4 and D6 respectively). 

 Evaluating the Clausius-Duhem inequality for isothermal conditions, where the 

internal dissipation  and using standard arguments of continuum 

mechanics (Holzapfel, 2000) the following relationships can be established: 

 

       (Eqn. 8) 

 

             (Eqn. 9) 

 

where SS and , i =m, 4, 6 are the total isochoric, the isotropic part and the anisotropic 

parts of the second Piola-Kirchhoff stress respectively. Eqn. 9 shows that the evolution of 

the damage variables Di is an irreversible process, where  are the thermodynamic forces 

which govern damage evolution. 

 We now define the strain space based criteria needed for damage evolution at any 

time during the loading process as (Simo, 1987): 

 

                (Eqn. 10) 

 



where              and               (Eqn. 11) 

 

with the damage criteria , i = m, 4, 6, and the equivalent strain definition .  

which characterises the damage surface whose normal is defined as .  The 

second criterion is based on the double contraction , where  describes 

loading when . Evolution of the damage variables Di can be expressed by 

 

        (Eqn. 12) 

 

where the functions  characterise damage evolution in the tissue. 

Making use of the chain rule the isochoric part of the elasticity tensor in the material 

description  can be derived from the second Piola-Kirchhoff stress tensor in Eqn. 8. 

 

            (Eqn. 13) 

 

where           (Eqn. 14) 

 

with  as defined in equation 6. The reduction factors  are defined for all equations here 

as (Miehe, 1995): 

 



  (Eqn. 15) 

 

with  and ri as material parameters determined through fitting to test data 

. 

2.3. Damage Model with Permanent Deformations 

The permanent deformation damage formulation proposed here is characterised by an 

additive split of the isochoric part of the stress tensor into a stress-softened damaged stress 

tensor and an inelastic stress tensor  that results in permanent deformations on 

unloading. The stress-softened damage term,   is defined as in the previous section. 

 

          (Eqn. 16) 

 

The general form of the isochoric strain energy density function can be written as: 

 

 

where  is as defined in Eqn. 7. The volumetric part of the strain energy is defined as in 

section 2.1, i.e. . 

 To obtain the stress relation it is necessary to determine the time derivative of the 

strain energy and evaluate the Clausius-Duhem inequality as in the previous section. This 

results in the inequality 

(Eqn. 17) 



 

 

from which one can derive the second Piola-Kirchhoff stress tensor S and the non-negative 

internal dissipation inequalities.   is the deviatoric projection tensor in 

the material configuration, where  is the 4th order unit tensor. The dissipation inequalities 

for damage induced permanent deformation are defined in Eqn. 9. 

 

 

 

                (Eqn. 20) 

 

Eqn. 20 shows that  act as dissipative tensors such that if the strain applied to the tissue 

is tensile, i.e.   than the rate of change of the inelastic stress will be either positive 

or zero . The inelastic stresses  are therefore dependent on the strain in the 

tissue and we propose criteria for evolution of the inelastic stresses based on the modified 

strain invariants: 

 

         (Eqn. 21) 

 

(Eqn. 6.18) 

(Eqn. 19) 



        (Eqn. 22) 

 

where , i = 1, 4, 6, are the modified strain invariants of the right Cauchy-Green strain 

tensor at any given strain and   are the maximum values of the strain invariants in the 

history of the material. As the strain energy density is a function of the strain invariants, 

when  from Eqn. 21 we will get  from the stress-softening damage criterion 

from Eqn. 10. The normal to the permanent deformation damage surface, described by 

, is defined as . We define the evolution of the internal variables  

and the inelastic stresses as follows: 

 

 

 

 

   

where  are the inelastic dissipated internal strain energies during the loading process 

for the matrix and family of fibres respectively. The above equations make use of the fact 

that when the yield criterion for permanent deformation is met , and thus 

 in order to calculate the inelastic stresses. The inelastic dissipated 

internal strain energy has the same form as the elastic strain energy density functions, 

(Eqn. 23) 

(Eqn. 24) 



 

 (Eqn. 25) 

 

   j = 4, 6  (Eqn. 26) 

 

with  material constants to describe the damage induced permanent 

deformation effects fitted to mechanical test data. The material elasticity tensor can be 

defined using the chain rule as: 

 

            (Eqn. 27) 

 

 

 

which again makes use of the fact that  when the yield conditions for 

permanent deformation are met. 

