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Abstract 

Simulation models can be valuable to investigate potential effects of climate change 

on greenhouse gas emissions from terrestrial ecosystems. DNDC (the DeNitrification-

DeComposition model) was tested against observed soil respiration data from 

adjacent pasture and arable fields in the Irish midlands. The arable field was 

converted from grassland approximately 50 years ago and managed since 2003 under 

two different tillage systems; conventional and reduced tillage. Both fields were 

located on the same soil type, classified as a free draining sandy loam soil derived 

from fluvial glacial gravels with low soil moisture holding capacity. Soil respiration 

measurements were made from January 2003 to August 2005. Three climate scenarios 

were investigated, a baseline of measured climatic data from a weather station at the 

field site, and high and low temperature sensitivity scenarios predicted by the 

Community Climate Change Consortium for Ireland (C4I) based on the Hadley 

Centre Global Climate Model (HadCM3) and the Intergovernment Panel on Climate 

Change (IPCC) A1B emission scenario. The aims of this study were to use measured 

soil respiration rates to validate the DNDC model for estimating CO2 efflux from 

these key Irish soils, investigate the effects of future climate change on CO2 efflux 

and estimate the efflux uncertainties due to using different future climate projections. 

The results indicate that the DNDC model can reliably estimate soil respiration from 

the two fields examined. The model underestimated annual measured CO2 efflux from 

the pasture by only13% (model efficiency: ME = 0.6; root mean square error: RMSE 

=1.9 and mean absolute error: MAE = 6.3) and that from the arable conventional and 
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reduced tillage by 9% (ME = 0.6; RMSE = 1.6 and MAE = 2.4) and 8% (ME = 0.23; 

RMSE = 1.8 and MAE = 2.9), respectively. Short-term land use change had no 

significant effects on CO2 effluxes from soil. Using the high temperature sensitive 

scenario, future C effluxes would increase by 15% for the pasture and 14 and 16% for 

the arable conventional and reduced tillage systems, respectively. However, under the 

low temperature sensitive scenario, lower increases in the C efflux of 6% for the 

pasture and 5% for the arable field were predicted. The calculated annual CO2 efflux 

uncertainties for using the high and low temperature sensitivity scenarios were 9% for 

the pasture and 8% for the arable field. 

 

1. Introduction 

The atmospheric carbon dioxide (CO2) concentration, since the start of the 

industrial revolution, has increased by approximately 35% and is predicted to reach 

700 ppmv by the end of this century (IPCC, 2001; 2007). In most of European 

countries, including Ireland, croplands are assumed to lose organic carbon resulting in 

a net loss of CO2 to the atmosphere (Janssens et al., 2005; Schulze et al., 2010). This 

loss may be enhanced by climate warming (Kirschbaum, 1995; Andrews et al., 1999; 

Cox et al., 2000) and the emitted CO2 will in turn reinforce climate warming. In this 

context the most critical issue concerning long-term soil carbon decomposition is 

increasing temperature. Land use can also substantially alter soil organic carbon 

(SOC) dynamics (Guo and Gifford, 2002) and in general affect exchanges of 

greenhouse gases (GHGs) between the soil and atmosphere (Dobbie et al., 1996; 

Smith et al., 2000; Houghton, 2002). 

 

Soil respiration normally refers to the total soil CO2 efflux at the soil surface 

and consists of autotrophic root respiration and heterotrophic respiration associated 

with decomposition of litter roots and soil organic matter (SOM) (Bernhardt et al., 

2006). Soils are the largest carbon pool in terrestrial ecosystems, containing more than 

two thirds of the total carbon and soil respiration contributes an annual flux of CO2 to 

the atmosphere 10 times greater than fossil fuel combustion (Schlesinger, 1997; 

Folger, 2009). Due to the extent this flux, changes in the rate of soil respiration could 

have large effects on atmospheric CO2
 concentration. Previous studies have 

demonstrated that increased rates of soil respiration result from increases in soil 

temperature (Winkler et al., 1996; Christensen et al., 1997; Jabro et al., 2008) and 
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atmospheric CO2 (Johnson et al., 1994; Vose et al., 1995; Hungate et al., 1997; Ball 

and Drake, 1998; Deng et al., 2010). At elevated CO2, the increase in belowground 

biomass would increase CO2 efflux from the soil (Edwards and Norby, 1999; Wang et 

al., 2007) and may enhance carbon release into the rhizosphere by root exudation 

(Van Ginkel et al., 2000; Allard et al., 2006). Similarly the increase in aboveground 

biomass would produce more litter-fall, all these factors contributing to higher soil 

respiration rates (Zak et al., 2000). 

