Predicting Turning Points in the Rent Cycle Using the Natural Vacancy Rate –
An Applied Study of the Dublin Office Market

John McCartney

Central Statistics Office

(read before the Society, 2 November 2010)

Abstract: All property markets have a natural vacancy rate (NVR). Theory suggests that when the actual vacancy rate exceeds this NVR the market will be unbalanced. Then, rents will fall to restore equilibrium. Conversely, when vacancies are below the NVR, rents will rise. By establishing a ‘tipping point’ between positive and negative rental growth, the NVR is a useful tool for analysing market cycles. Standard econometric practice is to model the NVR as a constant. However, this paper finds that there was a large structural shift in the natural vacancy rate for Dublin office space in the late 1990s. Allowing for this, two discrete NVRs are estimated for Dublin. For the 1978-1998 period, the NVR is calculated at 5.2%. This is broadly in line with rule-of-thumb estimates used by industry practitioners. However, the estimated NVR for the 1999-2009 period is 15.0% - more than twice the 7% rate that is normally assumed. One interpretation is that Dublin’s office market is set to recover sooner than expected. Currently, the actual vacancy rate is just over 23%. Rents will only stop falling when this figure has been reduced into line with the NVR. For a given rate of net absorption, this will be achieved more quickly if the NVR is 15% than if it were 7%.

Keywords: Rent cycles, natural vacancy rate, office markets

JEL: R33

1. INTRODUCTION

The vacancy rate promises to be a key variable for understanding commercial property markets because it encapsulates both supply and demand conditions. However, while it is commonly expected that a high vacancy rate will exert downward pressure on rents, applying this expectation to practical market analysis is less straightforward than one might imagine. In particular, a problem arises in defining exactly what is meant by a ‘high’ vacancy rate. Previous studies have demonstrated that the same vacancy rate (say 8% or 10%) can be consistent with rental growth in one market and falling rents in another (Krainer 2001, Voith and Crone, 1988). This suggests that, in itself, the absolute vacancy rate is not the best indicator of market conditions. Instead the gap between the actual vacancy rate and some market-specific ‘natural’ rate of vacancies is a better predictor of rental dynamics (see Sanderson, Farrelly and Thoday, 2006). Conceptually, the natural vacancy rate (NVR) is that which corresponds with market equilibrium and rent stability. When the actual vacancy rate exceeds this level the market is ‘overbuilt’ and rents will fall. Conversely, when vacancies are below their natural level, theory suggests that rental growth will occur.

Because the NVR establishes a ‘tipping point’ between positive and negative rental growth it is potentially a useful tool for analysing commercial property cycles. Despite this, however, the NVR does not feature prominently in European commercial property research, and it is seldom referred to in Ireland. Moreover, on those occasions when the NVR is utilised, its value is often approximated on a ‘rule of thumb’ basis (Sanderson, Farrelly and Thoday, 2006). These approximations can be highly arbitrary, resulting in potentially misleading analyses.

1 The author would like to thank Séan Lyons of the ESRI and an anonymous referee for helpful comments on an earlier draft of this paper. Thanks also Clare Eriksson of Jones Lang LaSalle and Thomas Connefrey of the ESRI for providing data assistance. The views expressed herein are those of the author and this article in no way purports to represent the opinions, views or policies of any other individual or institution. Any errors are the author’s. E-mail: j.mccartney@yahoo.ie
This article formally estimates the natural vacancy rate for Dublin’s office market using an econometric approach. In doing so it follows a methodology that is well-established in the US literature. However, in a refinement of the traditional approach which treats the NVR as a constant, this paper allows for changes in the natural vacancy rate over time. The results of this exercise suggest that, until 1998, the NVR for Dublin offices was around 5.2%. Thereafter, however, it increased dramatically and is now estimated at 15.0%. This is more than twice the level generally assumed by analysts as ‘natural’ for the Dublin office market. One important implication of this finding is that the Dublin office market may recover sooner than expected. Relative to the true NVR the market is less ‘overbuilt’ than is commonly perceived. Therefore, for a given rate of net absorption, rents are likely to stabilise earlier than was previously anticipated.

The remainder of this paper is structured as follows: Section 2 outlines the theoretical underpinnings of the NVR concept and reviews those factors that may influence the natural level of vacancies in any office market. The following section describes the standard econometric methodology for estimating an NVR, while Section 4 sets out the empirical framework used to estimate the NVR for Dublin offices. The results of the estimation are presented in Section 5 and, in Section 6, the implications of these findings are discussed before a brief conclusion.

2. THE THEORY OF NATURAL VACANCY RATES

The Natural Vacancy Rate Hypothesis has its unlikely origins in labour market economics (Grenadier 1995, Voith and Crone 1988). A standard labour market theory is that overall unemployment can be decomposed into its voluntary and involuntary components. The voluntary component includes people who are out of work at any time because they are in the process of changing jobs (frictional unemployment). It also includes people who could get work at the current market wage but who choose to keep searching for jobs that pay above the norm. At market equilibrium, everyone who wants a job at the current market wage can have one – i.e. there is no forced unemployment. However, some voluntary unemployment is inevitable because there are always people moving between jobs and searching for better offers. Therefore we should expect some level of unemployment even when the market is in equilibrium. This is the natural rate of unemployment. Periodically, actual unemployment will deviate from this natural level. When this occurs – for example due to business cycles which affect the demand for labour – theory suggests that real wages will adjust to restore equilibrium (Hendershott, MacGregor and Tse, 2002).

Application of this theory to the market for rented property was first proposed by Blank and Winnick in 1953, and since then it has become an established tool for real estate analysis, particularly in America (see Hendershott, MacGregor and Tse 2002, Rosen and Smith 1983). In essence, it is argued that, even when property markets are in equilibrium, we should expect some vacant space. There are two reasons for this. Firstly, just as frictional unemployment is a characteristic of labour markets, frictional vacancies are an inevitable feature of property markets. At any given time some buildings will be temporarily vacant, either because they are between lettings or because they are newly built and awaiting their first occupancy (see Gabriel and Nothaft, 2001). Secondly, just as some workers choose not to accept jobs at the going rate because they hope to get better offers, some landlords will choose not to let their properties at current market rents because they hope to find tenants who are prepared to pay more. Landlords could pursue this objective by conducting extended searches for tenants whose specific requirements most closely match the characteristics of their particular buildings. Alternatively, they could simply bide their time and wait for overall market rents to rise above current levels.

The proportion of total space that remains vacant due to these factors – frictional vacancies and landlords waiting for better offers - is known as the natural vacancy rate (NVR). Because this rate of vacancies is compatible with market equilibrium (i.e. every landlord who wants to let space at the current market rate can do so), the NVR is the vacancy rate which is consistent with rent stability (Jud and Frew, 1990).

2 Similar explanations of the natural rate of unemployment can be found in most basic economics textbooks – see, for example Begg, Fischer and Dornbusch (2002).
As in labour markets, the actual vacancy rate in commercial property markets often deviates from this natural rate. These digressions are partly driven by exogenous business cycles. However, they are also driven by endogenous cycles in construction development - long lead-times in commercial building contribute to spells of over-development followed by periods of sharp construction retrenchment. At times when the market is over-supplied – either because of excessive construction or a slump in occupier demand - vacancies rise above their natural rate and rents gravitate downwards to restore equilibrium. In contrast, when the market is tight the actual vacancy rate falls below its natural level and then rents increase (Hendershott, 1995). At all times, however, the natural vacancy rate acts as the fulcrum around which rental dynamics are determined.

Given the theory outlined above, it is reasonable to argue that the NVR in any office market will be influenced by two sets of variables; those that affect frictional vacancies and those that influence landlords’ propensity to hold-out for higher rents. Looking at the first category, the length of the standard office lease is likely to impact upon frictional vacancies. In markets where lease terms are long and break-options are infrequent and/or costly to invoke, tenant turnover and frictional vacancies should be low. Holding everything else equal, this is consistent with a lower NVR (Grenadier 1995, Rosen and Smith 1983, Voith and Crone 1988, Wheaton and Torto, 1988).