 

2.4. Characterisation of inelastic mechanical response of arteries 

The model as presented here is compared to the experimental stress-strain behaviour of 

porcine aorta and carotid arterial tissue in response to cyclic uniaxial loading experiments 

conducted by the authors. A strip of tissue in each of the circumferential and longitudinal 

directions was tested in tension for each artery and cylindrical radial samples were also 

tested in compression. The tensile strips were approximately 2 mm wide and 10 mm long 

(Eqn. 28) 



for the carotid samples and 3 mm wide and 17 mm long for aortic samples. Displacement-

rate controlled cyclic loading was applied to each specimen, with a strain-rate of 

approximately 0.005 s-1. The maximum strain level increasing periodically by 10% every 5 

loading cycles to a maximum of 60 %. Testing of the 3.5 mm diameter cylindrical radial 

compressive samples followed a similar loading regime as the tensile specimens. The 

experimental methodology is described in full elsewhere (Maher et al., in press). Inelastic 

strains were determined where the stress-strain curve crossed the strain axis on reloading.  

The strain energy function defined in equation 17 with associated material constants 

was fit to the mechanical data of representative samples from samples in the longitudinal 

and circumferential tensile directions. The fitting procedure used minimised the root mean 

square (rms) error for the stress-strain response and the inelastic strains as described in a 

previous study (Maher et al., 2011). The fitting to experimental data was performed 

numerically: the model presented in section 2.3 was implemented as a user material in the 

finite element code ABAQUS (Dassault Systèmes, SIMULIA, RI, USA). Tensile boundary 

conditions were applied to a model to reproduce the experimental tensile loading, as is 

common in the literature (Balzani et al., 2006; Peña et al., 2011), see Fig. 1. The resulting 

stress-strain curves in both the circumferential and longitudinal were compared to the 

experimental data. The fibre orientations were defined by the angle, , between the fibres 

and the circumferential direction. In cylindrical polar coordinates the unit vectors m0 and 

n0 are defined as (Holzapfel et al., 2000): 

 

 

 

where was included as a variable parameter in the model fitting procedure. The fitting 

procedure was repeated a number of times to ensure a reasonably consistent set of 

(Eqn. 29) 



parameters were produced. The success of the model fits were analysed and model was 

also used to predict inelastic strains caused by radial compressive loading as a further test 

to determine how accurately the inelastic damage mechanisms were described by the 

model. 

 

3.  Results 

The best fit material parameters for the aorta and carotid experimental data are presented in 

Table 1. The comparison between model predictions and experimental results is illustrated 

in Figs. 2-5. Good agreement between the experimental data and the model were found 

when comparing the stress-strain response on loading and reloading, see Fig. 2. The quality 

of fit was worst in the transition region between low and high stiffness regions, however 

the fit in these regions was still of reasonably good quality, see Fig. 2. The total rms error 

for the 2nd loading cycles in both directions, s is presented in Table 1 as a measure of the 

quality of the fit. 

To aid clarity of the fit, comparisons for the elastic loading response, or load 

envelope, are shown in Fig. 3. There is a good quality of fit with the elastic loading in both 

longitudinal and circumferential directions for both the aorta and carotid artery, see Fig. 3. 

In addition, good quality fits for the 2nd loading curves at each strain level were also 

achieved for both arteries in both directions, see Fig. 4. 

The model was able to accurately predict the softening behaviour in both the 

longitudinal and circumferential directions, see Fig. 4. The worst quality fits were found at 

low strains in the circumferential direction for both arteries with the model predicting less 

softening than observed experimentally. (Only the 2nd loading curve is shown to aid clarity 

in the figure.) The model accurately predicted the magnitude of inelastic strain in the 

circumferential and longitudinal directions for a range of applied peak strains, see Fig. 5. 

