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It is shown for a class of random, time-independent, square-integrable, three-dimensional magnetic

fields that the one-loop effective fermion action of four-dimensional QED increases faster than a quadratic

in B in the strong coupling limit. The limit is universal. The result relies on the paramagnetism of charged

spin-1=2 fermions and the diamagnetism of charged scalar bosons.
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I. INTRODUCTION

Integrating out the fermion fields in four-dimensional
QED continued to the Euclidean metric results in the
measure for the gauge field integration

d�ðAÞ ¼ Z�1e�
R

d4xð1=4F��F��þgauge fixingÞ

� detrenð1� eS 6AÞY
x;�

dA�ðxÞ; (1.1)

where detren is the renormalized fermion determinant de-
fined in Sec. II; S is the free fermion propagator, and Z is
chosen so that

R
d�ðAÞ ¼ 1. In the limit e ¼ 0, the

Gaussian measure for the potential A� is chosen to have

mean zero and covarianceZ
d�ðAÞA�ðxÞA�ðyÞ ¼ D��ðx� yÞ; (1.2)

where D�� is the free photon propagator in some fixed

gauge. Naively, integration over the fermion fields pro-
duces the ratio of determinants detð6P� e 6AþmÞ=
detð6PþmÞ, which is not well defined; detren makes sense
of this ratio. It is gauge invariant and depends only on the
field strength F�� and invariants formed from it.

We have chosen to introduce this paper with an abrupt
intrusion of definitions in order to emphasize the central
role of detren in QED: it is everywhere. It is the origin of all
fermion loops in QED. If there are multiple charged fer-
mions, then detren is replaced by a product of renormalized
determinants, one for each species. For our purpose here, it
is sufficient to consider one fermion.

The nonperturbative calculation of detren reduces to
finding the eigenvalues of S 6A,Z

d4ySðx� yÞ6AðyÞc nðyÞ ¼ 1

en
c nðxÞ: (1.3)

There are at least two complications. First, S 6A is not a self-
adjoint operator, and so many powerful theorems from
analysis do not apply. Second, since A� is part of a func-

tional measure, it is a random field, making the task of
calculating the en for all admissible fields impossible.
What can be done is to expand ln detren, the one-loop
effective action, in a power series in e. Then the functional

integration can be done term-by-term to obtain textbook
QED.
The first nonperturbative calculation of detren was done

by Heisenberg and Euler [1] 75 years ago for the special
case of constant electric and magnetic fields. Their paper
gave rise to a vast subfield known as quantum field theory
under the influence of external conditions. A comprehen-
sive review of this body of work relevant to detren is given
by Dunne [2].
An outstanding problem is the strong field behavior of

detren that goes beyond constant fields or slowly varying
fields or special fields rapidly varying in one variable
[2,3].1 That is, what is the strong field behavior of detren
for a class of random fields F�� on R4? What if ln detren
increases faster than a quadratic in F�� for such fields? Is

detren integrable for any Gaussian measure in this case?
This is a question with profound implications for the
stability of QED in isolation. Of course, QED is part of
the standard model, thereby making the overall stability
question a much more intricate one. Nevertheless, the
stability of QED in isolation remains unknown and de-
serves an answer.
In this paper, we consider the case of square-integrable,

time-independent magnetic fields BðxÞ defined on R3.
There are additional technical conditions on B introduced
later. The magnetic field lines are typically twisted, tangled
loops. We find that

lim
e!1

ln detren
e2 lne

¼ kBk2T
24�2

; (1.4)

where kBk2 ¼ R
d3xB �BðxÞ, and T is the size of the

time box. Since e always multiplies B, this means that
ln detren is growing faster than a quadratic in B. In the
constant field case, this result is formally equivalent to the

1We note here progress in scalar QED4 since the review [2] in
going beyond these fields. Using the multidimensional worldline
instanton technique, the vacuum pair production rate has been
calculated from the one-loop effective action of a charged scalar
particle in selected two- and three-dimensional electric fields [4].
These fields have to be sufficiently regular in order to define a
formal functional semiclassical expansion of the quantum me-
chanical path integral representation of the effective action. The
extension of this technique to spinor QED has not been done yet.
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Heisenberg-Euler result [1] and to calculations relating the
effective Lagrangian to the short-distance behavior of QED
via its perturbative �-function [2]. What is notable here is
that the strong coupling limit of ln detren is universal.

To achieve universality, the derivation of (1.4) must rely
on general principles. One of these is the conjectured
‘‘diamagnetic’’ inequality for Euclidean three-dimensional
QED, namely

jdetQED3
ð1� eS 6AÞj � 1: (1.5)

The fermion determinant in (1.5) is defined in Sec. II.
The diamagnetic inequality is known to be true for lattice
formulations of QED3 obeying reflection positivity and
using Wilson fermions [5–7]. Since Wilson fermions are
CP invariant, there is no Chern-Simons term to interfere
with the uniqueness of detQED3

[8]. And since detQED3
is

gauge invariant, there are no divergences when the lattice
spacing for the fermions is sent to zero. As stated by Seiler
[7], (1.5) is more an obvious truth than a conjecture.

