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SUMMARY

In the analysis of genome-wide association (GWA) data, the aim is to detect statistical associations be-
tween single nucleotide polymorphisms (SNPs) and the disease or trait of interest. These SNPs, or the
particular regions of the genome they implicate, are then considered for further study. We demonstrate
through a comprehensive simulation study that the inclusion of additional, biologically relevant infor-
mation through a 2-level empirical Bayes hierachical model framework offers a more robust method of
detecting associated SNPs. The empirical Bayes approach is an objective means of analyzing the data
without the need for the setting of subjective parameter estimates. This framework gives more stable esti-
mates of effects through a reduction of the variability in the usual effect estimates. We also demonstrate
the consequences of including additional information that is not informative and examine power and false-
positive rates. We apply the methodology to a number of genome-wide association (GWA) data sets with
the inclusion of additional biological information. Our results agree with previous findings and in the case
of one data set (Crohn’s disease) suggest an additional region of interest.

Keywords: Coronary artery disease; Crohn’s disease; Multilevel model; Rheumatoid arthritis; Semi-Bayes; Type 2
diabetes.

1. INTRODUCTION

Genome-wideassociation studies (GWASs) aiming to detect associations between observable traits and
genetic variation across the genome are now commonplace thanks to the advent of several economically
feasible high-throughput genotyping technologies. This genetic variation is typically in the form of sin-
gle nucleotide polymorphisms (SNPs). Data consist of genotypes at each of the SNPs, for members of
groups of cases and controls or family members (parents and affected offspring). The choice of case-
control or family data may depend on the age-of-onset of the disease/trait being studied. There are many
approaches to analyzing these data, including, for example, single SNP analyses and pathway approaches;
Cantorand others(2010) provide a review of current statistical analysis methodologies. A typical study
design consists of 2 stages: first, an association analysis is carried out on each SNP, with the observed
trait/phenotype status. Then the SNPs deemed most highly associated with the trait, and often additional
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surroundingSNPs are analyzed in independent samples in order to determine whether or not the signals are
replicated.

The SNP data are analyzed in the case–control setting with one of a range of statistical tests, for
example, Cochran–Armitage trend test, Cochran-Mantel-Haenszel test, logistic regression, and Bayes
factors. Each of these tests assume certain genetic models and can account for the presence of population
stratification and any additional information that may be available for the individuals in the study. The
results from these analyses are usually in the form of a ranked list ofP-values from which a subset of the
top ranked SNPs is then taken forward for further study in an independent sample.

For each individual, as well as their genotype at each SNP, additional information is often recorded, for
example, age, sex, and medical history. Also, as GWASs are often carried out in large consortia, with sam-
ple collections taking place at various sites, the site, and ethnicity information (sometimes self-reported
or inferred) are also available. These are just some examples of extra data that may have been recorded,
and we will henceforth refer to this type of additional information as additional phenotypic information
(additional to the disease or trait status). This additional phenotypic information should, where possible,
be incorporated into the testing for SNP association.

In these analyses, all SNPs are treated in the same manner; in particular, they are all modeled as
being equally likely to have the same impact on the phenotype. The exception being the Bayes factor
approach which, among other advantages, allows for the inclusion of prior association information for
each SNP. Although these analyses do sometimes incorporate additional phenotypic information such as
that described above, rarely is other additional biological information included.

This biological information may be in the form of functional information, for example, biologically
relevant location information for the SNPs, prior linkage findings, or prior association findings. This
type of additional information that relates to the SNPs as opposed to the individuals in the study will be
referred to as additional biological information. Approaches have been proposed to include this additional
biological information in the form of multilevel or hierarchical models (Hungand others,2004;Chen and
Witte, 2007;Lewingerand others,2007;Strömberg, 2009).

Hierarchical or multilevel modeling, as the names suggest, consist of 2 or more levels that are orga-
nized in a hierarchical framework. The levels specify relationships between the variables and parameters
that are of interest; these relationships may be in the form of regression equations, for example. The esti-
mation of parameters in these models can be carried out in a fully Bayesian manner, where the distinction
between data and prior information is strictly adhered to, with the prior distribution not depending on
the data. A semi-Bayes approach can also be used in which prior information is subjectively fixed by
the practitioner or an empirical Bayes approach in which the data themselves are used to specify pri-
ors. This latter approach can be thought of as lying somewhere between the fully Bayes and semi-Bayes
approaches. Many authors in various fields have advocated the use of hierarchical models, and we
suggestGreenland(1994,2000) andGelman and Hill(2006) both for introductions to hierarchical models
and for more formal and detailed accounts.

Hierarchical modeling approaches offer many advantages over conventional methods. The ability to,
easily and in a coherent framework, include relevant additional information—information that will help
to inform on the disease/trait of interest—is one of the main advantages of this methodology. Hierarchi-
cal models offer better and more stable estimates of parameters than conventional methods. In general,
estimates that are extreme and/or unstable become more reasonable in the hierarchical model setting
and those parameter estimates that are more moderate remain so in the hierarchical approach (Witte and
others, 1998).

