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description of correlated solids and molecules
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We present a variational pseudo self-interaction correction density functional approach (VPSIC) to the ab initio
theoretical description of correlated solids and molecules. The approach generalizes previous nonvariational
versions based on plane waves (pseudo self-interaction correction) or atomic orbital (atomic self-interaction
correction). The VPSIC approach provides well-defined total energies and forces and enables structural
optimization and dynamics, aside from providing high-quality electronic-structure-related properties as the
previous methods. A variety of demanding test cases, including nonmagnetic and magnetic correlated oxides
(e.g., manganites and d1 titanates) and a large database of molecules, indicate a high accuracy of the method in
predicting structural and electronic properties. This represents a considerable improvement over standard local
density functionals at a similar computational cost.
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I. INTRODUCTION

The ab initio, density functional theory (DFT) based
determination of structural and electronic properties of cor-
related systems remains an outstanding challenge in materials
modeling. The crucial bottleneck is that approaches general
and powerful enough to tackle the description of strong-
correlated systems are also heavily demanding in terms of
the required computing resources. This limits the system size
that can be practically afforded to at most a few tens of atoms
per primitive cell. In contrast, many interesting properties of
correlated systems call for large cell sizes already at the bulk
level due to the possible coexistence of several competing
and juxtaposed orderings (structural, magnetic, orbital, and
charge ordering). Furthermore, several much-celebrated phe-
nomenologies such as high-Tc superconductivity in cuprates,
colossal magnetoresistivity in manganites, magnetic ordering
in diluted magnetic semiconductors, etc., involve doping, the
treatment at generic concentration of which is a formidable
computing task. Finally, oxide interfaces and multilayers,
which are the basis of recent intriguing discoveries such as
two-dimensional (2D) electron liquid behavior,1 may require
even a larger simulation effort.

One thus needs to treat routinely a few hundred atoms,
a size that can be only afforded at a computational cost
similar to that of standard local (spin) density functional
theory [L(S)DA] or its generalized gradient approximation
(GGA) version. Beyond LSDA, approaches that are agile
enough to satisfy this requirement are very few: the very
popular LDA + U (Ref. 2) is certainly one of them. A more
recent approach with similar characteristics is the pseudo
self-interaction correction (PSIC) approach,3,4 implemented
in the past in two different settings: plane-wave basis and
ultrasoft pseudopotentials,3 and localized orbital basis and
norm-conserving pseudopotentials [this is called atomic self-
interaction correction5 (ASIC) approach] in the framework
of the SIESTA code.6 LDA + U and PSIC and ASIC move
from different conceptual viewpoints: the former introduces an
effective Coulomb repulsion, which is typically poorly treated
in LSDA. The latter subtracts from the LSDA functional an

approximate (i.e., atomic-orbital-averaged) self-interaction (SI
henceforth), that is, the unphysical interaction of an electron
with its own generated potential.

Despite this apparent conceptual difference, the two theo-
ries act in similar way, i.e., they correct the LSDA eigenvalues
by a quantity linearly dependent on orbital occupation. In
fact, the PSIC approach may be viewed as a self-consistent
all-orbital generalization of the LDA + U correction,5 but
with two distinct advantages over the latter: the ability to
cure the LSDA failures in more general situations (i.e., not
limited to magnetic and/or orbital-polarized systems) and the
absence of an explicit parametric dependence. In PSIC and
ASIC approaches, indeed, a role similar to the U correction
is played by atomic self-interaction potentials, which are
extracted from the free atom (thus, they are universal, i.e., only
depend on atomic species) and then incorporated into the band-
structure Hamiltonian. At variance with more fundamental
SI removal strategies such as the original Perdew-Zunger
approach7 (PZ-SIC), or its later generalization to extended
systems,8,9 which imply dramatic complications in formalism
and conceptual interpretation,4,10 the PSIC approach retains all
the simplicity typical of the LDA and GGA: a single-particle
potential, which is not explicitly orbital dependent and is
translationally invariant (i.e., obeys Bloch symmetry), and
an energy functional invariant under unitary rotations of the
occupied eigenstates.

The PSIC-ASIC approach demonstrated a consistently im-
proved accuracy in the description of the electronic properties
for a vast range of systems4 at a computational cost not
much larger than that of the LSDA itself. The ASIC approach
(Ref. 5) is the implementation of choice for large-size systems,
as it can easily afford thousands-of-atoms simulations,11

while the heavier PSIC approach is the standard reference
for accuracy. Despite their advantages, the PSIC and ASIC
approaches have had limited following so far, for instance, in
comparison with the . One reason may be rooted into their
lack of variationality. In Ref. 3, the PSIC potential is in fact
generated as an ansatz on the single-particle Kohn-Sham (KS)
potential, meaning that it does not derive from a germinal
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energy functional, a shortcoming precluding access to many
ground-state properties, including geometry optimization.

In this paper, we overcome such a limitation by introducing
a fully variational version of PSIC and ASIC, named VPSIC.
This builds an energy functional that produces, by Euler-
Lagrange derivative, a set of single-particle KS equations
similar to those of the previous PSIC scheme, thus keeping the
successful description of the electronic properties (see Ref. 4
and references therein for a number of case studies), but adding
the ability to deliver the ground-state properties expected of
standard ab initio theories.

Here, we describe these formulations and give ample
evidence of the aforementioned capabilities. We present results
for both solids (oxides including nonmagnetic aluminates and
d0 titanates, and highly correlated cases such as magnetic d1

titanates and d3 manganites) and molecules (a large benchmark
molecular database). Extended systems are treated by using
the plane-wave-basis implementation and the molecules by
using the atomic-orbital basis one. The results presented here
indicate that this method is accurate and effective in the
study of systems characterized by a wide range of degrees
of correlation and localization. Note that other VPSIC results
have been already recently presented: a thorough description
of the properties of transition-metal monoxides12 and an
account13 of the properties of 2D electron gas formation at
the SrTiO3/LaAlO3 interface.

This paper is organized as follows: In Sec. II, the general
formulation is illustrated; in Sec. III, results for nonmagnetic
oxide insulators (Sec. III A), titanates (Sec. III B), and man-
ganites (Sec. III C) are presented. Section IV is devoted to
illustrate results for molecules. Finally, in Sec. V, we draw
our summary and conclusions. Implementation-specific details
are discussed in the Appendices: in Appendices A and B,
we present an extension of the VPSIC energy functional and
forces formulations, respectively, for the case of ultrasoft
pseudopotentials (USPP), while Appendices C and D are
dedicated to the description of VPSIC energy functional and
forces formulation specific for the atomic-orbital basis set.

II. VARIATIONAL PSEUDO-SELF-INTERACTION
FORMULATION

In this section, we present the general variational formula-
tion, not related to any specific basis function implementation,
of the pseudo-self-interaction approach.

A. VPSIC energy functional and related Kohn-Sham equations

We start from the following VPSIC energy functional:

EVPSIC[{ψ}] = ELSD[{ψ}] − 1

2

∑
ijνσ

ESI
ijσν P σ

jiν, (1)

where ELSD is the usual LSDA energy functional

ELSD[{ψ}] = Ts[{ψ}] + EH[n] + Exc[n+,n−] + Eion[{ψ}]
written as sum of (noninteracting) kinetic (Ts), Hartree (EH),
exchange-correlation (Exc), and electron-ion (Eion) energies.
Here, ψ are single-particle wave functions, n+ and n− are
up- and down-polarized electron densities, and n = n+ + n−.
Equation (1) follows the spirit of the original Perdew-Zunger

procedure7 (hereafter called PZ-SIC) and subtracts from the
LSDA total energy a SI term, written as a sum of effective
single-particle SI energies (ESI) rescaled by some orbital
occupations P . Here i, j span a set of atomic quantum numbers
typically relative to a minimal atomic wave-function basis set
[a nondiagonal formulation is necessary to enforce covariancy:
i = (li ,mi), j = (li ,mj ) with l and m the angular momentum
and the magnetic quantum number, respectively], while σ and
ν indicate spin and atomic site, respectively.

The peculiarity of the VPSIC approach resides in the way
the second term of Eq. (1) is written for an extended system,
the eigenfunctions of which are Bloch states ψσ

nk. The orbital
occupations are then calculated as the projection of such Bloch
states onto localized (e.g., atomic) orbitals, hereafter indicated
as {φ}:

P σ
ijν =

∑
nk

f σ
nk

〈
ψσ

nk

∣∣φi,ν

〉 〈
φj,ν

∣∣ψσ
nk

〉
, (2)

where f σ
nk are the Fermi occupancies. For the effective SI

energies, we adopt a similar approach, namely,

ESI
ijσν =

∑
nk

f σ
nk

〈
ψσ

nk

∣∣γi,ν

〉
Cij

〈
γj,ν

∣∣ψσ
nk

〉
, (3)

where γi,ν is the projection function associated to the SI
potential of the ith atomic orbital centered on atom ν, and
niν(r) = φ2

iν(r),

γiν(r − Rν) = VHxc[niν(r − Rν),0] φiν(r − Rν). (4)

The Hartree plus exchange-correlation atomic SI potential
VHxc is written in a radial approximation as

VHxc = VH[nliν] + Vxc[nliν,0] = ∂EHxc[nliν]/∂nliν (5)

and calculated at full polarization (n = n+, n− = 0). Finally,
Cij are normalization coefficients

C−1
li ,mi ,mj

=
∫

dr φlimi
(r) VHxc[nli ,ν(r),0] φlimj

(r) (6)

with li = lj . These are purely atomic and do not depend on the
atomic positions. The use of projectors γ in Eq. (3) is aimed at
casting the SI energy in fully nonlocal form similar to the fully
nonlocal Kleinman-Bylander14 pseudopotential form, which
enables huge savings in computational effort when performing
calculations in the reciprocal space.

In order to grasp the idea behind Eqs. (3), (4), and (6),
notice that, in the limit of large atomic separation (spin and
atomic indexes are dropped for simplicity), the Bloch states
ψnk and the energies ESI

ijσν become, respectively, the atomic
orbitals φiν and the atomic SI energies

εSI
i =

∫
dr ni(r) {VH[ni(r)] + Vxc[ni(r),0]} . (7)

Thus, the orbital occupations P σ
ijν (if suitably normalized) act

as scaling factors for the atomic SI energies, which are then
assumed to be the upper limit of the SI correction amplitude.
We remark that, in the atomic limit, Eq. (1) recovers the PZ-SIC
total energy expression only for the Hartree SI part. Our SI
exchange-correlation energy density, instead, is

1

2
Vxc[ni,0] = 1

2

[
εxc + ni

∂εxc

∂ni

]
, (8)
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which differs from the PZ-SIC expression εxc[ni,0].
From Eq. (1), we obtain the corresponding VPSIC KS

equations through the usual Euler-Lagrange derivative

∂EVPSIC

∂ψ∗
nkσ

= ε̃nkσ ψnkσ = ĥLSD
σ ψnkσ

−1

2

∑
ijν

{
∂ESI

ijσν

∂ψ∗
nkσ

P σ
jiν + ESI

ijσν

∂P σ
jiν

∂ψ∗
nkσ

}
, (9)

where ε̃nkσ are VPSIC eigenvalues and

hLSD
σ (r) = −∇2

r

2
+ VH[n(r)]

+Vxc[n+(r),n−(r)] + Vion(r) (10)

is the usual KS LSDA Hamiltonian and

∂ESI
ijσν

∂ψ∗
nkσ

= |γi,ν〉Cijν

〈
γj,ν

∣∣ψσ
nk

〉
, (11)

∂P σ
jiν

∂ψ∗
nkσ

= |φj,ν〉
〈
φi,ν

∣∣ψσ
nk

〉
. (12)

The first sum term in curly brackets in Eq. (9) corresponds
to the SI potential projector written as in the original PSIC KS
equations.3 Since the two sums in the curly brackets essentially
describe the same physical quantity (i.e., the SI potential), in
practice, they give similar results when applied to a Bloch
state. It follows that Eq. (9) describes an energy spectrum
substantially similar to that of our previous nonvariational
scheme, but with the advantage to derive from the VPSIC
energy functional via the Euler-Lagrange construction.

In DFT, it is customary to rewrite the total energy in terms
of the sum of the Kohn-Sham eigenvalues. By writing εnkσ as
the LSDA eigenvalues, it is easy to verify that∑

nkσ

f σ
nk ε̃nkσ =

∑
nkσ

f σ
nk

〈
ψσ

nk

∣∣∣∣∂EVPSIC

∂ψ∗
nkσ

〉
=

∑
nkσ

f σ
nk εnkσ −

∑
ijσν

ESI
ijσνP

σ
jiν . (13)

Equation (1) can then be rewritten as

EVPSIC[{ψ}] = ẼLSD[{ψ}] + 1

2

∑
ijσν

ESI
ijσν P σ

jiν, (14)

where

ẼLSD[{ψ}] =
∑
nkσ

f σ
nk ε̃nkσ + EHxc[n+(r),n−(r)]

+Eion −
∑

σ

∫
dr nσ (r)V σ

Hxc[n+(r),n−(r)]

(15)

is the LSDA energy functional where the VPSIC eigenvalues
now replace those of the LSDA.

Finally, in the original PSIC formulation, the SI VHxc

potential is rescaled by a relaxation factor α = 1/2 to take
into account the screening (i.e., the suppression) of atomic
self-interaction by the surrounding charge of the extended
system (see Ref. 4 for an extended discussion). Careful tests
on a large set of solids5 show that this value is adequate for a

vast array of crystalline systems, whereas for molecules, a full
atomic SI (α = 1) is more appropriate. We keep this empirical
recipe also in our present formulation.