Since detQED3
je¼0 ¼ 1 and detQED3

has no zeros in e for

real values of e when m � 0 [9], (1.5) can be rewritten as

0< detQED3
� 1: (1.6)

An inspection of Eq. (2.4) below indicates that (1.6) is a
reflection of the tendency of an external magnetic field to
lower the energy of a charged fermion. Therefore,

the historic heading of (1.5) and (1.6) as diamagnetic
inequalities is a misnomer; paramagnetic inequalities
would be a more accurate designation. The detailed justi-
fication for going from (1.5) to (1.6) is given in Sec. II.
The second general principle underlying (1.4) is the

diamagnetism of charged spin-0 bosons in an external
magnetic field. This is encapsulated in one of the versions
of Kato’s inequality discussed in Sec. III.
The final essential input to (1.4) is a restriction on the

class of fields needed to obtain the limit. These restrictions
are summarized in Sec. IV. As the foregoing remarks
indicate, QED3 is central to the derivation of (1.4), and it
is to the connection between QED3 and QED4 that we now
turn.

II. QED3 AND QED4

A. The connection

The connection has been dealt with previously [10]. In
order to make this paper reasonably self-contained, we will
review the relevant definitions and results. The upper
bound on detren obtained in [10] is not optimal; it will be
optimized here.
The renormalized and regularized fermion determinant

in Wick-rotated Euclidean QED4 with on-shell renormal-
ization, detren, may be defined by Schwinger’s proper time
representation [11]

det renð1� eS 6AÞ ¼ 1

2

Z 1

0

dt

t

�
Tr

�
e�P2t � exp

�
�ðD2 þ e

2
���F��Þt

��
þ e2jjFk2

24�2

�
e�tm2

; (2.1)

whereD� ¼ P� � eA�, ��� ¼ ð1=2iÞ½�����, �y
� ¼ ���, kFk2 ¼

R
d4xF2

��ðxÞ, and e is assumed to be real. We choose
the chiral representation of the �-matrices so that

�ij ¼ ��k 0
0 ��k

� �
;

i; j; k ¼ 1; 2; 3 in cyclic order. Since we will consider time-independent magnetic fields, we set A� ¼ ð0;AðxÞÞ with x in
R3. Then (2.1) reduces to

ln detren ¼ T

2

Z 1

0

dt

t

�
2

ð4�tÞ1=2 Trðe�P2t � expf�½ðP� eAÞ2 � e� � B�tgÞ þ e2kBk2
12�2

�
e�tm2

; (2.2)

where T is the dimension of the time box, and the fac-
tor 2 is from the partial spin trace. Clearly, we must
have B 2 L2ðR3Þ. If A is assumed to be in the Coulomb
gauge r �A ¼ 0, then by the Sobolev-Talenti-Aubin in-
equality [12]

Z
d3xBðxÞ � BðxÞ �

�
27�4

16

�
1=3 X3

i¼1

�Z
d3xjAiðxÞj6

�
1=3

:

(2.3)

So we must also have A 2 L6ðR3Þ.

In analogy with detren in (2.1), without the charge renor-
malization subtraction, detQED3

may be defined by

lndetQED3
ðm2Þ

¼1

2

Z 1

0

dt

t
Trðe�P2t�expf�½ðP�eAÞ2�e� �B�tgÞe�tm2

:

(2.4)

This definition and regularization of detQED3
is parity con-

serving and gives no Chern-Simons term. Substituting (2.4)

in (2.2) and, noting that ��1
R1
0 dEe�tE2 ¼ ð4�tÞ�1=2, we

obtain [10]
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ln detren¼2T

�

Z 1

0
dE

�
lndetQED3

ðE2þm2Þ

þe2kBk2
24�3=2

Z 1

0

dt

t1=2
e�ðE2þm2Þt

�

¼ T

�

Z 1

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�m2

p
�
lndetQED3

ðM2Þþ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�
:

(2.5)

Result (2.5) will be referred to repeatedly in what follows.

B. Justification of (1.6)

Continuing our review of previous work, we turn to the
derivation of the upper bound on ln detren in (1.4). Since the
degrees of divergence of the first-, second-, and third-order
contributions to ln detQED3

are 2, 1, and 0, respectively,

these must be dealt with separately. Their definition is
obtained from the expansion of (2.4) throughOðe3Þ, result-
ing in

ln detQED3
ð1� eS 6AÞ

¼ � e2

4�

Z d3k

ð2�Þ3 jB̂ðkÞj
2
Z 1

0
dz

zð1� zÞ
½zð1� zÞk2 þm2�1=2

þ ln det4ð1� eS 6AÞ; (2.6)

where ln det4 defines the remainder and B̂ is the Fourier
transform of B. Definition (2.4) assigns the value of zero to
the terms of order e and e3. The argument of detQED3

has

been changed to indicate its origin as the formal ratio of
QED3 determinants detð6P� e 6AþmÞ= detð6PþmÞ. Note
the minus sign in (2.6) pointing to paramagnetism.