The only noticeable exception was that inelastic strains in the circumferential direction 



were generally overestimated at small strains. This is due to damage initiation occurring 

when the tissue stretch is beginning in the model. It is likely, as is seen in ligaments, that 

damage initiation will not occur immediately, particularly in the collagen fibres 

(Provenzano et al., 2002). Good agreement in the magnitude of inelastic strains observed in 

the radial direction is found up to approximately 40% compressive strain after which the 

model tends to over-estimate the inelastic deformations (Fig. 5 e,f). Overall, a good 

agreement with the experimental data is observed. 

 

4.  Discussion 

In this study, a constitutive model was presented to describe damage and inelastic 

deformations in vascular tissue. The model was presented in terms of stress-softening 

damage, which follows the typical continuum damage mechanics structure of modelling 

the Mullins effect, and damage induced permanent deformations, which is characterised by 

an additive split of the stress tensor and the evolution of internal variables based on the 

maximum value of the modified strain invariants in the load history. The use of the 

additive split in the stress tensor was motivated by a pseudo-elastic constitutive model 

developed for particle-filled rubbers (Dorfmann and Ogden, 2004) that has been adapted 

successfully for use in soft tissues (Franceschini et al., 2006). In the pseudo-elastic 

approach a 2nd term in the strain energy density, which was partially dependent on the 

maximum stretch, results in a  negative stress contribution and thus permanent 

deformations on unloading. We formulated a damage-based model to describe permanent 

deformations using an additive split in the stress tensor where the occurrence of permanent 

deformations are defined through the evolution of internal variables based on damage 

criteria. An additive split in the stress tensor had also been used in modelling plastic flow 

(Simo and Ju, 1987a).  



The model was shown to successfully describe the typical soft tissue damage 

phenomena of stress softening, with good quality fits for the experimental data obtained. 

The assumption of independent damage mechanisms existing for the fibres and base matrix 

also allows the model to predict the anisotropic softening observed in arterial tissue, with 

the model capturing the smaller inelastic strains observed in the circumferential direction 

and the larger inelastic strains observed in the longitudinal direction.  The values obtained 

for the inelastic constants,  and ri, suggest that stress-softening occurs in both the matrix 

and fibres which results in the softening pneumonia observed in both the longitudinal and 

circumferential directions. The inelastic constants corresponding to the fibres are however 

smaller than the corresponding constants for the matrix. This results in the lower 

magnitudes of inelastic strains in the circumferential direction where the stiff, possibly less 

inelastic fibres have more of an influence. This may indicate that collagen fibres in arterial 

tissue act to constrain the inelastic deformations that are hypothesised to occur more 

prominently in the other constituents, e.g. elastin, smooth muscle or ground matrix. It 

should be noted however that as a phenomenological model the fibre directions here do not 

represent true collagen fibre families and are merely a representation of the overall 

anisotropic behaviour of the arteries which limits the insight into individual arterial 

component behaviour the model may provide.  

The exact mechanisms through which damage occurs in arterial tissue is unknown, 

but for example failure of crosslinks between fibres might result in a softening effect while 

failure or slip of the fibres in the matrix might result in permanent deformations. Such 

damage mechanisms have been hypothesised by Parry et al (1978) where non-recoverable 

creep is prevented through non-covalent crosslinks between fibres and matrix and small 

diameter fibres result in more of these links as they provide a greater surface area per unit 

mass. They further hypothesise that large diameter fibres maximise covalent intrafibrillar 

crosslinks thereby increasing the stiffness of the tissue (Parry et al., 1978). The model 



presented here could possibly be modified to include the effects of cross-linking on the 

damage behaviour using a multi-scale approach (Tang et al., 2009). Tang et al (2009) 

presented a multi-scale model of the collagen fiber components of a tissue. The 

deformation gradient of the collagen fiber is multiplicatively decomposed into an elasto-

plastic uniaxial fiber deformation and the remaining purely elastic shear deformation. The 

flow resistance in the fibrils is modified by a parameter based on the cross-linking density 

and thus cross-linking effects the plastic flow of the fibrils. The strain-energy function 

based on the mechanics of the fibrils and matrix of the fiber is presented in terms of the 

first and fourth strain invariants of the elastic strain for the fibrils and of the total uniaxial 

fiber strain for the matrix. A similar strain-energy density could be formulated for the 

uniaxial fiber deformation with the invariants based on the total uniaxial fiber deformation. 

