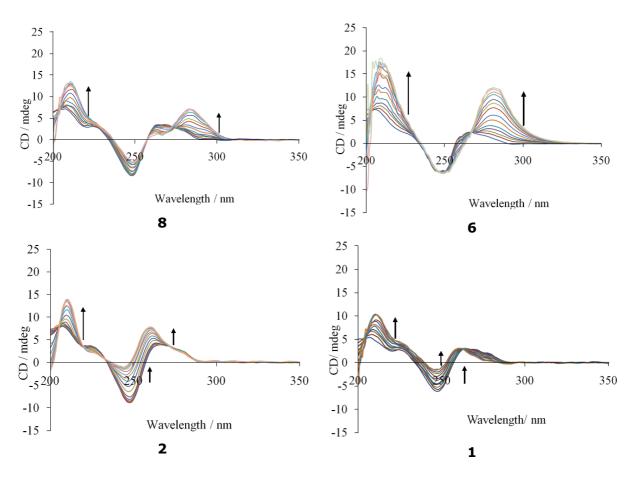
Supplementary material

Understanding the DNA binding of novel non–symmetrical guanidinium/2–aminoimidazolinium derivatives


Padraic S. Nagle,¹ Susan J. Quinn,^{1‡} John M. Kelly,¹ Daniel H. O'Donovan,¹Amir R. Kahn,²
Fernando Rodriguez,^{1‡} Binh Nguyen,³ W. David Wilson,³ and Isabel Rozas¹*

Circular Dichroism results for compounds 1, 2, 6 and 8 II

Comparative docking III

Circular Dichroism results for compounds 1, 2, 6 and 8

CD titrations were performed not only for all asymmetric derivatives by increasing the compound to DNA Bp/D ratio from 22.4 to 0.56. The maximum absorption occurred at around 280 nm for compounds **8** and **6**, and 260 nm for compounds **2** and **1**. Upon increasing addition of compounds **8**, **6**, **2** and **1** to DNA a growth in the bands at 280 nm and at 260 nm, respectively, is observed corresponding to λ_{max} . we have observed that, in the cases studied, the strength of binding to the AT oligonucleotide, as calculated in the thermal denaturation experiments with poly(dA•dT)₂, ¹⁴ is related to the amount of incremental growth in the induced CD signal and thus, compound **1** which is the one that most weakly binds to DNA according to the ΔT_m values, shows the smallest increment.

Figure 1.– CD spectra obtained for compounds **8** (upper left, urea), **6** (upper right, piperazine), **2** (bottom left, CH_2CH_2) **1** and (bottom right, CH_2) titrated with poly($dA \cdot dT$)₂ in a concentration of 37.5 μ M varying the Bp/D ratio from 1.12 to 44.8 through ten additions.

Comparative Docking

Different docking experiments were carried out for comparative proposes with ArgusLab, AutoDock-4.2 and AutodockVina. All compounds were docked using a rigid DNA template and in a rigid and flexible approach for the ligand. Considering that these compounds are asymmetrical, both approaches (*normal* and *inverted*) were considered and the final energies used are an average of both types of interactions. The binding scores obtained for AutoDock-4.2 and AutodockVina using rigid and flexible ligands are presented in Table I.

Table I.- Binding scores obtained using AutoDock-4.2 and AutodockVina in rigid and flexible ligand approaches.

		AVERAGE DOCKING (Normal + inverted)/2 [kcal/mol]			
linker		ad4flexi	ad4rigid	vinaflexi	vinarigid
CH2	1	-5.945	-10.810	-8.700	-8.900
CH2CH2	2	-7.190	-10.295	-9.100	-8.550
Ο	3	-7.355	-11.060	-8.400	-8.500
S	4	-6.170	-10.965	-9.100	-8.800
NH	5	-6.465	-10.460	-8.300	-8.750
Piperazine	6	-6.380	-10.365	-8.200	-8.600
СО	7	-6.675	-11.535	-9.000	-9.250
Urea	8	-5.650	-11.210	-8.950	-9.100

Different correlations were tested with the energy corresponding to the conformational penalty ($E_{conf.penalty}$) and the increment in denaturation energy (ΔT_m) but the only significant model obtained was the one presented in the main manuscript.

References

- i. ArgusLab 4.01: Planaria Software LLC, Seatle, WA, 2004)
- Autodock 4.2: G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, A. J. Olson, *J. Comput. Chem.* 2009, 30, 2785–2791.
- iii. AutodockVina: O. Trott, A. J. Olson, J. Comput. Chem., 2010, 31, 455-461.