
Information Flow vs. Resource Access in theAsynchronous Pi-Calculus (Extended Abstract)Matthew Hennessy1 and James Riely21 COGS, University of Sussex, UKemail:matthewh@cogs.sussex.ac.uk,home page: http://www.cogs.susx.ac.uk/users/matthewh/2 DePaul University, USemail:jriley@cs.depaul.eduhome page: http://www.depaul.edu/ jriely/Abstract. We propose an extension of the asynchronous �-calculus inwhich a variety of security properties may be captured using types. Theseare an extension of the Input/Output types for the �-calculus in whichI/O capabilities are assigned speci�c security levels.We de�ne a typing system which ensures that processes running atsecurity level � cannot access resources with a security level higher than�. The notion of access control guaranteed by this system is formalizedin terms of a Type Safety theorem.We then show that, for a certain class of processes, our system pro-hibits implicit information
ow from high-level to low-level processes.We prove that low-level behaviour can not be in
uenced by changes tohigh-level behaviour. This is formalized as a Non-Interference Theoremwith respect to may testing.1 IntroductionThe problem of protecting information and resources in systems with multi-ple sensitivity or security levels, [2], has been studied extensively. Flow analysistechniques have been used in [3, 4], axiomatic logic in [13] while in [27, 15] typesystems have been developed for a number of prototypical programming lan-guages. In this paper, we explore the extent to which type systems for ensuringvarious forms of security can also be developed for the asynchronous �-calculus[5,17]. We discuss two security issues: resource access control and informationcontrol. The former is described in terms of runtime errors, the latter in termsof non-interference [27, 11].The (asynchronous) �-calculus is a very expressive language for describingdistributed systems, [5,23, 12], in which processes intercommunicate using chan-nels. Thus n?(x)P is a process which receives some value on the channel namedn, binds it to the variable x and executes the code P . Corresponding to thisinput command is the asynchronous output command n!hvi which outputs thevalue v on n. The set of values which may be transmitted on channels includeschannel names themselves; this, together with the ability to dynamically createnew channel names, gives the language its descriptive power.

Within the setting of the �-calculus we wish to investigate the use of types toenforce security policies. To facilitate the discussion we extend the syntax witha new construct to represent a process running at a given security clearance,�JP K. Here � is some security level taken from a complete lattice of securitylevels SL and P is the code of the process. Further, we associate with eachchannel, the resources in our language, a set of input/output capabilities [22,24], each decorated with a speci�c security level. Intuitively, if channel n hasa read capability at level �, then only processes running at security level � orhigher may be read from n. This leads to the notion of a security policy �, whichassociates a set of capabilities with each channel in the system. The questionthen is to design a typing system which ensures that processes do not violatethe given security policy.Of course this depends on when we consider such a violation to take place.For example if � assigns the channel or resource n the highest security level topthen it is reasonable to say that a violation will eventually occur inc!hni j botJc?(x) x?(y)P Kas after the communication on c, a low level process, botJn?(y)P K has gainedaccess to the high level resource n. Underlying this example is the principle thatprocesses at a given security level � should have access to resources at securitylevel at most �. We formalize this principle in terms of a relation P �7�! err,indicating that P violates the security policy �.To prevent such errors, we restrict attention to security policies that aresomehow consistent. Let � be such a consistent policy; consistency is de�ned byrestricting types so that they respect a subtyping relation. We then introduce atyping system, � ` P , which ensures that P can never violate � :If � ` P then for every context C[] such that � ` C[P] and every Qwhich occurs during the execution of C[P], that is C[P] 7!� Q, we haveQ �7�X�! err.Thus our typing system ensures that low level processes will never gain access tohigh level resources. The typing system implements a particular view of security,which we refer to as the R-security policy, as it o�ers protection to resources. Herecommunication is allowed between high level and low level principals, providedof course that the values involved are appropriate.This policy does not rule out the possibility of information leaking indirectlyfrom high security to low security principals. Suppose h is a high channel and hlis a channel with high-level write access and low-level read access in:topqh?(x) if x = 0 then hl!h0i else hl!h1i y j botqhl?(z)Qy (?)This system can be well-typed although there is some implicit information