When applying a damage model such as presented here, a parameter for cross-linking 

density as used by Tang et al. (2009) could be used to modify the damage surface in the 

model which would have an effect on the rate at which damage occurs. The breaking of 

non-covalent crosslinks resulting in slip of collagen fibres in the matrix has been used to 

describe inelastic deformations in arterial tissue (Gasser and Holzapfel, 2002). The 

mechanisms of damage in the matrix are made more complex due to the number of 

components that it consists of. The elastin network contains intrafibrillar crosslinks that 

also contribute to the stiffness in the artery (Greenwald, 2007). Damage of these links may 

induce softening, while slip or damage of other components may result in permanent set. 

The constitutive model developed as part of this study describes the damage effects as 

energy dissipation which occurs discontinuously during loading as damage progresses. 

 There are few models in the literature that account for both softening and 

permanent set. The ability to account for both these behaviours gives the proposed model 

an advantage over models that describe the Mullins effect based on traditional continuum 

damage mechanics. Considering permanent deformation is particularly important in the 



case of vascular tissue where the end goal of many surgical interventions is to increase the 

final lumen size through mechanical loading. Models that have been fit to experimental 

data for other soft tissues that include softening and permanent set (Ehret and Itskov, 2009; 

Franceschini et al., 2006; Peña, 2011) also have the potential to be used for arterial tissue. 

In these models permanent set has been applied to either uniaxial deformation alone 

(Franceschini et al., 2006), to only the fiber component of the model (Gasser, 2011; Gasser 

and Holzapfel, 2002; Peña, 2011) or both in and orthogonal to the fiber direction (Ehret 

and Itskov, 2009). From the experimental data it is observed that the permanent 

deformations in the less stiff longitudinal direction are greater than those due to loading in 

the circumferential direction (Maher et al., in press), with even greater magnitudes of 

permanent deformation observed due to radial compressive strains. Such material 

behaviour may be difficult to replicate using models that apply damage induced permanent 

deformations to the fibers only. While constitutive models have been used successfully to 

capture the stress-softening behaviour of arterial tissue using a fiber-damage only approach 

(Balzani et al., 2006), the further introduction of permanent deformation only applied to 

the fibers would likely result in greater magnitude permanent deformation in the 

circumferential direction due to the fibers orientating towards the stiffer circumferential 

direction. Whether other models recently described in the literature can be used to describe 

this complex material behaviour while maintaining physiologically consistent fiber angles 

is worthy of further investigation (Ehret and Itskov, 2009; Gasser, 2011; Peña, 2011). 

 There are several limitations to the constitutive model presented in this study. The 

model fit to the experimental data is not as accurate in describing the high strain behaviour 

(last cycle) as for lower strain levels. This is possibly a result of the greater contribution of 

the adventitia at higher strain levels experimentally and the difficulty in capturing this 

behaviour when modelling the artery wall as a single layer. The damage processes are 

described using a phenomenological model and as such it is difficult to relate the inelastic 



constants to a physical meaning. Viscoelasticity is not considered and would likely play a 

role in the softening effect. In the experimental data the unloading and subsequent 

reloading curves are not coincident (i.e. a hysteresis effect)  as in the idealised Mullins 

effect, which is likely due to viscoelastic behaviour. In the context of this model, where the 

Mullins effect is modelled as an irreversible damage induced stress-softening based on 

continuum damage mechanics, we feel it is more appropriate to fit to the 2nd loading curve 

than the unloading curve due to the observation that the softening effect between unloading 

and reloading appears to be an irreversible effect caused by damage while the further 

softening between the reloading and unloading curves appears to be a reversible 

viscoelastic process. As the model is fit to the reloading curve the unloading behaviour is 

not accurately characterized in cases where significant differences between unloading and 

reloading occur. Failure is also not considered here. Failure behaviour was omitted as 

tissue failure was generally absent from the experimental model used in this study. Failure 

could be included into the stress-softening damage variables Di by introducing a maximum 

value of the equivalent strain measure above which Di = 1 (Calvo et al., 2007; Pena et 

al., 2009). Preconditioning effects could be added to the model through the introduction of 

a continuous damage mechanism (Pena et al., 2009).  