 

The DeNitrification DeComposition (DNDC) model was developed to 

simulate N2O, NO, N2 and CO2 emissions from agricultural soils (Li et al., 1992, 

1994; 2000). The DNDC model was originally developed for USA conditions (Li et 

al., 1992). It has been used for simulation at a regional scale for the United States (Li 

et al., 1996), China (Li et al., 2001) and Europe (Dietiker et al., 2010). Advantages of 

DNDC are that it has been extensively tested and has shown reasonable agreement 

between measured and modelled results for many different ecosystems such as 

grassland (Levy et al., 2007; Giltrap et al., 2010), cropland (Cai et al., 2003, Tang et 

al., 2006; Li et al., 2007) and forest (Lu et al., 2008; Kurbatova et al., 2009). The 

model has reasonable data requirement and is suitable for simulation at appropriate 

temporal and spatial scales. The aims of this study were to validate the DNDC model 

for estimating CO2 efflux from a representative midlands soil in Ireland, assess the 

effects of future climate change on CO2 efflux and estimate the efflux uncertainties 

due to using different future climate projections. 

 

2. Materials and methods 

2.1 Field experimental site 

This study is part of an ongoing research to quantify and estimate soil 

respiration from Irish agriculture (Davis et al., 2010; Jones et al., 2010). The 

experimental site was located at the Oak Park Research Centre in Carlow 52o86′ N 

and 6o54′ W, Ireland. The site has an elevation of 56 m (a.s.l), a mean annual rainfall 

of 824 mm and a mean annual air temperature of 9.4o C. The adjacent pasture and 

arable fields are located on the same soil type classified as free draining sandy loam 

soil derived from fluvial glacial gravels with low soil moisture holding capacity. The 

arable field was seeded with spring barley at a density of 140 kg ha-1 and since 2003 
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has been managed under two different tillage regimes; conventional tillage where 

inversion ploughing to a depth of approximately 22 cm was carried out in March five 

weeks prior to planting, and reduced tillage to a depth of approximately15 cm which 

was carried out in September of the year before planting. Crop straw was cut and left 

on the ground following harvesting, for the conventional tillage, whilst left standing 

until ploughed into the soil when carrying the reduced tillage practices in September, 

for reduced tillage. Nitrogen fertilizer in the form of calcium ammonium nitrate 

(CAN) was applied at an average rate of 160 kg N ha-1 y-1 divided into two 

applications in April (106 kg N ha-1) and May (54 kg N ha-1).. 

 

The pasture has been permanent grassland for at least the last 80 years, but 

was ploughed and reseeded in October 2001 with perennial ryegrass (Lolium perenne 

L., cv Cashel) at a density of 13.5 kg ha-1 and white clover (Trifolium repens L., cv 

Aran) at a density of 3.4 kg ha-1. Silage cutting took place once a year in early May 

and extensive cattle grazing with a stocking rate of 2 cattle ha-1 from July to 

November CAN was applied at a rate of 200 kg N ha-1 y-1 in two applications of 128 

and 72 kg N ha-1 in April and May, respectively.  

 

2.2 Field measurements of soil respiration  

Measurements of soil respiration were carried out from January 2003 to 

August 2005. Measurements were made using a CIRAS gas exchange system (PP 

systems, UK) fitted with the SRC-1 soil respiration chamber. The soil chamber is 

cylindrical (height = 150 mm; diameter = 100 mm). The method of measuring soil 

respiration is that described by Parkinson (1981). The chamber measurement range 

was 0-9.99 g CO2 m
-2 h-1. The patchy grass and spring barley crops were pushed a 

side before placing the chamber on bare ground and pushed in soil. In order to cover 

most of the year measurements were made every week from eighteen replicate 

locations. Previous studies of CO2 fluxes using CIRAS gas exchange system have 

sampled at frequencies ranging from weekly to monthly (Bahn et al., 2008). The soil 

respiration measurements made between 11:00 am and 13:00 pm which 

approximately represent daytime averages. Cumulative annual soil respiration for 

each treatment was estimated by summing the products of weekly mean soil 

respiration and the number of days between samples (Deng et al., 2010).  
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2.3 Temperatures and water filled pore space (WFPS) 

Soil temperature and volumetric soil moisture measurements were made adjacent to 

chamber placement at a depth of 0-10 cm using a portable WET sensor (Delta-T 

devices, UK). Water filled pore space (WFPS in %) was calculated from the equation: 

 

WFPS = (SWC×BD)/ (1−(BD/PD))                                                                            (1) 

 

where, SWC is the volumetric soil water content (g g−1), BD is the bulk density 

(mg m−3), and PD is the particle density (2.65 mg m−3) Linn and Doran, (1984). 