The following theorems are essential for what follows:
Theorem 1 [6,13,14]. Let the operator S 6A in det4

be transformed by a similarity transformation to K ¼
ðp2 þm2Þ1=4S 6Aðp2 þm2Þ�1=4. This leaves the eigenval-
ues of S 6A invariant. Then K is a bounded operator on
L2ðR3;d3x;C2Þ for A2LpðR3Þ for p > 3. Moreover, K
is a compact operator belonging to the trace ideal Ip,

p > 3.
The trace ideal Ipð1 � p <1Þ is defined as those

compact operators A with kAkpp ¼ TrððAyAÞp=2Þ<1.
From this it follows that the eigenvalues 1=en of S 6A ob-
tained from (1.3) specialized to three dimensions are of
finite multiplicity and satisfy

P1
n¼1 jenj�p <1 for p > 3.

The eigenfunctions c n belong to the Sobolev space

L2ðR3;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
d3k;CÞ. None of the en are real for

m � 0 [9].
Theorem 2 [15–17]. Define the regularized determinant

det nð1þ AÞ ¼ det

�
ð1þ AÞ exp

�Xn�1

k¼1

ð�1ÞkAk=k

��
: (2.7)

Then detn can be expressed in terms of the eigenvalues of
A 2 Ip for n � p.

Accordingly, det4 in (2.6) is defined and can be repre-
sented as [17]

det 4ð1� eS 6AÞ ¼ Y1
n¼1

��
1� e

en

�
exp

�X3
k¼1

�
e

en

�
k
=k

��
:

(2.8)

The reality of det4 for real e and C-invariance require that
the eigenvalues en appear in the complex plane as quartets
�en, �e�n, or as imaginary pairs when m � 0. As ex-
pected, the expansion of ln det4 in powers of e begins in
fourth order.
We have established that det4je¼0¼1 and that det4

has no zeros for real values of e. Therefore, by (2.6)
detQED3

>0 for all real e, thereby allowing one to go from

(1.5) and (1.6). It might be objected that this is obvious, but
we will need the detailed information introduced about
det4 in the sequel.
The determinant det4 is an entire function of e consid-

ered as a complex variable, meaning that it is holomorphic
in the entire complex e plane. Since

P1
n¼1 jenj�3�� <1

for � > 0, its order is at most 3 [16,18]. This means that for
any complex value of e, and positive constants A, K,
jdet4 j<Að�Þ expðKð�Þjej3þ�Þ for any � > 0 From (1.6)
and (2.6), and for real values of e

ln det4 � e2

4�

Z d3k

ð2�Þ3 jB̂ðkÞj
2

�
Z 1

0
dz

zð1� zÞ
½zð1� zÞk2 þm2�1=2 : (2.9)

This is a truly remarkable inequality. Referring to (2.9),
det4’s growth is slower on the real e axis than its potential
growth in other directions. We also note that det4 is largely
unknown. Even the reduction of the fourth-order term in its
expansion to an explicitly gauge invariant form involving
only B fields requires a huge effort when the fields are not
constant [19]. The sixth-order reduction has not been com-
pleted as far as the author knows.

C. Upper bound on detren

Insert (2.6) in (2.5) and get

ln detren ¼ e2T

4�2

Z d3k

ð2�Þ3 jB̂ðkÞj
2
Z 1

0
dzzð1� zÞ

� ln

�
zð1� zÞk2 þm2

m2

�

þ T

�

Z 1

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p ln det4ðM2Þ: (2.10)

The objective here is to obtain the behavior of lndetren
when the coupling e is large, real, and positive. Since e
always multiplies B, we introduce the scale parameter
B ¼ maxxjBj, which has the dimension of M2. Why B
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is finite will be explained in Sec. III B. Then the integral in

(2.10) is broken up into
R
eB
m2 and

R1
eB .

Substitution of (2.9) into the lower range integral gives

ln detren � e2T

4�2

Z d3k

ð2�Þ3 jB̂ðkÞj
2
Z 1

0
dzzð1� zÞ

� ln

�
4eBþ 2zð1� zÞk2 � 2m2

m2

�

þ T

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p ln det4ðeB;M2Þ: (2.11)

We have simplified the argument of the logarithm using
2

ffiffiffiffiffi
xy

p � xþ y for x, y � 0. Then for eB 	 m2,

lndetren�e2TjjBk2
24�2

ln

�
4eB
m2

�

þT

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�m2

p lndet4ðeB;M2Þ

þO

�
eT

R
d3xB �r2B

B

�
: (2.12)

The integral in (2.12) can be estimated by making a large
mass expansion of ln det4. This is facilitated by inserting
(2.6) in (2.4) and examining the small t region of ln det4’s
resulting proper time representation. The details of this
expansion are in Sec. 3B of [10], and give the result

ln det4ðeB;M2Þ ¼
M!1

1

2

Z 1

0

dt

t
ð4�tÞ�3=2e�tM2

Z
d3x

�
2

45
e4t4ðB �BÞ2 þOðe4t5B � BB � r2BÞ

�

¼ e4
RðB � BÞ2
480�M5

þO

�
e4

R
B � BB � r2B

M7

�
: (2.13)

In the first line of (2.13), it is assumed that the heat kernel
expansion is an asymptotic expansion in t in the strict sense
of its definition, namely [20]

< xje�t½ðP�eAÞ2�e��B�jx >�ð4�tÞ�3=2
XN
n¼0

anðxÞtn


t!0þ ð4�tÞ�3=2aNþ1ðxÞtNþ1: (2.14)

This must hold for every N. A necessary condition for
(2.14) is that B be infinitely differentiable to ensure that
each coefficient an is finite. As far as the author knows, it is
not known yet if this is a sufficient condition. So (2.14) is
an assumption that may require additional conditions onB.
Only coefficients an of Oðe2nÞ, n � 2 are present in
ln det4’s expansion.

