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Formalism is a philosophical theory of the foundations of mathematics that had a 

spectacular but brief heyday in the 1920s. After a long preparation in the work of 

several mathematicians and philosophers, it was brought to its mature form and 

prominence by David Hilbert and co-workers as an answer to both the uncertainties 

created by antinomies at the basis of mathematics and the criticisms of traditional 

mathematics posed by intuitionism. In this prominent form it was decisively refuted 

by Gödel’s incompleteness theorems, but aspects of its methods and outlook survived 

and have come to inform the mathematical mainstream. This article traces the gradual 

assembly of its components and its rapid downfall. 

 

1 Preliminaries 

 

1.1 Problem of Definition 

 

Formalism, along with logicism and intuitionism, is one of the “classical”  (prominent 

early 20th century) philosophical programs for grounding mathematics, but it is also 

in many respects the least clearly defined. Logicism and intuitionism both have 

crisply outlined programs, by Frege and Russell on the one hand, Brouwer on the 

other. In each case the advantages and disadvantages of the program have been 

clearly delineated by proponents, critics, and subsequent developments. By contrast, it 

is much harder to pin down exactly what formalism is, and what formalists stand for. 

As a result, it is harder to say what clearly belongs to formalist doctrine and what does 

not. It is also harder to say what count as considerations for and against it, with one 

very clear exception. It is widely accepted that Gödel’s incompleteness theorems of 

1931 dealt a severe blow to the hopes of a formalist foundation for mathematics. Yet 

even here the implications of Gödel’s results are not unambiguous. In fact many of 

the characteristic methods and aspirations of formalism have survived and have even 

been strengthened by tempering in the Gödelian fire. As a result, while few today 
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espouse formalism in the form it took in its heyday, a generally formalist attitude still 

lingers in many aspects of mathematics and its philosophy. 

 

1.2 Hilbert 

 

As Frege and Russell stand to logicism and Brouwer stands to intuitionism, so David 

Hilbert (1862-1943) stands to formalism: as its chief architect and proponent. As 

Frege and Russell were not the first logicists, so Hilbert was not the first formalist: 

aspects of Hilbert’s formalism were anticipated by Berkeley, and by Peacock and 

other nineteenth century algebraists. (Detlefsen 2005). Nevertheless, it is around 

Hilbert that discussion inevitably centers, because his stature and authority as a 

mathematician lent the position weight, his publications stimulated others, and 

because it was his energetic search for an adequate modern foundation for 

mathematics that focussed the energies of his collaborators, most especially Paul 

Bernays (1888-1977), Wilhelm Ackermann (1896-1962) and to some extent John von 

Neumann (1903-1957). As admirably recounted by Ewald (1996, 1087-9), Hilbert 

tended to focus his prodigious mathematical abilities on one area at a time. As a 

result, his concentration on the foundations of mathematics falls into two clearly 

distinct periods: the first around 1898–1903, when he worked on his axiomatization of 

geometry and the foundational role of axiomatic systems; and the second from 

roughly 1918 until shortly after his retirement in 1930. The latter period coincided 

with a remarkable flowering of mathematical talent around Hilbert at Göttingen, and 

must be considered formalism’s classical epoch. It was brought to an abrupt end by 

Gödel’s limitative results and by the effects of the National Socialist Macht-

ergreifung, which emptied Germany in general and Hilbert’s Göttingen in particular 

of many of their most fertile mathematical minds. In the foundations of mathematics, 

Hilbert’s own writings are not as crystalline in their clarity as Frege’s, and his 

successive adjustments of position combine with this to rob us of a definitive 

statement of formalism from his pen.  

 

1.3 Working Mathematicians 

 

Despite the consensus among mathematicians and philosophers of mathematics alike 

that Hilbert’s program in its fully-fledged form was shown to be unrealizable by 
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Gödel’s results, many of Hilbert’s views have survived to inform the views of 

working mathematicians, especially when they pause from doing mathematics to 

reflect on the status of what they are doing.  While their weekday activities may 

effectively embody a platonist attitude to the objects of their researches, surprisingly 

many mathematicians are weekend formalists who happily subscribe to the view that 

mathematics consists of formal manipulations of essentially meaningless symbols 

according to strictly prescribed rules, and that it is not truth that matters in 

mathematics as much as interest, elegance, and application. So whereas formalism is 

widely (whether wisely is another matter) discounted among philosophers of 

mathematics as a viable philosophy or foundation for the subject, and is often no 

longer even mentioned except in passing, it is alive and well among working 

mathematicians, if in a somewhat inchoate way. So formalism cannot be written off 

simply as an historical dead end: something about it seems to be right enough to 

convince thousands of mathematicians that it, or something close to it, is along the 

right lines.  

 

2 The Old Formalism and its Refutation 

 

2.1 Contentless Manipulation 

 

As mentioned above, formalism did not begin with Hilbert, even in Germany. In the 

latter part of the 19th century several notable German mathematicians professed a 

formalist attitude to certain parts of mathematics. In conformity with Kronecker’s 

famous 1886 declaration “Die ganzen Zahlen hat der liebe Gott gemacht, alles andere 

ist Menschenwerk”,1 Heinrich Eduard Heine (1821-1881), Hermann Hankel (1839-

1873), and Carl Johannes Thomae (1840-1921) all understood theories of negative, 

rational, irrational and complex numbers not as dealing with independently existing 

entities designated by number terms, but as involving the useful extension of the 

algebraic operations of addition, multiplication, exponentiation and their inverses so 

as to enable equations without solution among the natural (positive whole) numbers to 

have solutions. In this way whereas an expression like ‘(2 + 5)’ unproblematically 

stands for the number 7, an expression like ‘(2 – 5)’ has sense not by denoting a 

                                                
1 Reported in Weber 1893. 
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number –3 but as part of the whole collection of operations regulated by their 

characteristic laws such as associativity, commutativity, and so on. Such symbols may 

be manipulated algebraically in a correct or incorrect manner without having to 

correspond to their own problematic entities. The rules of manipulation on their own 

suffice to render the expressions significant. 

