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Abstract

Quantifying the degree of involvement of a group of participants
in a conversation is a task which humans accomplish every day,
but it is something that, as of yet, machines are unable to do.
In this study we first investigate the correlation between visual
cues (gaze and blinking rate) and involvement. We then test
the suitability of prosodic cues (acoustic model) as well as gaze
and blinking (visual model) for the prediction of the degree of
involvement by using a support vector machine (SVM). We also
test whether the fusion of the acoustic and the visual model im-
proves the prediction. We show that we are able to predict three
classes of involvement with an reduction of error rate of 0.30
(accuracy =0.68).

Index Terms: involvement, multimodality, spontaneous
speech, blinking, gaze

1. Introduction

Spontaneous conversations are characterised by various degrees
of the participants’ involvement [1] and emotional engagement
[2], sometimes leading to what has been called conversational
hotspots [3]. For this study, we define involvement as a group
variable which is calculated as the average of the degree to
which individual people in a group are engaged in spontaneous,
non-task-directed conversations. Listerners are able to detect
these degrees of involvement as integral parts of their daily in-
teractions, basing their perception on multimodal cues. We use
multimodal technology when we “skype” with our family and
friends, when we record movies on our smartphones, and when
we communicate with our business partners via video confer-
encing. In fact, we have so much multimodal data available
that it has become rather difficult to keep track of. Wrede and
Shriberg argue that if we were able to automatically detect these
conversational hotspots, we could use them as a means to query
huge multimodal databases in a time-efficient manner. A fur-
ther possible application as suggested by Yu et al [2] could be
found in the domain of telephony. Information about high in-
volvement could be used to increase the richness of the commu-
nication system by adding an additional duplex channel or even
video channel [2], to better facilitate interaction.

In order to approach the automatic detection of this intu-
itive, impressionistic but important feature the following steps
need to be achieved. (1) Access to multimodal databases is nec-
essary, (2) development of an annotation scheme to manually
label the multimodal databases is required, and (3) acoustic and
visual cues which are correlated with involvement need to be
identified. A multitude of multimodal corpora, such as the AMI
[4] or the CID [5] corpus, has been made available to the public
in recent years. They either focus on dyadic conversation or are

scenario specific. As a lot of communication captured by video
technology is, however, not restricted to dyadic or task-specific
conversations. Therefore, for this study, we use the D64 cor-
pus, featuring 5 participants in non-task-directed, spontaneous
conversation for this study [6].

While Wrede and Shriberg label involvement as a binary
phenomenon, Dillon [7] uses a slider to let participants indicate
their level of involvement. Following Dillon, we prefer to con-
sider involvement as a scalar phenomenon rather than a binary
one. Inrecent work [1], we confirmed that the acoustic cues, fo-
median, fo-range and rms-intensity are strongly correlated with
involvement and our results show that involvement is indeed a
scalar phenomenon rather then a binary one.

However, it can be assumed that involvement is not only
conveyed by means of prosodic cues but that other modalities
are used as well. Two phenomena that are reported in the litera-
ture to be relevant in social interaction are gaze[8] [9] [10] and
blinking [11]. Gaze, for example, has been found to be impor-
tant for modulating and directing attention [10] and blink rate
has been found “to vary systematically with specific behavior
such as reading, conversing, watching film” [11]. Given their
importance in social interaction it can be hypothesised that gaze
and blinking rate are key factors for conveying involvement.

In this study we first investigate the correlation between vi-
sual cues (gaze and blinking rate) and involvement. We then
test the suitability of prosodic cues (acoustic model) as well as
gaze and blinking (visual model) for the prediction of the de-
gree of involvement by using a support vector machine (SVM).
We also test whether the fusion of the acoustic and visual model
improves the prediction.

2. Data

The D64 corpus [6] was recorded over two successive days in
a rented apartment, resulting in a total of eight hours of multi-
modal recordings subdivided into 3 sessions; session I, session
II, and session III. For our analysis, two 30 minutes long in-
tervals from sessions I and II were extracted. Sessions I and
II differ, as in session I the conversation was mainly socially
orientated whereas session I was mainly work oriented. There
were 5 people (3 male; 2 female) present in session I but only 4
(3 male; 1 female ) in session II. They were colleagues and/or
friends, ranging in age from their early twenties to their early
sixties. The conversation was not directed and ranged widely
across topics both trivial and technical. While in session I, all
participants contributed to the discussion, in session II the con-
versation was mainly dominated by two speakers (speaker F and
speaker C).



3. Methods
3.1. Annotations
3.1.1. Annotation of Involvement

Involvement is defined as a group variable. It is assumed to cap-
ture the average degree to which individual people in a group are
engaged in spontaneous, typically non-task-directed conversa-
tions. Involvement was annotated on a scale from 0-10 (0 being
the lowest degree of involvement; 10 the highest) across the
conversation. A perception test was conducted and the Inter-
rater reliability was found to be x = 0.56 for 30 raters [12].

