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In mathematics, like in everything else, it is the Darwinian struggle for life of ideas that
leads to the survival of the concepts which we actually use, often believed to have come
to us fully armed with goodness from some mysterious Platonic repository of truths.

Simon Altmann

1. Introduction

The purpose of this paper is to draw the attention of philosophers and others
interested in the applicability of mathematics to a quiet revolution that is taking
place around the theory of vectors and their application. It is not that new math-
ematics is being invented – on the contrary, the basic concepts are over a century
old – but rather that this old theory, having languished for many decades as a
quaint backwater, is being rediscovered and properly applied for the first time. The
philosophical importance of this quiet revolution is not that new applications for
old mathematics are being found. That presumably happens much of the time.
Rather it is that this new range of applications affords us a novel insight into the
reasons why vectors and their mathematical kin find application at all in the real
world. Indirectly, it tells us something general but interesting about the nature of
the spatiotemporal world we all inhabit, and that is of philosophical significance.
Quite what this significance amounts to is not yet clear. I should stress that nothing
here is original: the history is quite accessible from several sources, and the
mathematics is commonplace to those who know it. However, for philosophers
who are not themselves mathematicians, I hope this may be of some interest.

2. Excerpts from the history of vector theory

Dramatis personae
Benjamin Olinde Rodrigues (1795–1851)
Sir William Rowan Hamilton (1805–1865)
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Josiah Willard Gibbs (1839–1903)
William Kingdon Clifford (1845–1879)
Oliver Heaviside (1850–1925)
David Hestenes (b. 1933)

There is a classic history of vector theory, a marvellous book by Michael Crowe
(1967). The subsequent history since Crowe’s book appeared shows that while he
is quite right that vectors won out over quaternions in “the Great Quaternionic
War” of roughly 1890–1910, it is no longer the case, as it seemed to him then, that
vector analysis plus other things will remain the undisputed formalism of choice in
modern applied mathematics.

Although the idea of directed quantities was present in earlier mathematics, it
emerged most obviously in the Wessel–Argand geometric interpretation of
complex numbers. It was after thirteen years of trying to generalize this to three
dimensions that in a famous episode Hamilton got the insight that three rather than
two extra imaginary units were needed, and this was the key to the quaternions.
The discovery, which can be located in space and time to a very small region near
Broome Bridge in Dublin on the morning of 16 October 1843, is one of the
best-known stories of mathematics.

Quaternions (sometimes called ‘hypercomplex numbers’) are quantities:

q w x y z= + + +i j k

where w, x, y, w are real, addition is defined termwise, and the imaginary units
i j k satisfy:

i j k ijk ij ji k jk kj i ki ik j2 2 2 1= = = = − = − = = − = = − =; ; ;

Quaternions form the largest (non-commutative) division algebra: every non-zero
quaternion has an inverse. From 1846 Hamilton called w the scalar part and
ix + jy + kz the pure or vector part of a quaternion, and if q, q′ are two pure
quaternions (vectors):

qq xx yy zz yz zy zx xz xy yx′ = − ′ + ′ + ′( ) + ′ − ′( ) + ′ − ′( ) + ′ − ′( )i j k

So quaternion multiplication embodies both (the negative of) the scalar product,
and the vector product of later theory.

Just as complex numbers handle rotations in the plane, so quaternions are meant
to handle rotations in three-dimensional space. But, misled by the analogy with the
two-dimensional case, where multiplication by a single unit complex number
produces a rotation, Hamilton assumed such rotations could be represented by a
single multiplication qv, where v is any vector and q is a unit quaternion. This
one-sided multiplication works only for a special case: rotations orthogonal to the
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vector, about its axis. Thus from the very evening of 16 October 1843 Hamilton
bungled the quaternion account of rotation, which should be dealt with by pre- and
postmultiplication by a quaternion rvr-1, with r defined not (as in Hamilton) by the
angle of the rotation but by its half-angle. The geometry of composing rotations and
the need to deal in half-angles had already been properly done in 1840 by a French
mathematician who was also a socialist banker, Benjamin Olinde Rodrigues, but
had (not unsurprisingly) escaped Hamilton’s notice. Particularly insightful and
detailed accounts of Hamilton’s mistake and Rodrigues’s success are given by
Altmann (1986, 1989, 1992), who deserves much credit for showing that the neglect
of quaternions was for a long time excessive, as well as for investigating the hitherto
highly obscure Rodrigues (Altmann and Ortiz, 2005).1