 In his ‘Die Elemente der Functionenlehre’ Heine wrote,  

“To the question what a number is, I answer, if I do not stop at the positive 

rational numbers, not by a conceptual definition of number, for example the 

irrationals as limits whose existence would be a presupposition. When it comes 

to definition, I take a purely formal position, in that I call certain tangible signs 

numbers, so that the existence of these numbers is not in question.” (Heine 

1872, 173) 

and Hankel writes in his Theorien der komplexen Zahlensysteme 

“It is obvious that when b > c there is no number x in the series 1, 2, 3, … 

which solves the equation [x + b = c]: in that case subtraction is impossible. But 

nothing prevents us in this case from taking the difference (c – b) as a sign 

which solves the problem, and with which we can operate exactly as if it were a 

numerical number from the series 1, 2, 3, ….” (Hankel 1867, 5). 

Thomae’s Elementare Theorie der analytischen Funktionen einer komplexen 

Veränderlichen is particularly candid about this method, which he calls ‘formal 

arithmetic’. He considered that non-natural numbers could be  

“viewed as pure schemes without content [whose] right to exist [depends on the 

fact] that the rules of combination abstracted from calculations with integers 

may be applied to them without contradiction.” 

 It was Thomae’s fate to have Gottlob Frege as a colleague in Jena. Frege’s 

criticisms of the formalist position prompted Thomae to extend his introduction in the 

second edition in justification: 

“The formal conception of numbers sets itself more modest limits than the 

logical. It does not ask what numbers are and what they are for, but asks rather 

what we require of numbers in arithmetic. Arithmetic, for the formal 

conception, is a game with signs, which may be called empty, which is to say 

that (in the game of calculating) they have no other content than that which is 

ascribed to them regarding their behaviour in certain rules of combination (rules 

of the game). A chess player uses his pieces similarly: he attributes certain 
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properties to them which condition their behaviour in the game, and the pieces 

are merely the external signs of this behaviour. There is inded an important 

difference between chess and arithmetic. The rules of chess are arbitrary; the 

system of rules for arithmetic is such that by means of simple axioms the 

numbers may be related to intuitive manifolds and as a consequence perform 

essential services for us in the knowledge of nature. […] The formal theory lifts 

us above all metaphysical difficulties; that is the advantage it offers.” (Thomae 

1898, 1.) 

 

2.2 Frege’s Critique 

 

Frege was the old formalism’s most trenchant and effective critic. In Die Grundlagen 

der Arithmetik (Foundations of Arithmetic), Sections 92-103, entitled “Other 

Numbers”, he takes issue with those who would introduce new numbers simply to 

provide solutions to equations that were previously insoluble, as had Hankel and 

others, and as had been standardly practiced and preached by many mathematicians, 

including Gauss. Frege is unimpressed. Simply introducing new signs to do new 

things is inadmissible, since they could be introduced to perform contradictory tasks: 

“One might as well say: there are no numbers among those known hitherto that 

simultaneously satisfy the equations 

x + 1 = 2 and x + 2 = 1; 

but nothing prevents us from introducing a sign that solves the problem.”  

(Section 96.) 

While ordinary numbers would yield a contradiction if they solved both equations, 

what is to say new numbers would also entail a contradiction? We could introduce 

them and see what happened. Frege does not admit free creation:  

“Even the mathematician can no more arbitrarily create anything than the 

geographer: he can only discover what is there, and give it a name.” (Ibid.) 

Since contradictions do not always show themselves easily, the “try and see” attitude 

will not suffice. The only way to show a theory consistent is to produce an object that 

satisfies it: a model.2 The unwitting irony of these remarks would not emerge until 

                                                
2 Ibid., § 95. 
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1902, when Russell showed Frege that his own system contained a hidden contra-

diction. 

 A year after Grundlagen, Frege published in 1885 a short essay, “On Formal 

Theories of Arithmetic”, which dealt again with the issues, though it did so without 

naming adherents to the formalist position. Contrasting formalism with his own 

logicist view, he criticises the formalists’ theory of definition of numbers as either 

circular in presupposing the consistency of what is defined, which supposes the signs 

signify something after all, or else as impotent to secure the truth of the propositions 

that formal manipulations are supposed to underwrite. He also points out that the 

formalists are not thoroughgoing in their attitude, since they do not affer a formal 

theory of the positive integers: “usually one does not feel a need to justify the most 

primitive of numbers.”  (Frege 1984, 121.) 

 Russell’s contradiction prevented Frege from completing his program of 

showing how all of arithmetic and analysis is logical in nature. The foundations of 

analysis were discussed in Part III, “The Real Numbers”, of Grundgesetze der 

Arithmetik (Basic Laws of Arithmetic), volume II, published in 1903. Russell’s 

Antinomy overshadows this second volume, and prevented the formal continuation, 

but before Frege introduced his own theory of real numbers he criticised in prose 

other extant theories, as he had done other theories of natural numbers in Grundlagen. 

The earlier book’s wit and light touch are here replaced by protracted, sarcastic and 

tedious schoolmasterly lecturing of others, most particularly Thomae. Cutting away 

the redundant verbiage, Frege’s criticisms come down to three further points. Firstly, 

the formalists are excessively cavalier about the distinction between signs and what 

they signify, ascribing properties of the one to the other and vice versa. Since they 

identify numbers with signs, this is to be expected. Secondly, for this reason, they are 

unable to distinguish between statements made within a formal context and statements 

made about a formal context. For example, when we say that a king and two knights 

cannot force checkmate, we have stated a well-known theorem of chess. But we have 

made a statement about chess, not a statement within chess. Chess positions and chess 

pieces do not have meanings: they are what they are, but do not state or say anything. 