B. Simplified variants of VPSIC approach and relation with the
original nonvariational method

From the general expression of Eq. (1), two interesting
subcases can be derived. By assuming fixed (i.e., non- self-
consistently calculated) orbital occupations Pij in Eq. (9), the
second term in the curly brackets vanishes and the VPSIC
KS equations reduce to those of the original PSIC scheme of
Ref. 3. Indeed, it was previously pointed out4 that the original
scheme becomes variational at fixed orbital occupations.

Another useful subcase is obtained by replacing Eq. (3)
with the simplified expression

ESI
ijσν = P σ

ijνε
SI
iν = P σ

limimj ν
εSI
li ν

, (16)

where the atomic εSI
li ν

(in radial approximation) is given
by Eq. (7). By using Eq. (15), Eqs. (1) and (9) become,
respectively,

EVPSIC0 [{ψ}] = ELSD[{ψ}] − 1

2

∑
ijνσ

P σ
ijν P σ

jiν εSI
jν

= ẼLSD[{ψ}] + 1

2

∑
ijνσ

P σ
ijν P σ

jiν εSI
jν (17)

and

∂EVPSIC0

∂ψ∗
nkσ

= ĥLSD
σ ψnkσ −

∑
ijν

P σ
ijν

∂P σ
jiν

∂ψ∗
nkσ

εSI
jν . (18)

This simplified VPSIC formalism (hereafter indicated as
VPSIC0) is a computationally convenient alternative (espe-
cially in terms of memory) to perform structural optimizations
in large-size systems. In Sec. III, we will show that, for non-
magnetic semiconductors and insulators, it provides electronic
and structural properties in good agreement with those calcu-
lated with the complete VPSIC approach. However, VPSIC0

is typically less satisfactory for the electronic properties of
magnetic materials.

C. Forces formulation

In the VPSIC approach, the atomic forces formulation
follows from the usual Hellmann-Feynmann procedure. It is
obtained as the LSDA expression augmented by a further
additive contribution due to the atomic-site dependence of the
SI projectors

−∂EVPSIC[{ψ}]
∂Rν

= FLSD
ν

+ 1

2

∑
ij,nkσ

f σ
nk

{〈
ψσ

nk

∣∣∣∣∂γi,ν

∂Rν

〉
Cij

〈
γj,ν

∣∣ψσ
nk

〉
P σ

jiν[{ψ}]
}

+ 1

2

∑
ij,nkσ

f σ
nk

{
ESI

ijσν[{ψ}]
〈
ψσ

nk

∣∣∣∣∂φi,ν

∂Rν

〉〈
φj,ν

∣∣ψσ
nk

〉}
.

(19)

The complex conjugate must be summed to the terms in curly
brackets.
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In the simplified VPSIC0 version, the term to be added to
FLSD

ν reduces to∑
ij,nkσ

f σ
nk

{
P σ

ijνε
SI
jν

〈
ψσ

nk

∣∣∣∣∂φj,ν

∂Rν

〉〈
φi,ν

∣∣ψσ
nk

〉}
(20)

with complex conjugate sum also implied.
In writing Eqs. (19) and (20), we have assumed that the

force acting on a given atom ν only depends on the single
atomic projector centered on ν itself. Such an assumption
is not necessarily true if the orbital occupations are to be
reorthonormalized in the cell. This choice, which complicates
significantly the formulation described above, is discussed in
detail in the Appendices together with the specific implemen-
tations to the plane waves plus USPP and the local orbital plus
norm-conserving pseudopotential approaches.

III. RESULTS: EXTENDED SYSTEMS

As pointed out in the previous sections, there is a substantial
formal similarity between the KS equations derived for VPSIC
and PSIC and ASIC. As this section proves, the long series of
results for the electronic properties of many solids obtained
with PSIC and ASIC approaches in recent years are confirmed
by the theoretical framework presented here. Namely, the
VPSIC approach gives only marginal differences with respect
to PSIC and ASIC as the band energies and the densities of
states (DOSs) are concerned. Hereafter, we consider as test
cases for VPSIC a number of materials, either never tackled
before (d1 titanates) or revisited (e.g., CaMnO3), to specifically
address total energy-derived properties such as the equilibrium
structure and the magnetic exchange interactions.

Specifically, we have selected three classes of solids, which,
at the same time, test the broad spectrum of applicability
of the VPSIC approach and are interesting compounds by
themselves, both from the conceptual and the technological
points of view. These are wide-gap oxide insulators, mag-
netic titanates representative of the 3d-t2g Mott-insulating
perovskites and magnetic manganites representative of the
3d-eg charge-transfer insulating perovskites.

Calculations are carried out with ultrasoft
pseudopotentials15 and a plane-wave basis set with
cutoff energy ranging from 30 to 35 Ryd depending on
the specific system, 6 × 6 × 6 special k-point grids for
self-consistent calculations, 10 × 10 × 10 special k points,
and linear tetrahedron interpolation method for the DOS. The
Ceperley-Alder-Perdew-Zunger7 local density approximation
is used for the exchange-correlation functional. Structural
relaxations are carried out with a threshold of 1 mRy/Bohr
∼0.02 eV/Å on the largest force component.

A. Wide-gap insulators: LaAlO3, SrTiO3, and TiO2

As prototypes of nonmagnetic wide-gap insulators, we
selected materials widely in use in the field of functional
oxides, rutile TiO2, and the perovskite LaAlO3 and SrTiO3.
Given the abundant theoretical and experimental results
already available, these represent ideal test cases for the VPSIC
approach.

For nonmagnetic oxides, the level of accuracy of stan-
dard LDA calculations may vary according to the property
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FIG. 1. Band energies of TiO2 (rutile) calculated at experimental
lattice structure (a = 4.59 Å, c/a = 0.664, u = 0.305) calculated
by LDA, VPSIC, and VPSIC0. The k-point coordinates (units of
π/a = π/b, π/c) are � = (0,0,0), M = (1,1,0), R = (1,1,1).

investigated. Typically, a good rendition of structural proper-
ties is juxtaposed to an unsatisfactory match of the calculated
band-structure and interband transition energies, involving
the well-known underestimation of the fundamental band
gap and the poor description of transition-metal d and (to
a lesser extent) oxygen p states. We find that the VPSIC
approach systematically improves the electronic properties
over the LSDA, while preserving a similar accuracy for
structural properties. In any comparison, it must be kept in
mind that subtleties in the results may (and usually do) vary
appreciably depending on a number of computational details
largely independent of the underlying formalism (e.g., the type
of wave-function basis set, the type of pseudopotentials, etc.)
and yet typical of this class of simulations. In order to achieve
an evaluation as unbiased as possible, it is useful to compare
the VPSIC results with experiments as well as with their LDA
counterparts, obtained for identical computational details.

We start our analysis by looking at the electronic structure.
The band structures calculated within VPSIC, VPSIC0, and
LDA are displayed in Figs. 1, 2, and 3 for TiO2, SrTiO3,
and LaAlO3, respectively. The corresponding gap values are
reported in Table I. For an unbiased comparison, the bands are
calculated at the same (experimental) structure.

As expected, the TiO2 (Fig. 1) gap opens between occupied
O 2p valence and empty Ti 3d conduction bands. According
to the VPSIC, the minimum gap is indirect between � at
valence-band top (VBT) and M (i.e., the BZ edge along [110])
at the conduction-band bottom (CBB), while the direct gap is at
�. The gap values are in satisfactory good agreement with the
experiments, while the LDA results present the well-known
band-gap underestimation of nearly 40%, a typical LDA
error bar for nonmagnetic insulators. In contrast, the VPSIC0

operates a partial (about 80%) recovery of the correct energy
gap over the LDA result. While this may be unsatisfactory
for the prediction of the optical spectra, it is sufficient for
structural optimization at a pace substantially similar to that
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FIG. 2. Band energies of cubic SrTiO3 calculated at experimental
lattice structure (a = 3.92 Å). The k-point coordinates (units of π/a)
are � = (0,0,0), M = (1,1,0), R = (1,1,1).

of LDA itself. Notice that VPSIC and VPSIC0 change the
(mainly O 2p) valence bandwidth (∼6.5 eV for VPSIC,
5.7 eV for VPSIC0) in opposite directions from the LDA value
(∼6.0 eV); this illustrates the fact that the VPSIC0 is not simply
a rescaled VPSIC.

It is worth emphasizing that the VPSIC (or VPSIC0) ability
to correct the LDA gap problem in nonmagnetic oxides, the
ground state of which is only residually affected by d-type
orbitals, spurs from its all-orbital corrective character (in
particular, from corrections to the O 2p band). In contrast,
the GGA + U band gap of 2.2 eV (with U = 3.4 eV applied to
Ti 3d) calculated in Ref. 21, is only marginally larger than the
GGA value of 1.9 eV. The necessity of applying a corrective
U onto the O 2p orbital energies was indeed discussed in
previous works.22

We now turn to SrTiO3, for which we adopt the cubic
structure to avoid structural bias. The band structure is reported
in Fig. 2. The dominant (and, where relevant, the secondary)
orbital character for each group of bands is also reported in
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FIG. 3. Band energies of cubic LaAlO3 calculated at experimental
lattice structure (a = 3.82 Å). The k points are the same as in Fig. 2.

TABLE I. Direct (�Ed) and indirect (�Ei) band-gap energies
and O 2p manifold valence bandwidth (WOp) in eV, calculated within
LDA, VPSIC, and VPSIC0, compared to the experimental values.

LDA VPSIC VPSIC0 Expt.

TiO2 �Ei (�-L) 1.88 2.90 2.59
�Ed (�) 1.84 2.93 2.62 [3.0,3.1] (Refs. 16,17)

WOp 6.0 6.5 5.7 ∼7 (Ref. 18)
SrTiO3 �Ei (M-�) 1.69 2.94 2.62 3.25 (Ref. 19)

�Ed (�) 2.04 3.30 2.95 3.75 (Ref. 19)
WOp 5.0 5.5 4.8 ∼6 (Ref. 20)

LaAlO3 �Ei (M-�) 2.83 5.23 4.61
�Ed (�) 3.17 5.51 4.89 5.6

WOp 7.6 8.38 7.27 ∼8–9 (Ref. 20)

the figure. The energy gap opens between a VBT dominated
by the O 2p orbitals and a CBB of mainly Ti 3d character,
with the Sr 4d contributions placed at higher energies. We can
see in Table I that the LDA band gaps are only ∼55% of the
experimental direct (3.25 eV) and indirect (3.75 eV) gaps.
The VPSIC approach, in contrast, recovers most (∼90%),
although not all, of the LDA discrepancy. This is, in part,
attributed rather than to a VPSIC insufficiency to a much
too small LDA value originating from the specific LDA
flavor and the pseudopotentials used. Indeed, previous LDA
determinations19,23 gave 1.9 and 2.24 eV, respectively, for the
indirect and direct band gaps, and a “scissor” operator of 1.5 eV
was employed in Ref. 19 to readjust the band energies to match
ellipsometry data. According to our calculations, the VPSIC
approach provides a “scissor” shift of about 1.3 eV with respect
to the LDA. While in general the action of the VPSIC approach
over the LDA bands can be remarkably k-point dependent, for
these wide-gap, highly ionic, nonmagnetic oxides, the LDA
band dispersion is not modified significantly. This fact provides
an a posteriori justification of the use of a scissor operator.

However, while the band shape is little altered, the band-
widths change appreciably. Consider, for example, the first
unoccupied doublet of Ti 3d t2g character: in LDA, this spans
about 2.5 eV, while in VPSIC or VPSIC0, it is reduced to about
2 eV. This is a consequence of the enhanced localization (i.e.,
reduced p-d hybridization), which typically follows from the
removal of SI. In contrast, the VPSIC approach increases the
LDA O 2p bandwidth because of its different spectral weight
distribution, namely, the top manifold is purely O 2p, while
the bottom (R point) shows a significant admixture of Ti 3d

and Sr 3s states. The different effective SI energies related to
these different orbital characters eventually stretches the band
bottom down to lower energies, thus resulting in an increase
of bandwidth. In VPSIC0, the effective SI energies are fixed
to their atomic counterparts, thus, that the effect over the LDA
values is more that of a rigid band shift.

Finally, we turn our attention to cubic LaAlO3, the calcu-
lated band structure of which is presented in Fig. 3. The energy
gap is between the O 2p valence bands and the conduction
band of mainly Al s-p character. The absence of 3d states
produces an observed gap (5.6 eV) much larger than that in
SrTiO3, but still grossly underestimated by the LDA (∼56% of
the experimental value). This prototypical case demonstrates
the need to repair the LDA irrespective of the presence or the
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FIG. 4. (Color online) Total energies as a function of lattice pa-
rameter for cubic SrTiO3, LaAlO3, and tetragonal TiO2 as calculated
by LDA, VPSIC, and VPSIC0.

absence of 3d states. Again, both VPSIC and VPSIC0 recover
a satisfying energy gap. However, as in the case of SrTiO3,
they act differently on the bandwidths: VPSIC stretches the
bottom of valence O 2p manifold down to lower energies,
while for VPSIC0, the same bands now span an energy window
even smaller than that of the LDA. The low-lying O s bands
(between –16 and –18 eV) and La p semicore bands (at around
–14 eV) are described similarly by LDA and VPSIC. Notably,
VPSIC0 finds instead almost no separation between the two
groups.