Hamilton was convinced that quaternions were the key to the universe. For a
while, spurred by his deserved fame and his enthusiastic advocacy, quaternions
were all the rage. His 1853 Lectures on Quaternions ran to nearly 900 pages, and
James Clerk Maxwell used them though without total endorsement in his Treatise
on Electricity and Magnetism. In the propagation of the quaternionic gospel,
Hamilton was ably seconded by his bulldog, the Scottish mathematician Peter
Guthrie Tait, but gradually the drawbacks of quaternions became apparent, not least
through the work of Maxwell, who eventually dropped them. Quaternions came
under fire from two thinkers who independently came up with the more flexible
mathematics of vectors, the American mathematician–physicist–chemist Josiah
Willard Gibbs and the English engineer–physicist Oliver Heaviside. Gibbs’s Yale
lectures on vector analysis began to be circulated around 1881, while Heaviside’s
Electromagnetic Theory came out in 1891. After the publication in 1901 by Edwin
Bidwell Wilson of Vector Analysis: A Text Book for the Use of Students of
Mathematics and Physics and Founded upon the Lectures of J. Willard Gibbs, the
war was decided. That book reads like any modern textbook of vector theory, and
indeed it was the first such. For example the definitions of scalar and vector are
wholly modern:

Definition: A vector is a quantity which is considered as possessing direction as well
as magnitude.
Definition: A scalar is a quantity which is considered as possessing magnitude but no
direction.

Gibbs and Heaviside arrived at their ideas independently and in a remarkably
similar way: by separating the scalar and vector parts of the quaternion product as
two distinct products, and changing the sign of the scalar part. After embarking on
vector theory, Gibbs discovered some convergence with ideas that had already

1 Quarternions have, sinceAltmann published his book in 1986, and in part because of the
book, had about as much of a revival as they merit: they are now regularly used by space engineers
and computer games developers for efficient and singularity-free representations of 3-dimensional
spatial rotations, as of space vehicles and virtual game perspectives. See Kuipers (2002).
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been proposed by Hermann Günther Grassmann.2 Grassmann was, in his day, and
even to some extent now, one of the most unjustly neglected mathematicians of all
time. His revolutionary Ausdehnungslehre [Theory of Extension] was first pub-
lished in 1844 (Grassmann 1844), with a second revised and cut-down edition in
1862 (Grassmann 1862) and a third, which restored some of the first edition’s cuts,
appearing in 1878 only after his death. Grassmann was led to his algebra of
geometry initially by a problem in applied mathematics: that of describing the flow
of water in tides (Grassmann 1840). For this purpose he introduced two notions
which later became known as the scalar (inner) product and exterior (or outer)
product of two vectors. Grassmann’s work, which was conceived for any finite
number of dimensions, not just two or three, was more revolutionary than Hamil-
ton’s and at a level of abstraction which even professional mathematicians such as
Möbius and Kummer found offputting. The Gibbs–Heaviside vector theory is as
much a cut-down version of Grassmann’s work as of Hamilton’s, though because
of Grassmann’s obscurity they discovered that only subsequently. Vectors in the
Gibbs–Heaviside vein caught on rapidly in the early twentieth century, being both
adequate to many applications and easy enough for non-mathematicians to grasp
and manipulate. From then on, vector algebra and vector analysis have held sway
throughout most of the twentieth century.

The quaternionists did not however give up without a massive struggle. In 1888
Gibbs wrote in a letter:

a Kampf ums Dasein is just commencing between the different methods and nota-
tions of multiple algebra, especially between the ideas of Grassmann & of Hamilton.

The rhetoric in the Great Quaternionic War became quite heated. So Tait wrote:

Even Professor Gibbs must be ranked as one of the retarders of Quaternion progress,
in virtue of his pamphlet on Vector Analysis, a sort of hermaphrodite monster,
compounded of the notations of Hamilton and of Grassmann.

Heaviside responded with eponymous irony:

the invention of quaternions must be regarded as a most remarkable feat of human
ingenuity. Vector analysis, without quaternions, could have been found by any
mathematician by carefully examining the mechanics of the Cartesian mathematics;
but to find out quaternions required a genius.