(Frege 1903, Section 91.) By contrast, a mathematical statement has a meaning and 

states something. To suppose that a theory about the signs of arithmetic is a theory 

about numbers is to confuse statements within the language of arithmetic, 

arithmetical statements, with statements about the language of arithmetic, meta-
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arithmetical statements (the terminology is modern, not Frege’s). Finally the major 

difference between mathematical theories with content (such as arithmetic and 

analysis) and mere games is that mathematical theories may be applied outside 

mathematics: “It is application alone that raises arithmetic up above a game to the 

rank of a science.”  (Frege 1903, Section 91.) 

 Frege’s major critical points—the importance of the sign/object distinction; 

the requirement of consistency; the difference between statement and metastatement; 

and the importance of application; lack of thoroughgoing application of the 

program—carried the day in the argument against the earlier formalists. They were 

however to be consciously noticed and incorporated into the more sophisticated kind 

of formalism put forward by Hilbert. 

 

3 The New Axiomatics 

 

3.1 Hilbert’s Grundlagen 

 

In 1899 Hilbert published his Grundlagen der Geometrie. This work was radically 

innovative in a number of ways. It established the basic pattern for axiomatic systems 

from that time on in modern mathematics. Although the subject matter—Euclidean 

geometry—was not new, Hilbert’s way of treating it was. Axioms in Euclid and in the 

subsequent tradition were statements considered self-evidently true. In Hilbert this 

status is put aside. Axioms are simply statements which are laid down or postulated, 

not because they are seen to be true, but for the sake of investigating what follows 

logically from them. The choice of axioms is of course not arbitrary: the aim is to find 

axioms from which the normal theorems of geometry follow. Further, these axioms 

should be as few and simple as possible, they should contain as few primitive terms as 

possible, and they should be independent, that is, no one should be derivable from the 

remainder. Further, where Euclid postulated that certain constructions could be 

carried out, Hilbert stated the existence of certain geometrical objects. 

 

3.2 Implicit Definition and Contextual Meaning 

 

Hilbert’s axiomatization constituted an advance in rigor over Euclid, since it did not 

depend on having separate suites of definitions, such as “a point is that which has no 
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part”; postulates, such as “To draw a straight line from any point to any point”; and 

common notions” such as “The whole is greater than the part”. In Hilbert, everything 

is set out in a system of 21 axioms (one was later shown to be redundant). There are 

three primitive concepts, point, line and plane, and seven primitive relations: a ternary 

relaion of betweenness linking points, three binary relations of incidence and three of 

congruence. Important axioms include Euclid’s Parallels Axiom, and the Archi-

medean Continuity Axiom. Speaking in anticipation of later developments, the last 

means the system is not one of first order (where only individual points, lines and 

planes are quantified over) but second-order, where is is necessary to quantify over 

classes or properties of elements. In the course of his study, Hilbert lays stress on 

ensuring that the axioms are consistent, by producing a countable arithmetical model 

for them. Of course this only shows consistency relative to arithmetic, not absolute 

consistency. He showed that any two models are isomorphic, that is, in current 

terminology, that his axiom system is categorical. He also demonstrates the 

independence of axioms, again by using models, allowing different interpretations of 

the primitive terms. 

 The fact that the words ‘point’, ‘line’ and ‘plane’ are chosen for the three basic 

kinds of element is a concession to tradition. Their employment is inessential. As 

early as 1891, Hilbert remarked after hearing a lecture on geometry by Hermann 

Wiener that “Instead of ‘points, lines, planes’ we must always be able to say ‘tables, 

chairs, beer mugs’.” This distinguishes his approach to axioms from that of his 

predecessors and contemporaries. It is not required that the primitive terms have a 

fixed and determinate meaning. Rather, Hilbert regards them as being given meaning 

by the axioms in which they occur. He describes the axioms as affording an implicit 

definition of the primitive terms they contain, in terms of one another and the various 

logical components making up the remainder of the axioms. 

 The most important innovation in Hilbert’s approach was, as Bernays put it 

later, to dissociate the status of axioms from their epistemological status. Axioms are 

no longer assumed to be true, as guaranteed by self-evidence or intuition. The 

approach is more liberal, and more experimental. A certain number of axioms are put 

forward, and their logical interrelations and consequences investigated. The enterprise 

takes on a hypothetical character rather than the categorical character traditionally 

assumed. The greater freedom this allows (and Hilbert constantly emphasized the 

mathematician’s creative freedom) comes at a price however, since the loss of 
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intuitive or evident guarantees of truth means the consistency of the axioms can no 

longer be taken for granted. This turns out to be the crux of the issues facing the new 

formalism later. 

 

3.3 Dispute with Frege 

 

Hilbert’s work prompted a reaction from Frege, who wrote to him objecting to his 

treatment of axioms, definitions and geometry. Frege’s part in their exchange of 

letters was published by Frege after Hilbert discontinued the correspondence, and 

when Korselt replied on behalf of Hilbert, Frege criticised him too. The exchange is 

illuminating both for what it reveals about the issues and for what it tells us about the 

relative positions of Hilbert and Frege in the German mathematical community. 

 Frege’s view of axiom systems is staunchly Euclidean. Axioms are truths 

which are intuitively self-evident. Their being individual truths entails their being 

propositions having a determinate meaning (sense), in all their parts. Their being 

severally true guarantees their consistency with one another without need of a 

consistency proof. Definitions on the other hand are stipulations endowing a new sign 

with meaning (sense) on the basis of the pre-existing meanings of all the terms of the 

definiens. Hilbert’s procedure of taking axioms not to be fully determinate in all their 

parts, and in considering that they severally define the primitive terms occurring in 

them, mischaracterizes both axioms and definitions, and unnecessarily blurs the 

distinction between them. For Frege it also blurs the important epistemological 

distinction between the truths of geometry, whose validating intuitions are geometric 

in nature, and so synthetic a priori, and the truths of arithmetic, which according to 

Frege are analytic, following from logic and suitable definitions.  