owfrom the high security agent to the low security one; the value received on thehigh level channel h can be determined by the low level process Q.It is di�cult to formalize exactly what is meant by implicit information
owand in the literature various authors have instead relied on non-interference, [14,

25,11, 26], a concept more amenable to formalization, which ensures, at leastinformally, the absence of implicit information
ow.To obtain such results for the �-calculus we need, as the above exampleshows, a stricter security policy, which we refer to as the I-security policy. Thisallows a high level principal to read from low level resources but not to write tothem. Using the terminology of [2, 7]:{ write up: a process at level � may only write to channels at level � or above{ read down: a process at level � may only read from channels at level � orbelow.In fact the type inference system remains the same and we only need constrainthe notion of type. In this restricted type system well-typing, �
 P , ensures aform of non-interference.To formalize this non-interference result we need to develop a notion of pro-cess behaviour, relative to a given security level. Since the behaviour of processesalso depends on the type environment in which they operate we need to de�nea relation P ��� Qwhich intuitively states that, relative to � , there is no observable distinctionbetween the behaviour of P and Q at security level �; processes running atsecurity level � can observe no di�erence in the behaviour of P and Q. Lack ofinformation
ow from high to low security levels now means that this relationis invariant under changes in high-level values; or indeed under changes in high-level behaviour.It turns out that the extent to which this is true depends on the exact for-mulation of the behavioural equivalence ��� . We show that it is not true if ��� isbased on observational equivalence [19] or must testing equivalence [21]. But aresult can be established if we restrict our attention to may testing equivalence(here written '��). Speci�cally we will show that, for certain H;K:If �
� P; Q and �
top H; K then P '�� Q implies P jH '�� Q jK (??)The remainder of the paper is organized as follows. In the next section wede�ne the security �-calculus, giving a labelled transition semantics and a formalde�nition of runtime errors. In Section 3 we design a set of types and a typingsystem which implements the resource control policy. This section also containsSubject Reduction and Type Safety theorems. In Section 4 we motivate therestrictions required on types and terms in order to implement the informationcontrol policy. We also give a precise statement of our non-interference result,and give counter-examples to related conjectures based on equivalences otherthan may testing.The proof of our main theorem depends on an analysis of may testing interms of asynchronous sequences of actions [6] which in turn depends on a moreexplicit operational semantics for our language, where actions are paramterisedrelative to a typing environment. The details may be found in the full version ofthe paper, [16].

Fig. 1 SyntaxP;Q ::= Termsu!hvi Outputu?(X : A)P Inputif u = v then P elseQ Matching�JP K Security level(new a : A) P Name creationP jQ Composition�P Replication0 Termination X;Y ::= Patternsx Variable(X1; : : : ; Xk) Tupleu; v;w ::= Valuesbv Base Valuea Namex Variable(u1; : : : ; uk) Tuple2 The LanguageThe syntax of the security �-calculus, given in Figure 1, uses a prede�ned set ofnames, ranged over by a; b; : : : ; n and a set of variables, ranged over by x; y; z.Identi�ers are either variables or names. Security annotations, ranged over bysmallGreek letters �; �; : : : , are taken from a complete lattice hSL;�;u;t; top; botiof security levels. We also assume for each � a set of basic values BV� ; we usebv to range over base values. We require that all syntactic sets be disjoint.The binding constructs u?