3.1.2. Annotation of Gaze and Blinking

Blinking and gaze were annotated according to the annotation
scheme proposed by Cummins [11]. For gaze, a distinction is
made between “g” and“x”. “g” is the abbreviation for gaze and
is used in the case when speaker a is looking at speaker b. “x”
is used when speaker x is not looking at speaker y. Gaze anno-
tations were carried for two participants. Blinks are treated as
single points in time and are annotated at “the first moment in
which the visible part of the cornea [is]substantially occluded
[11]. In our annotations, we distinguished between ten subcat-
egories of blinks based on duration and direction of gaze (for a
full details see [13]), however, we conflated the blink categories
to the sum of all blinks for a given interval for the use in this
study.

3.1.3. Calculation of Mutual Gaze and Blinking

The annotation of mutual gaze and blinking are based on session
Il alone. Mutual Gaze is calculated as the proportion of the
duration in which speaker F and speaker C simultaneously look
at each other. Blinking rate is calculated as the sum of all blinks
over time (we are only reporting on the blinking rate of speaker
F, not speaker C).

3.2. Automatic Prediction

In order to determine the extent to which these features can be
used on unseen corpus data we employ support vector machines
(SVM) with radial basis function kernels for the automatic pre-
diction [14, 15]. Further, we test early (feature level) and late
(decision level multiplication fusion) fusion approaches, mak-
ing use of the two modalities provided, for the prediction of
involvement within session II [16]. Early level fusion combines
the extracted unimodal features to a multimodal representation
of the observations before classification. In this case the align-
ment of the observations in the different modalities is crucial
for the training of a single multimodal classifier. In contrast to
early fusion, late fusion, or decision level fusion, combines the
decisions of multiple unimodal classifiers. Typical combination
schemes comprise majority vote, or multiplication fusion [17].
The two fusion schemes investigated , early and late fusion, dif-
fer with respect to the time at which the information of the dif-
ferent modalities is combined. Since no annotated video data
was available for session I and only audio features are common
to both sessions, we compare both strategies in this study in or-
der to be able to compare the results. At this stage of the work
we are not considering sequential implications of these features
that might be better modelled by statistical models such as hid-
den Markov models, and we consider an svm sufficient for the
prediction.

4. Results
4.1. Acoustic Features

As reported in [1], we showed that the prosodic parameters fo-
median, and fo-range, and rms-intensity are correlated with
involvement. The higher the involvement the higher the fo-
median, the fo-range and rms-intensity. Our results also sug-
gest that involvement is a scalar rather than binary phenomenon
(see Table 1).

Table 1: ANOVA analysis confirming the relationships between
three acoustic categories and four levels of involvement.

inv. 5-6 inv.6-7 inv.7-8.
fo-median  p=0.006370 n.s. p=0.0106
p<0.001 n.s.
p<0.001 n.s.

fo-range n.s.

intensity p<0.001

4.2. Mutual Gaze and Involvement

The visual cue mutual gaze as can be seen in Figure 1 illustrates
an increase in the proportion of mutual gaze the higher the in-
volvement. Beyond point 6.8 on the x-axis we see indications
of a bimodal distribution. This can be explained as in one set
speaker C takes notes on her laptop Figure 3, whereas she does
not in the other set Figure 2. For both individual sets, a high cor-
relation (R=0.93 and R=0.96) between the proportion of mutual
gaze and involvement was found.
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Figure 1: Mutual Gaze for the whole interaction and involve-
ment for 20 second intervals with a moving window of 10 sec-
onds.

4.3. Blinking and Involvement

The visual cue blinking rate (blinks per second) only shows
one significant change between the various involvement states.
While there is no significant change between involvement level
5 and involvement level 6 (F(4,511)=7.214); p=0.08763) there
is a significant change between involvement level 6 and in-
volvement level 7 (F(3,478)=7.594; 0.01279). The blinking rate
in involvement level 7 is significantly lower than in involve-
ment level 6. However, the change from involvement level 7
to involvement level 8 is not significant (F(2,322)=8.378; p=
0.310814). There is not a sufficient number of blinks for in-
volvement level 4 and involvement level 9 for any sufficient
analysis.
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Figure 2: Mutual Gaze and involvement without laptop inter-
ference for 20 second intervals with a moving window of 10
seconds
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Figure 3: Mutual Gaze and involvement with laptop interfer-
ence for 20 second intervals with a moving window of 10 sec-
onds

4.4. Prediction

A list of the features used in the acoustic and visual model can
be found in Table 2.