Conversely, however, frictional vacancies should be positively related to the extent of speculative building. This is because, by its nature, speculatively built accommodation can lie vacant for a period prior to its first letting. The extent of speculative development partly depends on factors related to the local building industry. It tends to be higher in markets where construction activity is strong (de Leeuw and Ekanem 1971, Rosen and Smith 1983). It is also expected to be higher where there is vigorous economic growth as this gives developers confidence that they will be able to find tenants upon completion. Finally, where there are large economies of scale in capacity construction, developers may find it profitable to build more office space than they can pre-let (see McDonald, 2000). In addition to these factors, the extent of speculative building may also depend on market structure. Where occupiers have generic accommodation needs and their average space requirements are low, developers may have great difficulty getting tenants to commit to pre-lets. Here, they may have no choice but to build speculatively (see McCartney, 2008). Furthermore, where market supply is elastic (i.e. where developers can quickly deliver new offices in response to price signals), construction is more likely to occur ahead of demand (Rosen and Smith 1983, Krainer 2001). Factors affecting the elasticity of supply include access to development credit, the nature of the local planning system and the availability of open building land; where these variables facilitate speculative construction, frictional vacancies and the NVR should be higher (Krainer, 2001).

As outlined above, the NVR not only includes frictional vacancies, but also vacancies arising from landlords’ decisions to hold-out for higher rents. One strategy that landlords can pursue in order to achieve higher rents is to seek out tenants who are willing to pay more because their accommodation needs closely match the characteristics of the particular buildings on offer. Making these ideal matches often requires extended search activities and so, at an aggregate market level, this strategy is consistent with a high NVR. In practice, the extent to which landlords are prepared to undertake prolonged searches depends on the expected returns from finding the right tenant. These, in turn, are influenced by the heterogeneity of office occupiers. Where there is a wide variation in the rent that different occupiers are prepared to pay for the same property, the expected returns to search activity are high. Under these conditions the NVR should be high because more space will be held vacant to facilitate search (Grenadier 1995, McDonald 2000). In addition to diversity among tenants, however, qualitative variation in the office stock may also affect the natural vacancy rate. Where buildings are highly standardised and locational segmentation is low, landlords have little to gain by engaging in extensive search; irrespective of occupier tastes, there is no reason for a tenant to pay more for one office than another under these conditions. As a result, landlords will be less likely to hold vacant space. Conversely, where the market contains an array of idiosyncratic properties the returns to search activity will be higher, and so should the NVR (Jud and Frew, 1990).

Searching out tenants that provide the best match for their buildings is one strategy that landlords can adopt to achieve higher rents. Another approach is simply to delay letting their properties in the hope

that overall market rents will rise. Insofar as this involves landlords voluntarily holding vacant space it contributes directly to the natural vacancy rate. Obviously, rental expectations will have a critical bearing on the extent to which this ‘hoarding’ strategy is adopted - where landlords are optimistic about rents they have a stronger incentive to withhold space. Therefore a higher NVR is expected where economic and rental growth have traditionally been stronger (Rosen, 1984).

In addition to rent expectations, the terms of the standard lease contract may also influence hoarding. Firstly, the mechanism for rent revisions will be important. Where revisions are determined by market review real rents can increase substantially over the term of a lease. Here, the opportunity cost of signing contracts will be low and landlords will be disinclined to hold empty space. However, where escalation occurs through indexation the scope for real rental growth within leases will be quite restricted. Here, landlords who foresee a rise in market rents will assume higher opportunity costs from getting ‘locked-in’, and they will be more likely to carry vacant space.

Secondly, the scheduling of rent revisions will be important. Where indexation is used, rents are generally escalated annually. However, where market reviews are the norm, the frequency of revisions differs. In France, for example, it is common for reviews to occur every three years, whereas in Ireland market reviews normally take place at five-yearly intervals. Clearly, in a rising market, landlords will envisage higher opportunity costs where reviews take place less often. Consequently, they are more likely to hoard empty space and the NVR should be higher (see Ball, Lizieri and MacGregor, 1998).

A third contract-related factor that may influence the NVR is the issue of upward-only rent reviews. Heretofore upward-only clauses have been standard in Dublin office leases. By providing a sustained advantage to landlords who time their lettings to coincide with the top of the market, these arrangements encourage hoarding and are consistent with a higher NVR. During Ireland’s current economic crisis upward-only reviews have become highly contentious and were prohibited on new leases from 28th February 2010. As yet, it is too early to observe the impact of this intervention. In theory, however, it is likely to exert a downward influence on the NVR for Dublin offices.

Finally, it should be clear from the preceding discussion that real interest rates may also play a key role in determining the natural vacancy rate. Not only will high interest rates deter speculative building, they will also increase the cost to landlords of carrying empty office stock (Ball, Lizieri and MacGregor, 1998). All else equal, therefore, we should expect a lower NVR in markets with historically high interest rates.

Few studies have attempted to empirically estimate the influence of these variables on the NVR. However, those that are available tend to confirm the relationships hypothesised above. Rosen and Smith (1983) found that tenant mobility was positively related to the NVR in a range of American markets. Their analysis also confirmed that NVRs were higher in areas of rapid construction. These findings support the notion that friction leads to a higher natural vacancy rate. Similarly Sanderson, Farrelly and Thoday (2006) found that average real GDP growth positively influenced the NVR in European, Asian and American office locations. This is consistent with the arguments that positive rent expectations encourage speculative development and increase landlords’ propensity to withhold vacant space. Finally, there is also support for the theory that market heterogeneity is associated with higher NVRs – Rosen and Smith (1983) found that higher rent dispersion had a positive relationship with the equilibrium vacancy rate.

Table 1 summarises the above discussion. It lists the variables that are expected to influence frictional vacancies and landlords’ decisions to maintain un-let space respectively. By extension, these factors are also expected to influence the NVR.

4 Berwin Leighton Paisner (2009) provide a detailed comparison of typical commercial property lease arrangements across Europe.
6 The general methodological approach is to estimate the NVR for each individual location using a rent adjustment equation populated with time-series data. The estimated NVRs then become the dependent variable in a cross sectional analysis. This approach clearly imposes very heavy data requirements, hence the rarity of these studies.
Table 1: Factors Expected to Influence the NVR

<table>
<thead>
<tr>
<th>Factors Influencing Friction;</th>
<th>Variable</th>
<th>Expected Influence</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lease length</td>
<td>Shorter leases = higher NVR</td>
<td>Higher tenant turnover</td>
</tr>
<tr>
<td></td>
<td>Rate of new construction</td>
<td>Higher completions = higher NVR</td>
<td>Higher proportion of speculative development</td>
</tr>
<tr>
<td></td>
<td>GNP growth</td>
<td>Higher growth = higher NVR</td>
<td>Higher rent expectations, higher proportion of speculative development</td>
</tr>
<tr>
<td></td>
<td>Average lot size</td>
<td>Smaller tenant requirements = higher NVR</td>
<td>Smaller lots difficult to pre-let :: low average lot size = more speculative development</td>
</tr>
<tr>
<td></td>
<td>Elasticity of supply</td>
<td>More elastic supply = higher NVR</td>
<td>Higher proportion of speculative development</td>
</tr>
<tr>
<td></td>
<td>Real interest rates</td>
<td>Lower rates = higher NVR</td>
<td>Low rates encourage speculative development</td>
</tr>
</tbody>
</table>

Factors Influencing Landlords’ Propensity to Hold Vacant Space;

<table>
<thead>
<tr>
<th>Variable</th>
<th>Expected Influence</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterogeneity of occupier & office stock</td>
<td>More heterogeneous = higher NVR</td>
<td>Higher expected returns to search activity</td>
</tr>
<tr>
<td>GNP growth</td>
<td>Higher growth = higher NVR</td>
<td>Positive rent expectations :: ‘lock-in’ imposes higher expected opportunity cost</td>
</tr>
<tr>
<td>Revisions mechanism</td>
<td>Indexation = higher NVR</td>
<td>‘Lock-in’ imposes higher expected opportunity cost where indexation used</td>
</tr>
<tr>
<td>Revisions frequency</td>
<td>Lower frequency = higher NVR</td>
<td>‘Lock-in’ imposes higher expected opportunity cost where revisions are infrequent</td>
</tr>
<tr>
<td>Real interest rates</td>
<td>Lower rates = higher NVR</td>
<td>Low rates reduce cost of holding vacant space</td>
</tr>
</tbody>
</table>