Lord Kelvin in 1892 dismissed quaternions in no uncertain terms:

Quaternions came from Hamilton after his really good work had been done; and,
though beautifully ingenious, have been an unmixed evil to those who have touched
them in any way, including Clerk Maxwell.

2 Grassmann wrote his own surname ‘Graßmann’ but even German writers do not
uniformly spell it this way, and it appeared as ‘Grassmann’ on the title page of the 1844
Ausdehnungslehre, so we follow the general practice. For his collected works see Grassmann
(1894–1911). For the English translation of the Ausdehnungslehre, see Grassmann (1995).
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The heat prompted another physical peer, Lord Rayleigh, to quip in echo of
Tertullian, “Behold how these vectorists love one another”.3

One irony of subsequent developments was that while Gibbs drew some
inspiration from Grassmann, the success of vector analysis sidelined Grassmann as
much as it did Hamilton when it came to applications, without Grassmann even
having had the benefit of being once on the cutting edge of fashion.As vectors came
into more general use in physics and other applications, the march of developments
meant however that vector analysis needed to be supplemented by a congeries of
other mathematical techniques: tensors, spinors, matrix algebra, Hilbert spaces,
differential forms, and more. The result is a bewildering plethora of mathematical
techniques which require much learning and teaching, which tend to fragment the
subject and which embody wasteful overlaps and requirements of translation.

3. The first geometric algebra

The true father of geometric algebra was one of those very few mathematicians
who were able to appreciate and combine insights from both Hamilton and Grass-
mann, namely William Kingdon Clifford (1845–1879).4 Clifford was a Victorian
polymath of that sort whose breadth, optimism and restless energy made their age
so fertile and in some ways so alien to ours. His wonderfully lucid and accessible
The Common Sense of the Exact Sciences, unfinished at his early death, completed
and published posthumously by Karl Pearson, inspired the young Bertrand
Russell. Clifford’s energy was his undoing: he seems to have literally worn himself
out by the age of 33. In his 1878 Elements of Dynamic (Clifford 1878 and 1887)
he modified Grassmann’s theory, developing the geometric product as the sum of
the scalar and outer products:

ab a b a b= ⋅ + ∧

This combines the scalar (inner) product a · b and the vector (outer) product a ∧ b
(read ‘a wedge b’) of his predecessors, in a new way whose significance we shall
see.5 The outer product of two vectors is a new kind of object called a bivector.
Initially the decision to combine the two looks arbitrary or capricious, though
there are precedents in both Hamilton and Grassmann. In fact since the scalar
product is symmetric (a · b = b · a) while the outer product is skew-symmetric

3 All quotes are taken from Crowe (1967).
4 See Clifford (1878, 1882). Another was Alfred North Whitehead: see Whitehead

(1898).
5 Clifford’s treatment differs from Grassmann’s and Hamilton’s on a seemingly minor

algebraic point. Where ei and ej are orthogonal units, all three have eiej = -ejei when i � j;
Grassmann has ei

2 = 0, Hamilton has ei
2 = -1, and Clifford has ei

2 = 1. That turns out to make all
the difference.
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(a ∧ b = -b ∧ a), the two parts of the geometric product of two vectors represent
the symmetric and skew-symmetric parts respectively of that product. Indeed to
partly sidestep the awkward question as to how a scalar can be added to a bivector,
it is theoretically preferable to treat the geometric product as primitive and gov-
erned by axioms, and define the scalar and outer products respectively as:

a b ab ba⋅ = +( )Df.
1

2

a b ab ba∧ = −( )Df.
1

2

4. Some basic notions of geometric algebra

To motivate some of the philosophical remarks later it is useful to have a smat-
tering of the basics of geometric algebra. This section is just to give such a flavour:
it is not intended as a proper introduction, for which see the works by Hestenes,
Doran and Lasenby given in the references.