The t integration in (2.13), although extending to infin-
ity, is limited to small t sinceM ! 1 due to the parameter
eB in (2.12). Substituting (2.13) in (2.12) results in

ln detren � e2jjBk2T
24�2

ln

�
4eB
m2

�
þO

�
e2T

RðB �BÞ2
B2

�

þO

�
eT

R
B � r2B

B

�
; (2.15)

or

lim
e!1

ln detren
e2 lne

� kBk2T
24�2

; (2.16)

consistent with (1.4). This bound is independent of the
charge renormalization subtraction point. If the subtraction

were made at photon momentum k2 ¼ �2 instead of
k2 ¼ 0, then the lnm2 terms in (2.10) and (2.11) would
be replaced with ln½zð1� zÞ�2 þm2�, which has nothing
to do with strong coupling.
The scaling procedure used here is designed to obtain

the least upper bound on ln detren. In [10], we chose to

break up the M integral as
Re4kBk4
m2 and

R1
e4kBk4 . This

resulted in a fast 1=e4 falloff of the ln det4 terms compared
to e2 here, but gave a weaker upper bound on ln detren,
namely

lim
e!1

ln detren
e2 lne

� kBk2T
6�2

: (2.17)

We mention that the coefficient 1=960 in (3.16) in [10]
should be 1=360.
Here we might have chosen a more general scaling, such

as e�ðlneÞ�B or e�ðln lneÞ�B, etc., with � � 1, �> 0.
Then the right-hand side of (2.16) would have been re-
placed with�kBk2T=24�2. The case�< 1 causes the first
remainder term in (2.15) to be no longer subdominant.
Therefore, our scaling eB is an optimal one.

III. LOWER BOUND ON detren

A. Fundamentals

On referring to (2.5) the lower bound on detren will come
from operations on ln detQED3

. We begin with the operator

identity (A2) in Appendix A applied to ln detQED3
in (2.4).

Letting X ¼ ðP� eAÞ2 and Y ¼ �e� � B, we obtain
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ln detQED3
¼ � 1

2

Z 1

0

dt

t
Tr

�
e
Z t

0
dse�ðt�sÞðP�eAÞ2� �Be�sðP�eAÞ2 þ e2

Z t

0
ds1

Z t�s1

0
ds2e

�ðt�s1�s2Þ½ðP�eAÞ2�e��B�

� � � Be�s2ðP�eAÞ2� �Be�s1ðP�eAÞ2
�
e�m2t þ 1

2

Z 1

0

dt

t
Trðe�P2t � e�ðP�eAÞ2tÞe�tm2

: (3.1)

The spin trace in the first term is zero, and the last term, after tracing over spin, is the one-loop effective action of scalar
QED3,

ln detSQED3
¼

Z 1

0

dt

t
e�tm2

Trðe�P2t � e�ðP�eAÞ2tÞ: (3.2)

Thus,

lndetQED3
¼ lndetSQED3

�e2

2

Z 1

0

dt

t
e�tm2

Tr

�Z t

0
ds1

Z t�s1

0
ds2e

�ðt�s1�s2Þ½ðP�eAÞ2�e��B�� �Be�s2ðP�eAÞ2� �Be�s1ðP�eAÞ2
�
;

(3.3)

remembering that the factor 1=2 in the last term of (3.1) is canceled by the spin trace.

Let �A ¼ ½ðP� eAÞ2 þm2��1. In Appendix B, it is shown that �1=2
A � � B�1=2

A 2 I2; that is, it is a Hilbert-Schmidt

operator provided B 2 L2 and m � 0. Then (2.7) gives

ln det2ð1� e�1=2
A � �B�1=2

A Þ ¼ ln det½ð1� e�1=2
A � �B�1=2

A Þee�1=2
A

��B�1=2
A �

¼ Tr ln½ð1� e�1=2
A � �B�1=2

A Þee�1=2
A

��B�1=2
A �

¼ Tr

�Z 1

0

dt

t
e�tm2ðe�ðP�eAÞ2t � e�½ðP�eAÞ2�e��B�t þ e�A� � B

�

¼ �e2
Z 1

0

dt

t
e�tm2

Z t

0
ds1

Z t�s1

0
ds2Trðe�ðt�s1�s2Þ½ðP�eAÞ2�e��B�

� � �Be�s2ðP�eAÞ2� � Be�s1ðP�eAÞ2Þ: (3.4)