Having compared the band structures for fixed crystal
structures, we now consider structural parameters. In Fig. 4,
we report total energies versus lattice parameter for cubic
SrTiO3, LaAlO3, and rutile TiO2 calculated within LDA,
VPSIC, and VPSIC0. The calculated equilibrium parameters
are compared in Table II with the available experimental
values. We start the analysis by considering the reference
LDA values. As mentioned previously, the LDA is typically
satisfactory for what concerns the structural properties, but the
level of accuracy may vary depending on the technicalities
of the calculation. While LDA generally underestimates
the equilibrium lattice constants by about 1%, for SrTiO3

and TiO2, we find overestimates as large as ∼1.5% when

TABLE II. Lattice parameters (in Å) calculated within LDA,
VPSIC, and VPSIC0 compared to the experimental values. For SrTiO3

and LaAlO3, the cubic symmetry is assumed, while TiO2 is in its
tetragonal (rutile) structure. For TiO2, c/a is fixed to the experimental
value 0.644, while the internal parameter u is calculated.

LDA PSIC PSIC0 Expt.

SrTiO3 3.99 3.97 4.02 3.92
LaAlO3 3.76 3.74 3.83 3.82
TiO2 a 4.67 4.62 4.69 4.59
TiO2 u 0.3021 0.3066 0.3066 0.3048

compared to experiments. In contrast, the lattice constant of
LaAlO3 is underestimated by little more than 1%. The VPSIC
approach operates a systematic (0.5%–1%) reduction of the
corresponding LDA values and ends up to be in very good
agreement with the experiments (within 1%) for SrTiO3 and
TiO2, and to a slightly less satisfactory agreement (–2%) for
LaAlO3. VPSIC0 again corrects in the opposite direction and
it systematically increases the LDA values by 0.5%–1%.

The different behavior of VPSIC and VPSIC0 can be easily
linked back to our previous findings about the band structure.
In fact, VPSIC widens the occupied valence-band manifold
(O 2p, O 2s) with respect to the LDA, it reduces the effective
screening and, thus, the bond length gets reduced. In contrast,
the VPSIC0 shrinks the occupied band manifolds with respect
to the LDA, and it causes an increase of effective screening and,
thus, of the bond length. The shrinking of equilibrium volume
caused by the VPSIC approach was also reported for transition-
metal monoxides MnO and NiO.12 Clearly, this should not be
intended as a universal trend, as the bandwidth and the charge
localization are material-dependent quantities, and such are
the VPSIC modifications over the LDA electronic structure.

We conclude this section by emphasizing the overall good
quality of the VPSIC predictions for the three compounds ex-
amined. These present lattice parameters and energy band gaps
are, respectively, 1%–2% and ∼10% within the experimental
values. While additional studies will be necessary for a full
assessment of the theory, the results of this section should
definitely encourage the use of the VPSIC approach for the
investigation of wide-gap oxide insulators.

B. Magnetic d1 titanates: YTiO3, LaTiO3

Magnetic titanates LaTiO3 and YTiO3 are the subject of a
long-standing and still ongoing debate. Titanates, character-
ized by the nominal Ti d1 configuration, rank among the most
peculiar and intriguing magnetic perovskites. At variance with
manganites and cuprates, the fundamental chemistry of which
is governed by the 3d eg states, in titanates, the 3d valence
states have t2g symmetry, thus, they are orbitals not directly
oriented toward the oxygens. This produces a much weaker
p-d hybridization and a crystal field splitting smaller than in eg

systems. Indeed, experiments show that the phenomenology of
these materials is crucially affected by small structural details.

A nice illustration of the highly sensitive magnetostructural
coupling is provided by the comparative study of YTiO3 (YTO)
and LaTiO3 (LTO). Both materials are Pnma perovskites, with
relatively small Jahn-Teller distortions and large GdFeO3-type
rotations of the Ti-centered octahedra. In agreement with the
classic space-filling criterion, the difference in the A-cation
size (with La being bigger than Y) enhances both distortions
and rotations in YTO compared to LTO. These relatively
subtle differences, in turn, lead to quite different magnetic
behaviors. YTO is ferromagnetic24–26 (FM) with a Curie
temperature TC = 30 K, a sizable band gap (∼1 eV), and a
magnetic moment of 0.8 μB per formula unit, in agreement
with a Ti d1 ionic configuration. In contrast, LTO is G-type
antiferromagnetic27 (AF) with a Néel temperature TN =
130 K, a very small energy gap (∼0.05–0.2 eV), and
considerably smaller magnetic moment (∼0.57 μB).28
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Attempts to explain the small magnetic moment and
the nearly isotropic spin-wave dispersion29 in LaTiO3 have
generated substantial debate. It was pointed out that a single
electron in the triple-degenerate t2g manifold may quantum
fluctuate, giving rise to an exotic orbital-liquid state.30,31

However this fascinating hypothesis is contrasted by a body of
evidences27,28,30,32–35 showing that the crystal field splitting is
actually not small enough to maintain the t2g degeneracy sub-
stantially unlifted. As a consequence, a Jahn-Teller distorted
orbital-ordered state is realized in LTO as well as in YTO.

It is needless to say that these issues have stimulated a
number of attempts at describing the titanates with ab initio
approaches, including LSDA,36 LDA + U,37,38 and several
LSDA + DMFT calculations.39–41 The VPSIC results pre-
sented here are a valuable addition to this rich literature since
they give an internally coherent description of the structural
and electronic properties on a purely ab initio basis, in the
framework of the same theory and without system-dependent
parameters (e.g., U,J ). Here we proceed by first illustrating
the electronic properties of YTO calculated at the experimental
lattice structure as a prototypical t2g system. We then move on
to the more peculiar LTO and highlight the differences with
respect to YTO. Then, we conclude with the structural proper-
ties of both systems, which rationalize their different behavior.
We note in passing that LSDA predicts a nonmagnetic metallic
electronic ground state and can not, therefore, be meaningfully
compared with the VPSIC approach in this case.

Figure 5 shows the orbital-resolved DOS of YTO. The
occupied DOS has two major contributions: at the VBT, there
is a ∼0.8-eV-wide fully spin-polarized peak associated to the
Ti 3d states (and some residual hybridization with a small
O 2p fraction). Although the nominal configuration is Ti3+
d1, a small amount of Ti d-O p hybridization is clearly
visible (notice the scale, though: here, the O 2p weight is
way smaller than, e.g., that in manganites). It follows that
the calculated static charges and magnetic moment differ
considerably from their nominal values. For Ti, we obtain
∼1.6 and ∼0.7 electrons for up- and down-polarized 3d state,
respectively, with a magnetic moment of 0.92 μB, slightly
larger than the experimentally observed 0.8 μB. At much
lower energies (–4 to –8 eV below the Ti 3d peak), there
is a broader, unpolarized DOS of O 2p character, not shown
in the figure. The CBB bands are also dominated by Ti 3d t2g

states, residually hybridized with O 2p and Y 4d. Thus, YTO
falls unambiguously in the category of true Mott-Hubbard
insulators, at variance with most manganites or cuprates, which
are actually charge-transfer insulators or in an intermediate
regime (we will come back to this important point later on).

In the band energy plot for FM YTO (see Fig. 6, left
panel), we observe four occupied bands (one for each Ti)
separated from the 3d empty conduction bands by 1.8 eV. The
fundamental gap only involves majority bands and it is direct
at �. The CBB bands span a ∼1-eV-wide interval. According
to our calculations, the sharp DOS peak at the valence top is a
complex admixture of the five Ti 3d orbitals.

In order to analyze quantitatively the identity of this state,
we diagonalize the corresponding P σ

mm′ density matrix in the
3d orbital subspace. The results are reported in Table III for
two coordinate systems: the orthorhombic

√
2 × √

2×2 Pnma
(x ′,y ′,z′) and the conventional cubic (x,y,z), which differ by
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FIG. 5. (Color online) Orbital-resolved DOS for FM YTO. For
clarity, only Ti 3d , Y 5d , and O 2p are shown (O on top and in the
Ti plane are labeled OT and OP, respectively). Note that the Y and
O DOS scale has been magnified for clarity. For each of the panels,
the upper half corresponds to majority spins and the lower one to the
minority.

a 45◦ rotation42 of the (x,y) plane. Let us focus first our
attention on the Ti ion placed at (0,0,0) in the cubic YTO
reference system. This shows prevailing contributions from
the |yz〉 and |xy〉 orbitals. However, also the eg contributions
are not completely negligible. The corresponding state can
be expressed as |
1〉 ∼ 0.75|yz〉 + 0.56|xy〉, as visually
confirmed by the charge density isosurface plot in the left
panel of Fig. 7. The same figure highlights the resulting orbital
ordering: coplanar states show an alternance of dominant |yz〉
and |xz〉 contributions, plus a change in sign for |xy〉, which
causes the lobes of |yz〉 (or |xz〉) to lean back and forth
toward the (x,y) plane (i.e., |
2〉 ∼ 0.75|xz〉 − 0.56|xy〉). In
contrast, states aligned along z only differ by the alternance of
|xy〉 sign, thus, |
3〉 ∼ 0.75|yz〉 − 0.56|xy〉 and |
4〉 ∼ 0.75
|xz〉 + 0.56|xy〉. Our results are in excellent agreement with
linear-dichroism x-ray absorption,43 which gives 0.8 and 0.6
for the coefficients of the two most occupied t2g orbitals,44

and with the LDA + DMFT results39 giving 0.78 and 0.62,
respectively.

Now, we move to analyze the results for LTO. Remarkable
differences from YTO emerge from the calculated DOS
(Fig. 8) and band structure (Fig. 6): the fundamental band
gap is slightly smaller for LTO, but still quite sizable (1.6 eV);
furthermore, the bands are flatter than in YTO (the occupied
3d states at VBT are only 0.4 eV wide) and the hybridization

195127-7



A. FILIPPETTI et al. PHYSICAL REVIEW B 84, 195127 (2011)

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

ΓX RR MΓ Γ Γ XM MM

YTO LTO

Γ X MR Γ M
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4

ΓX RR MΓ Γ Γ XM MM

YTO LTO

Γ X MR Γ M

FIG. 6. Band structure of FM YTO (left, up spin; right, down
spin) and AF-G LTO (right).

with O is even more marginal, although still visible. Even the
conduction bands in LTO appear flatter and, in fact, they are
separated in two groups by a gap of 0.2 eV. The magnetic
moment is 0.89 μB, similar to that of YTO.

The difference with YTO is also clearly borne out by
the diagonalized density matrix reported in Table III. By
looking at the cubic reference system, one can see that the eg

contribution is now almost vanishing (at variance with YTO)
and the occupied states have essentially a pure t2g character.
Moreover, the diversification of the t2g occupancies is much
reduced with respect to YTO as a result of the smaller rotations.
This state approximately shapes as cigar-shaped [111]-directed
lobes resulting from the nearly even t2g combination, as the
corresponding charge density isosurface plot of Fig. 7 (right

TABLE III. 3d orbital decomposition of the four occupied states
(one for each Ti) at the VBT of YTO and LTO. The coordinates
(x ′,y ′,z′) and (x,y,z) refer to the orthorhombic and conventional
cubic Cartesian axes, respectively, as indicated in Fig. 7.

|x ′y ′〉 |x ′z′〉 |y ′z′〉 |z′2〉 |x ′2 − y ′2〉
YTO
Ti 1 0.11 0.48 0.58 0.33 0.56
Ti 2 0.11 0.48 −0.58 −0.33 −0.56
Ti 3 −0.11 0.48 0.58 −0.33 −0.56
Ti 4 −0.11 0.48 −0.58 0.33 0.56
LTO
Ti 1 0.02 0.15 0.78 0.08 0.60
Ti 2 0.02 0.15 −0.78 −0.08 −0.60
Ti 3 −0.02 0.15 0.78 −0.08 −0.60
Ti 4 −0.02 0.15 −0.78 0.08 0.60

|xy〉 |xz〉 |yz〉 |z2〉 |x2 − y2〉
YTO
Ti 1 0.56 −0.07 0.75 0.33 0.11
Ti 2 −0.56 0.75 −0.07 −0.33 0.11
Ti 3 −0.56 −0.07 0.75 −0.33 −0.11
Ti 4 0.56 0.75 −0.07 0.33 −0.11
LTO
Ti 1 0.60 −0.45 0.66 0.08 0.02
Ti 2 −0.60 0.66 −0.45 −0.08 0.02
Ti 3 −0.60 −0.45 0.66 −0.08 −0.02
Ti 4 0.60 0.66 −0.45 0.08 −0.02

FIG. 7. (Color online) Charge density isosurface n± = ± 0.01
electrons/cm3) of the upmost occupied state for FM YTO (left) and
AF-G LTO (right). Red (light) and blue (dark) surfaces represent
spin majority (+) and minority (–) contributions, respectively. On
this scale, only Ti d contributions are visible (oxygen contributes
residually; see the DOS in Figs. 5 and 8). Both YTO and LTO are
orbital ordered, i.e., the four Ti atoms in the cell have the same
integrated charge, but different orbital distribution. The numbers label
each Ti relative to the orbital decomposition in Table III.

panel) confirms. Note that, if the t2g coefficients were exactly
the same, 
1 and 
2 as well as 
3 and 
4 would have been
identical and the resulting “cigars” in each plane would have
been exactly parallel to each other and pointing along [111].