(X :A)Q and (new a :A) Q introduce the usualnotions of free names and variables, fn(P) and fv(P), respectively, and associ-ated notions of substitution; details may be found in the full version. Moreoverthe typing annotations on the binding constructs, which will be explained inSection 3, are omitted whenever they do not play a role.The behaviour of a process is determined by the interactions in which it canengage. To de�ne these, we give a labelled transition semantics (LTS) for thelanguage. The set Act of labels, or actions, is de�ned as follows:� ::= Actions� Internal action(~c : ~C)a?v Input of v on a learning private names ~c(~c : ~C)a!v Output of v on a revealing private names ~cVisible actions (all except �) are ranged over by �, � and we use E(�) to denotethe bound names in �, together with their types. E((~c : ~C)a!v) = E((~c : ~C)a?v) =(~c : ~C). Further, let n(�) be the set of names occurring in �, whether free orbound. We say that the actions `(~c : ~C)a?v' and `(~c : ~C)a!v' are complementary,with � denoting the complement of �.The LTS is de�ned in Figure 2 and for the most part the rules are straight-forward; it is based on the standard operational semantics from [20], to whichthe reader is referred for more motivation.Informally a security policy associates with each input/output capability ona channel a security level. To this end, Pre-capabilities and pre-types are de�ned

Fig. 2 Labelled Transition Semantics(l-out)a!hvi a!v�! 0 (l-in)a?(X)P (ec : eC)a?v�����! Pfjv=Xjg ~c =2 fn(P); ~c 2 fn(v)(l-open)P (~c : ~C)a!v�����! P 0(new b : B) P (b : B)(ec : eC)a!v���������! P 0 b 6= ab 2 fn(v)(l-com)P ��! P 0; Q ��! Q0P jQ ��! (new E(�)) (P 0 jQ0)(l-eq)if u = u then P else Q ��! P if u = w then P elseQ ��! Q u 6= w(l-ctxt)P ��! P 0�P ��! �P j P 0�JP K ��! �JP 0K P ��! P 0P jQ ��! P 0 jQQ j P ��! Q j P 0 bn(�) 62 fn(Q)P ��! P 0(new a : A) P ��! (new a : A) P 0 a 62 n(�)as follows:cap ::= Pre-Capabilityw�hAi �-level process can write values with type Ar�hAi �-level process can read values with type AA ::= Pre-TypeB� Base typefcap1; : : : ; capkg Resource type (k � 0)(A1; : : : ;Ak) Tuple type (k � 0)We will tend to abbreviate a singleton set of capabilities, fcapg, to cap.A security policy, �, is a �nite mapping from names to pre-types. Thus, forexample, if � maps the channel lh to the pre-type fwbothBi; rtophAig, for someappropriate A; B, then low level processes may write to lh but only high levelones may read from it; this is an approximation of the security associated witha mailbox. On the other hand if � maps hl to frbothAi; wtophBig then hl actsmore like an information channel; anybody can read from it but only high levelprocesses may place information there.The import of a security policy may be underlined by de�ning what it meansto violate it. Our de�nition is given in Figure 3, in terms of a relation P �7�! err.For example, relative to the policy � de�ned above, after one reduction stepof the process topJc!hhliK j botJc?(x)x!hviK, there is a security error because

Fig. 3 Runtime Errors(e-rd) �Ja?(X)P K �7�! err if � � � implies for all A, r�hAi =2 �(a)(e-wr1) �Ja!hviK �7�! err if � � � implies for all A, w�hAi =2 �(a)(e-wr2) �Ja!hviK �7�! err if bv 2 v, bv 2 B� and � 6� �(e-str) P �7�! errP jQ �7�! err P �7�! err�JP K �7�! err P � Q; P �7�! errQ �7�! errP �;a : A7����! err(new n : A) P �7�! errbotJhl!hviK �7�! err: A low security process has read access to security chan-nel hl on which write access is reserved for high-security processes. Assumingan appropriate typing for c and v the same security error does not occur intopJc!hlhiK j botJc?(x)x!hviK: The low security process botJlh!hviQK has the rightto write on the channel lh.3 Resource ControlOur typing system will apply only to certain security policies, those in which thepre-types are in some sense consistent. Consistency is imposed using a systemof kinds: the kind RType� comprises the value types accessible to processes atsecurity level �. These kinds are in turn de�ned using a subtyping relation onpre-capabilities and pre-types.De�nition 1. Let <: be the least preorder on pre-capabilities and pre-types suchthat: (u-wr) w�hAi <: w�hBi if B <: A(u-rd) r�hAi <: r�hBi if A <: B and � � �(u-base) B� <: B� if � � �(u-res) fcapigi2I <: fcap0jgj2J if (8j)(9i) capi <: cap0j(u-tup) (A1; : : : ;Ak) <: (B1; : : : ;Bk) if (8i) Ai <: BiFor each �, let RType� be the least set that satis�es:(rt-wr)A 2 RType�fw�hAig 2 RType� � � �(rt-rd)A 2 RType�fr�hAig 2 RType� � � �(rt-wrrd)A 2 RType�A0 2 RType�0fw�hAi; r�0 hA0ig 2 RType� � � ��0 � �A <: A0 (rt-base)B� 2 RType� � � �(rt-tup)Ai 2 RType� (8i)(A1; : : : ;Ak) 2 RType�

Fig. 4 Typing Rules(t-id)� (u) <: A� ` u : A (t-base)bv 2 B�� ` bv :B� (t-tup)� ` vi :Ai (8i)� ` (v1; : : : ; vk) :(A1; : : : ;Ak)(t-in)�;X : A �̀ P� ` u : r�hAi� �̀ u?(X : A)P (t-out)� ` u :w�hAi� ` v : A� �̀ u!hvi (t-eq)� ` u : A; v : B� �̀ Q� u fu : B; v : Ag �̀ P� �̀ if u = v then P else Q(t-sr)� �̀u� P� �̀ �JP K (t-new)�; a : A �̀ P� �̀ (new a : A) P (t-str)� �̀ P; Q� �̀ P jQ; �P; 0Let RType be the union of the kinds RType� over all �. utNote that if � � � then RType� � RType�. Intuitively, low level values areaccessible to high level processes. However the converse is not true. For examplewtophi 2 RTypetop but wtophi is not in RTypebot. The compatibility requirementbetween read and write capabilities in a type (rt-wrrd), in addition to thetyping implications discussed in [24], also has security implications. For examplesuppose rbothB�i and wtophBi are capabilities in a valid channel type. Thenapriori a high level process can write to the channel while a low level processmay read from it. However the only possibility for � is bot, that is only low levelvalues may be read. Moreover the requirement B <: B� implies that B must alsobe Bbot. So although high level processes may write to the channel they mayonly write low level values.Proposition 1. For every �, RType� is a preorder with respect to <:, with botha partial meet operation u and a partial join t. utA type environment is a �nite mapping from identi�ers (names and variables)to types. We adopt some standard notation. For example, let `�; u :A' denote theobvious extension of � ; `�; u :A' is only de�ned if u is not in the domain of � . Thesubtyping relation <: together with the partial operators u and t may also beextended to environments. We will normally abbreviate the simple environmentfu :Ag to u :A and moreover use v : A to denote its obvious generalisation tovalues.The typing system is given in Figure 4 where the judgements are of the form`� �̀ P '. If � �̀ P we say that P is a �-level process. Also, let `� ` P ' abbreviate`� t̀op P '.Intuitively `� �̀ P ' indicates that the process P will not cause any securityerrors if executed with security clearance �. The rules are very similar to thoseused in papers such as [24, 22] for the standard IO typing of the �-calculus.Indeed the only signi�cant use of the security levels is in the (t-in) and (t-out)

rules, where the channels are required to have a speci�c security level. This isinferred using auxiliary value judgements, of the form � ` v :A. It is interestingto note that security levels play no direct role in their derivation.Theorem 1 (Subject Reduction). Suppose � �̀ P . Then{ P ��! Q implies � �̀ Q{ P (~c : ~C)a?v�����! Q implies there exists a type A such that � ` a : r�hAi for some� � �, and if � u v : A is well-de�ned then � u v : A �̀ Q.{ P (~c : ~C)a!v�����! Q implies there exists a type A such that � ` a :w�hAi for some� � �, �; ~c : ~C ` v :A and �; ~c : ~C �̀ Q. utWe can now state the �rst main result:Theorem 2 (Type Safety). If � ` P then for every closed context C[] suchthat � ` C[P] and every Q such that C[P] ��!� Q we have Q �7�X�! err utHaving de�ned our typing system we may now view �JP K simply as notationfor the fact that, relative to the current typing environment � , the process P iswell-typed at level �, i.e. � �̀ P . Technically we can view �JP K to be structurallyequivalent to P , assuming we are working in an environment � such that � �̀ P .4 Information FlowWe have shown in the previous sections that, in well-typed systems, processesrunning at a given security level can only access resources appropriate to thatlevel. However, as pointed out in the Introduction this does not rule out (im-plicit) information
ow between levels. One way of formalizing this notion of
ow of information is to consider the behaviour of processes and how it can bein
uenced. If the behaviour of low-level processes is independent of any high-level values in its environment then we can say that there can be no implicit
owof information from high-level to low-level. This is not the case in the exampleconsidered in the Introduction, (?). Suppose, for example, that Q is the codefragment `if z = 0 then l1!hi else l2!hi'. If (?) were placed in an environment with`topJh!h0iK', then the resource l1 would be called. If, instead, (?) were placed inan environment with `topJh!h42iK', then l2 would be called. In other words thebehaviour of the low-level process can be in
uenced by high-level changes; thereis a possibility of information
ow downwards.This is not surprising in view of the type associated with the channel hl;in the terminology of [2] it allows a write down from a high-level process to alow-level process. Thus if we are to eliminate implicit information
ow betweenlevels in well-typed processes we need to restrict further the allowed types; typessuch as fwtophi; rbothig clearly contradict the spirit of secrecy. Thus, for the restof the paper we work with the more restrictive set IType, the Information types.In order for fw�hAi; r�0 hA0ig to be in IType, it must be that � � �0; this is notnecessarily true for types in RType.