 Frege’s positive characterization of Hilbert’s position is illuminating. The 

conjunction of the axioms with the primitive terms ‘point’, ‘line’, ‘between’ etc. taken 

as distinct free variables gives on open sentence in several first-order variables, so a 

second-order open sentence. The question of consistency then becomes the question 

whether this open sentence can be satisfied. Hilbert’s position is subtly different from 

this. Using modern terminology, we could say his view is that his axioms contain 

schematic first-order variables, so that valid inferences from them are schematic 

inferences after the fashion now familiar in first-order predicate logic, rather than 

subclauses in a true second-order logical conditional as they would be for Frege. The 
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axioms and their consequences hold not just for a single system of things, the points 

of space, as Frege would have it, but for any system of things that satisfies the 

axioms. Consistency though would amount to the same thing: there can be a model.  

 However, this is precisely not how Hilbert saw the issue. In correspondence 

with Frege he writes 29 December 1899 (Simpson’s translation): 

 

You write "From the truth of the axioms follows that they do not 

contradict one another". It interested me greatly to read this sentence of 

yours, because in fact for as long as I have been thinking, writing and 

lecturing about such things, I have always said the very opposite: if 

arbitrarily chosen axioms together with everything which follows from them 

do not contradict one another, then they are true, and the things defined 

through the axioms exist. For me that is the criterion of truth and 

existence. The proposition 'every equation has a root' is true, or the 

existence of roots is proved, as soon as the axiom 'every equation has a 

root'  can be added to the other arithmetical axioms without it being 

possible for a contradiction to arise by any deductions. This view is the 

key not only for the understanding of my [Foundations of Geometry], but 

also for example my recent [Über den Zahlbegriff], where I prove or at 

least indicate that the system of all real numbers exists, while the 

system of all Cantorean cardinalities or all Alephs – as Cantor himself 

states in a similar way of thinking but in slightly different words – does 

not exist. 

This is the clearest statement by Hilbert of a position which has become notorious: the 

view that, in mathematics, consistency is existence. It is clear why Frege could not 

accept Hilbert’s view. For Hilbert, non-Euclidean geometry can be treated in just the 

same axiomatic way as Euclidean geometry, so since all three are consistent (relative 

to one another), all three are true and their objects exist. But for Frege they cannot all 

be true because they are mutually inconsistent: if one is true (Euclidean geometry, for 

Frege), the others are false, and their objects do not exist. 

 In Hilbert, truth is not absolute in the way it is for Frege. To say that the 

theorems of a system of geometry are true is for Hilbert to say that they follow 

logically from the axioms (assuming always the axioms are consistent). Finally, for 

Hilbert the axioms are subject to different interpretations, which he employs in 
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independence proofs, whereas for Frege they must have a fixed meaning and cannot 

be reinterpreted. On these matters, while Frege makes his points clearly, it is he rather 

than Hilbert who is out of step with subsequent mathematical developments. Hilbert’s 

treatment of axiom systems has become orthodoxy. 

 Hilbert did not continue the correspondence, bring unwilling to publish it, no 

doubt irritated by Frege’s schoolmasterly and patronising tone, and after Frege 

published his part, the cudgels were taken up by Alwin Korselt, who attempted to 

mediate between the two positions. The result was another polemical piece by Frege 

against Korselt, in a much testier tone even than before. 

 

3.4 The Axioms of Real Numbers 

 

In 1900 Hilbert published a short memoir called ‘On the Concept of Number’. In this 

he assembled into an axiom system a number of principles about real numbers which 

he had mentioned in the Grundlagen, characterizing the real numbers axiomatically as 

an ordered Archimedean field which is maximal, i.e., cannot be embedded in a larger 

such field. This was in effect the first axiomatization of the reals. He contrasts this 

axiomatic method with what he calls the genetic method, which is the successive 

introduction of extensions to the natural numbers, such as is found in Dedekind. His 

preference for the axiomatic method is clearly stated: “Despite the high pedagogic 

and heuristic value of the genetic method, for the final presentation and the complete 

logical grounding of our knowledge the axiomatic method deserves the first rank.” 

(vide Ewald 1996, 1093.) 

  

4 The Crisis of Content 

 

4.1 Logicism’s Waterloo and other Paradoxes 

 

At the same time as Hilbert was proposing his axiomatization, Frege was, so he 

supposed, crowning his logicism program by showing how to derive the principles of 

the real numbers from purely logical principles, and establishing the existence of the 

real numbers by producing a model based on sequences of natural numbers, taken as 

already established as existing as a matter of logic in the previous volume of 

Grundgesetze. This was the task that Frege set himself in the third part, ‘The Real 
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Numbers’, of his monumental Basic Laws of Arithmetic. The thrust of Frege’s 

approach unified two strands in previous thinking about the foundations of 

mathematics. One was his own logicism, which went back to Leibniz, and which he 

shared, in many respects, with his older contemporary Dedekind and (unknown to 

him at this stage) his younger contemporary Russell. According to logicism, the 

principles of mathematics—or as Frege less ambitiously believed, arithmetic and 

analysis—are logical in nature, and can be demonstrated to follow from logical 

principles alone. The second strand was the idea, going back to Gauss and Dirichlet, 

and also shared with Dedekind, that the arithmetic of finite numbers may in some way 

serve as the basic mathematical theory for grounding “higher” theories such as 

analysis. In order to vindicate his view, Frege had not only been inspired to create the 

first comprehensive modern system of logic; he had also been led to introduce a kind 

of entity called value-ranges, a species of abstract object whose existence is 

demanded by logic, and which includes, as a special case, the extensions of concepts, 

which Frege called classes. Numbers, according to Frege, are particular extensions of 

concepts, and so are classes in this sense.  