3. METHODOLOGICAL APPROACH

The theory set out above suggests that, in any office market, rents will fall when the actual vacancy rate exceeds the natural vacancy rate for that specific market (which, in turn, is determined by the variables listed in Table 1). Conversely, rents should rise when the actual vacancy rate is below this NVR. Thus, rental growth can be expressed as a function of the gap between the actual and natural vacancy rates;

\[
\Delta R = r(VR - NVR)
\]

…where \(\Delta R \) is the change in rents, \(VR \) is the actual or observed vacancy rate and \(NVR \) is the natural vacancy rate. In practice, many authors have modelled this relationship using variations of the following basic equation; 7

\[
\Delta R = \alpha + \beta VR
\]

7 Sanderson, Farrelly and Thoday (2006) estimate this basic equation for 29 office markets in Europe, Asia and the USA. Other authors have used more complex variations with additional independent variables. Comprehensive reviews of these models are provided by Ball, Liziieri and MacGregor (1998), Hendershott, MacGregor and Tse (2002), McDonald (2000, 2002).
From equation (2) it is straightforward to calculate the natural vacancy rate (see McDonald 2000, Sanderson, Farrelly and Thoday 2006); at equilibrium, rental growth equals zero and the actual vacancy rate coincides with the natural vacancy rate. Therefore, setting \(\Delta R \) to zero and substituting NVR for VR, we solve to get:

\[
\text{NVR} = \frac{-\alpha}{\beta_1}
\]

(3)

Upon estimation we expect a negative coefficient \(\beta_1 \) and so equation (3) should result in a positive NVR.

From equation (3) we can derive that the constant term in the previous equation incorporates the NVR. Thus, assuming a negative sign on the vacancy rate coefficient, the Y-axis intercept can be written as \(\alpha = \beta_1 \text{NVR} \). A correct interpretation is that the known vacancy rate (VR) in equation (2) is measured with reference to the natural vacancy rate, which is unknown a priori, but which is embedded within the intercept (see Ball, Lizieri and MacGregor 1998; Shilling, Corgel and Sirmans 1987; Rosen and Smith, 1983).

Implicit in this standard approach is an assumption that the NVR is constant over time (see Ball, Lizieri and MacGregor 1998, Tse and Fischer 2003). Clearly, the validity of this assertion depends upon there being no structural shift in the factors which influence the equilibrium vacancy rate. While this may be plausible in some markets, it is questionable in the case of Dublin. Over the period of this study Ireland’s economy underwent a pronounced restructuring, there was a fundamental change in the monetary policy framework, important developments took place in Dublin’s urban planning context, and the term of the institutional office lease shortened significantly. One implication is that a constant NVR cannot be taken for granted in Dublin. In practice, this means that our rent equation should be assessed for parameter stability and, if necessary, adjusted to allow for a time-varying NVR.

As set out above, equation (2) describes the basic stock-flow model of rent adjustment that has traditionally been used to estimate natural vacancy rates. In recent years, however, further refinements have been incorporated into this framework. For example, current practice is to estimate rent adjustment equations using lags of the actual vacancy rate because contemporaneous values may be endogenous. Furthermore, as our understanding of the rent adjustment process has evolved, additional explanatory variables have been added to improve fit and enhance the dynamic properties of the model (see Hendershott 1995, Hendershott, MacGregor and Tse 2002). Reflecting some of these nuances, this paper estimates the NVR for Dublin’s office market using the following rent adjustment equation;

\[
\Delta R_{t} = \alpha - \beta_1 VR_{t-1} + \beta_2 \Delta GNP_{t-1} - \beta_3 \Delta I_t - \beta_4 \Delta S_t + \varepsilon_t
\]

(4)

In this specification, which is set out with the expected signs of the variables in place, \(\Delta R \) is the annual change in real office rents and VR is the actual vacancy rate, measured relative to the NVR in the constant term. As outlined above, VR is lagged one period because rents and vacancy rates may act simultaneously to clear the market, potentially making a contemporaneous measure of vacancies endogenous. In addition to the vacancy rate variable, equation (4) also includes real GNP growth (\(\Delta \text{GNP} \)), the change in real interest rates (\(\Delta I \)) and the annual change in Dublin’s total office stock (\(\Delta S \)). GNP growth is expected to have a positive effect on real rental growth as it should ultimately lead to an increased demand for office space. In contrast, a rise in real interest rates should reduce rental growth because this dampens economic activity and office demand. Finally, growth in the office stock implies a greater supply of office property which, ceteris paribus, is negatively associated with rental growth. Within this framework, equilibrium occurs where real rental growth is zero and where rents just cover the annual cost of capital (McDonald 2000). Here, just enough new space is delivered to replace fully depreciated buildings and therefore there is no net change in the office stock. At equilibrium, any movement in GNP or real interest rates will provoke another round of rent adjustment and so they are set to zero. Upon estimation of this equation, values for \(\hat{\alpha} \) and \(\hat{\beta}_1 \) enable us to estimate a natural vacancy rate for the Dublin office market as described above.

8 Only a small number of studies deviate from this assumption; Wheaton and Torto (1988) modelled the NVR as a linear time trend, while Tse and Fischer (2003) estimated a time-varying parameter model to allow for time effects. Sivitanides (1997) used drivers of rental expectations to model variability in the NVR, while Zhou (2008) identified natural breaks in the data and estimated discrete NVRs for each time period.
4. EMPIRICAL FRAMEWORK

Commercial property research has traditionally been constrained by a scarcity of good quality data (see Ball, Lizieri and MacGregor 1998, Hendershott et al. 1999). Data series are usually shorter than would be expected in mainstream economic analysis, while issues such as missing values and definitional discontinuities are common (Dunse et al. 1998, Leishman 2003). Because of these constraints European office markets are generally under-researched (D’Arcy et al. 1999, Brounen and Jennen 2009). If anything, these data challenges are more acute in Dublin than elsewhere because Dublin’s office market is infantile compared with those in many American, British and European cities. To illustrate this, only two purpose-built offices of more than 186 sq m existed in the city by 1960. Moreover, ignoring owner-occupiers, a sizable rental market did not emerge in Dublin until the 1970s (see Malone, 1981).

Notwithstanding these challenges, however, the dataset used in this analysis covers a 32 year period (1978-2009), representing three-and-a-half full cycles of the Dublin office market. This constitutes a relatively long data series compared with many of those used in the international literature. For example, Gardiner and Henneberry’s rent equations for the UK regions were based on just eight years of data (1988, 1991). Hendershott, Lizieri and Matysiak (1999) analysed London office rents using 20 annual observations, while Wheaton, Torto and Evans (1997) based their equation for London on a 21-year sample. Tse and Fisher (2003) estimated rent adjustment equations for London and Hong Kong using 22 and 23 years of data respectively, while Rosen’s (1984) study of the San Francisco market and Hendershott’s (1995) analysis of the Sydney office market also relied on 23 observations. Finally, Ng and Higgins (2007) modelled office rents in Singapore using thirteen-and-a-half years of semi-annual data (26 data points).

Rent equations for the Dublin office market have previously been developed by several authors. As part of a wider comparative study, Sanderson, Farrelly and Thoday (2006) estimated a simple rent adjustment equation for Dublin. However, this was predicated on just 12 years of annual data. An earlier paper by D’Arcy, McGough and Tsolacos (1999) used a 25 year dataset (1973-1997) to model real rental growth. However, as their model did not include vacancy rates, it provides no basis for calculating an NVR.9 Finally, McGreal et al. (2004) set out a model based on 26 annual observations (1975-2000). However, because rents were estimated in levels and their model did not include vacancy rates, it is also unsuitable for estimating an NVR.