In going from the penultimate to the last line in (3.4), use
was again made of the identity (A2). Substituting (3.4) in
(3.3) gives

ln detQED3
¼ 1

2
ln det2ð1� e�1=2

A � �B�1=2
A Þ

þ ln detSQED3
: (3.5)

As ln detQED3
and ln det2 are well-defined by our choice of

fields, so is ln detSQED3
in (3.5). What has been accom-

plished here is to isolate the Zeeman term � �B in ln det2.
Since �1=2

A � �B�1=2
A is Hilbert-Schmidt and self-adjoint,

ln det2 is susceptible to extensive analytic analysis.
Substitute (3.5) in (2.5):

lndetren¼ T

�

Z 1

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�m2

p
�
1

2
lndet2ð1�e�1=2

A � �B�1=2
A Þ

þ lndetSQED3
þ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�
: (3.6)

We now introduce two central inequalities. The first relies
on the diamagnetism of charged scalar bosons as expressed
by Kato’s inequality in the form [21,22]

Tr ðe�ðP�eAÞ2tÞ � Tr e�P2t: (3.7)

This implies that on average the energy eigenvalues of such
bosons rise in a magnetic field and hence by (3.2) that [22]

ln detSQED3
� 0: (3.8)

The second inequality is introduced beginning with the
penultimate line of (3.4). Noting that the spin trace of the
�A� �B term is zero, then

lndet2ð1�e�1=2
A � �B�1=2

A Þ
¼
Z 1

0

dt

t
e�tm2

Trðe�tðP�eAÞ2 �e�½ðP�eAÞ2�e��B�tÞ: (3.9)

By the Bogoliubov-Peierls inequality [23,24]and Sec. 2.1,
8 of [25]

Tr e�½ðP�eAÞ2�e��B�t � Tr e�tðP�eAÞ2te�teh��Bi; (3.10)

where

h� �Bi ¼ Trð� � Be�tðP�eAÞ2tÞ
Tr e�ðP�eAÞ2t ¼ 0: (3.11)
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Hence,

ln det2ð1� e�1=2
A � � B�1=2

A Þ � 0; (3.12)

which is consistent with (3.5) when combined with (1.6)
and (3.8). There is another reason why (3.12) holds. Let

C ¼ e�1=2
A � � B�1=2

A Since C is Hilbert- Schmidt,

ln det2ð1� CÞ ¼ ln det½ð1� CÞeC�
¼ Tr½lnð1� CÞ þ C�
¼ 1

2
Tr lnð1� C2Þ

¼ 1

2

X1
n¼1

lnð1� 	2
nÞ: (3.13)

The third line of (3.13) follows from the second since the
trace over spin eliminates all odd powers of C. In the last

line, we introduced the real eigenvalues 	n of e�1=2
A � �

B�1=2
A . Since ln det2 is real and finite, then j	nj< 1 for all

n, giving (3.12). Because �1=2
A � �B�1=2

A �I2, it is a com-
pact operator, and so the 	n are countable and of finite
multiplicity.
Now consider

@

@m2
lndet2ðm2Þ

¼
Z 1

0
dte�tm2

Trðe�½P�eA�2�e��B�t�eðP�eAÞ2tÞ�0;

(3.14)

by (3.9), (3.10), and (3.11). Therefore, det2 is a monotoni-
cally increasing function of m2. Next, break up the M
integral in (3.6) as in Sec. II C:

ln detren ¼ T

�

Z eB

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
�
1

2
ln det2ð1� e�1=2

A � �B�1=2
A Þ þ ln detSQED3

þ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�

þ T

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
�
ln detQED3

þ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�
; (3.15)

where we reinserted (3.5) into the upper-range M integral. By (3.14)

Z eB

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p ln det2ðM2Þ � ln det2jM2¼m2

Z eB

m2

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p ¼ 2 ln det2ð1� e�1=2
A � �B�1=2

A ÞjM2¼m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eB�m2

p
:

(3.16)

Hence, (3.8) and (3.16) result in (3.15) becoming

ln detren � T

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eB�m2

p
ln det2ð1� e�1=2

A � �B�1=2
A ÞjM2¼m2 þ e2TkBk2

24�2
ln

�
eB
m2

�

þ e2T

12�2
kBk2 ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

eB

s �
þ T

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
�
ln detQED3

þ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�
: (3.17)

We now turn to the strong coupling behavior of ln det2.

B. Strong coupling behavior of ln det2

The eigenvalues 	n in (3.13) are obtained from

e�1=2
A � � B�1=2

A ’n ¼ 	n’n; (3.18)

for ’n 2 L2 following the remark under (B3) in

Appendix B. Letting �1=2
A ’n ¼ c n gives�

ðP� eAÞ2 � e� �B
	n

�
c n ¼ �m2c n; (3.19)

where c n 2 L2 provided m � 0. This follows from (B5)
and Young’s inequality (B7). The requirement that m � 0
follows from the role of the eigenvalues f	ng1n¼1 as adjust-
able coupling constants whose discrete values result in
bound states with energy �m2 for a fixed value of e.