Let’s start with two dimensions. Suppose e1 and e2 to be two orthonormal
vectors, so |e1| = |e2| = 1, and let a and b be two vectors with:

a e e1 2= +a a1 2

b e e1 2= +b b1 2

where the ai and bj are, as usual, real scalars (real numbers). The sum of these two
vectors a + b is computed coordinatewise as usual:

a b e e1 2+ = +( ) + +( )a b a b1 1 2 2

We look now for an associative, distributive (over +) product of vectors such that
any vector squares to the square of its magnitude: a2 = |a|2 = a1

2 + a2
2. To fulfil

these conditions, in particular the last one, we have:

a e e e e
e e e e

1 2 1 2

1 2 2 1

2
1 2 1 2

1
2

2
2

1 2

= +( ) +( )
= + + +( )

a a a a
a a a a

so e1e2 + e2e1 = 0
and e1e2 = -e2e1

so (e1e2)2 = (e1e2)(e1e2) = e1(e2e1)e2 = -e1
2e2

2 = -1

This product e1e2 is neither a scalar nor a vector but a third kind of object, a
bivector. Notice that its geometric square (the geometric product of itself with
itself) is -1, a feature we normally associate only with the complex units �i.
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It is hard to overestimate the importance of bringing in bivectors alongside
vectors and scalars. As a vector may be geometrically associated with a directed
line segment (normally abstracting from its point of origin, so invariant under
parallel translation), the length of the line corresponding to the vector’s magni-
tude, its direction and orientation to those of the line, so a bivector may be
associated geometrically with an oriented planar region, the area of the region
corresponding to the bivector’s magnitude, the plane it is in being its two-
dimensional “direction”, and the orientation of the region being the “handedness”
of the bivector. The area associated with the bivector a ∧ b is that of any paral-
lelogram based on a and b, and its “handedness” is given by tracing the vectors,
first a, then b:

a

b

Obviously the opposite order b then a will produce a parallelogram with the same
area but opposite orientation,

a

b
while the parallelogram of two orthonormal vectors is a square of area 1.

We now extend this collection of geometrical objects by adding not only
scalars and bivectors but also vectors to the mix. The result is a Clifford Algebra.

The Clifford algebra Cl2 of 2-dimensional space is a 4-dimensional collection
of elements:

A a a a a= + + +0 1 2 12e e e1 2 12

where the ak are real, addition and multiplication are defined elementwise, and
e12 = e1e2. The Clifford algebra is spanned by the four base elements 1, e1, e2, e12
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and its parts are of grade 0 (scalars), 1 (vectors) and 2 (bivectors). A sum of
elements of different grades is called a multivector or blade. Like quaternions and
complex numbers, Clifford algebras admit of division. Unlike these, they can be of
arbitrary finite dimension.

In three dimensions, in addition to scalars, vectors and bivectors, there are
products of three vectors not reducible to the others, trivectors. The Clifford
algebra Cl3 of 3-dimensional space is an 8-dimensional linear collection of blades:

A a a a a a a a a= + + + + + + +0 1 2 3 12 23 31 123e e e e e e e1 2 3 12 23 31 123

with a basis of 1 scalar, 3 vectors, 3 bivectors and 1 trivector, where the trivector
represents an oriented unit volume. It contains subalgebras isomorphic to both the
complex numbers and the quaternions. The unit trivector e123 = e1e2e3 squares to
-1, and it is quite common to notate it as I, since it has the same multiplication
property as the imaginary unit. In general the highest-dimension elements of a
Clifford algebra of a given dimension are called pseudoscalars and can be
expressed as scalar multiples bI of the unit pseudoscalar I (here a unit trivector).
So a general element of Cl3 is a sum:

A B I= + + +α βa

where a and b are scalars, a is a vector, and B is a bivector.
An important operation in Clifford algebra is reversion, which is obtained by

reversing the order of all geometric products of vectors. Reversion leaves scalars
and vectors invariant but switches the sign of bivectors and pseudoscalars:

A B I† = + − −α βa

It is thus computationally akin to the complex conjugate among numbers and the
Hermitian operator among matrices.

The bivector a ∧ b replaces the standard vector product a ¥ b, which is a
vector orthogonal to a and b, not a bivector. The cross product is only definable in
three dimensions but the wedge product is definable in any number of dimensions.
In three-dimensional space the cross product is the Clifford dual of the wedge
product. The importance of having an intrinsically defined bivector instead of a
dual vector is twofold. Firstly it obviates an unfortunate and confusing duality in
the application of vectors, namely the distinction between polar vectors (which are
invariant under reflection parallel to the vector but reverse under orthogonal
reflection) and axial vectors (which are the other way round).6 Secondly, there are
theoretically some quantities such as angular momentum of a spinning planar

6 Cf. Altmann (1992).
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object where the third dimension is or may be missing, so the quantity should be
confined to the two dimensions of the plane. The bivector a ∧ b is precisely in the
plane itself: its orientation characterises the direction of spin and its magnitude the
magnitude of the angular momentum.