As previously mentioned, theP-value is the predominant measure used in ranking GWASs. Other
authors have advocated using effect sizes rather thanP-values in various settings, including in the detec-
tion of influential genetic markers (Strömbergand others,2008;Rothman,1986;Walter, 1995). In the
present context, the effect size can be thought of as indicating the “quantitative importance” (Strömberg
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and others, 2008) of the association. On the other hand, theP-value does contain information on the mag-
nitude of the effect size but this is confounded by the fact that it also contains information on the precision
with which the effect size is measured. For example, 2 markers having the sameP-values may have very
different effect sizes as a result of having very different minor allele frequencies (MAFs). Thus, it is clear
that the use ofP-values for ranking associations may not always be ideal. As well as being useful for the
prediction of risk, the empirical Bayes hierarchical effect estimates can potentially be used in the ranking
of associations and in the goal of false-positive reduction.

In the present context, the hierarchical modeling approach permits the relaxation of the assumption
that all SNPs act similarly and allows for the SNP effects to vary, depending on the additional genetic in-
formation. Incorporating this additional information should help to control for false-positive associations
that may be observed using conventional tests. Here, we present a 2-level hierarchical model and, depend-
ing on how the model is viewed, the interpretation of the role of the additional biological information may
change. For example, in the frequentist setting, the multilevel model can be viewed as a mixed model with
both fixed and random effects. If on the other hand, the model is viewed from a Bayesian perspective, the
additional genetic information may be entering the model in the form of a prior distribution (see Section
1of the supplementary material [SM] available atBiostatisticsonline).

Earlier hierarchical modeling approaches allowing for the incorporation of additional biological infor-
mation for smaller scale association studies includeHungand others(2004), who used a logistic regres-
sion model for the first level, in an SNP association study for candidate genes in bladder cancer. As well
as including biological factors in the second level of the model, the authors also included environmental
factors and considered interaction effects in the first level.

Lewingerand others(2007) provide a hierarchical regression modeling approach, the first level of
which is based on the positive root of a 1–degree of freedom (df)χ2 statistic,xm, which has a noncentral
χ distribution with 1 df and noncentrality parameterλm. The λms, which are of main interest, indicate
the strength of association and in turn are modeled using a mixture model, allowing the incorporation of
any prior knowledge of association. The prior depends on additional covariate information such as, for
example, whether the marker is located in an exon, or a splice junction site, its predicted effect on protein
conformation, or prior linkage, or association evidence. The authors compare various empirical and fully
Bayesian schemes for this modeling framework using simulated data, where performance is assessed in
terms of power.

Chen and Witte(2007) also propose a 2-level hierarchical modeling approach and explore both em-
pirical Bayes and semi-Bayes approaches. For their empirical Bayes approach, they develop a structured
weighting function that reflects the residual variation in the first-level estimates that remains after the
second-level covariates have been taken into account. This weighting function is designed to give more
support to particular markers based on one or more different types of additional biological information.
For example, those markers with higher previous linkage or association scores may be weighted more
heavily. They apply their methods to both GWA SNP data and gene expression data.

Strömberg(2009) presents both empirical Bayes and semi-Bayes adjustments that shrink the conven-
tional effect estimates toward an overall average effect. For the empirical Bayes method, rather than using
additional covariate information, the author sets the prior mean effect for all SNPs to be zero. The author
applies the method to a GWAS on Type 2 diabetes (T2D) with the first-level estimates arising from the
Cochran–Armitage test for trend. The author also explores a semi-Bayes approach.

Most of the analyses cited above consider the application of the empirical Bayes hierarchical model
(EB-HM) to experimental data sets only and, even where they do include the use of additional covariate
information, do not present any exploration of the sensitivity of the approach to this information. The ex-
ception isLewingerand others(2007) who in contrast do not present any application to experimental data
but restrict their attention to simulation studies. In this paper, we aim to bridge the gap between simulated
and experimental GWA data by developing a straighforward model that facilitates clearer comparison
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of the behavior of the methodology between both data types. In particular, we examine the impact of
the inclusion of both informative and noninformative additional information. We are presenting a widely
applicable methodology to incorporate additional biological information that allows the nonsubjective de-
termination of the influence of this additional information. The methodology provides effect estimates
that can be used for ranking purposes to prioritize markers for further study.

We present a 2-level EB-HM for the analysis of individual marker GWA data, focusing on the case–
control study design. This modeling framework consists of a first-level logistic regression model for each
individual SNP with a second-level regression, incorporating additional biologically relevant information.
An empirical Bayes approach, using techniques proposed byMorris (1983), to iteratively estimate prior
parameters in the model using the available data, is proposed. A key advantage of this empirical Bayes
approach is that it does not rely on the subjective input of the practitioner in setting prior information
but instead uses the available data to obtain parameter estimates. Previous examinations of the empirical
Bayes approach have highlighted the conservative nature of the methodology, in particular when compared
to the subjective semi-Bayes approaches (Chen and Witte,2007;Strömberg, 2009). We acknowledge that
our objective approach presented here is conservative and, in our implementation, results in effect sizes
(odds ratios) that may be underestimated. Our simulation studies present evidence of this; however, this
conservatism does not compromise the ranking and identification of associated markers—as evidenced in
both our simulation and experimental data applications.

We explore a comprehensive simulation study that shows the effectiveness of our approach when
truly relevant additional biological information is included. We also demonstrate, through simulations,
the effect of applying this methodology when noisy, incomplete information is included. Although we
do not incorporate linkage disequilibrium (LD) in our simulation studies, we do not feel this is a major
drawback. In identifying variants that are associated with the phenotype of interest, the usual single-level
approach can result in a set of markers being identified that are correlated with each other to varying
degrees. Each of these variants is not usually treated as a separate association signal but rather the region
is identified. If LD is of concern, the approach of LD pruning could first be employed—resulting in a set
of independent, uncorrelated markers. Also, markers that are in LD with those in functional regions can be
identified and such information incorporated in the additional covariate information, as we demonstrate
in our experimental data applications. We also assess our proposed model extensively in terms of power
and false-positive rates under various scenarios. We conclude by applying the methodology to 4 of the
Wellcome Trust Case Control Consortium data sets: T2D, coronary artery disease (CAD), Crohn’s disease
(CD), and rheumatoid arthritis (RA) (WTCCC,2007).