 The concept of number had in the preceding period been subject to an 

unprecedented development and enlargement by Georg Cantor. In his revolutionary 

works, Cantor, building on tentative beginnings by Bolzano, had begun to work with 

the general notion of a class or set, and had established that sets with infinitely many 

members need not all have the same size (cardinality), or number of elements. In 

particular the size of the continuum, that of all numbers on a continuous line, is 

greater than the size of the set of all finite natural numbers. Cantor’s second proof of 

this result in 1891 uses a device now called the method of diagonalization;  this was 

quickly generalized to show that for any size of set, another of greater size can be 

shown to exist, namely the set of all subsets of the former set (its power set), so that 

there is no greatest number. The theory of transfinite numbers to which this led was 

the most radical extension of the domain of arithmetic since its very beginning. 

However the very generality of the notion of size or cardinality of a set led to that 

curious result: there could not be a largest set, because if there were, by the 

diagonalization argument, there would have to be one larger still, contradicting the 

original assumption that there was a largest. Hence there could be no such set as the 

set of all things, for it would by definition have the largest cardinality. While this 

conclusion undercut an infamous attempt by Dedekind to prove that there is at least 
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one infinite set, it did not give Cantor much concern. For theological reasons he was 

quite happy to accept that there were pluralities of things too numerous to be collected 

together into a  set: he called them “inconsistent totalities”. 

 The same indifference could not apply to Frege, whose logical system 

required him to quantify over all objects, including all sets, and for whom sets were 

included among the objects. Bertrand Russell, like Frege working with the idea of all 

objects, discovered in 1901 by considering Cantor’s proof that there is no greatest 

cardinal number that a similar curious result could be derived concerning sets: 

according to logical assumptions he shared with Frege about the existence of sets, the 

set of all sets which are not elements of themselves would have to be an element of 

itself and also not an element of itself. Russell communicated this result to Frege in 

1902, about a year after he had discovered it. Frege, disconcerted, hastily concocted a 

patched repair to his logical system for the publication of the second volume of Basic 

Laws in 1903, but the repair was unsuccessful,3 as Frege must soon have realised, 

since he thenceforth gave up publishing about the foundations of mathematics, and 

declared that the contradiction showed set theory to be impossible. Russell’s Paradox 

was also independently discovered by Ernst Zermelo at about the same time, but 

unlike Russell, Zermelo did not think it worth mentioning in a publication. 

 Russell’s Paradox, though the clearest and most damaging, was but one of a 

cluster of paradoxes which had begun to infest post-Cantorian mathematics, starting 

with Cesare Burali-Forti’s argument in 1897 that there could not be a greatest ordinal 

number. Cantor’s result that there could be no greatest cardinal number followed in 

1899. The general atmosphere conveyed by the rash of paradoxes coming to light was 

that modern mathematics was in a crisis. What had precipitated it was a matter for 

debate. Uncritical assumptions about the infinite, especially the uncountable infinite, 

or the assumption of the existence of objects not directly constructed, or the uncritical 

application of logical principles in an unrestricted context were three not unconected 

potential sources of the difficulties. All of these potential sources were to be 

confronted in the “classical” phase of formalism. The paradoxes also dramatically 

highlighted the importance of ensuring that mathematical theories are consistent. 
                                                
3 This was first shown by Lesniewski: cf. Sobocinski 1949. Lesniewski showed that 
Frege’s repair entails the unacceptable result that there is only one object. But Frege 
certainly must have realised fairly soon that the repair was also too restrictive to allow 
him to prove that every natural number has a successor, a crucial theorem of number 
theory. 
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4.2 Self-Restriction 

 

Reactions to the paradoxes varied. Russell pressed forward with the attempt to 

maintain logicism, blocking the paradoxes by stratifying entities into logical types. 

Expressions of entities of different type could not be substituted for one another on 

pain of producing ungrammatical nonsense. Russell diagnosed the paradoxes as 

arising through vicious circles in definition, whose use was strongly criticised by 

Henri Poincaré. To avoid impredicative definitions, that is, those where the object 

defined is in the domain of object quantified over in the definiens, the types were 

themselves typed, or ramified, into infinitely many orders. However, this ramification, 

while it avoided impredicativity, did not allow standard mathematical laws to be 

derived, so the ramification was effectively neutralized by an axiom of reducibility, 

according to which every defined function is extensionally equivalent to one of lowest 

order in the type. The logical system Russell and Whitehead produced, under the 

influence of Peano and Frege, was the first widely recognised system of mathematical 

logic. The motivations for its complications were largely philosophical. By contrast, 

Hilbert’s Göttingen colleague Ernst Zermelo produced for mathematical purposes 

(deriving Cantor’s principle that every set can be well ordered from the axiom of 

choice) a surprisingly straightforward axiomatic version of set theory which retained 

most of Cantor’s results, but by weakening the conditional set existence principles did 

not allow the formation of the paradoxical Russell set. Mathematicians showed 

themselves generally unwilling to accept the complications of the type system, and set 

theory quickly became the framework of choice for the then rapidly developing 

discipline of topology. Zermelo’s achievement was a twofold vindication of the value 

of working with axiomatic systems as Hilbert had proposed: it largely silenced critics 

of set theory who had regarded it as a piece of mathematical extravagance, and it 

apparently avoided inconsistency, though that was (and is) still unproven. 

 Cantor’s extension of arithmetic into the transfinite had been staunchly 

opposed by Leopold Kronecker, who propounded the principle that all mathematical 

objects were to be constructed from the finite integers. Kronecker’s insistence on 

constructing mathematical objects was seconded for more philosophical reasons by L. 