Preliminary testing was undertaken to confirm that the residual strains observed in 

porcine arterial tissue on unloading remain after an unloaded rest period of between 1 and 

2 hours. It is possible however that significant viscoelastic recovery occurs over a longer 

period of time or that viscous behaviour may be more significant in other tissues and/or 

species. For example viscoelasticity has been observed to be important in fracture models 

of ventricular tissue (Forsell and Gasser, 2011). It would be possible to introduce a viscous 

effect to modify the permanent deformations by modifying the inelastic stress tensor SIN to 

incorporate non-equilibrium stresses, similar to viscoelastic models in the literature (Pena 

et al., 2010; Peña et al., 2008; Simo, 1987). One example of this sort of formulation would 



be a strain energy density function defined as 

where the non-equlibrium stress Q i 

is related to (Eqn. 24) in this study rather than the term  as in typical 

viscoelastic theory (Peña et al., 2008). In this formulation we would have a peak original 

inelastic effect characterized by  which is reduced over time by the non-equilibrium 

stress. This type of formulation is made easier to implement due to the additive split 

already implemented in the stress tensor. 

 Using the tensile data the model can predict inelastic strains due to radial 

compression with good accuracy at low to medium strains. At high strains however the 

inelastic strains are overestimated. It has been seen that arteries behave as nearly 

incompressible materials during arterial expansion (Carew et al., 1968). However the 

compressive stresses will be comparatively small during the expansion of a healthy artery 

and it may be possible that at higher magnitudes of radial compression the assumption of 

near-incompressibility is no longer valid. This may explain the increase in damage and 

overestimation of compressive stresses that occurs at high strains. However as 

circumferential tension is the dominant loading mechanism during arterial expansion 

during procedures such as angioplasty and stenting these high compressive strains may not 

be reached. 

 Despite these limitations the model could predict the experimental behaviour of 

healthy arterial tissue with good accuracy. The constitutive model is one of the few 

inelastic models that have been fit to arterial tissue experimental data that considers both 

softening and inelastic strains. The modelling of these inelastic effects allows for more 

accurate finite element analyses of interventions such as balloon angioplasty or stenting by 

accounting for tissue damage during loading and hence the resulting lumen gain.  
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F igure L egends 

 

F ig. 1: Schematic of the finite element model geometry and boundary conditions for 

circumferential (left) and longitudinal (right) tensile tests. Arrows represent direction of 

loading and the angle between the collagen fibre and the circumferential direction. 

 

F ig. 2: Comparison between constitutive model fit and experimental results for the stress-

strain response in the longitudinal ((a) and (b)) and circumferential ((c) and (d)) for aorta 

and carotid tissue samples respectively. 

 

F ig. 3: Comparison of stress-strain response predicted by the model with experimental data 

of the load envelope for (a) aorta and (b) carotid arteries in the circumferential and 

longitudinal directions. 

 

F ig. 4: Experimental and model comparison of stress-strain curve for the 2nd loading cycle 

at each strain level in longitudinal (a) aorta and (b) carotid samples; and circumferential (c) 

aorta and (d) carotid samples. Insets show close-up of the experimental data only so that 

the permanent deformation can be clearly observed; the red data point in the insets 

corresponds to the zero stress-state of each loading cycle. 

 

F ig. 5: Inelastic strain on unloading from various peak strains in the longitudinal (a, b), 

circumferential (c, d) and radial (e, f) directions for aorta (a, c, e) and carotid artery (b, d, f) 

respectively. 

 

 

 



 

Table 1: Optimised material parameters for aortic and carotid specimens 

Aorta       

a(MPa) b k1(MPa) k2 
 

rm 

 

0.035 3.5 0.0125 0.7 0.7 0.16 0.9 

rf a*(MPa) b* (MPa) 
 

(degrees) s 

0.15 0.0034 0.001 0.0001 0.0001 20 0.082 

Carotid       

a(MPa) b k1(MPa) k2 
 

rm 

 

0.05 3.2 0.011 0.95 0.8 0.13 0.75 

rf a*(MPa) b* (MPa) 
 

(degrees) s 

0.08 0.0035 0.001 0.0002 0.0001 15 0.037 
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