2. METHODS

In our development of the methodology for the hierarchical model, we will concentrate on the case–
control study design. Here, we present a 2-level EB-HM. The first level comprises a logistic regression
model, and the second level comprises a Gaussian regression incorporating additional biologically relevant
information.

2.1 First level—logistic regression

The first level, in the 2-level hierarchical model for case–control type data, consists of the analysis of the
individual SNPs; independently testing for associations between the individual SNP markers and case–
control status. GivenN individuals, a proportion of which will be cases and the remaining individuals
controls, proportions that need not necessarily be equal, for each of theM SNPs we propose using a
logistic regression model to test for association. The logistic regression model is chosen as it is a flexi-
ble model choice, allowing for the incorporation of various genetic models (e.g., additive, recessive, and
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dominant) which may be thought to underlie the disease or trait under consideration. The logistic regres-
sion approach also allows for the inclusion of additional phenotypic information through the inclusion
of additional covariates. For the phenotype data (case–control status), fori = 1, . . . , N individuals, let
yi = 1, if individual i is a case, and letyi = 0, if individual i is a control. For the genotype data, for
m = 1, . . . , M , we let Xmi denotethe genotype for individuali at markerm. The genetic model may
be incorporated here through the choice of coding for the number of minor alleles (from here on referred
to as the allele) at the particular marker locus. For example, for an additive model,Xmi , takes the values
0,1, or 2, indicating 0, 1, or 2 copies of the allele. For a dominant model,Xmi cantake the values 0 or 1,
0 indicating 0 copies of the allele and 1 indicating one or 2 copies of the allele. Similarly, other genetic
models may be incorporated.

The logistic regression model is given by the following equation:

log

(
pmi

1 − pmi

)
= logit(pmi ) = αm + βmXmi , (2.1)

where pmi is the probability of individuali being a case given that they have genotypeXmi at marker
m. αm, the baseline risk of disease, is the log odds for an individual having the disease given that they
have the homozygous genotype for the major allele (i.e. they have 0 copies of the minor allele). The
βm’s are an estimate of the increase in odds of being a case for each additional allele (assuming additive
model) on the log-odds scale and are thus an estimate of the effect size. Where available, additional
phenotypic information, such as that previously mentioned, may be incorporated through the inclusion of
additional covariates and their corresponding coefficients in (2.1), but for simplicity, we will not include
these here. The statistical significance of the association can be tested using the Wald statistic, given by
(β̂m/SE(β̂m))2 ∼ χ2, whereβ̂m is the maximum likelihood estimator (MLE) ofβm andSE(β̂m) is its
associated standard error. In the usual approach to analyzing GWAS data, the resultingP-values would
be ranked in ascending order, and aP-value threshold (such as genome-wide significance,Dudbridge and
Gusnanto,2008) used in order to determine which SNPs to investigate further. A logistic regression model
has been used inBeechamand others,2009,Pillai and others, 2009, andLambertand others,2009, for
example, to detect SNP associations in GWASs for various diseases. Our aim is to include additional
biologically relevant information in our analysis through the incorporation of a second-level regression
equation in our model.

2.2 Second level—regression

The second level of the model aims to improve the estimates of theβm’s through the inclusion of additional
biological information. This is facilitated through the inclusion of a second regression equation given by

β = Zγ + τ2T, β = (β1, . . . , βM ), βm ∼ Normal(Zmγ, τ2tmm), (2.2)

whereZ is anM×K matrix containingK columns of additional biological information. Thus, for eachβm

(andthus each markerm), there is information on each of the additional biologically relevant covariates.
There is no restriction on the values the entries in the matrixZ can take. For example, negative entries
could be used to indicate that a particular covariate was expected to have a negative or opposite effect
(protective) in contributing to susceptibility to disease. For the type of information included inZ, it will
often be the case that many of the entries will be binary, indicating membership of a particular functional
class, for example, SNPs in introns.

The vectorγ is a K × 1 vector of second-level regression coefficients.τ2T is a variance–covariance
matrix representing the residual variation in theβm’s that remains after the second-level covariates in
the Z matrix have been taken into consideration. Thus,τ2T reflectsany unmodeled and unaccounted-for
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variability which could be due to, for example, interaction effects between the second-level covariates or
covariates not included. Correlation structure between the SNPs would be modeled in the off-diagonal
entries of theT matrix. If no correlation structure is to be modeled, which can reduce the computational
burden, thenT can be defined as the identity matrix.Chen and Witte(2007) follow a similar rationale in
definingT .

In Section 1 of the SM available atBiostatisticsonline, we explore the mixed model and Bayesian in-
terpretations of combining (2.1) and (2.2) which can help clarify the roles played by the various
components of the model.