E. J. Brouwer, who first used the terms ‘formalism’ and ‘intuitionism’ in 1911. By 

1918, Brouwer had rejected the uncountably infinite as well as unrestricted 
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employment of the law of excluded middle, in particular its use in infinite domains. 

Similar and at the time more influential views were put forward by Hilbert’s former 

student Hermann Weyl in his 1918 book The Continuum, developing a logical 

account of analysis which used only predicative principles, and avoided using the 

axiom of choice or proofs by reductio ad absurdum. Coming from a former Göttingen 

student, Weyl’s book and his 1921 essay ‘On the New Crisis in the Foundations of 

Mathematics’ took the challenge of Brouwer’s arguments directly to the doors of the 

Göttingen mathematicians, declaring, “Brouwer, that is the revolution.”. It was their 

response, particularly that of Hilbert and his assistant Paul Bernays, that ushered in 

the intense but short-lived classical period of formalism. 

 

5 The Classical Period 

 

5.1 Preparations 

 

The first outward response to the challenge of Brouwer and Weyl came in the form of 

two papers published in 1922: Hilbert’s ‘The New Grounding of Mathematics’ and 

Benays’ ‘Hilbert’s Significance for the Philosophy of Mathematics’. However, as 

Wilfried Sieg has emphasized, these papers emerged from a richer matrix of work in 

progress, and not merely as a response to the intuitionist challenge. After a period of 

over ten years in which Hilbert had concentrated on functional analysis and, under the 

influence of Hermann Minkowski, on the mathematics of physics,  he returned to 

foundational issues. In 1917 he delivered a lecture course ‘Principles of 

Mathematics’, for which Paul Bernays, newly recruited to Göttingen from Zurich, 

produced lecture notes. Notes from these and subsequent lectures, later reworked by 

Hilbert’s student Wilhelm Ackermann, became the basis for Hilbert and Ackermann’s 

classic 1928 book Mathematical Logic (Grundzüge der mathematischen Logik), the 

first modern textbook of the subject. In the lectures, Hilbert, availing himself of the 

developments since Whitehead and Russell’s Principia mathematica, gave a modern 

formulation of mathematical logic in what has become the standard form, separating 

propositional from predicate calculus, and first-order from higher-order predicate 

calculus. Metamathematical questions are posed such as whether the various systems 

of axioms are consistent, independent, complete, and decidable. Although Hilbert 

soon distanced himself from the foundationally suspect axioms of infinity and 
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reducibility, for the first time he and the Göttingen school had a precise logical 

instrument with which to approach the revisionary challenge to mathematics posed by 

intuitionism. 

 

5.2 Hilbert’s Maximal Conservatism 

 

Brouwer himself had pointed out that adopting the constructive viewpoint of 

intuitionism meant foregoing acceptance of such mathematical results as that every 

real number has an infinite decimal expansion. It soon became clear that the 

intuitionistic program, at this stage not cast in the form of an alternative logic, would 

involve a large-scale rejection of many well-established mathematical results as 

genuinely false. In addition, Brouwer’s rejection of completed infinities meant that 

Cantor’s transfinite revolution was to be repudiated wholesale. In time, this threatened 

loss of contentual mathematics was to cost Brouwer even the support of Weyl.  

 Short of inconsistency, Hilbert was not prepared to accept restrictions on what 

mathematics can be accepted. His goal indeed was, as it had been earlier, to provide 

an epistemologically respectable foundation for all mathematics, and that included not 

just traditional number theory, analysis, and geometry, but also the newly added 

regions of set theory and transfinite number theory. His program was thus 

conservative, in the sense of wishing to conserve accepted mathematical results, in 

contradistinction to the revisionism of Brouwer, Weyl and Poincaré. And his 

conservatism was maximal, in that any consistent mathematical theory was 

acceptable, whether or not the patina of time-honored acceptance clung to it. What 

was new was the way in which mathematics, including the new mathematics of the 

infinite, was to be defended. Hilbert decided to break radically with foundational 

attempts by Dedekind, Frege and Russell, and to beat the intuitionists at their own 

game. 

  

5.3 Finitism 

 

The sticking point in establishing the consistency of geometry, analysis and number 

theory had always been the infinite. Any attempt to transmit consistency from finite 

cases to all cases by a recursive procedure, such as that sketched by Hilbert in 1905, 

was subject to Poincaré’s criticism that the consistency of inductive principles was 
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being assumed, so that a vicious circularity was involved. Hilbert adopted a 

distinction and a strategy to circumvent this. The distinction was between reasoning 

within some part of mathematics, represented by an axiomatic system, and reasoning 

about the axiomatic system itself, considered as a collection of symbol-combinations. 

Any mathematical proof, even one using transfinite induction, is itself a finite 

combination of symbols. Provided the notion of proof can be regimented uniformly, a 

procedure which advances in mathematical logic since Frege gave reason to think 

could be done, then provided conceptions of logical derivation and consistency could 

be formulated which did not depend on the content of a mathematical theory but only 

on the graphical form of its formulas, as a formula A and its negation ~A differ only 

by the presence of the negation symbol, the question of consistency could be tackled 

by examination of the formulas themselves. A consistency proof for a given 

mathematical theory, suitably formalized, would show that from the given finite 

collection of axioms, each a finite combination of symbols, no pair of formulas could 

be logically derived which differed solely in that one was the negation of the other. 

 The reasoning about a mathematical system was metamathematics. In so far as 

such reasoning, aimed at establishing consistency of a system, considered only the 

shapes and relationships of formulas and their constituent signs, not what they are 

intended to mean or be about, it is concerned only with the form or syntax of the 

formulas. The theory of the formulas themselves however is not formal in this way: it 

has a content; it is about formulas! Poincaré’s accusation of circularity could be 

circumvented provided any inductive principles used in reasoning about formulas are 

themselves acceptable: the status of formulas within the theory (as suspicious because 

inductive) now becomes irrelevant, because their meaning is disregarded.  