Table 2: List of features comprised in the acoustic and visual
model.

acoustic model visual model

fo-median
fo-range
fo-max
fo-sd
fo-min

(mutual) gaze

blinking rate

intensity

In [1] we showed that the proposed cues can be used to dis-
tinguish between different levels of involvement. To show that
involvement is scalar rather than binary we compared two dif-
ferent models for the prediction of involvement. One based on a
two class model (Model I) and the other on a three class model
(model II). In Model I, the first class contained data for low
involvement (level 4,5 and 6), and the second class contained
data of high involvement (level 7,8 and 9). Model II contained
a class of low (level 4, 5 and 6) and class of high involvement

(level 8 and 9). Moreover, we introduced an intermediate class
(level 7) of involvement due to high proportion of annotations
obtained for involvement level 7.

Table 3: Prediction results for involvement.

Model I (two classes) Model II (three classes)

mean acc. ERR mean acc. ERR
Early fusion 0.7440 0.11 0.6820 0.30
Late fusion 0.7420 0.11 0.6420 0.26
Audio only 0.6940 0.06 0.5060 0.12
Video only 0.6640 0.03 0.6060 0.22
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Figure 4: Plot of the accuracies of the 10 fold cross validation
experiments using the data of session II, comparing early and
late fusion as well as the single modalities in both two and three
class cases. The boxes denote 50% of the data and the median
value is shown as the middle line of the plot. Whiskers include
1.5 times the standard deviation of the data and outliers marked
as crosses are further away from the median.

Table 3 and Figure 4 illustrate the results of the experi-
ments. Error rate reduction (ERR) is calculated as an improve-
ment in accuracy rate from a hypothesised classifier relying on
the a priori probability of the most likely class (for Model I that
is class 2 with 0.63; for Model II that is class 2 with 0.38). The
results are based on a standard 10 fold cross validation with a
90/10 split of the available data.

Concerning Model I the best performance is achieved for
an early fusion of both audio and video data (ERR = 0.11 ; ac-
curacy = 0.7440). The late fusion of the audio and video data
has a similar ERR of 0.11 and an accuracy of 0.7420. Video
only produced lower accuracy and only a small reduction in er-
ror rate (ERR = 0.03; accuracy = 0.66). The single modality
approaches are both significantly outperformed by both of the
fusion approaches in paired t-tests over the ten fold cross vali-
dation (late fusion vs. audio only p = .011; late fusion vs. video
only p = .023; early fusion vs. audio only p = .008; early fusion
vs. video only p =.002).

The best performance overall in terms of ERR is achieved
for Model II using an early fusion of both acoustic and visual
data (ERR = 0.30; accuracy = 0.6820). The late fusion of the
acoustic and video data has a ERR of 0.26 and an accuracy of



0.64. The least accurate results are achieved for audio data only
(ERR =0.12 ; accuracy = 0.50). The early fusion again outper-
forms the single modalities significantly (early fusion vs. audio
only p < .001; early fusion vs. video only p = .002), but late
fusion only outperforms the audio only approach (p < .001).
Further, video only outperforms audio only in the paired t-test
with a p-value < .001.

In order to test how well the model generalises we trained it
on session II and tested it on session I and achieved a prediction
accuracy of 0.5830 (ERR = 0.20) for Model II, which shows a
good generalisation performance.

5. Discussion

We found a very high correlation between mutual gaze and in-
volvement. The fact that speaker C, however, at a certain point
started to take notes on her laptop resulted in a decrease of mu-
tual gaze. This finding is not only obvious, it is also in line with
the findings of Argyle & Graham [9] who found that an object
relevant to the conversation will reduce the amount to which
the conversants look at each other. This finding confirms that
(mutual) gaze is a very good indicator of involvement.

Speaker C’s use of her laptop did not only influence mu-
tual gaze but also the average movement of body and face. As
reported in [1] we found that the movement of body and face
of speaker C was strongly influenced by the laptop she carried
on her lap. We are planning to solve this problem by applying
session-based normalisations and will report on this in future
work.

We showed that using the features from the audiovisual
channels enables the classifier to successfully predict the in-
volvement state. For three classes of involvement, the video
model alone achieved better results than the audio model alone.
In contrast, for two classes of involvement, the audio model
alone performs slightly better than the video model alone. Fur-
thermore, the fusion approaches, and especially the early fea-
ture level fusion used, outperforms the individual modalities
significantly. This is in line with results of [18] who found the
same improvement in a similar classification task. Additionally,
we were able to show that the approach we utilised scales over
different sessions and allows for a good generalisation.

6. Conclusion & Future Work

Our model is able to predict three classes of involvement with
an reduction in error rate of 0.30 (accuracy = 0.68). Further, it is
possible to generalise over unseen sessions using the unimodal
SVM approach. Further analysis will be carried out towards
measuring involvement between individual participants (inter-
participant-involvement or social distance) in a group. This
work will include further annotation of visual cues as well as
research into the identification of further multimodal cues suit-
able for the prediction of involvement. Additionally, we plan to
account for the human variability in the annotation of involve-
ment by using a fuzzy SVM architecture [19].
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