A particularly important feature of Clifford algebras, which allows Cl3 to
subsume the quaternions as well as the complex numbers, is their treatment of
rotations. Let n and m be any two non-parallel unit vectors, which therefore define
a plane, that of m ∧ n. A rotation in the plane generated by m and n of any vector
a is given by successive reflections in the hyperplanes perpendicular to m and n.
The component of a perpendicular to the m ∧ n plane is unaffected, while by
simple trigonometry the resultant vector is at an angle 2q from a, where q is the
angle between m and n, m · n = cos(q). This is again Rodrigues’ half-angle result.
Using geometric algebra we get that the vector a is rotated into the vector
b = nmamn. Defining a unit bivector R = nm this means that we rotate a through
twice the angle between m and n by operating on a using R and its reverse R†, so:

b a= R R†

And we can add that R = nm = n · m + n ∧ m = cos(q) + n ∧ m. The object R is a
sum of a scalar and a bivector, and its magnitude is unity, since |n ∧ m| = sin(q). It
is called a rotor. In two dimensions rotations are handled by multiplying by unit
complex numbers, in three dimensions they can be handled by pre- and postmul-
tiplication by unit quaternions, but in Clifford algebra the construction works in
any number of dimensions, and also works for any grade of multivector.

5. The modern revival of Clifford algebra as geometric algebra

Clifford’s own name for his algebra was ‘geometric algebra’, which echoes the
ideas, words and aspirations of Grassmann. The development of the algebra and
analysis of geometrical ideas along Clifford’s lines was, like the work of Hamilton
and Grassmann, eclipsed by the success of vector theory. But vectors led to a
wasteful and obscuring fragmentation of the mathematical treatment of geometrical
notions. The rediscovery of Clifford’s ideas, their exploitation and adaptation for the
efficient representation of geometric notions is the achievement of the American
mathematical physicist David Hestenes (b. 1933) (Hestenes 1966 and 1986;
Hestenes and Sobczyk 1984). It was Hestenes who proposed returning to Clifford’s
own designation, which like him we abbreviate to ‘GA’. To give a (not wholly
unbiased) indication of the advantages of GA over other approaches we may quote
Hestenes’ list of features integrated by GA, as given in his 2002 Oersted Medal
Lecture (Hestenes 2003), namely synthetic geometry, coordinate geometry,
complex variables, quaternions, vector analysis, matrix algebras, spinors, tensors,
and differential forms. Since few physicists are competent in all of these methods,
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and since there are wasteful redundancies among them, having a single geometrical
lingua franca for physics and other sciences needing rigorous treatment of geo-
metrical topics is highly advantageous. Hestenes lists some of the highlights:7

“(1) GA seamlessly integrates the properties of vectors and complex numbers to
enable a completely coordinate-free treatment of 2D physics.
(2) GA articulates seamlessly with standard vector algebra to enable easy contact
with standard literature and mathematical methods.
(3) GA Reduces “grad, div, curl and all that” to a single vector derivative that, among
other things, combines the standard set of four Maxwell equations into a single
equation and provides new methods to solve it.
(4) The GA formulation of spinors facilitates the treatment of rotations and rotational
dynamics in both classical and quantum mechanics without coordinates or matrices.
(5) GA provides fresh insights into the geometric structure of quantum mechanics
with implications for its physical interpretation.
All of this generalizes smoothly to a completely coordinate-free language for space-
time physics and general relativity.”

Nevertheless, as Hestenes points out with more than a little chagrin in his Oersted
Lecture, to champion GA is to risk marginalisation or worse in the academic
community, since there is a natural inertia in teaching methods to physicists and
others, which could only be overcome if GA were to be taught across the under-
graduate and graduate curriculum. The need for students to acquire a broad range
of techniques in order to read existing treatments means there will be opposition
to teaching them what is (wrongly) perceived as “just another” formalism. It is this
human and institutional feature that is most likely to hold GA back, despite its
many merits. Fortunately Hestenes’ enthusiasm has caught in other quarters, most
notably among a group of physicists and engineers based in Cambridge, England,
called the Cambridge University Geometric Algebra Group.8 The existence of such
a group is the first indication that Hestenes’ battle for the recognition and adoption
of GA is becoming less lonely.