Although the orbital charge distribution in YTO and LTO
is markedly different and causes much of their macroscopic
differences, the relative ordering is the same. In fact, also for
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FIG. 8. (Color online) Orbital-resolved DOS for AF G-type LTO
(right). The orbital labels are the same as in Fig. 5. La and OT states
are spin compensated due to the AF G-type symmetry. The La and
O DOS scale is magnified by more than one order of magnitude to
match the dominant Ti 3d DOS.
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LTO in the plane, there is a perfect alternance (i.e., chessboard-
like order) of the leading |xz〉 and |yz〉 contributions (this is
less evident than in YTO since the t2g coefficients are not as
different as those in YTO), plus a sign alternance for |xy〉.
Along z, only the sign alternance occurs. Our calculated t2g

coefficients for LTO (Table III) are again remarkably close to
the NMR values (0.56, 0.45, 0.69) from Ref. 30, as well as to
those calculated (0.6, 0.39, 0.69) by a model Hamiltonian in
Ref. 27.

The observed magnetic ground state is correctly predicted
for both materials (in the calculated structure discussed below).
For YTO, we found the FM state lower than both the AF-G and
AF-C phases by 10.1 and 8.3 meV/f.u., respectively. This is
in agreement with previous LDA + U results37 obtained with
U − J = 3.2 eV. For LTO, instead, we obtain that the AF-G
phase is lower than the FM and AF-A phases by 15.2 and
10.05 meV/f.u., respectively. We then fit our total energies to
a two-parameter nearest-neighbor Heisenberg Hamiltonian of
the form

H = −1

2

∑
i

[Jpl(Ŝi · Ŝi+x + Ŝi · Ŝi+y) + JzŜi · Ŝi+z], (21)

where i + x, i + y, and i + z indicate the nearest neighbors
of the ith atom, respectively, in the x, y, and z directions.
We calculate Jpl = 4.15 meV and Jz = 1.8 meV, respectively,
for the planar and orthogonal exchange interaction parameters
in YTO, while the same quantities for LTO are Jpl = −5.02
meV and Jz = −5.03 meV. These results nicely confirm the
conjectures derived by the analysis of the orbital ordering,
namely, that, while a remarkable anisotropy is present in YTO,
LTO is substantially isotropic.

We now come to discuss the structure of the two titanates.
Table IV compares the experimental and VPSIC calculated

TABLE IV. VPSIC-predicted structure of Pnma YTO and LTO
compared with experiments (in brackets): atomic positions expressed
in crystal coordinates (x/a, x/b, x/c) and main structural parameters
[Ti-O-Ti angles in the plane (θp) and along z (θz), Ti-O distances along
z (dz) and in-plane (shorter: dS, longer: dL)]. The cell parameters are
fixed to the experimental values a = 5.316 Å, b = 5.679 Å, c =
7.611 Å for YTO, and a = 5.640 Å, b = 5.584 Å, c = 7.896 Å for
LTO (Ref. 28).

x/a y/b z/c

Y 0.478 (0.479) 0.073 (0.073) 1/4
Ti 0 0 1/2
OI −0.139 (-0.121) −0.063 (−0.042) 1/4
OII 0.307 (0.309) 0.184 (0.190) 0.067 (0.058)
La 0.491 (0.493) 0.053 (0.043) 1/4
Ti 0 0 1/2
OI −0.080 (−0.081) −0.008 (−0.007) 1/4
OII 0.0288 (0.291) 0.204 (0.206) 0.042 (0.043)

dS dL dz

YTO 2.0 (2.02) 2.13 (2.08) 2.07 (2.02)
LTO 2.02 (2.03) 2.06 (2.05) 2.02 (2.03)

θp θz

YTO 140.41◦ (143.62◦) 133.30◦ (140.35◦)
LTO 153.82◦ (152.93◦) 154.30◦ (153.75◦)

FIG. 9. (Color online) Pnma structure of YTO (left) and LTO
(right). The cell parameters are fixed to experimental values, while
atomic positions are relaxed according to the VPSIC method. The
labels indicate Ti-O-Ti angles and Ti-O distances in plane (θp , dp)
and along z (θz, dz). The numerical values of the various structural
parameters are reported in Table IV.

internal atomic coordinates and the most important structural
parameters, namely, the Ti-O-Ti angles (θ ) and the Ti–O
distances (see also Fig. 9). The VPSIC calculated structure
is very close to the experimentally determined one for both
LTO and YTO (although, for the latter, the oxygen rotations
are slightly overemphasized along the z axis). There are
two types of in-plane Ti–O bonds, long (dL) and short (dS),
which alternate along both x and y (see Fig. 9), while along
z, there is only one, dz ∼ dS. This gives an easy rationale
for the chessboardlike Ti d ordering: on each Ti atom, the
occupied state prefers to lie along the longer Ti–O bond (thus,
alternatively |xz〉 and |xy〉 for dL parallel to x, or |yz〉 and
|xy〉 for dL parallel to y). For YTO, the difference between dL

and dS is quite substantial and give rises to a very pronounced
ordering, as seen in the analysis of the charge density. For
LTO, the dL and dS difference is much reduced and it results
in a planar chessboard ordering.

For both materials, the large GdFeO3-type distortion is
the main factor determining the observed structures and the
consequent splitting of the t2g triplet state. The Jahn-Teller
distortions are instead small (i.e., the properties along x, y, and
z are similar, on average, especially for LTO). Remarkably, our
method predicts these subtle but important details with great
accuracy.

An issue that still remains to be clarified is the large
difference between the calculated and the measured energy
gaps. This is particularly dramatic in LTO [over 1 eV against
around 0.1 eV (Ref. 35)] and it is a problem shared by
all ab initio methods. Such a problem, however, lies in a
confusion about the actual definition of the gap. In fact, the
VBT and CBB band energies are approximations to removal
and addition energies, and their difference estimates the onsite
Coulomb energy U. In contrast, the lowest-energy electronic
excitation measured for these true Mott-Hubbard insulators is
very likely an intrasite, intra-t2g excitation, which of course
does not involve any U. Inferring a small effective U from
the tiny measured (direct forbidden) gap35 of LaTiO3 is
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then a misinterpretation. According to our band structure,
U is in the order of approximately 3 eV, as expected for a
system of this kind. In fact, similar values have been used
in LDA + U and DMFT calculations. It is also not very
convincing to estimate the intrasite excitation energy from
the LDA calculated t2g (average) band splitting. The result
may be deemed plausible since excitation and addition or
removal energies become identical in the limit of vanishing
U (i.e., delocalized electrons). However, here a vanishing U is
an artifact of the LDA and not a true feature of the titanate.
A better grounded strategy, suggested in Ref. 38, constructs a
Hamiltonian for the excited state explicitly by projecting out
the electronic ground state (an approach beyond our present
methodological scope).

In summary, the VPSIC approach provides a coherent
understanding of YTO and LTO, of their relevant differences
in terms of structure, magnetism, orbital ordering, and charge
decomposition. The larger GdFeO3-type distortion of YTO
results in a larger Ti 3d-O 2p and t2g-eg mixing, larger
occupied 3d state bandwidth, and crucially different charge
density distribution around Ti. The wider the rotations, in
particular, the stronger is the destabilization of the AF
superexchange coupling, which otherwise would prevail in
a purely d1 t2g unrotated Pnma environment.

Note that the connection between structural and electronic
and magnetic properties would be completely reverted for
doped manganites, the chemistry of which is governed by the
eg orbitals. In that case, the cubic symmetry and the absence
of octahedral rotations work in favor of an eg-p hybridization.
Conversely, in titanates, the absence of octahedral rotations
implies vanishing p-d hybridization, pure t2g charge character,
and minimal t2g bandwidth.

Finally, it is worth noticing the good quantitative agreement
of the orbital ordering predicted by VPSIC with that obtained
in LDA + DMFT (Ref. 39). More in general, in a relevant
number of strong-correlated materials, the description by the
VPSIC approach (or its predecessor PSIC-ASIC) of electronic
and magnetic properties is found in very good agreement with
theories that include dynamical effects.

While the importance of dynamical corrections in the
general case is undeniable, we emphasize that a sound
quantitative estimate of the dynamical corrections can not
leave aside the error proper of the static limit with respect
to which they are evaluated. Thus, we may argue that the
role of dynamical effects may be overemphasized if the LDA,
or even LDA + U, are taken as reference static limit. On
the other hand, the VPSIC approach, which we regard as a
more accurate static limit than LDA or LDA + U, might even
consent a better evaluation of dynamical effects. To this aim, it
is obviously instrumental in the implementation of the VPSIC
+ DMFT approach, an achievement that indeed stands in our
future plans.

C. Magnetic manganites: CaMnO3

As a further example of the capability of the VPSIC ap-
proach in describing solids, we consider the prototypical AF G-
type insulator CaMnO3 (CMO) as representative of magnetic
manganites. The nominal Mn4+ d3 configuration triggers the
AF superexchange coupling via the fully polarized majority t2g

orbitals and an AF semicovalent exchange interaction through

the empty eg states. The t2g spherical charge distribution favors
a robust centrosymmetric octahedral structure, and the near
complete absence of rotations leaves the systems substantially
cubic (a small Pnma distortion is actually observed, but it will
not be considered here since it is immaterial for the magnetic
and electronic properties). According to the Goodenough-
Kanamori rules,45 the spin coupling is expected to be AF and
isotropic (G type). While this is indeed verified by a series
of experiments and calculations, a detailed determination of
the electronic and magnetic properties is less clear, and some
discrepancies between the interpretation of photoemission data
and band energies obtained with standard local functionals
make the system an interesting test case for our methods.
Indeed, from the theoretical side, CMO was studied in the
past by using LDA,46–50 GGA,51 LDA + U,47 GGA + U,52

unrestricted Hartree-Fock (HF),53,54 configuration interaction
(CI),54 and model (Hubbard) Hamiltonian.55 At the same
time, experimentally, a number of optical56–58 and transport59

measurements have been carried out.
The general electronic characteristics of CMO can be

illustrated with the help of our calculated DOS (Fig. 10) and
band energies (Fig. 11) for the observed AF G-type phase at
the experimental lattice parameter. All levels of theory (LDA,
VPSIC, and VPSIC0) describe the system as an insulator,
with a ∼7-eV-wide valence-band manifold of mixed O p and
majority Mn d t2g states. Very importantly, at variance with the
nominal configuration, a consistent amount of filled eg states
is present in all the three calculated DOS. At about 18 eV
below the p-d valence bands lies a narrow, mostly O 2s,
manifold. Above the fundamental gap, we find distinct groups
of majority eg , minority t2g , and minority eg states.

By looking closer at the DOS, important differences appear
in the LSDA and VPSIC and VPSIC0 descriptions. For both
computational schemes, the p-d valence manifold shows
a double-peaked structure, in agreement with x-ray photo-
electron spectroscopy (XPS) and ultraviolet photoemission
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FIG. 10. (Color online) Density of states of the most important
orbitals (Mn d and O p) of AF-G CMO calculated within LDA,
VPSIC, and VPSIC0. Light (red) shadowed areas are for Mn t2g and
O p orthogonal orbitals; solid black lines for Mn eg and O p ligand
orbitals.
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W = [1,1/2,0], L = [1/2,1/2,1/2], K = [1,1,0]. The dominant and
secondary orbital character for each group of bands is also indicated.

spectroscopy (UPS),56 but the orbital character of the peaks is
different: in LSDA, most of t2g spectral weight is right below
the VBT, while the tail region from –5 to –7 eV is mainly
O 2p. In contrast, the VPSIC and VPSIC0 recover a spectral
redistribution more in line with the experimental observations,
with prevalently O 2p states near VBT and the highest peak
of t2g states at the bottom of the valence bands. The LSDA
inaccuracy is clearly related to an insufficient t2g spin splitting,
which amounts to a mere 2.5 eV and leaves the majority t2g

much too high in the energy. In the VPSIC approach, the t2g

splitting increases up to about 9 eV, which is consistent with the
estimated U.55 Notably, a single energy parameter is actually
not enough to properly locate the t2g states since a consistent
portion thereof is also present in the 4-eV-wide region below
the VBT, where the p-d hybridization is strong.

In LSDA, we obtain an energy band gap of 0.42 eV. By
looking at the band picture (Fig. 11), the VBT runs flat between
X and W , while the CBB eg is flat between � and X, in
agreement with previous LDA calculations (see, e.g., Ref. 49).
In the VPSIC approach, the gap is now 1.01 eV, and both VBT
and CBB are flat between � and X. Above the energy gap,
LSDA describes the 2-eV-wide majority eg bands overlapped
with the very narrow minority t2g peak, whereas in VPSIC and
VPSIC0, the latter lies about 2 eV above the centroid of the eg .
Although we could not find in literature a clear determination
of the band-gap value, interband transitions extracted from
photoemission57 and optical conductivity measurements56

seem to be very consistent with the VPSIC calculations.
Specifically, the distance between O 2p and the majority
eg peaks (∼3 eV) and between O 2p and the minority eg

peak (∼6.5 eV) compare well with the respective values 3.07
and 6.49 eV extracted by Lorentz oscillator fitting of the
conductivity spectra (Ref. 56). Also quite consistent, albeit
with a slightly larger value (3.7 eV) for the O 2p-Mn eg

transition, is the valence-band spectra deduced in Ref. 57 by
fitting a CI cluster model to XPS data.
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FIG. 12. (Color online) Total energies per cell as a function of
the lattice parameter calculated by LSDA, VPSIC, and VPSIC0 for
the AF-G (solid symbols) and FM (open symbols) ordering. The
differences in total energy between the different methods have no
physical meaning, and the curves are arbitrarily translated vertically
for the sake of clarity.