The dependent variable in this paper is derived from the office component of the Jones Lang LaSalle Irish Property Index. Rents in this index are the Estimated Rental Values (ERVs) of a portfolio of properties typical of those held by institutional investors. This series, which is not adjusted for incentives such as rent-free periods or capital contributions to fit-out costs, is deflated using the Consumer Price Index (CPI) and entered into our model in differences. Vacancy rates come from Chartered Surveyors Lisney and are measured as a percentage of Dublin’s total modern (post 1960) office stock. GNP growth is the annual change in real GNP, sourced from the Central Statistics Office. As is standard in rent equations, this variable is lagged to allow time for changes in economic activity to affect office demand and real rents. In this case a one-year lag structure gave the best fit. Real interest rates are prime lending rates supplied by the Central Bank and Financial Services Authority of Ireland, deflated by the CPI and differenced. The annual change in Dublin’s office Stock, measured in thousands of square metres, is derived from absolute figures published by Lisney.

5. RESULTS

Initially, equation (4) was estimated for the full period of analysis using Ordinary Least Squares (OLS) regression. The results of this exercise are presented in Table 2 below.

<p>| Table 2: Results of Fixed-Effects Regression (1978-2009) |</p>
<table>
<thead>
<tr>
<th>Coefficient</th>
<th>T- Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4.875***</td>
</tr>
<tr>
<td>VR_{t-1}</td>
<td>-1.029***</td>
</tr>
<tr>
<td>Δ GNP_{t-1}</td>
<td>0.630***</td>
</tr>
<tr>
<td>Δ I_{t}</td>
<td>-1.321***</td>
</tr>
<tr>
<td>Δ S_{t}</td>
<td>-0.011</td>
</tr>
</tbody>
</table>

R² = .792 \[R^2 = .760 \] \[DW = 1.569 \] \[F = 24.751*** \]

9 The authors reported that insufficient data was available at that time to include a vacancy rate variable.
Reassuringly, all of the regressors in this equation take on the expected signs and, with the exception of the Stock variable, are significant at 5% or higher. Reflecting this, an R^2 of .79 indicates that four-fifths of all variation in real rental growth is explained by the model. However, there are some niggling concerns about this regression. A general test of specification error, the Ramsey Reset Test, hints that the model may be under-fitted. More worryingly, although the constant term is significant at 5% (indicating a positive NVR), the natural vacancy rate implied by this equation is just 4.74%.

This seems implausibly low for several reasons. Firstly, the actual vacancy rate in Dublin’s office market averaged 8.56% between 1978-2009. If the NVR was lower than this then, on average, real rents should have gravitated downwards. Instead, however, they have actually increased by almost three quarters of a percent per annum over the 32-year period. This suggests that, if our theory is correct, the true NVR should be higher than 8.56%.

A second reason for doubting the NVR implied by these OLS results is illustrated in Table 3 below. This table shows the observed vacancy rate that prevailed in Dublin’s office market on each occasion over the last 32 years when the market was in equilibrium (i.e. when rental growth was zero). Clearly, on the three instances when this occurred over the last decade, the actual vacancy rate was much higher than 4.75%. Given that the actual and natural vacancy rates should coincide when the market is in equilibrium, this suggests that the true NVR for Dublin office space in recent years is 12%-17% rather than 4.74%.

Table 3: Observed Vacancy Rate (%) at Previous Equilibrium Points

<table>
<thead>
<tr>
<th>Year</th>
<th>VR(^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>14</td>
</tr>
<tr>
<td>2006</td>
<td>12</td>
</tr>
<tr>
<td>2001</td>
<td>17</td>
</tr>
<tr>
<td>1995</td>
<td>5</td>
</tr>
<tr>
<td>1991</td>
<td>6</td>
</tr>
<tr>
<td>1987</td>
<td>5</td>
</tr>
<tr>
<td>1981</td>
<td>5</td>
</tr>
</tbody>
</table>

Interestingly, however, Table 3 also contains an indication of what might have caused our fixed-effects equation to under-estimate the true NVR. In contrast to the period since 2001, the early years of our study (1978-1995) consistently saw low vacancies when the market was in equilibrium. Based on this observation, it seems that something fundamental may have changed between 1995-2001 which caused an upward shift in the NVR. To explore this further, Chow Tests for parameter stability were performed for all possible break-points between 1995 and 2001. The largest F Statistic generated by this procedure occurred in 1999 and confirmed the hypothesis that our unrestricted equations for the 1978-1998 and 1999-2009 sub-periods were statistically different at 5%.

While this establishes that the dynamic of rent adjustment in Dublin’s office market altered around 1999, it remains unclear whether this change originates from a difference in the intercept term or the slope coefficients. If the former is true, and/or if the coefficient on the vacancy rate variable changed, then the NVR may have shifted between periods. To investigate this in more detail, equation (4) was re-estimated with the inclusion of five additional variables. The first was a dummy with values of zero for the 1978-1998 period and one thereafter. The coefficient on this variable measures any change in the intercept between periods. The other new variables are interactive terms created by multiplying our dummy by each of the existing slope variables. These “drifters” measure differences in the slope coefficients between periods. The results of this regression are reported in Table 4 below.

\[F_{(1,25)} = 6.305, P=0.019. \]

\[\text{Calculated as the negative of the intercept divided by the coefficient on the lagged vacancy rate – see Section 3 above.} \]

\[\text{As equilibrium can occur at any time during the year, vacancy rates in this table do not necessarily correspond with their year-end values.} \]

\[F_{(5,21)} = 3.58 \text{ vs. 5% critical value of 2.68.} \]
Table 4: Results of Dummy Variable Regression

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>T- Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9.024 **</td>
<td>2.690</td>
</tr>
<tr>
<td>VR_{t-1}</td>
<td>-1.637 ***</td>
<td>-4.128</td>
</tr>
<tr>
<td>Δ GNP_{t-1}</td>
<td>0.931 ***</td>
<td>4.283</td>
</tr>
<tr>
<td>Δ I_{t-1}</td>
<td>-0.921 *</td>
<td>-2.064</td>
</tr>
<tr>
<td>Δ S_{t-1}</td>
<td>-0.074 *</td>
<td>-1.818</td>
</tr>
<tr>
<td>Dummy</td>
<td>17.162 **</td>
<td>2.326</td>
</tr>
<tr>
<td>D.(VR_{t-1})</td>
<td>-0.054</td>
<td>-0.108</td>
</tr>
<tr>
<td>D.(ΔGNP_{t-1})</td>
<td>-0.802 **</td>
<td>-2.623</td>
</tr>
<tr>
<td>D.(ΔI_{t-1})</td>
<td>-1.345</td>
<td>-1.193</td>
</tr>
<tr>
<td>D.(ΔS_{t-1})</td>
<td>0.037</td>
<td>0.832</td>
</tr>
</tbody>
</table>

R^2 = .888 \quad R^2_{adj} = .840 \quad DW = 1.894 \quad F= 18.450 ***

*P<0.10 **P<0.05 ***P<0.01

This analysis confirms that the NVR in Dublin’s office market did indeed shift upwards after 1998. To see this, recall from Section 3 that the intercept in our rent equation is simply \(\alpha = \beta_1 \text{NVR} \); i.e. the coefficient on lagged vacancies multiplied by the NVR. Table 4 shows that the intercept term \(\alpha \) changed significantly between periods (the coefficient on the dummy variable is significantly different to zero). However, the coefficient on the vacancy rate drifter was not significant, indicating a constant \(\beta_1 \). Logically, it follows that the observed change in our intercept must have derived from a structural shift in the natural vacancy rate.