De�nition 2. For each �, let IType�, be the least set that satis�es the rules inDe�nition 1, with (rt-wrrd) replaced by:(it-wrrd)A 2 IType�A0 2 IType�0fw�hAi; r�0 hA0ig 2 IType� � � �0�0 � �A <: A0Let IType be the union of IType� over all �. We write �
� P if � �̀ P can bederived from the rules of Figure 4 using these more restrictive types. utAll of the results of the previous section carry over to the stronger typing system;we leave their elaboration to the reader.Unfortunately, due to the expressiveness of our language, the use of I-typesstill does not preclude information
ow downwards, between levels. Consider thesystem topqh?(x) if x = 0 then botJl!h0iK else botJl!h1iKy j botql?(z)Qyexecuting in an environment in which h is a top-level read/write channel and lis a bot-level read/write channel. This system can be well-typed using I-types,but there still appears to be some some implicit
ow of information from topto bot. The problem here is that our syntax allows a high-level process, whichcan not write to low-level channels, to evolve into a low-level process which doeshave this capability; we need to place a boundary between low- and high-levelprocesses which ensures a high-level process never gains write access to low-levelchannels. This is the aim of the following de�nition:De�nition 3. De�ne the security levels of a term below �, sl�(P), as follows:sl�(�P) = sl�(P) sl�(0) = f�g sl�(�JP K) = f� u �g [sl�u�(P)sl�((new a :A) P) = sl�(P) sl�(u!hvi) = ; sl�(P jQ) = sl�(P) [sl�(Q)sl�(u?(X :B)P) = sl�(P) sl�(if u = v then P else Q) = sl�(P) [sl�(Q)A process P is �-free if for every � in sltop(P), � 6� �. utNon-interference, as discussed in the Introduction, (??), depends on a formu-lation of a behavioural equivalence, as the following example illustrates. Let Adenote the type fwbothi; rbothig and B denote frbothig. Further, let � map a andb to A and B, respectively, and n to the type fwbothAi; rbothAig. Now considerthe terms P and H de�ned byP (botJn!hai j n?(x :A) x!hiK H (topJn?(x :B) b?(y) 0KIt is very easy to check that �
 P;H and that H is bot-free. Note that in theterm P jH there is contention between the low and high-level processes for whowill receive a value on the channel n. This means that if we were to base the

semantic relation � on any of strong bisimulation equivalence, weak bisimulationequivalence, [19], or must testing, [21], we would haveP j 0 6�� P jHThe essential reason is that the consumption of writes can be detected; thereduction P jH ��! botJn?(x :A) x!hiK j topJb?(y) : 0Kcannot be matched by P j 0. Using the terminology of [21], P j 0 guarantees thetest botJa?(x)!!hiK whereas P jH does not.May equivalence is de�ned in terms of tests. A test is a process with anoccurrence of a new reserved resource name !. We use T to range over tests,with the typing rule �
� !!hi for all � . When placed in parallel with a process P ,a test may interact with P , producing an output on ! if some desired behaviourof P has been observed. We write T+ if T ��!� T 0, where T 0 has the form(new ~c) (!!hi j T 00) for some T 00 and ~c; that is T can eventually report success.We wish to capture the behaviour of processes at a given level of security.Consequently we only compare their ability to pass tests that are well-typedat that level. The de�nition must also take into account the environment inwhich the processes are used, as this determines the security level associatedwith resources.De�nition 4. We write P '�� Q if for every test T such that �
� T :(P j T)+ if and only if (Q j T)+ utWe can now state the main result of the paper.Theorem 3 (Non-Interference). If �
� P; Q and �
top H; K where H andK are �-free processes, then P '�� Q implies P jH '�� Q jK: utThe proof of the theorem relies on a constructing su�cient condition to guaranteethat two processes are may equivalent. This condition involves the asynchronoussequences of actions which processes can perform in the type environment � . Thedetails may be found in the full version of the paper, [16], which also containsthe subsequent proof of the non-interference result.Finally let us remark that if we allowed synchronous tests then this resultwould no longer hold. For an appropriate � would have:P j 0 '�� P jHLet T be the test botJb!hi!!hiK. Then P jH jT may eventually produce an outputon ! whereas P j0 jT cannot. However, since our language is asynchronous, suchtests are not allowed.

