
Supplementary Material to:

Exploration of Empirical-Bayes Hierarchical Modelling for the Analysis of

Genome-Wide Association Study Data

Elizabeth A. Heron†1 Colm O’Dushlaine† Ricardo Segurado† Louise Gallagher† Michael Gill‡

† Neuropsychiatric Genetics Research Group,

Dept. of Psychiatry, Trinity College Dublin,

Trinity Centre for Health Sciences, James’s St.,

Dublin 8, Ireland.

1 Mixture Model and Bayesian Model Interpretations

Combining Equations 2.1 and 2.2 (Main Text), we can consider the empirical-Bayes hierar-

chical model as a mixed model with both fixed and random effects in the frequentist setting

as given by:

logit(pmi) = αm + ZmγXmi + Xmiτ
2tmm,

where ZmγXmi would be considered a fixed effect and Xmiτ
2tmm a random effect. Alterna-

tively, this model may be viewed in the Bayesian framework, where the posterior distribution

for the unknown parameters given the data is given by:
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, which is the second-

level regression (see Equation 2.2 (Main Text)) plays the role of an informative prior distribu-

tion on the unknown effect size parameters β. The term
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likelihood with the remaining terms, π(.)’s, being prior distributions on the other unknown

parameters. In this context τ2 and {γk} also have prior distributions as they are also unknown

parameters. A fully Bayesian approach would allow for posterior distributional estimates of

all the unknown parameters of the model. For large numbers of markers, estimating the

unknown parameters of the model would not be feasible due to the high dimensionality and

complexity of the resulting model and hence empirical-Bayes approaches have been devel-

oped. Presenting the full Bayesian model here helps to clarify the role played by the various

components of the model.

2 Empirical-Bayes Shrinkage Factors

Starting with γ, a weighted least squares estimator is given by:

γ̂ = (ZT DZ)−1ZT Dβ̂, (1)

where D is the diagonal matrix of weights D = Diag(w1, . . . , wM ), wm = (Vm + τ̂2)−1,

Vm = SE(β̂m)2. An approximately unbiased estimator of τ2, the second-level variance, is

given by:

τ̂2 =

∑M
m=1 wm{(M/(M − K))(β̂m − ZT

mγ̂)2 − Vm}
∑M

m=1 wm

. (2)

The process continues by iterating over Equations 1 and 2 until convergence is reached. An

arbitrary initial guess is chosen for τ̂2. If τ̂2 becomes negative over the course of the iterations

it is forced to be non-negative (τ̂2 ≥ 0). The shrinkage factor for each marker is then given

by:

B̂m = ((M − K − 2)/(M − K))Vmwm.

For the approximate empirical-Bayes confidence intervals the square of the standard error

is given by (Morris (1983)):

s2
m = Vm[1 − ((M − k̂m)/M)B̂m] + vm(β̂m − ZT

mγ̂)2, (3)

where k̂m = Mwm[Z(ZT DZ)−1ZT ]mm and vm = (2/(M − K − 2))B̂2
m(V̄ + τ̂2)/(Vm + τ̂2),

which is an approximation for the variance of B̂m and the average variance is given by:

V̄ = (
∑

wmVm)/
∑

wm. Thus a 95% approximate confidence interval for the empirical-Bayes

estimate of the logarithm of the odds ratio is given by:

β̂m;EB ± 1.96sm. (4)

For further details see Morris (1983).
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3 Simulation Strategy

To simulate case-control data for the empirical-Bayes hierarchical model we begin by fixing

the number of cases and controls to be N1 and N0, respectively. Also the number of markers

(SNPs), M , is set. We then generate data by starting at the top level of the hierarchical

model specified in Equation 2.2 (Main Text). The additional genotypic covariate information

summarised in the matrix Z is simulated as either independent binary or multinomial variates.

We note that in real experimental covariate data, many of the entries in Z would be zero and

we try to mimic this with the choice of parameters for either the Binomial or Multinomial

distributions from which we simulate. We choose one of the columns of Z to contain the

most informative additional covariate information and hence the most influential as regards

a SNP being causative or associated. This is a reasonable assumption as it will often be the

case that one or more of the additional types of genotypic data will be more informative than

the others (a rationale used by Chen and Witte (2007) in the development of the weighting

function in their empirical estimators).