2.3 Combining first- and second-level effect estimates

We combine the first-level estimates and the second-level means for theβm’s using the hierarchical esti-
mator:

β̂m;EB = BmZmγ + (1 − Bm)β̂m. (2.3)

Equation (2.3) is sometimes referred to as a shrinkage estimator (Greenland,2000) because the first level
usual estimators,βm’s, are shrunk toward, or averaged with, the second-level meansZmγ . The shrinkage
factor Bm indicateshow much the second-level meanZmγ contributes to the estimateβm. Strömberg
(2009), in his analysis, setsZmγ to be zero for all SNPs, as it is felt that this could be a reasonable
choice in GWAS applications. If the first-level estimators are highly variable, with respect to the total
variability, they will be shrunk toward the more stable estimate,Zmγ , thus reducing the variability. On
the other hand, if the logistic regression estimates have small variability, then these estimates will not be
shrunk as much toward the second-level means. The important question is how to determine the shrink-
age factors{Bm}. There are various methods of choosing/estimating these, for example, empirical Bayes,
semi-Bayes, and fully Bayesian approaches. Here, we will only concentrate on using an empirical Bayes
estimator. Just as the means for the second-level model are estimated from the data, we will also esti-
mate the prior means, and consequently, the shrinkage factors, using the data. This is in contrast to the
semi-Bayes approach that would rely on the subjective judgement of the data analyst in setting the prior
means.

We will use the empirical Bayes iterative approach described inMorris (1983) to estimate the shrink-
age factors. Further details are given in Section 2 of the SM available atBiostatisticsonline.

2.4 Simulation strategy

To evaluate and explore the performance of the approach proposed here, we simulated case–control
genotype data for a number of markers. The multilevel format of the model allows for a clear simu-
lation framework, the natural starting point for the simulation being the second-level regression equa-
tion. Full details of the simulation strategy are given in Section 3 of the SM available atBiostatistics
online.

3. RESULTS

3.1 Simulationstudy application

To examine the efficiency of the proposed method for the better identification of the associated markers,
we simulated case–control genotype data for 200 markers for each of 500 cases and 500 controls. We
randomly simulated the MAFs on the interval(0.01,0.5) and chose a dominant genetic disease model
with a disease prevalence of 0.05. Of the 200 markers, 3 markers were randomly chosen to have higher
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odds ratios than all other markers (markers 44, 123, and 184). The matrixZ contained 5 columns of
additional covariate information, simulated from a Binomial distribution. The first column of theZ matrix
was chosen as the most informative, and for the randomly chosen markers, the corresponding entries in
this column ofZ were increased. The aim was to detect these markers as associated markers, while also
minimizing the number of false positives. The results of this simulation study can be seen in Figure1.
The residual variation that remains in the first-level coefficients, after the second-level additional covariate
information is included, is modeled byτ2 and was set at 0.01 in the simulation study. This is well estimated
with the empirical Bayes approach asτ̂2 = 0.00723. As can be seen in Figure1, the EB-HM performs
well in comparison to the MLEs of the logistic regression model, both in the detection of the markers

Fig. 1. Results of a simulation study with 200 markers, for each of 500 cases and 500 controls. Markers 44, 123,
and 184 are 3 random markers chosen to have higher odds ratios, and these are indicated in black, all other markers
are in gray. The MAF for each marker was randomly simulated from Uniform(0.01, 0.5). The sameZ matrix was
used in both the simulation and analysis phase. (a) For both the MLEs and the empricial Bayes estimators (EB-HM),
− log10(P-value) are shown. (b) The true odds ratios used in the simulation study together with MLE and empricial
Bayes estimators of the odds ratios. (c) Confidence intervals for the logistic regression MLEs of the odds ratios.
(d) Approximate confidence intervals for the empirical-Bayes estimated odds ratios.
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with higher odds ratios and in the decrease of false-positive findings through the reduction of the standard
errors.

We also compared the performance of the modeling framework with respect to estimating the true odds
ratios over a number of random simulations. As noted byStrömberg(2009), the effect estimates can be
used for risk prediction and they give an indication of the quantitative importance of putative associations.
To do this, we use the mean square error (MSE)= M−1∑

m(est(OR)− true(OR))2, where the est(OR) is
either the odds ratio as estimated by the MLE from the logistic regression or the empirical Bayes estimate
of the odds ratio, and the true(OR) is the simulated odds ratio. The MSE captures the degree to which the
estimator differs from the true odds ratio, which can either be due to the stochastic nature of the process
or the poor performance of the estimator. We examine the MSE across 100 random simulations for both
the MLE and for the empirical Bayes hierarchical modeling estimators and compare them in Figure1(a)
of the SM available atBiostatisticsonline. We also plot the proportion of MAFs that are< 5% in each
simulation. This is done to explore the possibility that simulations with many markers with low MAFs,
which could lead to decreased power to detect associations, may be influential in the behavior of the
estimators. There does not appear to be any evidence for this.

The simulation studies so far have used the sameZ matrix, containing the same additional covariate
information, in both the data simulation and the analysis phases. For experimental data, it will almost
always be the case that such exact information will not be available. To examine the situation where ad-
ditional noisy and incomplete information is provided in the analysis phase, we explored the scenario
where a differentZ matrix, Ẑ, is used in the analysis stage to that used in the simulation phase. In the
simulation phase,Z is used, but in the analysis phase, we useẐ = Zk−1 + e, wheree ∼ Normal(0,1)
and Zk−1 is the Z matrix with one column of extra covariate information omitted. All other parame-
ters are similar to those in the simulation studies described above. The results of this simulation study
can be seen in Figure2. τ2 is set again at 0.01, and̂τ2 is estimated as 0.00584. The EB-HM still per-
forms better than the single-level MLE estimates from the logistic regression. The aim would be that
the empirical Bayes model should not perform less well than the single-level model, that is, that the
additional noisy and incomplete information should not lead to dramatically different conclusions re-
garding which markers are believed to be associated. For this simulation scenario, we also simulated
100 random simulations and compared the MSE for both the empirical Bayes estimators and the MLEs.
As can be seen in Figure1(b) of the SM available atBiostatisticsonline, the empirical Bayes model
still outperforms the single-level logistic regression model when considering the estimation of the odds
ratios.