Next, we move to examine the structural and magnetic
properties. Figure 12 reports the total energies calculated with
LSDA, VPSIC, and VPSIC0 as a function of lattice parameter
for both the AF-G and FM CMO phases. The values of the
equilibrium lattice are reported in Table V. The trend is similar
to that seen already in Sec. III A for wide-gap oxides: VPSIC
and VPSIC0, respectively, reduce and expand the volume with
respect to the LSDA. Here, however, the VPSIC correction
is tiny and both the LSDA and VPSIC approach give lattice
constants rather close (within 1%) to experiments. In contrast,
the VPSIC0 is much less satisfying and overestimates the
lattice constant by ∼2.5%.

Concerning the difference of AF-G and FM energies,
LSDA is known to overestimate the contribution of the AF
superexchange due to the excessive t2g-p hybridization in the
region near VBT (as discussed in Fig. 10), thus, it predicts a
strong AF-G stability (in agreement with previous40,46 LSDA
calculations) through the entire examined range of lattice
parameters. The VPSIC approach, in contrast, suggests a much
tighter competition: while at equilibrium, the AF-G phase is
stable, a moderate lattice stretching (a tensile strain of about
1%) is sufficient to reverse the magnetic order and stabilize

TABLE V. Equilibrium lattice parameter a0 (in Å) for the AF-
G and FM phases and exchange interaction J (in meV) for cubic
CaMnO3 calculated by LSDA, VPSIC, and VPSIC0 (experimental
values are reported for comparison). Jeq and Jex are values calculated
for equilibrium and experimental a0, respectively.

LSDA VPSIC VPSIC0 Expt.

a0 (AF-G) 3.75 3.74 3.83 3.734
a0 (FM) 3.77 3.76 3.88
Jex −37.0 −6.1 +6.5 −6.6 (Ref. 60)
Jeq −35.3 −5.7 +27.3
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FIG. 13. (Color online) Exchange-interaction parameter J calcu-
lated with LSDA, VPSIC, and VPSIC0; see text for the exact definition
of J .

the FM ground state. Finally, the VPSIC0 apparently performs
very poorly for magnetic coupling: it completely reverses the
LSDA description and predicts the FM as the stable phase in
a wide lattice constant range.

The magnetic competition can be better appreciated in
terms of exchange-interaction parameters J , plotted in Fig. 13.
For the sake of comparison, we have adopted the same
definition of J given in Ref. 54, which is based on the
single-parameter Heisenberg Hamiltonian

H = −J
∑
ij

êi · êj ,

where êi is the unit vector of the i-site spin direction. Values
calculated at equilibrium (Jeq) and experimental (Jex) lattice
constant are reported in Table V. We remark here the excellent
agreement of the VPSIC value of –6.1 meV with J = −6.6
meV extracted from the diagrammatic Rushbrooke-Wood
formula60 for the magnetic susceptibility corresponding to
the experimental Néel temperature TN = 130 K. The VPSIC
approach also compares fairly well with those calculated by
CI (8.1 meV) and HF (10.7 meV) in Ref. 54. This contrasts
with both the LSDA and VPSIC0 values, which largely deviate
from these estimates, albeit in opposite directions.

It is interesting to speculate on the remarkably different
magnetic behavior described by the three methods. This mainly
reflects the difference in the t2g spectral weight seen in Fig. 10,
specifically, the substantial DOS shift from the top to the
bottom of the p-d band manifold when moving from LSDA
to VPSIC and to VPSIC0. In order to quantify this effect, in
Fig. 14, we report the integrated charge for the majority t2g

and eg bands as described by the three methods. The eg charge
integrates to a remarkable 1/2 electron per orbital at the VBT
(in agreement with previous calculations52) and it contributes
to the FM coupling via eg-p hybridization according to
the Goodenough-Kanamori rules.45 On the t2g side, all the
methods describe filled (i.e., with a total integral of 3) t2g

DOS. However, if we evaluate the amount of t2g charge located
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FIG. 14. (Color online) Integrated DOS of t2g (green) and eg

(black) majority orbitals, normalized to their respective degeneracies
3 and 2. The DOS are also reported for clarity. The length of red
arrows indicate the amount of t2g charge without the lowest t2g peak.

in the upper part of the valence-band region, which does not
include the towering lower-end peak and mainly hybridizes
with oxygens (quantified in Fig. 14 by the vertical red arrows),
we find that this charge in LSDA is about 73%, in VPSIC
just 43%, and finally in VPSIC0 a mere 33% of the entire
majority t2g charge. Our interpretation is then the following:
when going from LDA to VPSIC to VPSIC0, the t2g spectral
weight is progressively transferred toward the lower end of
the valence band. Its hybridization with oxygen decreases and
so does the superexchange AF contribution (through t2g-p
π -type bonding). The eg charge distribution, instead, remains
substantially unchanged in the three methods, so that the FM
contribution increases as compared to AF superexchange from
weak in LDA to competitive in VPSIC to dominant in VPSIC0.

In summary, the VPSIC approach provides a very consistent
description of the electronic, structural, and magnetic proper-
ties of CMO. VPSIC calculated values compare well with the
experiments and with results of other beyond-local approaches,
i.e., the most obvious deficiencies of the LSDA are corrected.
This is not the case for VPSIC0. In fact, while it offers a band
spectrum substantially similar to that of the VPSIC approach,
it fails in the precise account of structural and magnetic
properties. Our study has revealed that subtle differences in
the electronic properties can result in visible errors in some
observable quantities. Specifically, a slightly narrower p-d
valence bandwidth and an excessive t2g localization toward the
lower end of the valence-band manifold can result in a 2%–3%
overestimation of the lattice constant and in an unreliable value
of the exchange-interaction parameter.

IV. RESULTS: MOLECULES

While the PSIC approach was originally formulated for ex-
tended solids (i.e., for periodic boundary conditions), it may be
just as useful for finite systems. Indeed, the full PZ-SIC is easy
and straightforward for isolated atoms, but for large molecules,
clusters, or complex structures such as molecular contacts, its
application may become cumbersome and expensive, when not
outright impossible. The PSIC approach provides a practical
and reliable alternative. The implementation within local
orbital basis set and pseudopotentials (ASIC), carried out in
Ref. 5 in the framework of the SIESTA code,6 can treat both
extended and finite systems on the same footing (of course,
in principle, the plane-wave implementation can be applied
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to finite systems via a supercell approach, albeit much less
efficiently). In the last few years, a series of works related
to molecules have been carried out by the ASIC approach
(Refs. 61–65) with typically satisfactory results (provided
that the relaxation parameter α is kept fixed to unity). The
VPSIC approach implemented in local orbital basis set (i.e.,
the variational generalization of the ASIC) is expected to yield
KS spectra largely similar, although not identical, to those
obtained with ASIC. Additionally, the performance of the
VPSIC energy functional [Eq. (1)] and the associated forces
[Eq. (19)] for equilibrium molecular geometries need to be
investigated.

In this section, we look at the VPSIC description of
the spectral and geometric properties of several molecules
selected mostly, but not exclusively, from the standard G2
set.66 Calculations are carried out using a development version
of the SIESTA code6 within which the VPSIC method was
implemented. Some details regarding the implementation
are given in Appendices C and D. For all of the atomic
species, standard norm-conserving pseudopotentials generated
by using the Troullier-Martins scheme67 are employed in-
cluding core corrections where necessary. Scalar relativistic
pseudopotentials are used for the period III elements. A
numerical double-zeta-polarized (DZP) basis set6 is employed
for all of the atomic species, and an energy shift of 50 meV
is used to set the cutoff radius for the pseudoatomic orbital
(PAO) basis functions. Geometry optimizations are performed
by using a conjugate gradients algorithm until all of the forces
are smaller than 0.01 eV/Å.

A. Equilibrium bond lengths

Table VI shows the equilibrium bond lengths obtained
within the VPSIC approach for selected bonds in several
gas phase molecules. The representative set chosen includes
molecules mainly built from I, II, and III period elements as
well as nonmagnetic transition metals. Furthermore, it includes
several species hosting different types of chemical bonds. Also
presented for comparison are the corresponding LSDA and
experimental bond lengths. We find that the calculated VPSIC
bond lengths are generally shorter than the corresponding
LSDA estimates. From column 5 in Table VI, we see that
the LSDA bond lengths are typically a few percent longer than
in experiments, while (see column 4 in Table VI) those of the
VPSIC are seen to be a few percent shorter. In columns 6 and
7, we show the absolute percentage error

δi
BL(X) =

∣∣Li(X) − L
expt
i

∣∣ × 100

L
expt
i

in the calculated bond lengths Li(X) relative to the experi-
mental ones L

expt
i for each of the molecular species i and X ∈

{VPSIC, LSDA}. The estimated mean absolute percentage
error over the test set

�BL(X) =
∑N

i=1 δi
BL(X)

N

comes out to be 1.84% in LSDA and 1.77% in VPSIC. We also
note further that, within the test set, the maximum percentage
error observed within VPSIC is ∼4% for the case of the Z–H
bond in ZnH and that for the majority of the molecules the error

is typically under 2.0%. Interestingly, we find that the VPSIC
considerably worsens over the LSDA bond lengths for single
covalent bonds between identical atoms (see, for instance,
C2H6, C4H8, C3H6, O3), while it significantly improves them
when the bond is either double (C2H4, CO, CO2, O2) or triple
(N2 and C2H2). For other bonds between nonidentical atoms,
the results are mixed.

In summary, as previously found for solids, also for
molecules the VPSIC yields structural properties of rather
similar quality to those calculated with the LSDA. In this case,
however, for most of the molecules investigated, we found the
VPSIC approach to overcorrect the LSDA, so that although
the errors are similar, they have the opposite signs.

B. Ionization potentials

As in the case of the ASIC method, the primary advantage
over LSDA afforded by the VPSIC method is expected to
lie in the systematic improvement of KS eigenvalue spectra
as approximate proxies for addition and removal energies.
The method is particularly relevant for DFT-based transport
theory, where an accurate description of the KS spectra68,69 is
important. In exact KS DFT, only the highest occupied orbital
eigenvalue (εHOMO) has a rigorous physical interpretation and
corresponds to the negative of the first ionization potential.70,71

In general, for an N electron system, the following equations
hold in exact KS DFT:

εHOMO(M) = −INfor(N − 1 < M � N ), (22)

εHOMO(M) = −ANfor(N < M � N + 1), (23)

where −IN and −AN are the ionization potential (IP) and
the electron affinity (EA), respectively. However, local and
semilocal functionals such as the LSDA and GGA are known
to perform poorly at satisfying the equations (22) and (23),
particularly for molecular systems. In the following, we
assess the mapping between electron removal or addition
energies and the KS spectrum obtained from the VPSIC
approach, also showing the corresponding LSDA results
for comparison. Furthermore, for both LSDA and VPSIC,
the molecular geometries used to estimate the IP and EA
are the corresponding equilibrium geometries in the neutral
configuration.

In Table VII and Fig. 15, we compare the experimental
IP for several molecules with the corresponding negative
εHOMO obtained by using either the LSDA or VPSIC approach.
It is clear that LSDA underestimates the removal energies
significantly in all the cases. In contrast, the mapping between
the experimental IP and -εHOMO from the VPSIC approach
is excellent. In this case, the mean absolute deviation from
experiment

�IP(X) =
∑M

i=1

∣∣εHOMO,i(X) + IPi
expt

∣∣
M

,

with (X = LSDA, VPSIC), is estimated to be 4.29 eV for LSDA
and 0.72 eV for VPSIC (M is the total number of molecules
in Table VII). For comparison, we have also included in
Fig. 15 results obtained with a fully self-consistent PZ-SIC
approach.72 Somewhat surprisingly, the VPSIC approximation
seems to produce better overall agreement with experiments
than the full PZ-SIC scheme, which is seen to overcorrect
the energy levels. This is a rather general feature of the
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TABLE VI. Calculated bond lengths of selected bonds from several molecules compared to experimental values. Both VPSIC and
LSDA bond lengths are shown. δBL in column 6 (7) denotes the absolute percentage difference between the calculated VPSIC (LSDA) and
experimental bond length.