Interestingly, the GNP drifter was also significant in this analysis. A negative sign on this variable indicates that Dublin office rents became less sensitive to changes in economic growth after 1998. One interpretation is that the income elasticity of demand for office property may have shifted downwards at this time.\(^{14}\) This could have occurred for several reasons. On one hand, the occupied space-per-employee ratio may have become compressed. Certainly, this hypothesis is plausible given the relative growth rates of office-based employment and occupied space in the late 1990s. Between 1978-1996 office employment rose at a relatively constant rate, averaging approximately 3% per annum. However, over the following five years (1997-2001) it expanded at a much faster rate of 8.28% per annum.\(^{15}\) This compares with an average increase in occupied space of 6.95% per annum in the same period. An alternative possibility is that increased productivity weakened the link between overall economic growth and the demand for office space. These issues merit a more detailed analysis and are flagged for future research. For now, however, in order to derive a well-specified and parsimonious model, this GNP drifter was retained in our final rent equation, along with the differential intercept and the original variables from equation (4). However, the insignificant drifters in Table 4 were discarded to give the final model presented below.\(^{16}\)

Table 5: Results of Parsimonious Regression

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>T- Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>8.889 ***</td>
<td>4.375</td>
</tr>
<tr>
<td>Dummy</td>
<td>16.942 ***</td>
<td>4.064</td>
</tr>
<tr>
<td>VR_{t-1}</td>
<td>-1.724 ***</td>
<td>-7.449</td>
</tr>
<tr>
<td>Δ GNP_{t-1}</td>
<td>0.821 ***</td>
<td>4.658</td>
</tr>
<tr>
<td>D.(ΔGNP_{t-1})</td>
<td>-0.501 ***</td>
<td>-2.345</td>
</tr>
<tr>
<td>Δ I_{t-1}</td>
<td>-1.190 ***</td>
<td>-3.064</td>
</tr>
<tr>
<td>Δ S_{t-1}</td>
<td>-0.049 ***</td>
<td>-3.247</td>
</tr>
</tbody>
</table>

R^2 = .877 \quad R^2_{adj} = .846 \quad DW = 1.977 \quad F= 28.479 ***

*P<0.05 ***P<0.01

\(^{14}\) For a formal derivation of the income elasticity of demand for office space see Hendershott, Lizieri and MacGregor (2010).

\(^{15}\) Over the period covered by this paper there is no continuous series for employment in the main office-based sectors of the Irish economy (administrative public sector, financial services and ‘other business services’). Figures reported are the author’s estimates based on an analysis of combined CSO sources.

\(^{16}\) To ensure that it was valid to drop the insignificant variables, an F-test of the joint restriction that the omitted variables had zero coefficients was conducted; \(F_{(3,21)} = 0.679 \) vs 1% critical value of 4.87.
As with the base model presented in Table 2, all of the variables in this regression display the expected signs. However, the overall fit of the model is improved by removing the restrictions that the intercept has to be constant between time periods and that lagged GNP growth has a fixed-effect across the full estimation period. As a result, the R^2 increases by almost nine percentage points to 0.88 and all variables become significant at 5% or better.17

Figure 1: Actual vs. Predicted Change in Real Rental Index

Figure 1 generally confirms the good fit of this model; predicted rental movements track actual rent changes very closely over the entire period of analysis – a timeframe covering three-and-a-half full cycles of the market. However, three specific features of the graph are especially noteworthy. Firstly, it illustrates our model’s ability to ‘call’ turning points in the rental cycle. There have been six peaks and troughs in the Dublin office market since 1978 and the equation presented in Table 5 predicts all of these to within one year or better. Secondly, this graph underlines the robustness of our equation by illustrating how accurately it models the behaviour of Dublin office rents during the 2008-2009 market collapse - a period when real rents fell more than twice as quickly as at any previous time. Finally, the graph suggests a statistically well-behaved model with residuals distributed randomly over time and across the data range. Indeed, this visual impression is confirmed through the standard diagnostic tests. A Durbin-Watson statistic of 1.977 indicates no first order serial correlation in the error terms18, while second order autocorrelation is also ruled out by an LM test.19 The model displays no symptoms of multicollinearity while White20 and Breusch-Pagan-Godfrey (BPG)21 tests for heteroscedasticity confirm a constant error variance. Finally, the results of a Ramsey Reset Test on our final model indicate that earlier concerns about possible misspecification have been eradicated.22

Given these characteristics the model presented above appears to provide a sound basis for estimating the NVR for Dublin office property. The natural vacancy rate for our earlier period is derived simply by dividing the negative of the intercept in Table 5 by the coefficient on lagged vacancies, as per the standard methodology set out in Section 3. This indicates that the natural vacancy rate for Dublin offices in the 1978-1998 period was; -8.89/-1.72 = 5.15%. This figure is approximately in line with ‘rule-of-thumb’ estimates of the NVR which have traditionally been used by local industry practitioners.23 However, as shown below, these estimates have been rendered obsolete by a pronounced shift in the NVR in the late 1990s.

17 Wheaton and Torto (1988), Sivitanides (1997) and Zhou (2008) also achieved improvements in the fit of their models by allowing the NVR to vary through time.
18 d = 1.977 vs. 1% critical value of 1.601.
19 \(\chi^2 = 4.398 \) vs. 1% critical value of 9.210 (2df).
20 \(\chi^2 = 12.599 \) vs. 1% critical value of 23.340 (12df).
21 \(\chi^2 = 7.635 \) vs. 1% critical value of 16.810 (6df).
22 F(1,23) = 0.134, P = 0.717.
23 The most commonly quoted figure is 7% (Knight Frank Commercial Market Report, November 2009, DTZ Sherry FitzGerald Dublin Office Market, Autumn 2009, Real Estate Opportunities PLC Annual Report, 2005).
The NVR for the 1999-2009 period can be calculated using a similar approach. This time, however, because the intercept changed between periods, the correct procedure is to add the constant from the earlier period to the differential intercept before applying a negative sign and dividing by the coefficient on lagged vacancies. As expected, this confirms a significantly higher NVR in the post 1999 period of: \[-(8.89+16.94)/-1.72 = 14.98\%\]

6. DISCUSSION

The standard methodology for estimating a rent adjustment equation treats the NVR as time-invariant. However, the empirical analysis herein confirms that the NVR in Dublin’s office market did not remain constant over the 1978-2009 period. Instead it experienced a distinct step-change, rising from approximately 5% prior to 1999 to almost 15% thereafter.

To understand the possible causes of this dislocation, it is useful to distinguish between structural changes and cyclical fluctuations. Zhou (2008) argues that normal market cycles impact on the actual vacancy rate and cause it to deviate temporarily from the NVR. In turn, these deviations trigger a rent adjustment process that returns the market to equilibrium. In contrast, structural changes cause a shift in the NVR itself. Zhou (2008) defines structural changes as those that are non-recurring, non-predictable and have a long-term impact on the functioning of the market. These structural changes may occur in any of the variables that affect the NVR, i.e. those which alter the level of frictional vacancies, those which influence landlords’ preferences for vacant space, or those which affect both.

Several structural changes occurred around 1998/1999 which may have contributed to a level-shift in the NVR for Dublin offices. Firstly, there was a fundamental change in Ireland’s monetary policy framework when the Euro currency was introduced in 1999. This precipitated a once-off reduction in real interest rates which, in turn, contributed to a major construction boom (Bergin et al. 2009, Williams 2006). This was clearly evident in the Dublin office market from 1999 onwards. While average new building completions ran at 47,568 sq m per annum between 1978-1998, output increased almost fourfold to 174,478 sq m per year in the period 1999-2009. As a result, Dublin’s total stock of modern office space rose by 129% in just 11 years. Much of this new development was speculative and net absorption - although buoyant by historical standards at 110,101 sq m per annum - could not keep pace with completions. Consequently, frictional vacancies increased dramatically during this period and have remained elevated for the last decade. In addition to fuelling a construction boom it is obvious that lower real interest rates after 1998 may also have contributed to a higher NVR by reducing the cost to landlords of carrying empty space.