Finally, we show that the model does offer substantial improvements over the usual single-level model
by examining the sensitivity and specificity of the model for simulated data. We use receiver operat-
ing characteristic (ROC) curves to assess these. In order to access the sensitivity (power) and speci-
ficity (1 false-positive rate), we generated 1000 random simulations, each having 2 random markers
(out of 200) with higher odds ratios and used the same Z covariate matrix in the analysis and gener-
ation phases. We also carried out this same scenario for 15 random markers with higher odds ratios.
As can be seen from the ROC curves in Figure3(a) and (b), EB-HM performs substantially better
than the MLE when relevant informative information is provided (Figure3(a) area under curve [AUC]
MLE: 0.896, EB-HM: 0.998; Figure3(b) AUC MLE: 0.896, EB-HM: 0.999). To assess the perfor-
mance when noninformative information is provided in the Z covariate matrix, as may be the case
in experimental analyses, we also carried out the same simulation strategy as just described but used
positive random noise (abs[Normal(0,1)]) for a reduced number of covariates (5 columns in Z in data
generation phase, and 4 columns in analysis phase). Examining Figure3(c) and (d), it is clear that
the model is robust in the face of wrong, uninformative information and performs just as well
as the MLE method, (Figure3(c) AUC MLE: 0.896, EB-HM: 0.889; Figure3(d) AUC MLE: 0.897,
EB-HM: 0.903).
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Fig. 2. Results of a simulation study with 200 markers, for each of 500 cases and 500 controls. Markers 12, 98, and
182 are 3 random markers chosen to have higher odds ratios and these are indicated in black, all other markers are in
grey. The MAF for each marker was randomly simulated from Uniform (0.01, 0.5). An alternativeZ matrix was used
in the analysis phase to that used in the simulation phase. (a) For both the MLEs and the empricial Bayes estimators
(EB-HM), − log10(P-value) are shown. (b) The true odds ratios used in the simulation study together with MLEs and
empricial Bayes estimators of the odds ratios. (c) Confidence intervals for the logistic regression MLEs of the odds
ratios. (d) Approximate confidence intervals for the empirical-Bayes estimated odds ratios.

3.2 Application to WTCCC 2007 data sets

We present applications of our methodology to CAD, CD, RA, and T2D data sets from theWTCCC
(2007). Several of the genetic associations presented inWTCCC(2007) have been replicated. All data sets
were quality controlled to include SNPs with MAF> 0.01 and a Hardy–Weinberg equilibrium threshold
of P < 10−4 in both cases and controls. This resulted in 2938 controls and CAD: 1926, CD: 1748, RA:
1860, and T2D: 1924 cases. We examined autosomal SNPs (CAD: 380442, CD: 380664, RA: 380481,
and T2D: 380463) that had additional covariate information available.

The covariate information that constitutes theZ matrix for each of these data sets consisted of 20 cate-
gories of additional functional information for each SNP. Specifically: 11 binary categories (Downstream,
Essential Splice Site, Intergenic, Intronic, Non-Synonomous Coding, Regulatory Region, Splice Site,
Stop, Synonomous Coding, Upstream, and Untranslated Region (UTR)) and 9 linkage disequilibrium sum
(LDSUM) categories (LDSUM Downstream, LDSUM Frameshift Coding, LDSUM Intergenic,
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Fig. 3. (a) ROC curves for both MLE estimates and EB-HM estimates based on 1000 random simulations of 500 cases
and 500 controls, 200 markers with 2 causative markers. SameZ covariate matrix used in both generation and analysis
phases. (b) Same as plot (a) except 15 causative markers are simulated. (c) Same as (a) exceptZ is random positive
noise (abs[Normal(0,1)]) in the analysis phase. (d) Same as plot (c) except 15 causative markers are simulated.

LDSUM Intronic, LDSUM Non-Synonomous Coding, LDSUMStop, LDSUM Synonomous Coding,
LDSUM Upstream, and LDSUM UTR). The scoring used for the binary covariate categories is as fol-
lows. For example, if an SNP scores a 1 for the intronic region, this indicates that the SNP is contained
in an intron, similarly for the other binary categories. For a particular marker, the LDSUM categories
denote the number of SNPs that are proxy SNPs (in LD) belonging to the various functional categories.
For example, if an SNP has 4 proxies; 2 coding, 1 UTR, and 1 intergenic, then this SNP will score
2 on LDSUM Frameshift Coding, 1 on LDSUM UTR, and 1 on LDSUM Intergenic. The tool SNAP
(Johnsonand others(2008)) was used to identify proxy SNPs within a 500 kb window using HapMap
CEU genotypes. The tool GeneCruiser (Liefeld and others(2005)), using a variety of databases, was
integrated withSNAP, and together with custom PERL scripts, was used to facilitate these functional an-
notations of the SNPs. A linkage category was also incorporated in Z, for the T2D data set. This column
consisted of linkage scores from a reanalysis of a linkage meta-analysis carried out byGuanand oth-
ers (2008). This meta-analysis originally contained a UK sample, which may have included WTCCC
individuals and so to eliminate any potential sources of bias, the UK sample was removed from the
meta-analysis and the scores recalculated. The linkage scores are for 115 bins across the genome (excluding
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the sex chromosome). This type of information was not available for the other disease data sets due to
sample overlap. First-level logistic regression odds ratios and standard errors were obtained using Plink
(Purcelland others, 2007). We make the assumption that the residual variationτ2, that remains in the first-
level coefficients after the second-level additional covariate information is included, is the same across all
markers.