Bond length (Å) δBL(%)

Molecule Bond VPSIC Experiment LSDA VPSIC LSDA

BCl3 B–Cl 1.748 1.742 1.754 0.349 0.706
CH4 C–H 1.081 1.087 1.121 0.567 3.090
C2H6 (ethane) C–C 1.478 1.536 1.524 3.751 0.776
C4H8 (cyclobutane) C–C 1.503 1.555 1.548 3.315 0.419
C3H6 (cyclopropane) C–C 1.471 1.501 1.519 1.986 1.168
O3 O–O 1.224 1.278 1.273 4.200 0.364
NaCl Na–Cl 2.317 2.361 2.336 1.883 1.039
SiH4 Si–H 1.431 1.480 1.518 3.344 2.594
SiCl4 Si–Cl 2.020 2.019 2.054 0.056 1.747
PH3 P–H 1.407 1.421 1.460 0.997 2.736
PF3 P–F 1.576 1.561 1.644 0.957 5.349
SH2 S–H 1.341 1.328 1.382 0.984 4.030
CuF Cu–F 1.763 1.745 1.735 1.009 0.548
ZnH Zn–H 1.527 1.595 1.629 4.260 2.130
C2H4 (ethylene) C = C 1.309 1.339 1.351 2.237 0.903
CO C = O 1.124 1.128 1.153 0.384 2.217
CO2 C = O 1.142 1.162 1.185 1.706 1.959
O2 O = O 1.188 1.210 1.227 1.793 1.388
N2 N≡N 1.086 1.098 1.119 1.077 1.924
C2H2 (acetylene) C≡C 1.196 1.203 1.234 0.566 2.605
C6H6 (benzene) C:C 1.371 1.397 1.411 1.871 0.985
�BL 1.77 1.84

PZ-SIC scheme, and it has been suggested that some additional
rescaling procedure is needed.73,74

C. Electron affinities and the HOMO-LUMO gap

In Hartree-Fock theory, Koopmans’ theorem76 implies that
the lowest unoccupied molecular orbital (LUMO) energy
(εLUMO) corresponds to the EA of the N electron system
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FIG. 15. (Color online) Experimental negative ionization poten-
tial IP compared to the calculated HOMO eigenvalues for molecules.
The experimental data are from Ref. 75, while the star symbol
represents full PZ-SIC calculations from Ref. 72.

TABLE VII. Experimental ionization potential (IP) compared to
the calculated negative HOMO eigenvalues for neutral molecules.
Columns 2 and 3 present the results from LSDA and VPSIC,
respectively. The experimental data are taken from Ref. 75.

-εHOMO (eV) IP (eV)

Molecule LSDA VPSIC Experiment

BCl3 7.49 11.90 11.62
CH4 9.38 14.58 13.60
C2H6 (ethane) 8.11 12.81 12.10
C4H8 (cyclobutane) 7.41 11.80 10.70
C3H6 (cyclopropane) 7.23 11.69 10.60
O3 7.66 13.57 12.73
NaCl 5.04 8.85 9.80
SiH4 8.50 13.75 12.30
SiCl4 7.97 12.46 12.06
PH3 6.84 10.96 10.59
PF3 8.32 12.96 12.30
SH2 6.09 10.77 10.50
CuF 5.53 11.56 10.90
C2H4 (ethylene) 6.85 10.91 10.68
CO 8.80 13.91 14.01
CO2 9.15 15.15 13.79
O2 6.74 13.55 12.30
N2 10.13 15.42 15.58
C2H2 (acetylene) 7.16 11.31 11.49
C6H6 (benzene) 6.63 10.51 9.23
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FIG. 16. (Color online) Experimental negative electron affinities
(−EA) compared to calculated HOMO eigenvalues of negative
radicals.

when electronic relaxation is neglected. No such physical
interpretation exists for the Kohn-Sham (εLUMO) in DFT and
so the EA is not directly accessible from the ground-state
spectrum of the N electron system. However, as Eq. (22)
indicates, the EA is, in principle, accessible from the ground-
state spectrum of the N + 1 − f (0 < f < 1) electron system
and, furthermore, it must be relaxation free through noninteger
occupation. Approximate functionals such as the LSDA and
GGA, however, perform rather poorly even in this regard as the
N + 1 electron state is often unbound with a positive eigen-
value. Therefore, in practice, electron affinities are usually
extracted either from more accurate total energy differences77

or by extrapolating them from LSDA calculations for the N

electron system.78 The failure of approximate functionals in
reproducing the spectra of anions has been traced for the largest
part to the SI error; SIC schemes are expected to perform better
in this regard.

In Table VIII, we compare the HOMO energies (denoted
as εHOMO

N+1 ) of several singly negatively charged molecules
with the experimental electron affinities of the corresponding
neutral species. We also report the LUMO energies for the
molecules, most of which are radicals, in their neutral ground
state (denoted as εLUMO

N ). Relaxed geometries of the neutral
molecule are used for both the neutral and charged cases.
We find that various −εHOMO

N+1 obtained from the VPSIC
approach once again map quite well onto the corresponding
experimental electron affinities in contrast to LSDA, which
yields unbounded states with positive εHOMO

N+1 for all the systems
considered. Over the set of molecules in Table VIII, the mean
absolute error with respect to experiment for the electron
affinities

�EA(X) =
∑N

i=1

∣∣εHOMO,i
N+1 (X) + EAi

expt

∣∣
N

(24)

(X = LSDA, VPSIC) stands at 4.67 and 0.54 eV for LSDA
and VPSIC, respectively. In Fig. 16, we present our data
together with εHOMO

N+1 as calculated using the PZ-SIC.72 For
the electron affinities as well, we see that the PZ-SIC seems to
systematically overcorrect the LSDA shortfall.

TABLE VIII. Calculated HOMO eigenvalues for singly nega-
tively charged molecules compared to the experimental negative
electron affinities (–EA). Columns 6, 7, and 8 present the LUMO
eigenvalues for the corresponding neutral species. Experimental
values for the electron affinities are taken from Ref. 72.

εHOMO
N+1 (eV) εLUMO

N (eV)

Molecule LSDA VPSIC Expt. −EA (eV) LSDA VPSIC

HC≡C− 1.79 −2.60 −2.97 −6.54 −7.59
CH2=CH− 4.13 −0.19 −0.67 −3.49 −5.07
HC≡CO− 2.09 −2.39 −2.34 −5.98 −8.08
CH− 3.80 −0.82 −1.24 −4.81 −7.15
CH−

3 4.73 −0.30 −0.08 −3.39 −3.41
CH3O− 3.52 −1.84 −1.57 −5.53 −6.15
CH3S− 2.68 −1.37 −1.87 0.3 −5.73
HC=O− 5.22 1.05 −0.31 −3.36 −6.86
CN− 1.42 −2.97 −3.86 −7.83 −10.82
CNO− 1.32 −3.58 −3.61 −0.62 −4.16
NH−

2 4.54 −0.77 −0.77 −4.98 −4.33
NO−

2 4.64 −0.93 −2.27 −5.02 −9.47
OF− 4.95 −2.22 −2.27 −2.16 −6.14
OH− 4.46 −1.52 −1.83 0.44 −1.86
PH−

2 2.94 −0.98 −1.27 −4.55 −4.99
S−

2 2.83 −0.01 −1.67 −4.5 −6.67
SH− 2.54 −1.65 −2.31 −0.17 −2.72
SiH−

3 2.72 −0.60 −1.41 −3.85 −5.38

We now discuss briefly the HOMO-LUMO gap in the
VPSIC approach. As it is apparent from columns 5 and 6
in Table VIII, the LUMO eigenvalues of the neutral species
differ substantially from the corresponding negative electron
affinities both within the LSDA and VPSIC approach. In
general, DFT LUMO states are expected to be lower than
–EA by an amount equal to the derivative discontinuity �xc

defined as

�xc = lim
f →0+

εHOMO
N+f − εLUMO

N , (25)

i.e., �xc is the discontinuity in the eigenvalue of the LUMO
state at N . Thus, the HOMO-LUMO gap is usually under-
estimated with respect to the true quasiparticle gap Eg =
IN − AN . In Table IX, we compare the HOMO-LUMO gaps
from LSDA and VPSIC calculated in the neutral configuration
for the molecular test set of Table VII. We see that, although
the VPSIC HOMO eigenvalues are generally significantly
lower than those of the corresponding LSDA (see Table VII),
the HOMO-LUMO gaps differ by a smaller extent. This is
because, in contrast to other methods, such as LSDA +
U (Ref. 79), wherein the occupied levels are pushed lower
and the unoccupied ones are pushed higher relative to the
LSDA spectrum, within the VPSIC approach, the entire
spectrum is lowered, with the occupied and empty levels
being shifted by different amounts depending upon their
orbital character. For instance, the mean absolute difference
between the LSDA and VPSIC HOMO-LUMO gaps for the
test set in Table IX comes out to be ∼2.52 eV, while the
correction to the HOMO levels alone with respect to LSDA
is around 4 eV. In general, the VPSIC method is expected to
open the HOMO-LUMO gap substantially in systems where
the occupied and unoccupied KS eigenstates have markedly
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TABLE IX. Calculated HOMO-LUMO gaps (Eg) of neutral
molecules from LSDA and VPSIC. δEg in column 4 represents the
difference between corresponding VPSIC and LSDA gaps.

Eg

Molecule LSDA VPSIC δEg

BCl3 4.84 6.76 1.92
C6H6 (benzene) 5.33 6.17 0.84
C2H2 (acetylene) 6.61 8.27 1.66
C2H4 (ethylene) 5.58 6.99 1.41
C2H6 (ethane) 9.03 11.64 2.61
CH4 10.63 13.79 3.16
CO 6.62 9.41 2.79
CO2 8.33 11.03 2.7
CuF 1.5 6.93 5.43
C4H8 (cyclobutane) 8.13 10.29 2.16
C3H6 (cyclopropane) 8.15 10.38 2.23
N2 7.97 10.27 2.3
NaCl 2.9 6.75 3.85
O2 2.16 5.55 3.39
O3 1.67 3.23 1.56
PF3 6.26 9.11 2.85
PH3 6.63 8.47 1.84
SH2 5.62 8.0 2.38
SiCl4 5.89 7.79 1.9
SiH4 8.64 12.01 3.37
TiO2 1.51 4.01 2.5

different atomic-orbital projections. Finally, it is worth noting
that, in contrast to explicitly orbital-dependent methods such as
PZ-SIC, the VPSIC approach does not exhibit the derivative
discontinuity at integer occupations. The eigenvalue of the
highest occupied orbital relaxes continuously across fractional
occupations; the range of eigenvalue relaxation is generally
much smaller than in LSDA.

In summary, as for the solids, also our results for molecules
appear very encouraging. In general, our approach formulated
in the VPSIC method preserves intact the already satisfactory
electronic structure of molecules calculated with ASIC. In
addition, the geometries are at least at the LSDA level,
and in many cases, even better. Although a much more
extensive analysis needs to be carried out to achieve a fully
quantitative benchmark, we can already conclude positively
on the capability of the VPSIC method to describe on the
same footing both structural and electronic properties of
molecules. Given the lightweight computational overheads
associated to the VPSIC method implemented in SIESTA, we
believe that our approach might become extremely attractive
for problems where one has to compute single-particle levels
for large systems. An example of this can be the problem of
determining the level alignment of molecules on surfaces or
electron transport in molecular junctions.

V. CONCLUSIONS

In conclusion, we have introduced the first-principles
VPSIC approach, a variational generalization of the method
formerly known as PSIC and ASIC. This is based on the idea of
removing the spurious self-interaction from the local density
functional energy. In the VPSIC approach, the self-interaction

is removed in an effective albeit approximate (i.e., orbitally
averaged) manner, which gives several advantages over the
full SI removal (applied, for example, in the PZ-SIC approach
or in related methods for extended systems). In particular,
the method conserves translational invariance (i.e., Bloch
theorem) in solids and the total energy is invariant under
unitary rotations of the occupied KS eigenfunction manifold.
The VPSIC approach emerges as applicable to a vast series of
systems (insulators and metals, magnetic and nonmagnetic,
extended or finite) with an overall satisfactory accuracy.
Furthermore, it is not more demanding than LDA and GGA
from a computational viewpoint.

We have implemented the method in two numerical
frameworks, namely, plane-wave basis set and ultrasoft pseu-
dopotentials, and local orbital basis set plus norm-conserving
pseudopotentials. The former scheme was applied here to ex-
tended systems (nonmagnetic oxides, magnetic titanates, and
magnetic manganites), the latter to a vast range of molecules. In
both cases, we have tested structural and electronic properties.
Overall, the performance of the VPSIC approach can be
summarized as follows: the predicted equilibrium structures
are substantially in the same range of accuracy than those
of the LDA and LSDA, with the VPSIC that on average
reduces the bond lengths predicted by LDA and LSDA. This
results to an average underestimate of the experimental lattice
constant by about 1% for bulk systems and by just less than
2% for the molecule bond lengths. It is possible that the
same approach built on top of the GGA might cure this
problem since GGA generally overestimates bond lengths,
and the SI removal would bring the final result closer to
experiment. In contrast, as for the case of the PSIC and ASIC
methods, the electronic properties are highly improved with
respect to LDA and GGA, with bulk band gaps and molecular
ionization potentials and electron affinities typically within
10% from the respective experimental determinations. The
overall high quality of these results encourages us to pursue
further explorations and applications of the VPSIC approach
for finite and extended systems alike.
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APPENDIX A: GENERALIZATION OF VPSIC FORMALISM
TO USPP IMPLEMENTATION

For large-sized magnetic and strong-correlated systems, the
ultrasoft pseudopotential (USPP) method15 associated to a

195127-16



VARIATIONAL PSEUDO-SELF-INTERACTION-CORRECTED . . . PHYSICAL REVIEW B 84, 195127 (2011)

plane-wave basis set is a formidable tool enabling the use
of cutoff energies as low as 30–40 Ryd even for “hard”
transition-metal ions such as Mn or Cu. The trade-off for
this computational efficiency is a significant complication of
the VPSIC formulas presented in Sec. II. In the following,
we provide the VPSIC formulation adapted to the USPP
formalism, which is our implementation of choice. For the
sake of brevity, here we focus on the additional parts specific
for the VPSIC approach, and refer the reader to Ref. 15 for
details of the USPP formalism.