Since the operator ðP� eAÞ2 � e� � B � 0, such bound
states are impossible unless j	nj< 1 for all n, which is the
physical reason why (3.12) is true. Inspection of (3.19)
suggests that as e increases j	nj likewise increases for
fixed n to maintain the bound state energy at �m2. This
is illustrated by the constant field case that is excluded
from our analysis:

j	nj ¼ jeBj
ð2nþ 1ÞjeBj þm2

; n ¼ 0; 1; . . . : (3.20)

Because the operator �1=2
A � �B�1=2

A is Hilbert-Schmidt,

the eigenfunction ’n has finite multiplicity, and the 	n in
(3.13) are counted up to this multiplicity. To estimate
the multiplicity, note that the eigenfunctions ’n and c n

are in one-to-one correspondence. Next, note that for
c 2 L2ðR3;C2Þ and a generic 	 with j	j< 1,
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�
c ;

�
ðP� eAÞ2 � e

	
� �B

�
c

�

�
�
c ;

�
ðP� eAÞ2 �

��������e

	

��������jBj
�
c

�
: (3.21)

Thus, the Hamiltonian on the left, Hþ, dominates that on
the right, H�. Let N�m2ðHÞ denote the dimension of the
spectral projection onto the eigenstates of Hamiltonian H
with eigenvalues less than or equal to �m2. Because
Hþ � H�, then N�m2ðHþÞ � N�m2ðH�Þ. N�m2ðHþÞ is
an overestimate of the number of the bound states of Hþ
at �m2 for a fixed value of 	 but satisfactory for our
purpose here.

By the Cwinkel-Lieb-Rozenblum bound in the form [26]

N�m2ðH�Þ � C
Z

d3x

���������e

	

��������jBðxÞj �m2

�
3=2

þ
; (3.22)

where ½a�þ ¼ maxða; 0Þ andC ¼ 2� 0:1156. The factor 2
accounts for the additional spin degrees of freedom in the
present estimate. Since j	nj ¼ Oð1Þ, we are confident
that the degeneracy/multiplicity associated with each 	n

in (3.13) does not exceed cjej3=2 R d3xjBj3=2, where c �
0:2312 is another finite constant. This estimate has to be
modified for values of n > N beyond which 	n assumes its
asymptotic form as discussed below. Therefore, for n � N
we will estimate the sum in (3.13) by factoring out the

common maximal degeneracy cjej3=2 R d3xjBj3=2 and treat
each 	n in the factored sum as having multiplicity equal to
one. Those 	n, if any, that vanish as e ! 1 give a sub-
dominant contribution to ln det2 in (3.13) since by inspec-

tion their contribution grows at most as 	2
nje=	nj3=2.

We now turn to the large e dependence of 	n. From here
on we assume that c n is normalized to one. By
C-invariance we may assume e > 0. Now consider the
expectation value of (3.19):

hnjðP� eAÞ2jni � e

	n

hnj� �Bjni ¼ �m2: (3.23)

From (3.23) if hnj� � Bjni> 0 then 	n > 0 and vice versa.
Therefore, we need only consider 	n > 0 and write

	n ¼
�hnjðP� eAÞ2jni

ehnj� �Bjni þ m2

ehnj� �Bjni
��1

; (3.24)

where hnj� �Bjni � 0 as (3.23) must be satisfied. The case
	n ¼ 0 for some n corresponding to hnj� � Bjni ¼ 0
can be ignored as 	n ¼ 0 contributes nothing to ln det2 in
(3.13). An easy estimate gives

jðc n;� �Bc nÞj � ðc n; jBjc nÞ � max
x

jBðxÞj: (3.25)

Because B 2 L2 and is assumed infinitely differentiable,
then maxxjBj is finite. Hence, hnj� �Bjni is a bounded
function of e and n.

Now consider the ratio Rn ¼ hnjðP� eAÞ2jni=
ehnj� �Bjni in (3.24). The case Rn!e	10 is ruled out

since this implies 	n ! 1. The case Rn!e	11 implies
	n ! 0, which gives a subdominant contribution to (3.13)
as discussed above. The final possibility is 1 � Rn <1
for e ! 1. The case Rn ! 1 for e ! 1 happens
if hnjðP� eAÞ2jni 
 ehnj� � Bjni. Since c n 2 L2,
hnjðP�eAÞ2�e� �Bjni¼0 implies � � ðP� eAÞc n ¼
0. Now this may happen for the B fields considered so
far. But if we exclude zero-mode supporting B fields [27]
from our analysis it cannot. By so doing, we can exclude
the case 	n ¼ 1� 
nðeÞ, 
nð1Þ ¼ 0. We will see below
why this is necessary.
We proceed to estimate the strong coupling limit of

ln det2 in (3.13). First, consider the sum for n � N. We
need only consider 0< j	nj< 1 for all e, including e ¼ 1
as concluded above. Hence, on factoring out the common
maximal multiplicity of the 	n we get

lim
e	1

��������
XN
n¼1

lnð1� 	2
nÞ
��������� c1e

3=2
Z

d3xjBj3=2; (3.26)

where c1 is a constant and noting again that the eigenvalues
	n ! 0 are subdominant.
Since 	n ! 0 for n ! 1 and 1=2 � j lnð1� 	2

nÞ=	2
nj �

3=2 for 	2
n < 1=2, the absolute convergence of the series in

(3.13) requires
P1

n¼1 	
2
n <1. Consider this sum for n > N

and indicate the degeneracy factors �n explicitly:

S � X1
n>N

�nðeÞ	2
nðeÞ: (3.27)

We estimated from (3.22) that �n � cje=	nj3=2R
d3xjBj3=2. So

S � ce3=2
Z

d3xjBj3=2 X1
n>N

no degeneracy

j	nj1=2 <1: (3.28)

This implies that for n > N

j	nðeÞj ¼ CnðeÞ
n2þ�

; (3.29)

where � > 0 and Cn is a bounded function of n and e with
lime!1CnðeÞ<1. Otherwise, j	nj< 1 for any n cannot
be satisfied. Accordingly, the series in (3.28) is uniformly
convergent in e by the Weierstrass M test and so

lim
e!1

��������
X1
n>N

lnð1� 	2
nÞ
��������=e3=2 � c2

Z
d3xjBj3=2; (3.30)

where c2 is a constant. From (3.13), (3.26), and (3.30), we
conclude

lim
e!1j ln det2ð1� e�1=2

A � � B�1=2
A Þj=e3=2

� c3
Z

d3xjBj3=2; (3.31)

where c3 is another constant.
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As a check on (3.31), refer to (3.5). For B 2 L3=2ðR2Þ,
we found [10]

ln detQED3
� �Ze3=2

6�

Z
d2xjBðxÞj3=2; (3.32)

for BðxÞ � 0 or BðxÞ � 0, x 2 R2. Z is the dimension of
the remaining space box. We know that ln det2 � 0 and
ln detSQED3

� 0 in (3.5). Specializing (3.31) to these B

fields, it is seen that the strong coupling growth of ln det2
is consistent with (3.32).

Finally, if zero-mode supporting B fields were allowed,

we would have obtained ln det2 ¼e	1 Oðe3=2 ln�ðeÞÞ,
�ðeÞ!e	10, since when j	nj
e	1 1�
nðeÞ, 
nð1Þ ¼ 0,
the logarithm in (3.13) gives an additional factor ln
n.
As will be seen below the limit (1.4) requires

lime!1 ln det2=e
3=2 ¼ finite (or zero).

C. Strong coupling limit of (3.17)

It remains to estimate the large coupling limit of the last
term in (3.17),

I � T

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
�
ln detQED3

þ e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p
�

¼ T

�

Z 1

eB

dM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �m2

p
�
� e2

4�

Z d3k

ð2�Þ2 jB̂ðkÞj
2

�
Z 1

0
dz

zð1� zÞ
½zð1� zÞk2 þM2�1=2 þ

e2kBk2
24�

ffiffiffiffiffiffiffi
M2

p

þ ln det4ð1� eS 6AÞ
�
; (3.33)

where we substituted (2.6) for ln detQED3
. Calculation of the

first two terms in (3.33) is straightforward. The last term
has already been estimated in Sec. II and is given by the
second term in (2.15). Hence,

I ¼ O

�
e2T

RðB � BÞ2
B2

�
þO

�
eT

R
B � r2B

B

�
: (3.34)

Taking into account (3.31) and (3.34), we obtain from
(3.17)

lim
e!1

ln detren
e2 lne

� kBk2T
24�2

: (3.35)

Equations. (2.16) and (3.35) therefore establish (1.4).

IV. SUMMARY

The two assumptions underlying (1.4) are first that the
continuum limit of the lattice diamagnetic inequality co-
incides with (1.5), and second that the heat kernel expan-
sion of the Pauli operator in (2.14) is an asymptotic series.
These assumptions can and should be proven or falsified.

In addition, the result (1.4) assumes that the vector
potential and magnetic field satisfy the following
conditions:

B 2 L2ðR3Þ to define ln detren in (2.5) and to ensure that
�1=2

A � � B�1=2
A 2 I2 following Appendix B. In addition

B 2 L3=2ðR3Þ in order that the degeneracy estimate in
(3.22) is defined. To ensure that the bound in (3.31) holds,
zero-mode supporting B fields are excluded. Also, B must
be infinitely differentiable ðC1Þ to ensure that the expan-
sion coefficients in (2.14) are finite.
If A is assumed to be in the Coulomb gauge, then by

(2.3) A 2 L6ðR3Þ. If B 2 L3=2ðR3Þ, then A 2 L3ðR3Þ by
the Sobolev-Talenti-Aubin inequality [12]. In order to
define detQED3

, it is necessary to assume A 2 LrðR3Þ,
r>3, following the discussion under (2.6). If A2L3ðR3Þ
and L6ðR3Þ, thenA 2 LrðR3Þ, 3< r < 6 also. This follows
from Hölder’s inequality [28]

kfgkr � jjfkpkgjjq; (4.1)

with p�1 þ q�1 ¼ r�1, p, q, r � 1. SinceB ¼ r�A and
B 2 C1, then A 2 C1.
We note that the sample functions A�ðxÞ supporting

the Gaussian measure in (1.2) with probability one are
not C1. It is generally accepted that they belong to
S0ðR4Þ, the space of tempered distributions. Therefore,
we point out here that the C1 functions we introduced
can be related to A� 2 S0ðR4Þ by the convoluted field