Daily minimum and maximum air temperature (o C) and rainfall (mm) were recorded 

at the adjacent Teagasc Research Centre Weather Station. 

 

2.4 DNDC model  

In this study the DNDC model (version 8.9; http://www.dndc.sr.unh.edu/) was 

applied. DNDC contains four main sub-models (Li et al., 1992; 2000); the soil climate 

sub-model calculates hourly and daily soil temperature and moisture fluxes in one 

dimension, the crop growth sub-model simulates crop biomass accumulation and 

partitioning, the decomposition sub-model calculates decomposition, nitrification, 

NH3 volatilization and CO2 production, whilst the denitrification sub-model tracks the 

sequential biochemical reduction from nitrate (NO3) to NO2
-, NO, N2O and N2 based 

on soil redox potential and dissolved organic carbon. 

Daily measured values of meteorological parameters recorded at the site and 

land management records were used as input variables to the DNDC model. Details 

about this input data can be found in Abdalla et al. (2009). Field CO2 efflux data were 

used for DNDC models validations by comparing measured and predicted CO2 efflux. 

The model accuracies and performance were evaluated by calculating the Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE) and Model Efficiency (ME; 

Nash and Sutcliffe, 1970).  

                                                                                             (2) 

                                                                                      (3) 
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                                                                                        (4) 

where Oi are the observed values, Pi are the simulated values, n are the total number 

of observations and i the current observation. 

MAE assesses the size of prediction errors on an individual level. It does not allow for 

compensation of positive and negative prediction errors. RMSE measures absolute 

prediction errors, but in a quadratic sense, and is therefore more sensitive to outliers. 

ME compares the squared sum of the absolute error with the squared sum of the 

difference between the observations and their mean value. It compares the ability of 

the model to reproduce the daily data variability with a much simpler model that is 

based on the arithmetic mean of the measurements. Negative ME value shows a poor 

performance, a value of 0 indicates that the model does not perform better than using 

the mean of the observations, and values close to 1 indicate a ‘near-perfect’ fit (Nash 

and Sutcliffe, 1970; Huang et al., 2003; Wattenbach et al., 2010). 

Annual cumulative CO2 efflux for model outputs were calculated as the sum of 

simulated daily fluxes (Cai et al., 2003). The relative deviation (RD) between 

observed and DNDC out puts was calculated by: 

 

RD = (P - O)/O x 100                                                                                                  (5) 

 

2.5 Climate scenarios 

The future climate data used in this research were statistically downscaled by 

the Irish National Meteorological Service Research Group (Met Eireaan) (C4I, 2008) 

based on the Hadley Centre Global Climate Model (HadCM3) and the emission 

scenario (A1B) published by the Intergovernmental Panel on Climate Change 

(Nakicenovic and Swart, 2000; IPCC, 2001). Two different temperature sensitivity 

scenarios (high and low) were investigated to estimate the uncertainty in future 

climate (Collins et al., 2006). A regional climate model, known as RCA3, was applied 

to the HadCM3 data in a process which is known as dynamic downscaling. RCA3 is 

based on a model initially developed by the Rossby Centre and further developed by 

the C4I project at Met Éireann. The resultant model data has a horizontal resolution of 

25 km. A full description is given in the C4I (2008) report. 
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The baseline scenario was a measured daily climate data set (1961-1990) from a 

nearby weather station at Oak Park Research Centre. The two future climate scenarios 

(high and low temperature sensitivity) investigated in this study are of daily data and 

for a period of 30 years (2061-2090). Weather input data are maximum and minimum 

air temperature and precipitation. CO2 concentrations of 370 and 700 ppmv were 

suggested and used in the models for the baseline and future scenarios, respectively 

(IPCC, 1995). 

 

2.6 Statistical analysis 

Statistical analyses were carried out using the PRISM (GraphPad, San Diego, 

USA) and Data Desk (Data Description Inc. New York, USA) software packages. 