 Hilbert signals this turn to the sign as a radical break with the past: 

  

the objects of number theory are for me—in direct contrast to Dedekind and 

Frege— the signs themselves, whose shape can be generally, and certainly 

recognized by us […] The solid philosophical attitude that I think is required for 

the grounding of pure mathematics—as well as for all scientific thought, 

understanding and communication—is this: In the beginning was the sign. 

(Hilbert 1922, 202; Mancosu 1998, 202) 
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Formulas are esentially simply finite sequences or strings of primitive symbols, so the 

kind of reasoning applied to them could be expected to be not essentially more 

complex than the kind of reasoning applied to finite numbers. Hilbert and Bernays 

called such reasoning “finitary”. The exact principles and bounds of finitary reasoning 

were nowhere spelled out, but the expectation was that combinatorial methods 

involving only finitely many signs could be employed to demonstrate in finitely many 

steps in the case of a consistent system that no pair of formulas of the respective 

forms A and ~A could be deduced (derived) from the axioms. This hope—for hope it 

was—turned out to be unrealizable. 

 Formalism’s finitism was not simply an exercise in hair-shirt self-denial. 

Brouwer’s and Weyl’s criticisms of classical mathematical reasoning stung the 

formalists into a more extreme response. While intuitionists rejected certain forms of 

inference, and also uncountable infinities, they were prepared to use countably infinite 

sequences. Finitism went further in its rejection of infinitary toools, and looked to 

achieve its results using only finitely many objects in any proof. This was the point of 

the turn to symbols. It is possible to formulate many a short quantified sentence of 

first-order logic using just one binary relation, such that these sentences cannot be 

true except in an infinite domain. The infinite is then “tamed” by any such sentence. If 

formalized theories of arithmetic, analysis etc. could be shown consistent using 

finitely many finitely long sentences in finitely many steps, then even the uncountable 

infinities of real analysis that intuitionism rejected would be “tamed”, and by sterner 

discipline than the intuitionists themselves admitted. Finitism was thus in part an 

exercise in one-upmanship. 

 

5.3 Syntacticism and Meaning 

 

Consistency of a formal theory (essentially, a set of formulas, the axioms, with their 

consequences) can be defined in terms of the lack of any pair of formulas A and ~A of 

the theory, both of which derive from the axioms. This characterization depends 

solely on the graphical fact that the two formulas are exactly alike (type-identical) 

except that one has an additional sign, the negation sign, at the front. The process of 

proof or derivation is likewise so set up that the rules apply solely in virtue of the 

syntactic form of the formulas involved, for example modus ponens consists in 

drawing a conclusion B from two premises A and A →  B, no matter what the 
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formulas A and B look like in concreto. Likewise other admissible proof steps such as 

substitution and instantiation can be described in purely syntactic terms, though with 

somewhat more effort. This metamathematical turn was inmany respects the most 

radically revolutionary part of formalism: it consisted in treating proofs themselves 

not (simply) as the vehicles of mathematical derivation, but as mathematical objects 

in their own right. It is ironic indeed that while the general idea of formalization was 

well understood by the formalists, the implications of the formal nature of proof only 

became apparent when Gödel showed in detail how to encode these formal steps in 

arithmetic itself, which was precisely what set up the proof that there could be no 

finite proof of arithmetic’s consistency. 

 Nevertheless, the oft-repeated charge that according to formalists mathematics 

is a game with meaningless symbols is simply untrue. The metamathematics that 

deals with symbols is meaningful, even though it abstracts from whatever meaning 

the symbols might have. And in the case of an axiomatic system like that for 

Euclidean geometry, the axioms (provided, as ever, that they are consistent) 

themselves limit what the symbols can mean. Though in general they do not fix the 

meanings unambiguously, this very constraining effect gives the symbols a schematic 

kind of meaning, which it is the task of the mathematician to tease out by her 

inferences. That is the point of Hilbert’s infamous view that the axioms constitute a 

kind of implicit definition of the primitive signs they contain. While for several 

reasons the word ‘definition’ aroused antipathy, the point is that the meaning is as 

determinate as the axioms constrain it to be, and no more. The “objects” discussed 

and quantified over in such a theory are considered only from the point of view of the 

structure of interrelationships that they embody, which is what the axioms describe. 

 

6 Gödel’s Bombshell 

 

In their 1928 Grundzüge der theoretischen Logik, Hilbert and Ackermann formulated 

with admirable clarity the interesting metamathematical questions that needed to be 

answered. Is first-order logic complete, in the sense that all valid statements and 

inferences can be derived in its logical system? Are basic mathematical theories such 

as those of arithmetic and analysis, expressed in the language of first- or higher-order 

predicate logic, consistent? Hilbert had already begun to take steps along the way of 

showing the consistency of parts of natural number theory and real number theory, in 
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papers in the early 1920s. The aim was to work up to the full systems, including 

quantifiers for the “transfinite” part, as Hilbert termed it. Ackermann tried 

unsuccessfully in 1924 to show the consistency of analysis, while Johann von 

Neumann in 1927 gave a consistency proof for number theory where the principle of 

induction contains no quantifiers. When Kurt Gödel in his 1930 doctoral dissertation 

proved the completeness of first-order predicate calculus, it appeared that the 

ambitious program to show the consistency of mathematics on a finite basis was 

nearing completion, and that number theory, analysis and set theory would fall in 

turn. In 1930 Gödel also started out trying to prove the consistency of analysis, but in 

the process discovered something quite unexpected: that it is possible to encode 

within arithmetic a true formula which, understood as being about formulas, “says” of 

itself that it cannot be proved. The formal theory of arithmetic was incomplete.  