A�
�ðxÞ¼

R
d4yf�ðx�yÞA�ðyÞ2C1, provided f� 2 SðR4Þ,

the functions of rapid decrease. Then the Fourier transform
of the covariance

R
d�ðAÞA�

�ðxÞA�
� ðyÞ derived from (1.2) is

D̂��ðkÞjf̂�ðkÞj2, where f̂� 2 C1. Since QED4 must be

ultraviolet regulated before renormalizing, f̂� can serve

as the regulator by choosing, for example, f̂� ¼ 1,

k2 � �2, and f̂� ¼ 0, k2 � 2�2. So the need to regulate
can serve as a natural way to introduce C1 background
fields A�

� into detren—but not the rest of d� in (1.1)—and

into whatever else one is calculating. This procedure is a
generalization of that used in the two-dimensional Yukawa
model [29].
Finally, the obvious generalization of (1.4) for an ad-

missible class of fields on R4 is

lim
e!1

ln detren
e2 lne

¼ 1

48�2

Z
d4xF2

��ðxÞ: (4.2)

There is no chiral anomaly term since F�� falls

off faster than 1=jxj2 and
R
d4x ~F��F�� ¼R

d4x@�ð�����A�F��Þ ¼ 0., where ~F�� ¼ 1
2 �����F��.

Equation (4.2) remains to be verified.
If (1.4) and (4.2) do indeed indicate instability, then they

are yet another reason why QED should not be considered
in isolation.

APPENDIX A

The operator identity on which (3.1) is based is obtained
as follows. Let [30]
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Ft ¼ e�tðXþYÞetX:

Then

dFt

dt
¼ �e�tðXþYÞYetX:

Integrating gives

e�tðXþYÞ � e�tX ¼ �
Z t

0
dse�ðt�sÞðXþYÞYe�sX; (A1)

known as Duhamel’s formula. Iterating once gives the
required identity:

e�tðXþYÞ � e�tX

¼ �
Z t

0
dse�ðt�sÞXYe�sX þ

Z t

0
ds1

�
Z t�s1

0
ds2e

�ðt�s1�s2ÞðXþYÞYe�s2XYe�s1X: (A2)

APPENDIX B

Here we show that the operator K¼�1=2
A � �B�1=2

A 2I2

and hence that K is Hilbert-Schmidt. This follows
[14,15,28] if and only if K is a bounded operator on
L2ðR3; d3x;C2Þ having a representation of the form

ðKfÞðxÞ ¼
Z

Kðx; yÞfðyÞd3y; f 2 L2; (B1)

where

K ðx; yÞ ¼ hxj�1=2
A � � B�1=2

A jyi; (B2)

and where K 2 L2ðR3 � R3; d3x� d3yÞ. Moreover,

kKk22 ¼
Z

jKðx; yÞj2d3xd3y: (B3)

If it can be shown that K 2 L2, then it trivially follows
that K maps L2 into itself. So consider

kKkL2 ¼ 2
X
i

Z
d3xd3yBiðxÞ�Aðx; yÞBiðyÞ�Aðy; xÞ

� 2
X
i

Z
d3xd3yjBiðxÞk�Aðx; yÞkBiðyÞk�Aðy; xÞj:

(B4)

A form of Kato’s inequality [5,21,31] asserts that the
interacting scalar propagator is bounded by the free propa-
gator

j�Aðx; yÞj � �ðx� yÞ; (B5)

where �ðxÞ ¼ ð4�jxjÞ�1e�mjxj in three dimensions. Then

kKkL2 � 1

8�2

X
i

Z
d3xd3yjBiðxÞ

�
�������� 1

jx� yj2 e
�2mjx�yj

��������BiðyÞj: (B6)

By Young’s inequality in the form [23]

��������
Z

d3xd3yfðxÞgðx� yÞhðyÞ
��������� kfkpkgkqjjhkr; (B7)

where p�1 þ q�1 þ r�1 ¼ 2, p, q, r � 1, and kfkp ¼
ðR d3xjfðxÞjpÞ1=p etc., obtain from (B6) with p ¼ r ¼ 2,
q ¼ 1

kKkL2 � 1

8�2

X
i

jjBik2
Z

d3xe�2mjxj=x2

¼ kBk2ð4�mÞ�1: (B8)

Therefore, by the theorem that began this appendix,

�1=2
A � � B�1=2

A 2 I2 when m � 0 and B 2 L2. We men-
tion that this can be proved even when m ¼ 0 provided

B 2 L3=2.

[1] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936)
[arXiv:physics/0605038].

[2] G. V. Dunne, in Ian Kogan Memorial Collection from
Fields to Strings: Circumnavigating Theoretical Physics,
edited by M. Shifman, A. Vainshtein, and J. Wheater
(World Scientific, Danvers, MA, 2005), Vol. 1, p. 445.

[3] Z. Haba, Phys. Rev. D 29, 1718 (1984).
[4] G. V. Dunne and Q.-h. Wang, Phys. Rev. D 74, 065015

(2006).
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