Both 1-way and 2-way analysis of variance were applied to the CO2-C efflux data. 

 

3. Results  

3.1 Model validation and results under baseline climate 

Seasonal patterns of CO2-C efflux from soils for the observed and DNDC 

modelled outputs from the pasture and the arable conventional and reduced tillage 

systems were generally in agreement for most of the measured period (Figure 1). For 

the pasture, DNDC predicted a cumulative annual CO2-C efflux of 6.9 t C ha-1 

compared with the observed efflux of 11 t C ha-1. Here, both the observed and DNDC 

predicted CO2-C effluxes showed significant decline in soil respiration following 

silage cut in May and animal grazing from July onwards (Figure 1). The DNDC 

model underestimated the cumulative annual CO2-C efflux by 13%. The regressions 

between observed and modelled effluxes was y = 0.41x + 0.57 (r2 = 0.6; ME = 0.6; 

RMSE = 1.9 and MAE = 6.3). For the arable field, DNDC predicted cumulative 

annual CO2-C efflux of 11.3 t C ha-1 for both tillage systems, compared with the 

observed effluxes of 12.4 for conventional and 12.3 t C ha-1 for reduced tillage. The 

DNDC model also underestimated the cumulative annual CO2-C efflux from the 

arable field by 9% (conventional tillage) and 8% (reduced tillage). The regressions 

between observed and modelled effluxes were y = 0.52x + 15 (r2 = 0.6; ME = 0.58; 

RMSE = 1.6 and MAE = 2.37) and y = 0.58x + 12.8 (r2 = 0.52; ME = 0.23; RMSE = 

1.8 and MAE = 2.9) for the conventional and reduced tillage, respectively. No 

statistically significant differences (p>0.05) between the daily or cumulative CO2 

effluxes for the two fields or between modelled and observed effluxes were found. 
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The DNDC predicted values for soil temperature, from both fields agreed well with 

observed values (Figure 2). The regressions between observed and modelled effluxes 

were y = 0.79x + 1.5 (r2 = 0.81), y = 0.71x + 2 (r2 = 0.83) and y = 0.69x + 1.9 (r2 = 

0.81) for the pasture and the arable conventional and reduced tillage systems, 

respectively. Calculated ME, RSME and MAE values of soil temperature for the 

pasture were 0.79 and 0.31 and 0.95 whilst for the arable field were 0.67 and 0.33 and 

1.78 (conventional tillage) and 0.38 and 0.47 and 2.4 (reduced tillage), respectively. 

Although, the model poorly estimated the measured WFPS values (overestimated) for 

the pasture (r2 = 0.32; ME = -2; RMSE = 3 and MAE = 15.7) the predicted values for 

the arable conventional (r2 = 0.35; ME = 0.12; RMSE = 1.6 and MAE = 2.9) and 

reduced (r2 = 0.53; ME = 0.42; RSME = 1.3 and MAE = 0.73) tillage relatively 

agreed well with the observed values (Figure 3). Strong negative relationships were 

observed between soil moisture and soil temperature. High peaks of CO2-C effluxes, 

from both fields, coincided with the high rainfall events and air temperature as 

illustrated in Figure 4.  

 

The DNDC model underestimated both the observed annual pasture biomass 

production by 23% (ME = -0.3; RMSE = 0.15 and MAE = 0.6) (Abdalla et al., 2010) 

and the observed annual crop biomass of spring barley by 11% for conventional 

tillage (ME = 0.31; RMSE = 0.77 and MAE = 0.56) and 14% for reduced tillage (ME 

= 0.23; RMSE = 0.81 and MAE = 0.73). At the baseline climate scenario, DNDC 

predicted CO2-C efflux declined following silage cutting whilst for the arable field 

high CO2-C peaks, from both tillage systems, were predicted following ploughing 

(Figure 5). This post-ploughing efflux peak reached a maximum value of 36 kg CO2-

C ha-1 d-1 in February for the conventional tillage and up to 90 kg CO2-C ha-1 d-1, in 

September for reduced tillage (Figure 5). However, a smaller peak of 29 kg CO2-C  

ha-1 d-1 in September was predicted for conventional tillage. 