Furthermore to its unprecedented scale, the geographical pattern of Dublin’s 1999-2003 office building boom may also have contributed to the increased NVR. This boom was unusual in that, for the first time, it saw a large-scale suburbanisation of office development in Dublin (Bertz 2002, MacLaran and Killen 2002). This shift to the suburbs was precipitated by a combination of push and pull factors. On one hand, more stringent conservation policies in the Central Business District (CBD) and increased competition for city-centre sites from alternative uses (e.g. hotel and apartment development) pushed office development out of the traditional core area towards more peripheral locations. On the other hand, a fragmentation of Dublin’s planning administration acted as a pull factor because it encouraged suburban local authorities to compete for rateable development by zoning increasing amounts of land for office use (Bertz, 2002). This peripheralisation of office development may have contributed to an increased NVR in two ways. Firstly, given that frictional vacancies have traditionally been higher in Dublin’s suburban markets than in the city centre, the increased weighting of suburban space within the overall office stock would have led to a higher NVR. Secondly, by opening up large tracts of relatively

However, many other commercial property agents, equity analysts, fund managers, bankers and property consultants have quoted equilibrium vacancy rates in the 5-8% range – see, for example; Irish Independent, 15th August 2001, 26th June 2002, 25th February 2004; The Sunday Business Post, 22nd February 2009.

25 Net absorption is simply the annual change in occupied space.

26 This phenomenon is known as “fiscal mercantilism”: Although the fragmentation of Dublin’s planning administration into four local authorities occurred in 1994, the mid-1990s was a time of subdued development activity, so the effects were not seen until 1999 when Dublin’s fourth office development boom began.
inexpensive new building land, more facilitative planning arrangements in the suburbs increased the elasticity of supply for office space. To the extent that this may have encouraged speculative development, it is also likely to have contributed to the increased NVR.

The third major change was a rapid and pronounced restructuring of Ireland’s economy away from manufacturing and towards services in the late 1990s. A recent paper by Quill and Teahon (2010) indicates that, from the mid-1980s to the mid-1990s, expansion in the Irish economy was largely driven by chemicals and electronics manufacturing. Together, these industries accounted for 31% of average annual GVA growth between 1987-1996. After that point, however, their contribution faded to just 17%, while services took over as the new locomotive of economic expansion. Thus, the contribution of financial, public and ‘other’ services rose from 19% of average GVA growth in the 1987-1996 period to 37% between 1997-2006. Given that these sectors are intensive users of office space, this structural shift generated positive rental expectations which may have encouraged more speculative development and hoarding of vacant space.

Finally, it should be noted that changes to the typical office lease may also have been important in the shift to a higher NVR. In particular, the term of the standard institutional lease contract has declined from the traditional 35 years to less than 10 years at present (see O’Neill, 2009). As a result, tenant turnover has risen, causing a permanent increase in the level of frictional vacancies.27

Overall, then, our finding of a sharp upward shift in the NVR for Dublin offices can be plausibly explained by structural changes in the macroeconomic, urban planning and institutional contexts of the late 1990s.

Having established that the NVR is now more than twice as high as was previously assumed, a remaining question is how this revelation should affect our analysis of the outlook for Dublin office rents. In this context Table 6 may be instructive. Currently, the total modern office stock in Dublin is just under three-and-a-half million sq m and, of this, 23.1% or approximately 808,000 sq m is vacant. Theory tells us that rents will continue falling until this figure is reduced into line with its ‘natural’ level. If we begin with the traditional assumption that the NVR is 7%, this means that vacancies would have to be reduced to 244,848 sq m (i.e. 7% of the current office stock) before we could expect the decline in real Dublin rents to be arrested. This implies that an ‘overhang’ of 563,152 sq m of excess space needs to be digested before the rent cycle will turn. To put some time frame on how long this might take we can make a technical assumption that the net absorption of office space will remain constant at its 32-year average of 69,181 sq m per annum. At this rate of digestion it would take a further eight years for real Dublin office rents to stop falling.

However, if we reject the traditional assumption of a 7% NVR and accept that the true figure is almost 15% as argued in this paper, then the outlook changes dramatically. In this situation vacancies would only have to come down to 523,976 sq m (i.e. 14.98% of the current total office stock) before rents should stop falling. From current levels, this means that only 284,024 sq m of vacant space would need to be digested and, assuming the same rate of absorption, this would be achieved in approximately four years.

| Table 6: Impact of a Higher NVR on The Timeline for Rental Recovery |
|----------------------|----------------------|----------------------|
| | 7% | 14.98% |
| Total Stock | 3,497,835 | 3,497,835 |
| Vacant Stock | 808,000 | 808,000 |
| Vacancy Target | 244,848 | 523,976 |
| Overhang | 563,152 | 284,024 |
| Assumed Absorption | 69,181 | 69,181 |
| Years to Recovery | 8.14 | 4.12 |

‘Vacancy Target’ calculated as the Total Stock multiplied by the relevant NVR percentage.
‘Years to Recovery’ calculated as the ‘Overhang’ divided by ‘Annual Absorption’.

27 Tax incentives for commercial property development are another area where structural change may have occurred. However, because the main interventions took place more than a decade earlier, through the Urban Renewal and Finance Acts of 1986, this is considered an unlikely source of the NVR shift observed in 1999. For discussion of these tax incentives see Williams (2006) and references therein.
The above analysis clearly demonstrates the central proposition of this paper: if the NVR for Dublin office property is higher than previously thought then the market faces a shorter journey back to equilibrium and, all else being equal, a recovery should emerge sooner than expected. However, it should be understood that the timelines suggested in Table 6 are not intended as forecasts per se. Rather, their purpose is merely to emphasise the importance of the NVR in determining the position of the market relative to its equilibrium. If we wish to derive more considered forecasts we must remember that the timeline to recovery depends not just on the distance that the market has to travel back to equilibrium, but also on the speed at which it makes this transition. This transition speed is largely determined by the rate of net absorption, a detailed analysis of which is beyond the scope of our paper. Nonetheless, it is worth briefly considering how different rates of absorption might hypothetically affect the timeline to a recovery in Dublin office rents.

Figure 2: Net Absorption of Dublin Office Space 1999-2010(f)

So far, we have used the simplistic assumption that absorption will remain constant at its long-run level. However, as shown in Figure 2, net absorption in the Dublin office market was negative in 2009 and, although it recovered somewhat in 2010, it remains very subdued by historical standards. If we envisage that Ireland’s economy will develop in line with the ESRI’s Low Growth macroeconomic scenario it may be reasonable to assume that net absorption might average 90% of its long-run mean value over the medium term. Under this assumption just 62,263 sq m of vacant space would be digested each year and, as shown in Table 7, it would take 4.56 years to absorb the current excess. This would postpone a recovery in Dublin office rents until mid-2015.

Table 7: Sensitivity of Recovery Timelines to Net Absorption Rates

<table>
<thead>
<tr>
<th>Overhang</th>
<th>Assumed Absorption</th>
<th>Years to Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>284,024</td>
<td>62,263</td>
<td>4.56</td>
</tr>
<tr>
<td>284,024</td>
<td>69,181</td>
<td>4.12</td>
</tr>
<tr>
<td>284,024</td>
<td>83,000</td>
<td>3.42</td>
</tr>
</tbody>
</table>

In contrast, if we assume that economic growth will be in line with the ESRI’s High Growth Scenario then it may be reasonable to argue that, by 2015, absorption will recover to average levels seen in the decade prior to the recession. Assuming steady progress towards this target, an average absorption rate of 83,000 sq m per year is implied – approximately 20% above the long run average. At that rate of net absorption the market would attain equilibrium in less than three and a half years, meaning that real rental growth could resume from the middle of 2014.

28 Given the high degree of economic uncertainty that prevails, a recent ESRI paper set out two alternative recovery paths for the Irish economy – a High Growth Scenario and a Low Growth Scenario. See Recovery Scenarios for Ireland: An Update (Bergin et al., 2010).
While the figures in Table 7 provide more nuanced suggestions about how Dublin office rents might develop under alternative macroeconomic scenarios, some important caveats still need to be borne in mind. Firstly, these suggestions are predicated on the assumption that Dublin’s total office stock will remain constant in the medium term. Certainly, it is unlikely that any further office completions will occur for a number of years after 2010.\(^{29}\) However, it is possible that the total office stock could contract as we move towards 2013-2014, particularly if the High Growth Scenario is realised. This is because there are a number of dated office buildings in the city centre that are ripe for redevelopment and which would be temporarily withdrawn from the office stock if construction works were to commence. Assuming that these buildings were vacant prior to redevelopment, the immediate effect of this would be to reduce the gap between the actual and the natural vacancy rates, thereby shortening the timeline to a market recovery.