3.2.1 Coronary artery disease.For CAD, theWTCCC(2007) found a notable new finding on chromo-
some 9p21.3 with the strongest signal seen at rs1333049. In both our first-level logistic regression analysis
and in our EB-HM analysis, this marker is also our top signal (MLE OR= 1.37,P-value= 2.3×10−14,
EB-HM OR= 1.03,P-value= 0.016). This signal has been replicated in a German sample (Samaniand
others, 2007), showing a slightly reduced odds ratio= 1.33 (95% confidence interval [CI] 1.18–1.51).
Two other loci on chromosome 6q25.1 (rs6922269) and on chromosome 2q36.3 (rs2943634) also showed
moderate association with CAD in theWTCCC(2007) analysis and were replicated (Samaniand others,
2007). These markers also appear in our top list when ranking is carried out using the EB-HM approach,
see Table1 for further details. For the CAD data set,τ̂2 = 0.000199.

3.2.2 Crohn’s disease. A number of loci that were previously identified as being associated with CD
were also found to be associated in theWTCCC(2007) data and these also rank highly here based on our
EB-HM approach (rs17221417, rs11805303, rs10210302, rs10761659, and rs17234657). A set of novel
loci (rs1000113, rs9858542, rs10883365, and rs2542151) that have been replicated (Parkesand others,
2007) were also identified and these too rank highly in our EB-HM analysis. The top ranking marker based
on MLE ranking is rs2076756 on chromosome 16. This marker has been replicated (Frankeand others,
2007) and in our EB-HM ranking appears in the top 150 markers. Unlike the other 3 disease data sets,
we have considered here, where the top ranked markers have agreed very closely when ranked separately
based on the MLE and EB-HM results, this is not the case with the CD data set. Here, the top 120 ranked
markers based on EB-HM ranking all come from chromosome 17q21 and details of the top 2 of these
markers (rs916793 and rs17691328) are given in Table1. Loci on chromosome 17q21 (different markers)
have subsequently been identified as novel CD–associated loci (Barrettand others,2008). For the CD
data set,̂τ2 = 0.00036.

3.2.3 Rhematoidarthritis. Previous associations between RA and the human leukocyte antigen region
and the PTPN22 gene on chromosome 1p13 were also found in the WTCCC (2007) analysis. The most
associated marker for PTPN22 was rs6679677 (MLE OR= 1.95, P-value= 2.86×10−25) and is also
highly ranked in the EB-HM analysis (EB-HM OR= 1.04,P-value= 0.01). The top ranking marker in the
first-level analysis (rs6457617, MLE OR= 2.26) on chromosome 6 is also the top ranking marker in the
EB-HM analysis (EB-HM OR= 1.1). See Table1 for further details. For the RA data set,τ̂2 = 0.00027.

3.2.4 Type 2 diabetes.Previously identified loci on chromosomes 3, 10, and 11 were replicated in the
WTCCC(2007) study (rs4506565, rs1801282, and rs5215). Marker rs4506565 is ranked first by both the
MLE and the EB-HM approaches, and rs1801282 and rs5215 appear further down in both rankings. Two
other signals were also identified on chromosome 16q (rs8050136, rs9939609, and rs7193144) and on
chromosome 6p22 (rs9465871) and all associations are highly ranked with both the MLE and the EB-HM
approaches as can be seen in Table1. For the RA data set,̂τ2 = 0.000234.

In Figure4, we have plotted the MLE odds ratios from the first-level logistic regression model (first
level) and the empirical Bayes odds ratios. The reduction in effect sizes in EB-HM markers compared
to the MLE odds ratios can clearly be seen. But previously identified signals appear highly ranked when
considering EB-HM ranking (examples in Table1, black points in Figure4 plots). Figure2 of the SM
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Table 1. A subset of the strongest associated markers for each of the4 WTCCC(2007) data sets (CAD,
CD, RA, and T2D). MLE-OR(SE) refers to the logistic regression maximum likelihood odds ratio estimate
and the standard error of the log(MLE OR) as calculated for the analysis carried out here. MLE rank
refers to the ranking of the marker based on the MLE P-value. EB-HM-OR(SE) refers to the EB-HM
odds ratio and the standard error of the log(EB-HM OR). The EB-HM Rank refers to the rank of the
marker based on the EB-HM P-value and the effect size (ES) Rank refers to the ranking based on the

EB-HM odds ratios

Dis Chr Marker MLE-OR MLE MLE EB-HM-OR EB-HM EB-HM ES
(SE) P-value Rank (SE) P-value Rank Rank

CAD 2 rs2943634 1.22(0.04) 1.23×10−5 32 1.02(0.01) 0.19 28 37
CAD 6 rs6922269 1.23(0.05) 6.58×10−6 22 1.02(0.01) 0.2 37 44
CAD 9 rs1333049 1.37(0.04) 2.3×10−14 1 1.03(0.01) 0.016 1 1