 

3.2 Model results under climate change 

Under both the low and high temperature sensitivity climate scenarios and for 

both grassland and arable fields, the pattern of CO2-C efflux was similar to the 

baseline climate scenario although, peak heights and cumulative annual effluxes were 

different (Figure 5 and Table 1). Under climate change, the highest efflux peak under 

the high sensitivity scenario for pasture was approximately 57 kg CO2-C ha-1d-1 
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observed from July to August whilst for the conventional arable field was 

approximately 55 kg CO2-C ha-1d-1 observed in February and 121 kg CO2-C ha-1d-1 

for reduced tillage observed in September. For the high sensitivity scenario, 

cumulative effluxes were 12.4, 9.3 and 10 t CO2-C ha-1y-1 whilst for the low 

sensitivity scenario they were 11.4, 8.6 and 9.3 t CO2-C ha-1y-1 for the grass and 

arable conventional and reduced tillage, respectively. Future increases in CO2-C 

effluxes, under the high sensitivity scenario, were +15% for the pasture and +13% for 

the arable field (Figure 5 and Table 1). However, under the low temperature 

sensitivity scenario, reduced increases in CO2-C efflux of +6% (pasture) and +5% for 

both arable fields were predicted (Table 1). Statistical analysis showed no significant 

differences (p>0.05) in annual CO2-C effluxes from the pasture and both tillage 

treatments, compared with the baseline effluxes (Table 1). The uncertainty between 

the low and high temperature sensitivity scenarios were 9% for the pasture and 8% for 

the arable field. 

 

4. Discussion 

4.1 Model validation and results under baseline climate 

In this study, annual values of field measured soil respiration from the pasture 

agree with the range of values reported by Bahn et al. (2008) for a range of European 

grasslands (0.6 to 19.9 t C ha-1) whilst that from the arable lands agree with values 

measured and modelled from arable soils and range from 4 to 16 t C ha-1(Kutsch and 

Kappen, 1997; Rees et al., 2005). However, measured soil respiration may be 

overestimated as all measurements took place during the day light. For the pasture, 

both the observed and DNDC predicted CO2-C effluxes showed a significant decline 

in soil respiration following silage cut in May and animal grazing from July onwards. 

This negative effect on soil respiration is likely to result from a reduction in plant 

photosynthetic capability, plant growth and accumulation of litter, which all decrease 

carbon supply to soil decomposers (Johnson and Matchett, 2001; Sankaran and 

Augustine, 2004). Cutting and grazing can also reduce root biomass (Fagerness and 

Yelverton, 2001), a primary contributor to the soil CO2 pool in grasslands (Raich and 

Tufekcioglu, 2000), and hence a major factor influencing soil respiration rates. The 

effect of cutting and grazing would be the dramatic decrease in assimilate delivered to 

plant roots. Autotrophic soil respiration in late spring and summer months accounted 

for approximately 50% of measured soil respiration of the grassland and arable soils 
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(data is not shown). Indeed, the dominance of the autotrophic component is apparent 

for short term (days) and long term (annual) determinations of soil respiration in 

grassland soils (Janssens et al., 2001; Reichstein et al., 2003; Hibbard et al., 2005 and 

Bahn et al., 2008; Ruehr et al., 2009). Although, the contribution of root to soil 

respiration varies widely among different studies, ranging from approximately 15% to 

90% (Norman et al., 1992; Dugas et al., 1999; Raich and Tufekcioglu, 2000; Wang et 

al., 2005; Wang et al., 2007). In relation to this, the underestimation of CO2 efflux in 

the grassland soil by DNDC illustrated in Table 1 (-13%) may presumably be 

influenced significantly by an underestimation of predicted above ground biomass of 

the order of 23% (Abdalla et al., 2010). 

For the arable field, no CO2 efflux peak during the ploughing period, was 

recorded as chambers had to be removed during this time. However, the baseline 

DNDC outputs showed a higher CO2-C peak from both tillage systems following soil 

ploughing (Figure 5). Such CO2 peak following tillage has been reported previously in 

the literature (Alvaro-Fuentes et al., 2007; Morell et al., 2010). Soil ploughing 

increases soil disturbance, increases the distribution of crop residues (Grigera et al., 

2007; Vinther and Dahlmann-hansen, 2005) increases microclimate (Muller et al., 

2009) and therefore, CO2-evolution (Franzluebbers et al., 1995; Reicosky and Archer, 

2007).   