In short, in the USPP approach, the atomic valence charge is
partitioned into outer ultrasoft (US) and intracore, augmented
(AU) contributions. Only the former changes self-consistently
with the surrounding chemical environment. Thus, the charge
associated to the Bloch states ψσ

nk appearing in Sec. II only
represents the very smooth US part. The Bloch states obey the
generalized orthonormality conditions〈

ψσ
nk

∣∣ Ŝ ∣∣ ψσ
n′k

〉 = δn,n′ , (A1)

where the overall matrix Ŝ is given by

Ŝ = Î +
∑
ab,ν

|βa,ν〉qab,ν〈βb,ν |. (A2)

Here, βa,ν(r) and qabν are, respectively, the atomic projector
functions and the augmented charges characteristic of the
USPP formalism, and (a,b) label atomic quantum numbers
(la ,ma) (qabμ 
= 0 only for la = lb). Consistently, the total
charge density is generalized as

n(r) =
∑
nkσ

〈
ψσ

nk

∣∣ Ŝ(r)
∣∣ψσ

nk

〉
, (A3)

Ŝ(r) = |r〉〈r| +
∑
ab,ν

|βa,ν〉Qabν(r)〈βb,ν |, (A4)

where Qabν(r) are augmented atomic charge densities. Within
this generalized framework, the VPSIC energy functional
described in Eq. (1) only includes the ultrasoft (US-SIC) part.
In order to recover the full VPSIC energy functional, a further
augmented contribution must be added:

EVPSIC-AU = −1

2

∑
abσν

Bσ
ab,ν P σ

ba,νEAU
ba,ν, (A5)

where Bσ
ab,ν is the matrix of Bloch state projections onto the

β-function basis

Bσ
ab,ν =

∑
nk

f σ
nk

〈
ψσ

nk

∣∣βaν〉〈βbν

∣∣ψσ
nk

〉
, (A6)

and EAU are the SI energy associated to the augmented atomic
charges Qab,ν(r):

EAU
ab,ν =

∫
dr Qab,ν(r) VHxc[naν(r),0]. (A7)

In radial symmetry, VHxc[naν,0] = VHxc[nbν,0] for ma 
=
mb. Notice that we use different indices for the USPP projector
(a, b) and for the SI projector (i, j ) since the two basis sets
are conceptually and practically different. The latter is built on
a minimal set of atomic orbitals and, to be physically sound,
it must be associated to bound atomic states. In contrast, in
order to improve the USPP transferability, it is customary to

include in the (a,b) matrix more than one state per angular
moment (typically, the bound atomic state plus one unbound
state relative to some diagnostic energy reference). This
difference introduces some ambiguities in Eq. (A7) relative
to the definition of VHxc[naν,0] and Pabν . The ambiguity can
be solved by associating the same atomic VHxc (relative to
the bound state) to all the beta projectors with same angular
momentum la . Another possibility is that of rewriting the
VPSIC-AU energy as

EVPSIC-AU[{ψ}] = −1

2

∑
ijνσ

P σ
ijν P σ

jiν εAU
iν , (A8)

where

εAU
iν =

∑
ab

〈φiν | βaν 〉 EAU
ab,ν 〈βbν | φiν 〉 (A9)

is just the augmented-only SI energy relative to the atomic
state i at full occupancy and can be directly calculated in the
atom. The use of the simplified Eq. (A8) bypasses altogether
the explicit presence of the augmented charges, thus, greatly
simplifying the VPSIC AU energy functional calculation.
Since our many test cases reveal that Eqs. (A5) and (A8)
give indeed very similar results, we decide to adopt the latter
as standard choice. Then, Eq. (A8) brings a corresponding
contribution to the VPSIC KS equations

∂EVPSIC-AU

∂ψ∗
nkσ

= −
∑
ijν

P σ
ijν

∂P σ
jiν

∂ψ∗
nkσ

εAU
jν . (A10)

Finally, the orbital occupations defined in Eq. (2) must be
also generalized as

P σ
ijν =

∑
nk

f σ
nk

〈
ψσ

nk

∣∣φ̃iν

〉 〈φ̃jν

∣∣ψσ
nk

〉
, (A11)

where the ultrasoft atomic orbitals φiν have been replaced by

|φ̃iν〉 =
∑
i ′ν ′

S
−1/2
i ′ν ′,iν |Ŝφi ′ν ′ 〉, (A12)

with Ŝ given in Eq. (A2). Thus, we have

|Ŝφiν〉 = |φiν〉 +
∑
ab,μ

|βaμ〉qab,μ〈βbμ|φiν〉, (A13)

and

Siν,i ′ν ′ = 〈φiν | Ŝ | φi ′ν ′ 〉 (A14)

is the overlap matrix in the atomic-orbital basis set. By
construction, this is Hermitian and also positive defined, so
its square-root matrix can always be defined in the following,
unique way: Since (dropping indexes for clarity) [Ŝ−1/2,Ŝ] =
0,Ŝ can be diagonalized in the (i,j ) subspace, and from its
eigenvalues λk , we have S

−1/2
kk′ = δkk′ λ

−1/2
k . The latter is finally

rotated back to the original (i,j ) basis set to obtain S
−1/2
ij .

The replacement of simple atomic-site-centered φiν orbitals
with the φ̃i orbitals given by Eq. (A12) (known as81 Löwdin
orthonormalization) is required by the necessity to enforce,
at any {R}, the orthonormality conditions 〈φ̃iν |φ̃jν ′ 〉 = δij δνν ′

and, in turn, the correct normalization of the orbital occupation
matrix defined in Eq. (A11). Upon diagonalization, 0 � P σ

iiν �
1 and

∑
iνσ P σ

iiν = N , with N the total number of electrons in
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the cell. These constraints are essential to the interpretation of
P σ

iiν as physically sound orbital occupancy.
In contrast, the Löwdin renormalization implies a remark-

able complication in the formulation of the atomic forces since
it is clear from Eqs. (A12) and (A14) that φ̃iν is not simply
centered on a single atomic site, but includes contributions
from the overlap with all other atomic orbitals φjμ as well as
beta functions βaμ of the cell. Since the forces formulation in
the case of Löwdin-normalized orbitals may be useful even in
other methodological contexts (e.g., in the LDA + U method,
the Hamiltonian of which is also written in terms of orbital
occupancies), we dedicate the next section to describe it in
detail.

APPENDIX B: FORCES FORMULATION WITHIN PLANE
WAVES AND USPP

In the case of USPP formalism, the forces expression given
in Eq. (19) [or Eq. (20) if the simplified approach is considered]
must be generalized in order to include the contribution
generated by the additional AU energy of Eq. (A8):

−∂EAU[{ψ}]
∂Rν

=
∑

ij,nkσ

f σ
nk

{
P σ

ijνε
AU
jν

〈
ψσ

nk

∣∣∣∣∂φj,ν

∂Rν

〉〈
φi,ν

∣∣ψσ
nk

〉 + c.c.

}
.

(B1)

When using a plane-wave basis set, the implementation of
Eqs. (19), (20), or (B1) is rather straightforward except for
one ingredient, which requires attention: the atomic-orbital
derivative. The simplest case is that of atomic orbitals that
remain centered on the atomic positions (i.e., orbitals that
simply translate along with their reference atom displacement).
In this case, the force on a given atom Rν only depends on the
change of the orbitals sited on ν, and the orbital derivative is
easily calculated as

∂

∂Rν

〈k + G | φiν〉 = ∂

∂Rν

e−i(k+G)·Rν 〈k + G | φi0〉
= −i (k + G) 〈k + G | φiν〉, (B2)

where, clearly, φiν = φiν(r − Rν) and φi0 = φi(r). However, as
discussed in the previous section, orbitals φiν must be replaced
by φ̃iν , and the forces equation generalized accordingly to

− ∂EVPSIC[{ψ}]
∂Rν

= FLSD
ν

+ 1

2

∑
ij,nkσ

f σ
nk

{〈
ψσ

nk

∣∣∣∣∂γi,ν

∂Rν

〉
Cij 〈 γj,ν |ψσ

nk〉P σ
jiν + c.c.

}

+ 1

2

∑
ijμ,nkσ

f σ
nk

{
ESI

ijσμ

〈
ψσ

nk

∣∣∣∣∂φ̃i,μ

∂Rν

〉
〈 φ̃j,μ|ψσ

nk〉 + c.c.

}

+
∑

ijμnkσ

f σ
nk

{
P σ

ijμεAU
jμ

〈
ψσ

nk

∣∣∣∣∂φ̃jμ

∂Rν

〉
〈 φ̃iμ|ψσ

nk〉 + c.c.

}
.

(B3)

Here, the first two terms account for the US contribu-
tion and the third for the AU part. The presence of the

Löwdin-normalized orbitals brings one more sum over the
atomic positions in the second and third terms since now the
displacement of one single atom in Rν changes, in principle,
all the orbitals, not just those sited on Rν . The Löwdin orbital
derivatives gives〈

ψnk

∣∣∣∣ ∂φ̃jμ

∂Rν

〉
= S

−1/2
j ′μ′,jμ

〈
ψnk

∣∣∣∣ ∂Ŝφj ′μ′

∂Rν

〉
+ ∂S

−1/2
j ′μ′,jμ

∂Rν

〈ψnk | Ŝφj ′μ′ 〉 (B4)

(where sum over repeated indices is understood).
Let us start by considering the first term〈
ψnk

∣∣∣∣∂Ŝφj ′μ′

∂Rν

〉
=

〈
ψnk|Ŝ

∣∣∣∣∂φj ′μ′

∂Rν

〉
+

〈
ψnk

∣∣∣∣ ∂Ŝ

∂Rν

∣∣∣∣φj ′μ′

〉
=

[〈
ψnk

∣∣∣∣∂φj ′μ′

∂Rν

〉
+

∑
abν ′

〈ψnk|βaν ′ 〉qabν ′

〈
βbν ′

∣∣∣∣∂φj ′μ′

∂Rν

〉]
δμ′ν

+
∑
abν ′

[〈
ψnk

∣∣∣∣∂βaν ′

∂Rν

〉
qabν ′ 〈βbν ′ |φj ′μ′ 〉

+ 〈ψnk|βaν ′ 〉qabν ′

〈
∂βbν ′

∂Rν

∣∣∣∣φj ′μ′

〉]
δν ′ν . (B5)

Here, the first term in square brackets selects the contribution
to the derivative due to the atomic orbital φj ′μ′ displacement,
while the second term selects the contribution due to the
β-functions displacement. Despite the apparent complexity,
Eq. (B5) is rather straightforward to calculate in plane waves
since all these derivatives are easily obtained through Eq. (B2).

The calculation of the second term in Eq. (B5), which
includes an uncommon square-root-matrix derivative, is more
involved. We can proceed as follows (dropping the atomic
indices for brevity): from S−1/2 S−1/2 = S−1, we obtain

∂S−1

∂R
= ∂S−1/2

∂R
S−1/2 + S−1/2 ∂S−1/2

∂R
. (B6)

The left-hand side of Eq. (B6) can be transformed by using the
expression

∂S−1

∂R
= S−1 ∂S

∂R
S−1, (B7)

where S−1 can be easily obtained from S (just like S−1/2, as
explained in the previous section). Then, we need to calculate
the overlap matrix derivative (reintroducing atomic indices) as

∂Siμ,i ′μ′

∂Rν

=
〈

∂φiμ

∂Rν

∣∣∣∣ Ŝ∣∣∣∣ φi ′μ′

〉
+

〈
φiμ

∣∣∣∣ Ŝ∣∣∣∣ ∂φi ′μ′

∂Rν

〉
+

〈
φiμ

∣∣∣∣ ∂Ŝ

∂Rν

∣∣∣∣φi ′μ′

〉
. (B8)

This expression is clearly similar to that in Eq. (B5) and we can
give it as understood. Therefore, the matrix on the left-hand
side in Eq. (B6) is determined. Now, by looking at the right
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side, we notice that, if S−1/2 commutes with its derivative, the
latter is easily extracted as

∂S−1/2

∂R
= 1

2

∂S−1

∂R
S−1/2. (B9)

However, they do not generally commute (except when the
Hermitian matrix S−1/2 is also real) and Eq. (B9) does not
hold. Thus, we need to solve Eq. (B6), which is nothing but a
Lyapunov matrix equation of the form B = XA + AX, where
the known terms are A = S−1/2 and B = dS−1/dR, and X =
dS−1/2/dR. The general Lyapunov equation can be solved
exactly, but for the specific values of A and B, we can apply the
simple strategy proposed in Ref. 80, which we repeat here to
the benefit of the reader: we can rewrite A = CV C+, where V

and C can be easily determined as the diagonalized matrix and
the basis change matrix; then, we can multiply both members
of Eq. (B6) by C+ on the left-hand side and C on the right-hand
side:

C+BC = C+AXC + C+XAC = V C+XC + C+XCV.

(B10)

By introducing R = C+BC and Y = C+XC, Eq. (B10) can
be rewritten as R = V Y + YV , which is now trivially solved,
given the diagonal character of V :

Yij = Rij

Vii + Vjj

. (B11)

Once Y is determined, the unknown X can be finally obtained
as X = C Y C+.