A further caveat is that, given the current economic turmoil, the NVR for Dublin offices could move again, just as it did in the 1990s. Clearly, this would affect the accuracy of any forecasts predicated on a rigid or outdated view of the NVR. Indeed, even at this stage it is possible to envisage several factors that could potentially cause a structural shift in the NVR for Dublin office space. Firstly, Bergin et al. (2009, 2010) argue that the current recession is likely to result in a permanent loss of economic output relative to the country’s previous potential. If so, then new office development and frictional vacancies could be permanently reduced, while more pessimistic rental expectations would reduce the incentive to hold vacant space. In a similar vein, the abolition of upward-only rent reviews could also reduce the hoarding of vacant space. These factors would potentially exert downward pressure on the NVR. Conversely, however, the shortening of lease terms could lead to a higher NVR by increasing tenant turnover. Finally, NAMA, given its scale, could affect the NVR in ways that are not yet known. For all of these reasons it is important that market analysts continue monitor the Natural Vacancy Rate over time.

Two final provisos relate to the interpretation of the analysis herein. Firstly, due to data restrictions it is only possible to analyse the market at an aggregated level. This may obscure trends and developments within particular sub-markets. For example, as the city centre was the first target for office developers in the 1960s, it now contains a high concentration of older buildings.\(^{30}\) Therefore, when the next construction cycle begins, space withdrawals due to redevelopment could initially lead to a more rapid tightening of the city centre market and a quicker pick-up in rents there than elsewhere. Finally, it should be noted that the dependent variable in this paper is real rather than nominal rental growth. If, as expected, future inflation is positive, nominal rents are likely to begin growing some time in advance of real rents.

7. CONCLUSIONS

Commercial real estate has played a major role in the boom - and subsequent bust - of Ireland’s economy. Yet, despite the obvious importance of this sector, there has been little empirical analysis of Ireland’s commercial property markets. This paper focuses on one specific aspect of commercial property – office rents. Its primary purpose is not to generate rental forecasts. Instead its aims to provide a theoretical and methodological framework within which practitioners can form educated judgements about the position of the market relative to its equilibrium. That notwithstanding, the paper makes some suggestions about the likely timeline to a recovery in Dublin office rents. Based on the revelation that Dublin’s Natural Vacancy Rate is now around 15%, and assuming a net consumption of office space which is broadly in line with the ESRI’s macroeconomic scenarios, widespread growth in real office rents is likely to resume sometime between mid-2014 and mid-2015.

\(^{29}\) This is corroborated by recent agency reports which indicate that the current development cycle in the Dublin office market will terminate after Q4 2010 - see CBRE Marketview Dublin Office, Q3 2010, Lisney Office Update, Autumn 2010, for example.

\(^{30}\) See McDonald (1985) for a detailed history of early office development in Dublin.
REFERENCES

CBRE (Various Years) Marketview, Dublin Office. Dublin: CBRE.

DTZ Sherry FitzGerald (Various Years) Dublin Office Market. Dublin: DTZ Sherry FitzGerald.

Jones Lang LaSalle (Various Years) On Point – Irish Property Index. Dublin: Jones Lang LaSalle.

Lisney (Various Years) Rental Indices. Dublin: Lisney.

Lisney (Various Years) Annual Review. Dublin: Lisney.

Lisney (Various Years) Dublin Offices. Dublin: Lisney.

THE OFFICE MARKET

This paper makes a very valuable contribution to our understanding of the Dublin office market and the important role of the commercial property markets in the economy. Vacancy rates are identified as a key variable in analysing commercial property markets as they encapsulate both supply and demand conditions. It is expected that high vacancy rates put downward pressure on rents; however the paper suggests that the absolute vacancy rate is not the best indicator of market conditions but that a gap between the actual vacancy rate and a market-specific natural rate of vacancies is a better predictor of rental dynamics. The research argues that property markets have a natural vacancy rate (NVR) and suggests that when the actual vacancy rate exceeds this NVR the market rents will fall to restore equilibrium and when vacancies are below the NVR, rents will rise. Further analysis suggests the usefulness of the NVR in establishing a 'tipping point' between positive and negative rental growth as a means of analysing commercial property cycles.

The article estimates the natural vacancy rate for Dublin’s office market using an econometric approach following methodologies established in international literature. A refinement of the traditional approach in standard econometric practice is then developed, in that, rather than treating the NVR as a constant, changes in the natural vacancy rate over time are allowed for. The results find that until 1998, the NVR for Dublin offices was C. 5.0% but that it is now much in excess of the level generally assumed by market analysts as normal for the Dublin office market which is 5 to 7%. Important implications suggested are that as a consequence the Dublin office market is less overbuilt than is perceived and may recover in a shorter time than currently expected and rents are likely to stabilise earlier than was previously anticipated. This commentary explores the issues raised and concludes with a more cautious view of market prospects based on the observed levels of vacancy.

OFFICE VACANCY RATES

The figures for office vacancy presented in the paper are developed from and consistent with published industry estimates of total vacancy in Dublin. These are used as there are no public official data sources on this and other property market sectors. Many of the comparative research studies cited also were based on incomplete industry data or partial data due to the absence of official data sets. Related research such as by the property firm Lisney in their Autumn 2010 market updates found vacancy levels in the Dublin office market to be 23% representing 808,000 sq. m. with the sharp increase in vacancy experienced since 2007 when vacancy stood at 305,000 sq. m. (Lisney, 2010). Varying rates were found in this report between Dublin City Centre at 19% and west suburbs at 34%. This report also estimated that rents had fallen by 53% over the period from 2007-2010 and take up for 2010 was estimated at above 100,000 sq. m. which is below the average take up for the past 15 years of 174000 sq. m. making expectation of early recovery difficult to realise.

Understanding the part played in recent market trends of the dispersal of office development toward green field and suburban locations are essential. This paper along with other studies of these trends within the Dublin office market indicates a series of important factors which assist in understanding some of the reasons behind the observed dispersal of development and oversupply patterns (Williams et al 2010). The pattern outlined is of a recent trend and transformation of the location and supply of office development in Dublin. A shift occurred from one which f urban development focused primarily on a single dominant core during the 1960s until the 1980s, towards widely-dispersed suburban sites accounting for a high proportion of new developments since the 1990s and early 2000s with widening patterns of commuting (Williams & Shiels, 2000). This suburbanisation of office functions on a large scale reflects the wider international trend towards a restructuring of office sector activities and development in metropolitan areas (Sokol et al, 2008). As late as 1995, over 85 per cent of the office stock had still been located in the city of Dublin. The traditional core of Dublin 2 had accounted for nearly 55 per cent of the total, while the suburbs represented just 15 per cent of the stock (MacLaran et al, 2010).

The changing planning context in the mid-1990s was also a significant factor in office development patterns. Planning policies were important in attracting office development to locations that had not previously experienced office development. The reorganisation of the administration of Dublin created a fragmented administrative structure and was followed by important development control changes, notably in the locations zoned for office development in the suburbs and the tightening of controls in
the central city. Suburban local authorities were eager to attract office developments paying commercial rates and new zoning categories such as ‘office-based industry’ were introduced which facilitated the rezoning of former industrial areas at the periphery (Bertz, 2002). The cumulative effect of these factors was a profound change in the location of office development in the Dublin area facilitating in particular the creation of new space at the periphery.