Generally, the reduced tillage system increases soil organic carbon content of 

the surface layer as the results of different interacting factors like less soil disturbing, 

high soil moisture, increased residue return, reduced surface temperature, proliferation 

of root growth and biological activity and less soil erosion (Blevins and Frye, 1993). 

Reduced tillage has the advantage of sequestering C in the soils (Six et al., 2004; Li et 

al., 2005; Chatskikh and Olesen, 2007). Residue management also has an influence on 

the availability of organic matter, the quantity of micro-organisms and their activity 

(Doran et al., 1998; Frank et al., 2006). Although the depth and volume of soil 

disturbed by tillage usually leads to increased CO2 evolution rates (Franzluebbers et 

al., 1995; Reicosky and Archer, 2007), no significant difference was found in soil 

respiration between conventional and reduced tillage in this study. Furthermore, the 

model didn’t predict any difference here when CO2 emissions under reduced tillage 

has been compared with conventional tillage (Kessavalou et al., 1998; Jakson et al., 

2003; Chatskikh and Olesen, 2007; Sainju et al., 2008). Higher CO2 emissions have 

been observed following conventional tillage operations (Al-Kaisi and Yin, 2005; 
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Omonode et al., 2007; Reicosky and Archer, 2007). In contrast, Franzluebbers et al. 

(1995) found higher emissions under no-tillage than conventional tillage during 

overnight measurements using alkali traps. Ball et al. (1999) and Omonode et al. 

(2007) found no statistical difference in seasonal CO2 emissions between tillage 

systems; while different results, varying with year, were found by Mosier et al. (2006) 

and Fortin et al. (1996). In this study, the short duration reduced tillage applied (3 

years) has not yet sequestered CO2 in soil.  

 

Overall, the DNDC model effectively predicted soil respiration from both the pasture 

and arable fields although underestimated crop above ground biomass. This is in 

agreement with other previous studies using DNDC to simulate CO2 efflux from 

agriculture (e.g. Li et al., 2006; Tang et al., 2006; Levy et al., 2007; Li et al., 2010). 

However, the tillage options provided by DNDC do not allow the reduced tillage used 

in our study to be fully described and therefore, the model efficiency for simulating 

CO2 under reduced tillage (ME = 0.23) was poor compared with that under the 

conventional tillage (0.6). Both observed and predicted CO2-C efflux values showed 

that the seasonality of soil respiration coincided with seasonal climate pattern with 

high respiration rates in the summer and low rates in the winter (Figures 2, 3 and 4). 

Soil temperature and soil moisture are also, a part from assimilate supply, the two 

most important factors that control soil respiration (Lloyd and Tylor, 1994; Maester 

and Cortina, 2003; Saiz and Green, 2006). For instance previous studies found 

temperature to be major factor explaining annual variations in CO2 flux (e.g. 

Buyanovsky et al., 1986; Duiker and Lal, 2000; Rayment and Jarvis, 2000; Tang et 

al., 2006; Jabro et al., 2008). Peaks of CO2 effluxes from both the grassland and 

arable fields coincided with high rainfall events (Figure 3). This is in agreement with 

previous studies reported by Fierer and Schimel (2003) and Morell et al. (2010). 

Higher daily observed CO2 efflux compared with the DNDC output, for both the grass 

and arable fields, appeared during the crop vegetation period due to DNDC 

underestimating crop above ground biomass production. Differences in CO2 fluxes 

between the pasture and arable fields, are not significant (p>0.05). The reason here 

may be the huge amounts of CO2 which might released to the atmosphere from the 

pasture following the ploughing and reseeding in 2003.  The DNDC overestimation of 

measured WFPS values especially for the grasslands (r2 = 0.32; ME = -2; RMSE = 3 

and MAE = 15.7) was mainly due to the model poor prediction of biomass production 
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(-23%) and therefore, producing a low transpiration. Both WFPS and crop biomass 

are important parameters affecting CO2 emissions from soils (Jabro et al., 2008; Deng 

et al., 2010).Other problems with the hydrological component in DNDC, especially 

regarding the simulation of water filled pore space in the soil were also reported 

(Tonitto et al., 2007a, b; Wattenbach et al., 2010).The model complexity for this part 

has a profound impact on the uncertainties associated with the CO2 simulations which 

also increases the chance of poorer model fit to filed measurements (Wattenbach et 

al., 2010). 