APPENDIX C: VPSIC FORMALISM WITHIN
ATOMIC-ORBITALS BASIS SET

As the VPSIC correction is based on a projection of the
occupied KS orbital manifold onto a localized subspace of
atomic orbitals, the formalism naturally lends itself to an
implementation within a localized orbital basis set framework.
Here, we provide some details of the current VPSIC imple-
mentation within the SIESTA code.6 The first step in setting
up the VPSIC algorithm consists in constructing a minimal
set of atomic orbitals {φi,ν} and the associated projectors
{γi,ν}, which will be used to calculate the occupation numbers
[Eq. (2)] and the effective SI energies [Eq. (3)]. Within SIESTA,
the functions φi,ν are numerical pseudoatomic orbitals with a
finite range, constructed as solutions of the atomic Schrödinger
equation with an additional confining potential at the cutoff
radius rc.6 The finite extent of the functions φi,ν ensures that
the corresponding SIC projectors γi,ν [Eq. (4)] also vanish
beyond rc. In the current implementation, the SIC potential
VHxc[ρν,li (r); 1] in Eq. (4) is obtained from a full PZ-SIC-
LSDA (Ref. 7) calculation for a free atom and imported into
SIESTA via a pseudopotential. An appropriate choice for the
cutoff radius rc is then dictated by the requirement that the
expectation value

δεSIC
i,ν =

∫
dr φli ,mi

(r) VHxc[ρν,li (r); 1] φli ,mi
(r) (C1)

reproduces the PZ-SIC-LSDA correction of the corresponding
orbital in the free atom to within a small tolerance. Simultane-
ously, the cutoff should be reasonably short so as not to change

the connectivity of the matrix elements of the pseudoatomic
orbital (PAO) Hamiltonian. Therefore, in practice, we set the
cutoff radius for the projection orbitals on a given atom φi,ν

to be either equal to the largest among the cutoff radii of the
PAO basis set for that particular atom (typically, the first ζ of
the lowest angular momentum) or, if shorter, to the radius at
which δεSIC

i,ν < 0.1 mRy. For typical cutoff radii (6 to 9 Bohr),
we find that the atomic SIC-LSDA eigenvalues are reproduced
to within 1 to 5 mRy for the most extended shells and to
within 0.1 mRy for more confined ones. Thus, δεSIC

i,ν is rather
well converged already for cutoff radii defined by PAO energy
shifts6 of around 20 mRy.

By using the orbitals φi,ν and the projectors {γi,ν}, the
occupation numbers pσ

ijν and the effective SI energies εSI
ijσν for

the extended system can be calculated. Different choices are
possible for the projection operators that yield the occupation
numbers pσ

ijν . In our implementation, we use the so-called
dual projection operator given by

P̂ σ
ijν = 1

2
{|φ̃i,ν〉〈φj,ν | + |φi,ν〉〈φ̃j,ν |}, (C2)

where |φ̃i,ν〉 is the dual orbital of |φi,ν〉 and is given by

|φ̃i,ν〉 =
∑
j,μ

S−1
iν,jμ|φj,μ〉, (C3)

with S−1 being the inverse of the overlap matrix over the
nonorthogonal set {φi,ν}:

Siν,jμ = 〈φi,ν |φj,μ〉. (C4)

The dual orbitals satisfy the orthogonality relation

〈φ̃i,ν |φj,μ〉 = δiν,jμ. (C5)

With this choice for the occupation number operator, the matrix
elements of the VPSIC potential between two basis functions
α, β become

V SIC
αβσ = 1

2

∑
ijν

εSI
ijσν

{
1

2
[〈α|φ̃i,ν〉〈φj,ν |β〉

+ 〈α|φi,ν〉〈φ̃j,ν |β〉]
}
+pσ

ijν〈α|γi,ν〉Cijν〈γj,ν |β〉. (C6)

The expression for the VPSIC contribution to the atomic
forces also involves two-center-type integrals and their
derivatives. By setting �α,iν = 〈α|φi,ν〉, �̃α,iν = 〈α|φ̃i,ν〉, and
Gα,iν = 〈α|γi,ν〉, we have

FSIC
μ = −∂ESIC[{ψ}]

∂Rμ

= 1

2

∑
ijνσ

εSI
ijνσ

∂pσ
ijν

∂Rμ

+ pσ
ijν

∂εSI
ijνσ

∂Rμ

, (C7)

with
∂pσ

ijν

∂Rμ

= 1

2

∑
αβ

∂ρσ
βα

∂Rμ

[�̃α,iν�β,jν + �α,iν�̃β,jν]

+ ρσ
βα

[
∂�̃α,iν

∂Rμ

�β,jν + �̃α,iν

∂�β,jν

∂Rμ

+ ∂�α,iν

∂Rμ

�̃β,jν + �α,iν

∂�̃β,jν

∂Rμ

]
(C8)
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and

∂εSI
ijνσ

∂Rμ

=
∑
αβ

∂ρσ
βα

∂Rμ

Gα,iνCijνGβ,jν

+ ρσ
βα

[
∂Gα,iν

∂Rμ

CijνGβ,jν + Gα,iνCijν

∂Gβ,jν

∂Rμ

]
,

(C9)

where the sum is over the SIESTA basis functions α, β, and ρσ
βα

is the density matrix given by

ρσ
βα =

∑
nk

f σ
nk

〈
β
∣∣ψσ

nk

〉〈
ψσ

nk

∣∣α〉
. (C10)

Quantities of the type ∂�α,iν

∂Rμ
and ∂Gα,iν

∂Rμ
are easily calculated

as derivatives of two-center integrals as they vanish unless one
of the functions |α〉 or |φi,ν〉 is centered on the atom at Rμ.
However, the dual orbitals |φ̃i,ν〉 are not simple atom-centered

functions, and derivatives of the type ∂�̃α,iν

∂Rμ
can be nonzero even

when neither |α〉 nor |φi,ν〉 is centered on atom μ. These may,
in principle, be evaluated as follows. We start by expanding
the matrix element between a SIESTA basis function |α〉 and a
projector function |φi,ν〉 by inserting the identity operator in
the space of projector functions

〈α|φi,ν〉 =
∑
μ,j

〈α|φ̃j,μ〉〈φj,μ|φi,ν〉. (C11)

The derivative of this expression with respect to RI where I

is any atom index is

∂

∂RI

〈α|φi,ν〉 =
∑
μ,j

∂〈α|φ̃j,μ〉
∂RI

〈φj,μ|φi,ν〉

+ 〈α|φ̃j,μ〉∂〈φj,μ|φi,ν〉
∂RI

. (C12)

A similar equation can be written for all of the matrix
elements in the overlap matrix � of basis functions with
projector functions �α,iν = 〈α|φi,ν〉 so that the above equation
is equivalent to the matrix equation

∇RI
� = (∇RI

�̃) · S + �̃ · (∇RI
S), (C13)

where in �̃α,jμ = 〈α|φ̃j,μ〉 and S is the overlap matrix in
the space of the projector functions as defined in Eq. (C4).

The required derivatives involving the dual orbitals ∂〈α|φ̃j,μ〉
∂RI

in

Eq. (C12) are the elements of ∇RI
�̃, which can be solved for

as

∇RI
Ũ = [∇RI

U − Ũ · (∇RI
S
)] · S−1. (C14)

A corresponding set of equations can be written down involv-
ing the derivatives of the matrix elements Wiν,α = 〈φi,ν |α〉 and
W̃iν,α = 〈φ̃i,ν |α〉 with ∇RI

W̃ being given by

∇RI
W̃ = S−1 · [∇RI

W − (∇RI
S
) · W̃

]
. (C15)

Equations (C14) and (C15) can be readily evaluated as all
the derivatives appearing on the right-hand side are simple two-
center integrals and, furthermore, S−1 is well defined since S is
a square matrix and positive definite. However, this additional
linear algebra required to handle the dual orbitals |φ̃i,ν〉 is
rather cumbersome as Eqs. (C14) and (C15) need to be solved

separately for each atom in the system. In order to avoid these
additional computational overheads in estimating the forces,
one may in practice adopt a slightly different approach for
calculating the VPSIC orbital occupation numbers within the
framework of a localized orbital basis. This is described in
Appendix D.

APPENDIX D: SIMPLIFIED VPSIC ORBITAL
OCCUPATION SCHEME FOR LCAO BASIS SETS

We take advantage of the Mülliken orbital population de-
composition of the electronic charge density readily available
in SIESTA6 and define the VPSIC occupation number pσ

ijν as
a sum over the Mülliken occupations of the underlying local
orbital basis set. Since SIESTA employs a multiple-ζ numerical
basis set,6 it is possible to define a mapping between a VPSIC
projector on an atom and basis orbitals on the same atom
enumerated by their ζ index. For instance, on any atom, a
VPSIC projector function |φi,ν〉, with the index i specifying
cumulatively the (n, l, m) quantum numbers, can be mapped
to all of the basis functions on the atom with the same (n, l, m)
quantum numbers, but with different ζ indices. Thus, in the
case of a single-ζ basis being employed, there is a one-to-one
correspondence between the VPSIC projector functions and
the orbitals in the basis set. Within this scheme, polarization
orbitals in the basis set are treated simply as additional ζ

functions of higher-l quantum number. Therefore, all basis
functions corresponding to a given projector function |φi,ν〉
may be represented by attaching an additional multiplicity
index ζ as |ϕiζν〉. The VPSIC occupation numbers are then
given by

pσ
ijν =

∑
ζ

pσ
ij,ζ,ν = 1

2

∑
α

∑
ζ

(
ρσ

iζν,αSα,jζν

+ Siζν,αρσ
α,jζν

)
, (D1)

where pσ
ij,ζ,ν is the overlap occupation number for the pair

of basis functions |ϕiζν〉 and |ϕjζν〉. The sum over the index
α represents an unrestricted summation over all of the basis
functions in the calculation. The terms ρσ

iζν,α and Siζν,α are,
respectively, the spin density matrix and the overlap matrix
elements between basis functions |ϕiζν〉 and |α〉. By defining
the VPSIC occupation numbers in this way, we avoid having
to deal with the dual orbitals [see Eq. (C3)] of the projector
functions. Furthermore, the occupation numbers defined in
Eq. (D1) satisfy the sum rule∑

iν,σ

pσ
iiν = N, (D2)

i.e., the diagonal occupations pσ
iiν sum to the total number

of electrons N in the system. The VPSIC forces follow once
again from Eq. (C7), but with

∂pσ
ijν

∂Rμ

= 1

2

∑
αζ

{
∂ρσ

iζν,α

∂Rμ

Sα,jζν + ρσ
iζν,α

∂Sα,jζν

∂Rμ

+ ∂Siζν,α

∂Rμ

ρσ
α,jζν + Siζν,α

∂ρσ
α,jζν

∂Rμ

}
. (D3)

The terms such as
∂ρσ

iζν,α

∂Rμ
, involving the derivatives of the

density matrix, are treated separately, being incorporated into
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the orthogonality force and stress contributions.6 In contrast,
the derivatives of the overlap matrix with respect to atomic
positions ∂Siζν,α

∂Rμ
are readily available in Ref. 6. We note that

results obtained by adopting Eq. (D1) to define the occupation
numbers are very similar to those obtained by using the original
definition of Eq. (2).
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O. Sinanöglu (Academic, New York, 1965); I. Mayer, Int. J.
Quantum Chem. 90, 63 (2002).

195127-22

http://dx.doi.org/10.1103/PhysRevB.58.3755
http://dx.doi.org/10.1103/PhysRevB.58.3755
http://dx.doi.org/10.1103/PhysRevB.59.8784
http://dx.doi.org/10.1103/PhysRevB.59.8784
http://dx.doi.org/10.1103/PhysRevB.53.14020
http://dx.doi.org/10.1080/00268975800100321
http://dx.doi.org/10.1103/PhysRevLett.99.056801
http://dx.doi.org/10.1103/PhysRevB.77.121204
http://dx.doi.org/10.1103/PhysRevB.77.121204
http://dx.doi.org/10.1103/PhysRevB.77.155402
http://dx.doi.org/10.1103/PhysRevB.81.235407
http://dx.doi.org/10.1103/PhysRevB.81.235407
http://dx.doi.org/10.1103/PhysRevLett.107.047201
http://dx.doi.org/10.1103/PhysRevLett.107.047201
http://dx.doi.org/10.1063/1.473182
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevLett.95.146402
http://dx.doi.org/10.1103/PhysRevLett.95.146402
http://dx.doi.org/10.1103/PhysRevB.73.085414
http://dx.doi.org/10.1038/nmat1349
http://dx.doi.org/10.1038/nmat1349
http://dx.doi.org/10.1103/PhysRevB.18.7165
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.49.1691
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1063/1.1897378
http://dx.doi.org/10.1063/1.1897378
http://dx.doi.org/10.1063/1.2176608
http://dx.doi.org/10.1063/1.2204599
http://dx.doi.org/10.1063/1.2204599
http://srdata.nist.gov/cccbdb/default.html
http://dx.doi.org/10.1016/S0031-8914(34)90011-2
http://dx.doi.org/10.1088/0022-3700/2/12/313
http://dx.doi.org/10.1088/0022-3700/2/12/313
http://dx.doi.org/10.1103/PhysRevA.57.914
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1088/0953-8984/9/4/002
http://dx.doi.org/10.1063/1.478447
http://dx.doi.org/10.1063/1.1747632
http://dx.doi.org/10.1103/PhysRev.105.102
http://dx.doi.org/10.1002/qua.981
http://dx.doi.org/10.1002/qua.981