5 Conclusions and Related WorkMethods for controling information
ow are a central research issue in computersecurity [7, 14, 27] and in the Introduction we have indicated a number of dif-ferent approaches to its formalisation. Non-interference has emerged as a usefulconcept and is widely used to infer (indirectly) the absence of information
ow.In publications such as [25, 9] it has been pointed out that process algebras maybe fruitfully used to formalise and investigate this concept; for example in [8]process algebra based methods are suggested for investigating security protocols,essentially using a formalisation of non-interference for CCS.However in these publications the non-interference is always de�ned be-haviourally, as a condition on the possible traces of CCS or CSP processes; usefulsurveys of trace based non-interference may be found in [9, 26]. Here, we workwith the more expressive �-calculus, which allows dynamic process creation andnetwork recon�guration. Our approach to non-interference is also more exten-sional in that it is expressed in terms of how processes e�ect their environments,relative to a particular behavioural equivalence. However the proof of our mainresult, Theorem 3, describes may equivalence in terms of (typed) traces; pre-sumably a trace based de�nition of non-interference, similar in style to those in[9,26] could be extracted from this proof.More importantly our approach di�ers frommuch of the recent process calcu-lus based security research in that we develop purely static methods for ensuringsecurity. Processes are shown to be secure not by demonstrating some propertyof trace sets, using a tool as such as that in [10], but by type-checking. Typeshave also been used in this manner in [1] for an extension of the �-calculus calledthe spi-calculus. But there the structure of the types are very straightforward;the type Secret representing a secret channel, the type Public representing apublic one, and Any which could be either. However the main interest is inthe type rules for the encryption/decryption primitives of the spi-calculus. Thenon-interference result also has a di�erent formulation to ours; it states thatthe behaviour of well-typed processes is invariant, relative to may testing, undercertain value-substitutions. Intuitively, it means that the encryption/decryptionprimitives preserve values of type Secret from certain kinds of attackers. It wouldbe interesting to add these primitives to the our security �-calculus and to tryto adapt the associated type rules to the set of I-Types.An extension of the �-calculus is also considered in [18], where a sophisticatedtype system is used to control information
ow. The judgements in their systemtake the form � `s P . Awhere s is a security level, P is a process term, A is a poset of so-called actionnodes and � is a type environment. Their environments are quite similar to ours,essentially associating with channels a version of input/output types annotatedwith, among other things, security levels. However their intuition, and much ofthe technical development, is quite di�erent from ours. In summary it appearsthat our type system addresses information
ow within the core �-calculus whilethe more sophisticated one of [18] controls the
ow allowed via the extra syntactic

constructs of their language. However a more thorough comparison between thetwo systems deserves to be made.Acknowledgements: The research was partially funded by EPSRC grantGR/L93056, and ESPRT Working Group Confer2. The authors would like tothank I. Castellani for a careful reading of a draft version of the paper.References1. Mart��n Abadi. Secrecy by typing in security protocols. In Proceedings of TACS'97,volume 1281 of Lecture Notes in Computer Science, pages 611{637. Springer Verlag,1997.2. D. E. Bell and L. J. LaPadula. Secure computer system: Uni�ed exposition andmultics interpretation. Technical report MTR-2997, MITRE Corporation, 1975.3. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control