 

3.2 Model results under climate change 

Rising atmospheric CO2 concentration is expected to increase soil temperature, 

which may stimulate the flux of carbon dioxide from soils, causing a positive 

feedback effect (Ise and Moorcroft, 2006). However simulating future CO2 efflux 

using different future weather scenarios can give uncertain results. For both the 

grassland and arable fields, the higher predicted peaks of CO2 efflux under the high 

temperature sensitivity scenario were attributed to increasing soil temperature, 

precipitation compared with the baseline climate scenario. Predicted higher future 

above ground biomass (Abdalla et al., 2010) will also lead to higher CO2 from soil. 

Previous studies indicate that simulation and prediction of soil respiration in response 

to climate change should consider changes in biotic factors i.e. plant growth and 

substrate supply and abiotic factors i.e. temperature and moisture (Wang et al., 2007; 

Xia et al., 2009). As discussed earlier, temperature is one of the main driving factors 

affecting CO2-C efflux from soils (e.g. Buyanovsky et al., 1986; Duiker and Lal, 

2000; Rayment and Jarvis, 2000; Tang et al., 2006; Jabro et al., 2008). In the case of 

the pasture and as a result of higher future above ground biomass production (Abdalla 

et al., 2010) the CO2 efflux will increase. The increase in aboveground biomass would 

produce more litter-fall and contributing to higher soil respiration (Zak et al., 2000; 

Deng et al., 2010). Here, both soil organic matter decomposition and microbial 

response to other perturbations, such as fertilization, temperature and rainfall, can 

increase (Bramley and White 1990; Antonopoulos1999; Wennman and Katterer 

2006). Future higher CO2 concentration also stimulates soil respiration (Craine et al., 

2001; Wan et al., 2007). High CO2 concentration can increase plant photosynthesis, 

growth, below ground C input and substrate leading to greater root and microbial 

activities and respiration (Edward and Norby, 1999; Zak et al., 2000; Anderson et al., 
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2001). In addition, higher soil moisture content resulting from reduced stomatal 

conductance and transpiration of plant under high CO2 concentration will enhance 

root and microbial activities and respiration (Morgan et al., 2004). However, 

contradicting findings about the effects of soil moisture are reported in the literature. 

Jabro et al. (2008) found strong correlation between moisture and soil respiration 

although many other researchers e.g. Bajracharya et al. (2000), Mielnick and Dugas 

(2000), Merino et al. (2004) and Ding et al. (2007) have reported weak correlations. 

In this study, predicted higher rainfall events during winter time (C4I, 2008), due to 

climate change, will positively influence CO2 effluxes from soils (Laporte et al., 

2002). For the arable field, the future post-tillage CO2-C efflux peak would increase 

and represent 11 and 50% of the annual efflux for conventional and reduced tillage, 

respectively. The faster maturation of crops, under climate change, may give farmers 

an opportunity to cultivate an additional crop, if other resources are not limited, 

during the main vegetation period (Dietiker et al., 2010) which will allow more CO2 

uptake. However, if water availability is decreasing due to global warming, this could 

have an impact on crop productivity and reduced the ecosystem ability to store 

carbon.  

 

5. Conclusions 

Our results indicate that DNDC model can estimate effectively soil respiration 

from grass and arable lands as free draining soils typical of midlands of Ireland. The 

model underestimated annual measured CO2 efflux from the pasture by only 13% 

(ME = 0.6; RMSE =1.9 and MAE = 6.3) and from the arable conventional and 

reduced tillage systems by 9% (ME = 0.58; RMSE = 1.6 and MAE = 2.4) and 8% 

(ME = 0.23; RMSE = 1.8 and MAE = 2.9), respectively. However, the model 

underestimated the annual above ground biomass production of the pasture by 23% 

(ME = -3; RMSE = 0.15 and 0.6) and that of spring barley by 11% (ME = 0.31; 

RMSE = 0.77 and MAE = 0.56) under conventional tillage and 14% (ME = 0.23; 

RMSE = 0.81 and MAE = 0.73) under reduced tillage.  Predicted soil temperatures for 

both fields agreed well with the observed temperature values. Calculated RSME 

values of soil temperature were 0.31 for the pasture, 0.33 for conventional tillage and 

0.47 for reduced tillage. Although, the model overestimated measured WFPS values 

for the pasture, it relatively predicted well the observed WFPS values for the arable 

conventional and reduced tillage systems. Short-term land use change had no 
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significant effects on CO2 effluxes from soil. Using the high temperature sensitive 

scenario, future CO2-C effluxes would increase by +15% for the pasture and +13% for 

the arable field. However, under the low temperature sensitive scenario, increases in 

the CO2-C efflux were +6% for the pasture and +5% for both arable tillage treatments. 