At this stage a number of SNPs (at least 1) are chosen to be associated, by this we mean

that in our simulation studies the odds ratios for these particular SNPs will be large relative to

all other SNPs simulated. The coefficients γ of the second-level regression, given in Equation

2.2 (Main Text), are fixed as constants, with the coefficient of the covariate that was chosen to

be most informative set at a higher value with respect to all others. The mean of the second-

level regression is then given by Zγ. A variance-covariance matrix is constructed: τ2T . This

matrix represents the residual variation that remains in the first-level coefficients (the βm’s)

after the second-level covariate information has been incorporated. For computational ease

we do not simulate any correlations between the SNPs and so T can be set as the identity

matrix. τ2 is not chosen to vary across SNPs but rather it is constant and thus we are, in this

case, modelling equal residual variability across the SNPs. Given the mean and variance we

can now simulate βm’s from the appropriate Normal distributions. This completes the first

part (second-level) of the simulation.

The second part of the simulation study involves simulating realistic genotypes for the

N individuals for each of the M SNPs. We start with the MAFs, which can be either fixed

at constant values, or they can be randomly drawn from a Uniform distribution on (0, 0.5).

In order to simulate the genotypes it is also necessary to consider the prevalence of the

disease, which is defined to be the probability of disease, and which we fix at a constant

value. Simulation of the genotypes for each marker is considered for cases and controls
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separately. Specifically, for each marker, for each individual, we simulate the genotypes using

a multinomial distribution with parameters P (aam|case), P (Aam|case) and P (AAm|case),
if the individual is a case and P (aam|control), P (Aam|control) and P (AAm|control), if the

individual is a control, for the three genotypes aam, Aam and AAm. In order to calculate these

six probabilities for each marker it is necessary to specify the genetic model, e.g, dominant,

additive, etc., and to calculate the baseline risk of disease for each marker, αm, as all other

parameters have been set. Further details of how these are calculated are given below. Thus

we now have a strategy for simulating a set of cases and controls with each of their genotypes

for the M markers. All data simulation and analysis is carried out in the statistical computing

language: R (2009).

3.1 Probability of an Individual Being a Case Given Their Genotype

The probability that an individual has the genotype aam at marker m given that they are a

case is given by the following:

P (aam|case) =
P (case|aam)P (aam)

P (case)

=
P (case|aam)(1 − fm)2

p
,

where fm is the MAF (allele A is the minor allele) at the marker m and p is the prevalence

of the disease. Both of these are fixed in the simulation study. P (case|aam) = exp (αm)/(1 +

exp (αm)), and it is necessary to solve for αm, the baseline risk of disease for each marker m.

Similarly, expressions for the probabilities of the other genotypes given case-control status

can also be derived. Solving for αm allows for all of these to be calculated.

3.2 Baseline Risk for the Dominant Model

In order to obtain an expression for the baseline risk of disease for each marker, αm, the genetic

model must be taken into account. For a dominant model, using the logistic regression given

in Equation 2.1 (Main Text) and assuming Hardy-Weinberg Equilibrium, the prevalence of

disease is given by:

p =
eαm

1 + eαm

(1 − fm)2 +
eαm+βm

1 + eαm+βm

(2fm − f2
m), (5)

To obtain an expression for αm we re-write Equation 5 as a quadratic equation in e−αm . To

simplify notation we let x = e−αm , y = e−βm, and f = fm. The quadratic equation is then
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given by:

x2py + xB + p − 1 = 0, (6)

where B = (2f − f2 − 1)y + (f2 − 2f) + (p + yp). Solving Equation 6 and considering only

the positive root, results in

αm = − log

(

(−B +
√

(B2 + 4(1 − p)yp))

2yp

)

(7)

as an expression for the baseline risk of disease for the dominant model.

3.3 Baseline Risk for the Additive Model

For the additive model, it is necessary to solve a cubic equation given by:

x3y3p − x2[y3(1 − f2 − p) + y2(2f − 2f2 − p) + y(f2 − p)]

−x[(y2 + y)(1 − f2) + 2(y2 + 1)(f − f2) + (y + 1)f2 − p(y2 + y + 1)]

−(1 + 2(f − f2) − p) − p = 0,

where x, y, f, p are as in Equation 7.
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(a) (b)

Figure 1: (a) MSE for both the MLEs and the empirical-Bayes estimators (EB-HM) across

a range of 100 random simulations, when the same Z matrix is used in the simulation and

analysis phases. Also plotted is the proportion of MAFs < 5% in each simulation. (b) MSE for

both the MLEs and the empirical-Bayes estimators across a range of 100 random simulations,

when the alternative reduced, noisy Z matrix is used in the analysis phase. Also plotted is

the proportion of MAFs < 5% in each simulation.
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(a) (b)

(c) (d)

Figure 2: (b) The top 200 markers with the largest EB-HM odds ratios together with their

approximate 95% confidence intervals for (a) CAD, (b) CD, (c) RA, and (d) T2D.
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