Nevertheless it is not inconceivable that we are in for a repeat of the kind of
intellectual “war” that saw vectors oust quaternions. As an outsider I am fortu-
nately free of the obligation to adopt or reject the new medium, or to persuade my
colleagues to sign up, though by the same token relatively unqualified to judge
whether it has intrinsic flaws that have yet to be revealed. So leaving prophesy to
others, I pass swiftly to philosophy, where we can be interested in such matters “in
principle” and do not need the world to agree.

7 Quote taken from the online version of the Oersted Lecture at: URL=<http://
modelingnts.la.asu.edu/pdf/OerstedMedalLecture.pdf>, p. 2. Retrieved 31.10.2008.

8 URL=<http://www.mrao.cam.ac.uk/%7Eclifford/index.html>. Cf. the textbook Doran
and Lasenby (2003), which emanates from the group.
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6. Philosophical significance of geometric algebra

Over the long course of interaction between philosophy and mathematics, the
philosophers have tended to pay much more attention to pure than applied math-
ematics. There is a tradition of affinity between philosophy and pure mathematics
going back to Plato. It takes in Descartes, Leibniz, Bolzano, Cantor, Frege, Hilbert,
Russell and Quine, to name only some of the most prominent. The need for
mathematical theories to be in principle applicable is usually held to be easily
satisfiable, shown by pointing out how often real and complex analysis are actually
used, and how capacious set theory to is represent all manner of structures,
mathematical and real. From this perspective the squabbles between quaternionists
and vectorists or the advantages of geometric algebra over the hotch-potch of
theories that have come to be standardly applied in physics and engineering are
disputes beneath the philosopher’s attention threshold, to be qualified as merely
pragmatic choices, less theoretically exciting than incompleteness, consistency,
decidability or large cardinals.

However, while some streams of modern philosophy of mathematics continue
in the same vein, since Eugene Wigner asked why mathematics is so “unreason-
ably effective” in physics (Wigner 1967) and Hartry Field put forward his bold and
controversial view that science could in principle do its work without mathematics
(Field 1980), the balance has shifted quite agreeably towards looking in closer
detail at how mathematics is is in fact applied.9 One of the perennial puzzles about
mathematics is how it comes about that it is so successful in real-world applica-
tions. We are only at the threshold of getting seriously to grips with this problem.
As Paolo Mancosu writes, “We badly need more detailed case studies in order to
understand better the variety of explanatory uses that mathematics can play in
empirical contexts”.10 The question of applicability is best considered by looking
at the mathematics that actually gets applied, which typically is neither set theory
nor the sort of complication thrown up by Gödel numbering, but precisely such
day-to-day tools as vector analysis.

It is a matter of some depth and intricacy as to how and why one approach to
vectors and their kin – the piecemeal approach adopted since 1900 – is or is not
better than the integrated approach of geometric algebra. What the case of geo-
metric algebra suggests is that while there can be more than one mathematical
formalism or set of techniques which can be applied, which ones in fact are applied
may sometimes turn not on effectiveness but on tradition, entrenchment and
institutions. On the assumption that geometric algebra is indeed in some sense
preferable to the congeries of methods hitherto available, we might wish to

9 See Baker (2005), Bangu (2008), Batterman (2002), Colyvan (2001), French (2000),
Lyon and Colyvan (2007), Mancosu (2008), Melia (2000), Steiner (1998 and 2005).

10 Mancosu (2008).
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consider why this is so. One reason is of course the greater unification and
simplicity afforded by geometric algebra over the patchwork approach. But
another is whether geometric algebra somehow affords us deeper insight into the
nature of space and spacetime, or extension, as Grassmann and Whitehead would
have said. That crucial question needs more consideration than it has enjoyed
hitherto.