The calculated annual CO2 efflux uncertainties for using the high and low temperature 

sensitive scenarios were 9% for the pasture and 8% for the arable field. 
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Table: 
 
Table 1: DNDC modelled CO2 efflux at baseline and low and high temperature 
sensitivity scenarios from the pasture and arable conventional and reduced tillage and 
predicted future percentage change. Differences between different climate scenarios 
are not significantly different (p>0.05) 
Cropping system baseline (t CO2-

C ha-1y-1) 
 

low scenario (t 
CO2-C ha-1y-1) 

High scenario (t 
CO2-C ha-1y-1) 

% change       
low      high      

Pasture 10.8  11.4 12.4 6 15 
Arable conventional 8.2  8.6 9.3 5 14 
Arable reduced 8.9  9.3 10 5 16 
 

 

 

Figure captions 

 

Figure 1: Comparisons of DNDC model-simulated (lines) and field measured (●) CO2 

efflux from the pasture (a; r2 = 0.60; ME = 0.6; RSME = 1.9 and MAE = 6.3) and the 

arable conventional (b; r2 = 0.60; ME = 0.58; RSME = 1.6; MAE = 2.37) and reduced 

(c; r2 = 0.52; ME = 0.23; RSME = 1.8 and MAE = 2.9) tillage. (Error bars for 

measured values are ± standard error). Long solid arrows show the times of silage 

cutting, short sick arrows show times of ploughing and dotted arrows show times of 

fertilizer application.  

Figure 2: Comparison between the DNDC simulated (lines) and field measured soil 

(●) temperature (0-10 cm depth) from the pasture (a; r2 = 0.81; ME = 0.79; RMSE = 

0.31 and MAE = 0.95) and arable conventional (b; r2 = 0.83; ME = 0.67; RSME = 

0.33 and MAE = 1.78) and reduced tillage (c; r2 = 0.81; ME = 0.38; RSME = 0.47 and 

MAE = 2.4). (Error bars for measured values are ± standard error).  

Figure 3: Comparisons between the DNDC simulated (lines) and field measured (●) 

WFPS from the pasture (a; r2 = 0.32; ME = -2; RMSE = 3 and 15.7) and arable 

conventional (b; r2 = 0.35; ME = 0.12; RMSE = 1.6 and 2.9) and reduced (c; r2 = 0.53; 

ME = 0.42; RSME = 1.3 and 0.73).  

Figure 4: Precipitation (a) and maximum air temperature (b) during the experimental 

period (2003-2005). 
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Figure 5: Effects of climate change on soil respiration from the grass (a) and arable 

conventional (b) and reduced tillage (c) for the high (light lines) and low (dotted lines) 

temperature sensitive climate data compared with measured baseline climate (thick 

lines).  
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Figure1: Comparisons of DNDC model-simulated (lines) and field measured (●) CO2 
efflux from the pasture (a) and arable conventional (b) and reduced tillage (c). 
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Figure 2: Comparison between the DNDC simulated (lines) and field measured soil 
(●) temperature (0-10 cm depth) from the pasture (a) and arable conventional (b) and 
reduced tillage (c). 
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Figure 3: Comparisons between the DNDC simulated (lines) and field measured (●) 
WFPS from the pasture (a) and arable conventional (b) and reduced tillage (c). 
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Figure 4: Precipitation (a) and maximum air temperature (b) during the experimental 
period (2003-2005). 
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Figure 5: Effects of climate change on soil respiration from the 

pasture (a) and arable conventional (b) and reduced tillage (c).

Ploughing 
Straw incorporation 

Reduced tillage practices 
and straw incorporation 
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Grazing 

Fertilizer application (dotted arrows); silage 
cutting (thick arrow). 

Fertilizer application 

Fertilizer application 
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Research Highlight 

1. Our results clearly indicate that DNDC model can estimate, effectively, CO2 

effluxes from this free draining soil.  

2. Short-term land use change had no significant effects on CO2 effluxes from soils. 

3. Future climate change would increase CO2 effluxes from this soil by 14 - 16%.  

4. The uncertainty in future CO2 effluxes, due to using different climate scenarios, is 8 

- 9%. 