CD 1 rs11805303 1.37(0.04) 8.1×10−13 7 1.05(0.02) 0.003 120 120
CD 2 rs10210302 1.39(0.04) 9.1×10−14 2 1.05(0.02) 0.004 123 123
CD 3 rs9858542 1.26(0.05) 8.16×10−7 71 1.03(0.02) 0.1 313 308
CD 5 rs1000113 1.52(0.08) 6.38×10−8 48 1.03(0.02) 0.169 701 512
CD 5 rs17234657 1.54(0.06) 3.34×10−13 5 1.04(0.02) 0.02 147 154
CD 10 rs10761659 1.24(0.04) 2.8×10−7 61 1.03(0.02) 0.05 221 211
CD 10 rs10883365 1.28(0.04) 1.53×10−8 30 1.04(0.02) 0.02 142 152
CD 16 rs17221417 1.36(0.04) 1.14×10−11 16 1.05(0.02) 0.008 128 128
CD 16 rs2076756 1.44(0.05) 8.35×10−15 1 1.05(0.02) 0.003 121 121
CD 17 rs916793 1.2(0.05) 0.0003 490 1.09(0.02) 1.68×10−6 2 2
CD 17 rs17691328 1.21(0.05) 0.0003 448 1.09(0.02) 1.58×10−6 1 1
CD 18 rs2542151 1.35(0.05) 5.1×10−8 44 1.03(0.02) 0.06 235 230

RA 1 rs6679677 1.95(0.06) 2.86×10−25 32 1.04(0.02) 0.01 52 52
RA 6 rs6457617 2.26(0.05) 2.17×10−72 1 1.1(0.02) 1.38e-9 1 1

T2D 3 rs1801282 1.24(0.07) 0.0013 761 1.01(0.01) 0.38 2826 2228
T2D 6 rs9465871 1.29(0.05) 1.09×10−6 19 1.02(0.01) 0.15 42 42
T2D 10 rs4506565 1.37(0.04) 7.1×10−13 1 1.04(0.01) 0.02 1 1
T2D 11 rs5215 1.15(0.04) 0.00129 763 1.01(0.01) 0.347 1779 1787
T2D 16 rs7193144 1.27(0.04) 1.56×10−8 11 1.03(0.01) 0.048 11 11
T2D 16 rs8050136 1.27(0.04) 2.16×10−8 12 1.03(0.01) 0.05 12 12
T2D 16 rs9939609 1.26(0.04) 5.6×10−8 15 1.03(0.01) 0.06 15 15

available atBiostatisticsonline presents details of the top 200 markers, using EB-HM ranking, as they
appear along the genome (not-scaled) for each of the 4 diseases.

4. DISCUSSION

In this paper we explore an empirical-Bayes two level hierarchical model that aims to better detect asso-
ciated markers and provide more robust effect estimates in GWASs than the usual single level analysis
typically carried out. This is done through a hierarchical modeling framework that allows the inclusion
of additional biological information that is relevant, such as functional information or prior linkage or
association information. This additional relevant biological information is included in a structured frame-
work through a second-level regression equation. An existing iterative empirical Bayes method is used to
assign prior means in the model and thus eliminates any subjective input that might be required by the
practitioner, such as in semi-Bayes approaches.
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Fig. 4. MLE of the odds ratios (first-level logistic regression model) and the empirical Bayes estimators (EB-HM) of
the odds ratios for the autosomal markers (gray points) for (a) CAD, (b) CD, (c) RA, and (d) T2D. Points in black are
the markers detailed in Table 1 for each of the disease data sets.

Our aim was to explore how well this modelling framework worked with regard to detecting asso-
ciations and obtaining robust effect estimates. In order to do this, we first examined the method in an
extensive case–control simulation study that demonstrates how effective the method is when truly rel-
evant additional biological information is incorporated—improving theP-value significance and giving
better estimates of the odds ratios and reducing the standard errors, as can be seen in Figure1. We also
assessed the approach in terms of power and false-positive rates, under various scenarios, showing that
when relevant informative covariate information is incorporated, the EB-HM approach performs better
than the usual single-level model, see Figure3(a) and (b). We also demonstrate, through simulation, that
the EB-HM still performs well even when relevant information is omitted and noisy information is in-
corporated, although there is considerable reduction in the size of the odds ratios and in the level of
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significanceof the P-values (see Figure2). When uninformative noise is incorporated, the EB-HM ap-
proach performs as well as the single-level model in terms of power and false-positive rates, see Figure
3(c) and (d). This is an important demonstration as in real experimental applications it will rarely, if
ever, be known how relevant the additional covariate information is. Thus, we show that our methodology
is not adversely affected by the inclusion of unreliable additional data thereby ensuring robustness for
practitioners when considering incorporating additional biological information.

The simulation studies do attempt to model as closely as possible the situation in experimental GWA
data, but we acknowledge that there is no modeling of LD, as the genotypes for each individual are
simulated independently. Nevertheless, as discussed in Section 1, we feel that this should not impact on
the validity of the evaluation of the proposed modeling framework. The simulation studies also contain
many fewer markers than would be contained in a GWAS, but this is only for demonstration purposes and
could easily be extended to larger numbers of markers. Also, here we have concerned ourselves with the
case–control study design, but it would be just as easy to consider the hierarchical model framework for
family trio GWA data sets. For this study design at the first level, we would perform a logistic regression
on the usual transmission disequilibrium data.