This facilitation of office development would not be problematical if such increases in supply were catering for increased demand levels. However extracts from MacLaran et al (2010: 70-73) of office vacancy rates since the 1990s shows significant emerging problems in this supply/demand patterns. The quantity of vacant space is shown to have declined uninteruptedly for a period of six years to reach a historically low level by the end of 1999 when only 31,236 sq.m. of office space lay vacant. This represented less than 2 per cent of the total stock. However from 2000 the quantity of vacant space increased rapidly as the scale of office development increased and the levels of take-up failed to match the growing supply. By the end of December 2000, vacancy had almost doubled to 60,000 sq.m. Between 2000 and 2001, the amount of vacant space grew four-fold, increasing further between December 2002 and the end of 2003 to reach almost 430,000 sq.m. and growing since to current levels.

Figure 1. Vacant suburban and Non-Suburban Space, 1990-2007

Figure 1 highlights the fact that a majority of the vacant space since 1999 has been located in the suburbs, marking a sharp contrast to the 1990s when most vacancy and stock was located in the central city. In 1990, 65 per cent of the city’s vacant office space had been located in Dublin 2. This declined over the following years and, by the end of 1999, the traditional office core of Dublin 2 accounted for only 19.5 per cent of all vacant floor space, considerably below its proportionate share of the modern office stock at the time (44.4 per cent). Despite accounting for between 30 and 35 per cent of the modern office stock, the outer suburbs have accounted for over 50 per cent of the city’s vacant office space since 1999. The proportion of all space lying vacant that was located in the suburbs peaked at 80 per cent in 2000, fell to 71 per cent in 2002 and decreased further after 2003. Vacant suburban stock and the scale of development in the suburbs outpaced the scale of demand by occupiers, which declined significantly after 2000. This resulted in rapidly rising vacancy rates in the outer suburbs, the vacancy rate increasing to over 25 per cent in 2001 from 8.8 per cent one year earlier. During 2002, despite the reducing scale of completions, the scale of development far outstripped user demand and in 2003, in spite of a considerable fall in the scale of development, the overall vacancy rate in suburbia rose as a consequence of older space returning to the market, peaking at 29.3 per cent. Critically this indicates that in effect a two track market had emerged and continued to date with some balancing of supply and demand at traditional central locations but at the periphery, development, investment and financial interests continued an acceleration in supply processes in spite of evidence of weak demand and high vacancy rates.
NATURAL VACANCY RATES

In Section 2 of the paper interesting insights are provided on the origins of the concept of natural vacancy rates (NVR). It is observed that these are linked to friction in the market, voluntary withholding by owners searching for best quality tenants and levels of temporarily vacant and obsolescent offices. One could develop this point by adding that until 2010 the existence of an upward only rent review system provided a sustained advantage to owners who could time their lettings to the top of the market and encouraged withholding to obtain the initial high rental level.

Section 4 develops the differentiation between the actual or observed vacancy rate and the natural vacancy rate which is explained by the equilibrium principle where rent stabilisation is taken as indicating a balance between supply and demand. The findings are that observed low rates of vacancy and NVR assessed consistently occurred during most early periods of equilibrium from the 1970s to the 1990s. The shift to the higher NVRs occur in the examination of observed trends from 2001 onward. This shift is examined and the linkage with GNP weakens over the subsequent period onward this shift which the research indicates are now higher NVR rates.

This use of NVR in discussing property market cycles gives a more optimistic future outlook than the analysis of past property market cycles and corrections by Dubben and Williams (2009) as outlined in Figure 2 which sees a strong linkage between levels of economic growth and derived property demand. Within a speculative development market, profit-seeking suppliers respond to rising price levels as the economy expands by increasing levels of accommodation. When the economy goes into decline this market process is due for a reversal and prices should decline. As a result of the different time frames within which such changes in demand and output occur development cycles and booms and slumps result. Demand for property is capable of changing very quickly due to improved or decreased economic activity, changes in interest rates and economic confidence. However, the supply of built space often lags behind such increases in demand and in later stages of the cycle fails to respond in the short term to the leveling off or reduction of demand as illustrated in Figure 2.

Figure 2. Cyclical interaction of Demand and Supply Patterns

Cyclical Interaction of Demand and Supply Patterns

Source: Dubben and Williams 2009

First market entrants at T1 will experience high profits due to their having acquired sites for low prices during the weak phase of the market. Such entrants may also have benefitted from the substantial incentives and supports introduced by successive Irish governments. However later entrants push up both land prices and levels of supply, this increase in supply reaching completion at T3 may already have created supply beyond available demand at T2 as experienced. The nature of development activity is that once started, a construction project can only with difficulty be abandoned without incurring substantial losses. The time span, over which a project will take to move from inception to completion, two years or considerably more for larger complex projects, makes judgments of supply/demand relationships difficult and such occurrences of oversupply common in past cycles.
The result of oversupply is falling prices, rentals and reduced investor demand, leading to decreased profitability. At this stage (T4), major new development proposals have been suspended and major reductions in development activity occur. With little or no development occurring effectively a correction or even over correction in market activity levels results. Thus the level of demand which stabilises even at low level will tend after a period of time to find supplies limited. This in turn will lead to rentals and prices increasing from their lower levels and the commencement of the next cycle. The tendency is then to repeat again the stages as already described at (T5). Interventions which attempt to prevent downward price corrections can often delay rather than prevent the eventual normal market correction and recovery process occurring.

With a normal functioning market continuing overprovision in Dublin office supplies might have been expected to level off at a much earlier period in the cycle. A number of factors may have assisted in distorting the market. The first is the operation of upward only price review mechanisms which can be viewed as altering the normal market processes as described. Also fundamental changes in monetary policy with European Monetary Union entry meant real interest rates declined significantly after 2000 fuelling the construction boom and allowing reduced costs to landlords in carrying empty speculative development. In effect the market at this period can be regarded as dysfunctional and the continuation of major financing for further speculative development is difficult to understand or justify.

NVR AND FUTURE MARKET TRENDS

In the discussion of the accuracy of the model in analysing the c 2008-2009 market collapse the research cites the robustness of the model in accurately assessing the fall of real rents at twice as quickly as at any previous time. The discussion then moves to a conclusion that a step change may have occurred with a rise in the NVR from approximately 5% before 1999 to almost 15% thereafter. This is viewed as a major structural change rather than a normal cyclical fluctuation with a corresponding shift in NVR. This level shift is then debated in terms of future implications for a market recovery.

This research is clear in observing that the pattern of observed vacancy rates shifted upwards over the period, however, the link to a clear structural shift upward in NVR is less well developed. A feature of the NVR concept to be expected is that is that this vacancy rate should be sustainable for market participants. This may be considered not proven with the collapse of the property market and associated banking and development interests in recent years.

The consequent prospects for rental recovery are discussed, based upon a higher NVR giving a potential return to rental growth over a 4 year time frame. As stated, this is dependent upon absorption rates being consistent and not a negative absorption rate as closures or downsizing release space back into the market. Given the current economic situation a more cautious estimates would appear appropriate.

In conclusion the oversupply in the Dublin office market discussed in this paper is part of a wider commercial property market crisis with similar problems in the hotels sector nationally, business parks and retail. It is evident that oversupply levels at up to 20 per cent or over in any sector are not sustainable and difficult to sustain in a functioning market. It can be argued that some modest level of vacancy gives an economic competitive advantage when recovery in demand levels occurs. However, current vacancy levels exceed any such norm and it is clear that neither the development nor financial interests involved in their creation had a capacity to manage or deal with the oversupplies created resulting in the subsequent market downturn and financial crisis.

It may be therefore argued that the Natural Vacancy Rate may need to return towards their lower historic levels for a market correction and recovery to occur. Following a prolonged period of market supports and incentivisation, with long lease terms dominant and break options difficult or costly, we may be moving toward a new period in market terms. The expected market correction is greatly complicated by the upward only rent review mechanisms in operation for much of the occupied stock. Such policies which cause price fixing do not allow normal price adjustment mechanisms occur to deal with supply demand imbalances as in a normal market process. In addition we are likely to see movement from an effectively deregulated and reckless lending system for the supply of speculative commercial development to a period of fundamental economic change with a reversion to rational and prudent lending policies. Included in this shift is a trend to a more demand led policies context with shorter lease terms and more tenant flexibility.
REFERENCES