To see how the arguments might go for geometric algebra, let us look at a
related but slightly more familiar puzzle: the applicability of complex numbers.11

Real numbers and real analysis have so many and such varied applications that
their applicability is a yardstick rather than a puzzle. The applications turn to be
sure on the many species of quantity, species of attributes admitting of comparison
and ratio, and these species fall into a wide variety of more extensive families,
ordered by numerous similarities. For example, spatial distances, masses, temporal
distances, densities, and the many rates of change all get metrized by real numbers,
yet they are different from one another in many ways. By contrast, complex
numbers have remarkably few areas of application. The main ones are electrical
circuit theory, relativity, and quantum physics. In electrical theory they were
introduced by Carl Proteus Steinmetz to enable calculations to be done with AC
circuits as easily as using Ohm’s Law in DC circuits.12 Brilliant as Steinmetz’s
application is, it is dispensable. Its value lies in its algorithmic simplification. But
why does it work at all? The answer lies in the sinusoidal variation of current in
AC. The sine and cosine functions are periodic in the reals, whereas the exponen-
tial function is positive monotonic. Over the complex numbers the exponential
function ez is periodic, and is intimately linked with the others via the well-known
equivalence:

e x i yx iy+ = +cos sin

The occurrence of phases and phase-differences in periodic phenomena, their
ready representation by functions of virtual (not real) angles, and the integral
treatment of these functions in the complex exponential, gives complex numbers
their traction in alternating current calculations. Note that this variation is not
connected with real angles in space at all, but in the variation in time of quantities
whose equations of variation use functions originally defined in terms of properties
of angles.

11 This case prompts Steiner (1998) to the theological conclusion that the universe is
“user-friendly”: a naturalistic explanation such as that suggested here removes the need for
theology. So while I do not agree with Steiner’s conclusions, he is asking the right kind of
questions.

12 See Kline (1992).
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The application in quantum theory has a different rationale. Quantum theory
whether non-relativistic or relativistic uses the mathematics of wavelike phenom-
ena, in the non-relativistic case Schrödinger’s or Pauli’s wave equations. Again
this involves non-spatial periodicity of variation, and phase difference is a crucial
feature. This was not peculiar to the quantum level however: wave equations
govern electromagnetic phenomena treated classically. What appears different
about the quantum case from a mathematical (not physical) point of view is that
the variables have to be complex rather than real. It is usual for physicists, when
asked why this is so, to shrug their shoulders and say it just is. That is an inherently
unsatisfying answer for a philosopher of nature. She wants to know why it is so,
what there is about the world in virtue of which only complex functions work at all
in this case.

To the modest extent that there is any discussion about this problem,13 there is
no consensus about why there should be a need for complex numbers. The
argument, such as it is one, is principally that they make the results come out right.
Yet in any actual observation we only ever observe, record or measure real
quantities, and these are always expressed by the real numbers or a real quantity
(such as a vector or tensor) parametrized by or defined over the real numbers. The
doubling in degrees of freedom brought in by the imaginary parts of the complex
quantities used is simply a book-keeping role, rather than one corresponding to
features of the world. It would be intellectually preferable if there were a more
physically robust account of why the arithmetic needs to work out that way.

While it is still early days to judge, there is a developing interpretation of
quantum theory that eliminates complex numbers in favour of real quantities in
geometric algebra. Unsurprisingly, it is due to GA’s most fervent proponent,
David Hestenes. Hestenes suggests that various quantum phenomena including
spin, fermion mass, and Heisenberg uncertainty, may be due to a phenomenon
postulated in 1930 by Erwin Schrödinger.14 The phenomenon is called Zitterbe-
wegung (German for “trembling motion”). Investigating the Dirac equation for a
free electron moving in a vacuum, Schrödinger suggested the electron may be
moving in a small rapid circular motion whose geometric properties call in GA’s
bivectors for their expression. Because bivectors are geometrical objects which
under the geometric product square to negative real numbers, the arithmetical
properties of electrons which in the Schrödinger theory require this feature and
so were expressed using complex numbers appear to be expressible purely geo-
metrically, and the puzzle about the otherwise unmotivated introduction of
complex numbers disappears.

13 See the interesting debate between Mark Colyvan (2002) and Joseph Melia (2002) on
how we should take the use of complex numbers in applied mathematics.

14 Schrödinger (1930, 1931). See Hestenes (1990).

Vectors and Beyond 393

© 2010 The Author. Journal compilation © 2010 Editorial Board of dialectica.



Whether such new, geometrically motivated, interpretations of the formalisms
of quantum theory will always result in the elimination of complex scalars,
remains to be seen. The auspices so far are promising. Speculating ahead, we
might raise the following highly desirable prospect for the philosophy of the
application of mathematics: a mathematical description of natural phenomena
which fully integrates geometrical quantities in such a way as to show that whereas
complex quantities are dispensable, real quantities, including geometrical quanti-
ties, are not. That would be a consummation devoutly to be wished.*
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