ow analysis for the�-calculus. In Proc. CONCUR'98, number 1466 in Lecture Notes in ComputerScience, pages 84{98. Springer-Verlag, 1998.4. C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis of processesfor no read-up and no write-down. In Proc. FOSSACS'99, number 1578 in LectureNotes in Computer Science, pages 120{134. Springer-Verlag, 1999.5. G. Boudol. Asynchrony and the �-calculus. Technical Report 1702, INRIA-SophiaAntipolis, 1992.6. Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous lan-guages. In V Arvind and R Ramanujam, editors, 18th Conference on Foundationsof Software Technology and Theoretical Computer Science (Chennai, India, De-cember 17{19, 1998), LNCS 1530. Springer-Verlag, December 1998.7. D. Denning. Certi�cation of programs for secure information
ow. Communicationsof the ACM, 20:504{513, 1977.8. Riccardo Focardi, Anna Ghelli, and Roberto Gorrieri. Using non interference forthe analysis of security protocols. In Proceedings of DIMACS Workshop on Designand Formal Veri�cation of Security Protocols, 1997.9. Riccardo Focardi and Roberto Gorrieri. A classi�cation of security properties forprocess algebras. Journal of Computer Security, 3(1), 1995.10. Riccardo Focardi and Roberto Gorrieri. The compositional security checker: A toolfor the veri�cation of information
ow security properties. IEEE Transactions onSoftware Engineering, 23, 1997.11. Riccardo Focardi and Roberto Gorrieri. Non interference: Past, present and future.In Proceedings of DARPA Workshop on Foundations for Secure Mobile Code, 1997.12. C. Fournet, G. Gonthier, J.J. Levy, L. Marganget, and D. Remy. A calculus ofmobile agents. In U. Montanari and V. Sassone, editors, CONCUR: Proceedingsof the International Conference on Concurrency Theory, volume 1119 of LectureNotes in Computer Science, pages 406{421, Pisa, August 1996. Springer-Verlag.13. R. Reitmas G. Andrews. An axiomatic approach to information
ow in programs.ACM Transactions on Programming Languages and Systems, 2(1):56{76, 1980.14. J. A. Goguen and J. Meseguer. Security policies and security models. In IEEESymposium on Security and privacy, 1992.15. Nevin Heintz and Jon G. Riecke. The SLam calculus: Programming with secrecyand integrity. In Conference Record of the ACM Symposium on Principles ofProgramming Languages, San Diego, January 1998.

16. Matthew Hennessy and James Riely. Information
ow vs. resource access in theasynchronous pi-calculus. Technical report 2000:03, University of Sussex, 2000.Available from http://www.cogs.susx.ac.uk/.17. Kohei Honda and Mario Tokoro. On asynchronous communication semantics. InP. Wegner M. Tokoro, O. Nierstrasz, editor, Proceedings of the ECOOP '91 Work-shop on Object-Based Concurrent Computing, volume 612 of LNCS 612. Springer-Verlag, 1992.18. Kohei Honda, Vasco Vasconcelos, and Nobuko Yoshida Honda. Secure informa-tion
ow as typed process behaviour. In Proceedings of European Symposium onProgramming (ESOP) 2000. Springer-Verlag, 2000.19. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.20. R. Milner, J. Parrow, and D. Walker. Mobile logics for mobile processes. TheoreticalComputer Science, 114:149{171, 1993.21. R. De Nicola and M. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 24:83{113, 1984.22. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.Mathematical Structures in Computer Science, 6(5):409{454, 1996. Extended ab-stract in LICS '93.23. Benjamin C. Pierce and David N. Turner. Pict: A programming language basedon the pi-calculus. Technical Report CSCI 476, Computer Science Department,Indiana University, 1997. To appear in Proof, Language and Interaction: Essays inHonour of Robin Milner, Gordon Plotkin, Colin Stirling, and Mads Tofte, editors,MIT Press.24. James Riely and Matthew Hennessy. Resource access control in systems of mobileagents (extended abstract). In Proceedings of 3rd International Workshop on High-Level Concurrent Languages, Nice, France, September 1998. Full version availableas Computer Science Technical Report 2/98, University of Sussex, 1997. Availablefrom http://www.cogs.susx.ac.uk/.25. A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through determin-ism. In European Symposium on Research in Computer Security, volume 875 ofLNCS, 1994.26. P.Y.A. Ryan and S.A. Schneider. Process algebra and non-interference. In CSFW12. IEEE, 1997.27. Geo�rey Smith and Dennis Volpano. Secure information
ow in a multi-threadedimperative language. In Conference Record of the ACM Symposium on Principlesof Programming Languages, San Diego, January 1998.