Previous applications of this type of modeling framework have not presented results for full GWA data
sets that include additional covariate information that is believed to be informative. Thus, we have applied
this methodology to 4 of theWTCCC (2007) data sets and included additional covariate information
in the form of both functional information and prior linkage information (T2D only) that we believed
would be informative. Across all 4 data sets, there is a reduction in the odds ratios and also theP-values
have been increased considerably due to the reduction in the EB-HM odds ratios and their corresponding
standard errors. Importantly, however is that in the ranking of the association results based on the EB-
HM approach, all previous identified and replicated signals are still highly ranked, agreeing with the
MLE rankings, see Table1. The EB-HM analysis of the CD data set does result in the top ranking of
a region on chromosome 17q21 that had not been identified in theWTCCC (2007) study, while still
maintaining all previously associated and replicated associations as also highly ranked. The top ranked
markers, according to the empirical BayesP-values, correspond to the highest empirical Bayes odds
ratios, which is not the case for the MLEP-value ranked odds ratios as can be seen in Figure4. As
noted byStrömberg(2009), with GWA data sets, the winner’s curse effect often comes into play and
in looking for markers of high risk, the first-level estimates are often overinflated. As can be seen in the
simulation studies, the empirical Bayes approach does not suffer from this problem, a key advantage of this
approach.

We compared the T2D results obtained here with those obtained byStrömberg(2009), who ana-
lyzed an almost identical WTCCC T2D data set (same number of cases and controls but slight difference
in number of SNPs) using an empirical Bayes methodology, but who included no additional biological
information, instead setting the prior mean effect for all SNPs to be zero. Our results did not differ con-
siderably from Str̈omberg’s when we included what we believed to be relevant covariate information. In
particular, the odds ratios and standard errors of our estimates do not appear to be very different (com-
parison of our results with figure presented inStrömberg(2009)). AlsoStrömberg(2009) obtained a
τ̂2 = 0.00022,which represents the residual variation that remains in the first-level cofficients, after the
second-level covariates have been taken into account. This is almost identical to our estimate ofτ̂2 =
0.000234.

As pointed out byChen and Witte(2007) andStrömberg(2009), among others, the empirical Bayes
approach can sometimes be too conservative, resulting from too much shrinkage. Here, this conservatism
manifests itself in the effect sizes, that is, the odds ratios of the EB-HM perhaps being underestimated and
being closer to 1 than is actually the case. There is evidence for this in the simulation studies presented
here and is also likely in theWTCCC (2007) applications, although the true effect sizes are often not
known. For example, for the T2D data set, marker rs8050136 has an MLE OR= 1.27 and an EB-HM
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estimated OR= 1.03. In replication studies (Zegginiand others, 2007), this OR does vary substantially
from 1.27, ranging from 1.03 (95% CI: 0.91-1.17) to 1.22 (95% CI: 1.12-1.32), and a combined sample
OR = 1.17 (95% CI: 1.12-1.22). Thus, it would appear that even in replication studies a range of effect
sizes can be observed, and it can be difficult with experimental data applications to judge how conservative
the effect estimates are. For the simulation studies, the conservative behavior can be seen in particular in
Figures1(b) and2(b), where the odds ratios are typically to be found in narrower ranges than the true
simulated odds ratios. This excessive shrinkage and conservative nature of the empirical Bayes approach
is often a reason why semi-Bayes approaches are preferred. BothChen and Witte(2007) andStrömberg
(2009) also consider semi-Bayes approaches, where the amount of shrinkage can be hand tuned. We feel
this can be too subjective, as there is no available information to guide the choice of shrinkage in scenarios
outside of simulation studies. The empirical Bayes approach offers the advantage of the practitioner not
having to set parameter values, which may be more attractive in situations where limited knowledge is
available.

The empirical Bayes approach to analyzing theWTCCC(2007) data sets has not resulted inP-values
of genome-wide significance, but this should not lead to the conclusion that the method is inapplicable.
A number of important points need to be borne in mind: as noted above, the empirical Bayes approach is
known to be conservative in its estimates of association and is designed more to stabilize estimates of effect
size. When ranking of the association results based on the EB-HM approach is considered, all signals
previously identified (WTCCC,2007) and replicated appear highly ranked. Furthermore, the simulation
studies presented here have shown that if the covariates carry relevant information, their inclusion in
the second stage can significantly improve the empirical Bayes estimates. In the case of the WTCCC data
applications, we conclude that the additional covariate information we have included, although we believe
it to be informative and relevant, may not be so in the current model formulation, except perhaps in the
case of the CD data set. We have only considered a linear model in our second-level model and this may
not be adequate for the incorporation of this information. It may also be the case that sufficient information
in this data set is contained in the first level of the model to determine significance, and the second-level
covariate information adds little in determining association. Because of our extensive examination, using
simulation studies, of the impact of noisy and incomplete additional information, including examination
of power and false-positive rates, we believe that the inclusion of the covariate information is not having
a negative impact on the ranking of the markers. Further work in identifying other informative covariates,
and in assessing alternative models for the influence of the covariates, could help to shed light on these
matters.

5. SOFTWARE

Software in the form of R code, together with a sample input data set and complete documentation is
available on request from the corresponding author (eaheron@tcd.ie).

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available athttp://biostatistics.oxfordjournals.org.
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