 This in itself was both unexpected and disappointing, but Gödel’s second 

incompleteness theorem was much more devastating to the formalist program, since it 

struck at the heart of attempts to show portions of formalized mathematics to be 

consistent. Gödel showed namely that in any suitable formal system expressively 

powerful enough to formulate the arithmetic of natural numbers with addition and 

multiplication, if the system is consistent, then it cannot be proved consistent using 

the means of the system itself: it contains a formula which can be construed as a 

statement of its own consistency and this formula is unprovable if and only if the 

system is consistent. Therefore any proof of consistency of the system can only be 

made in a system which is proof-theoretically stronger than the system whose 

consistency is in question. The idea of the formalists had been to demonstrate, given 

some system whose consistency is not straightforwardly provable (such as arithmetic 

with only addition or only multiplication as an operation), that despite its apparent 

strength it could be shown by finite formal methods that it is consistent. Gödel’s 

Second Incompleteness Theorem showed to the contrary that no system of sufficient 

strength, and therefore questionable consistency, could be shown consistent except by 

the use of a system with greater strength and more questionable consistency. The 

formalist goal was destined forever to recede beyond the capacity of “acceptable” 

systems to demonstrate. Gödel himself offered a potential loophole to formalists, by 

suggesting that perhaps there were finitary methods that could not be formalized 

within a system. However, this loophole was not exploited, and the effect was simply 

to highlight the unclarity of the concept ‘finitary’, which has continued to resist clear 
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explication. Other aspects of Gödel’s proofs which have remained controversial 

concern the question in what sense the formula “stating consistency” of the system in 

the system in fact does state this. 

 It is usual to portray Gödel’s incompleteness theorems as a death-blow to 

formalism. They certainly closed off the line of giving finitistic consistency proofs for 

systems with more than minimal expressive power. However they were if anything 

more deadly to logicism, since logicism claimed that all mathematics could be derived 

from a given, fixed logic, whereas Gödel showed that any logical system powerful 

enough to formulate Peano arithmetic—which included in particular second-order 

predicate logic, set theory, and Russell’s type theory—would always be able to 

express sentences it could be shown were not provable in the system and yet which 

could be seen by metamathematical reasoning to be true. Logicists aside, most 

mathematicians were fairly insouciant about this: many had not believed logicism’s 

claims in the first place. 

 The effect on formalism was more immediate but also ultimately more 

helpful. Hilbert’s dream had proved untenable in its most optimistic form, but interest 

shifted to investigating the relative strengths of different proof systems, to seeing 

what methods could be employed beyond the finitary to showing consistency, to 

investigating the decidability of problems, and in general to further the science of 

metamathematics. Like a river in spate, formalism was obstructed by the Rock of 

Gödel, but it soon found a way to flow around it. 

 

7 The Legacy of Formalism 

 

7.1 Proof Theory 

 

Hilbertian metamathematics initiated the treatment of proofs as mathematical objects 

in their own right, and introduced methods for dealing with them such as structural 

induction. In the 1930s a number of advances by different logicians and 

mathematicians, principally Herbrand, Gödel, Tarski and Gentzen, showed that there 

were a number of perspectives from which proofs could be investigated as 

mathematical objects. Probably the most important was the development of the 

sequent calculus of Gentzen, which allowed precise formulations of statements and 

proofs about what a given system proves. In Gentzen’s treatment, the subject-matter 
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of the formulas treated is irrelevant: what matters are the structural principles for 

manipulating them. Proof theory was to go on to become one of the most important 

pillars of mathematical logic. 

 

7.2 Consistency Proofs 

 

The first post-Gödelian consistency proof was due to Gentzen (1936), who showed 

that Peano arithmetic could be proved consistent by allowing transfinite induction up 

to ε0, an ordinal number in Cantor’s transfinite hierarchy. Later results by Kurt 

Schütte and Gaisi Takeuti showed that increasingly powerful fragments of 

mathematics, suitable for formulating all or nearly all of “traditional” mathematics, 

could be given transfinite consistency proofs. Any sense that the consistency of 

ordinary mathematics is under threat has long since evaporated. 

 

7.3 Bourbakism 

 

Hilbert’s attitude to axiom systems, revolutionary in its day, has become largely 

unquestioned orthodoxy, and informs the axiomatic approach not just to geometry and 

arithmetic but all parts of (pure) mathematics. The reformulation of pure mathematics 

as a plurality of axiomatic theories, carefully graded from the most general (typically: 

set theory) to the more specific, propagated by the Bourbaki group of mathematicians, 

effectively took Hilbert’s approach to its limit. As to the entities such theories are 

“about”, most commentators adopt a structuralist approach: mathematics is concerned 

not with any inner or instrinsic nature of objects, but only with those of their 

characters which consist in their interrelationships as laid down by a given set of 

axioms. While this stresses the ontology of mathematics more than the formalists did, 

it is an ontology which is informed by and adapted to the changes in thinking about 

the axiomatic method which drove formalism. Not all mathematics is done in 

Bourbaki style, nor is it universally admired or followed, but the organisational work 

accomplished by the Bourbakist phase is of permanent value to an increasingly 

sprawling discipline. 

 

8 Conclusion 
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In the “classical” form it briefly took on in the 1920s, formalism was fairly decisively 

refuted by Gödel’s incompleteness theorems. But these impossibility results spurred 

those alrady working in proof theory, semantics, decidability and other areas of 

mathematical logic and the foundations of mathematics to increased activity, so the 

effect was, after the initial shock and disappointment, overwhelmingly positive and 

productive. The result has been that, of the “big three” foundational programs of the 

early 20th century, logicism and intuitionism retain supporters but are definitely 

special and minority positions, whereas formalism, its aims adjusted after the 

Gödelian catastrophe, has so infused subsequent mathematical practice that these aims 

and attitudes barely rate a mention. That must count as a form of success. 
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