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Abstract-Increasing traffic congestion is a major problem in 
urban areas, which incurs heavy economic and environmental 
costs in both developing and developed countries. Efficient urban 
traffic control (UTC) can help reduce traffic congestion. However, 
the increasing volume and the dynamic nature of urban traffic 
pose particular challenges to UTC. Reinforcement Learning (RL) 
has been shown to be a promising approach to efficient UTC. 
However, most existing work on RL-based UTC does not ade­
quately address the fluctuating nature of urban traffic. This paper 
presents SoUseI, a decentralized RL-based UTC optimization 
scheme that includes a nonparametric pattern change detection 
mechanism to identify local traffic pattern changes that adversely 
affect an RL agent's performance. Hence, SoUse is adaptive 
as agents learn to optimize for different traffic patterns and 
responsive as agents can detect genuine traffic pattern changes 
and trigger relearning. We compare the performance of SoUse to 
two baselines, a fixed-time approach and a saturation balancing 
algorithm that emulates SCATS, a well-known UTC system. The 
comparison was performed based on a simulation of traffic in 
Dublin's inner city centre. Results from using our scheme show 
an approximate 35% - 43% and 40% - 54% better performance 
in terms of average vehicle waiting time and average number of 
vehicle stops respectively against the best baseline performance 
in our simulation. 

I. INTRODUCTION 

Urban traffic is an evolving problem closely related to 
population growth and economic factors. Many countries are 
seeing increases in vehicles per capita with each passing year. 
In the Organisation for Economic Co-operation and Devel­
opment (OECD) countries, road motor vehicles per thousand 
inhabitants have increased over the period from 1990 until 
2006 in all studied countries (except the United States) [1]. 

The negative impact of increasing vehicle numbers can 
essentially be summed up in one word "congestion". This 
causes worldwide economic, environmental and social prob­
lems. In the EU, congestion costs around 1% of the member 
countries' Gross Domestic Product (ODP) annually [2] and 
an estimated ",AU$20.4 billion by 2020 in Australia [3]. In 
2007, congestion cost the United States rvUS$87.2 billion in 
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439 urban areas calculated based on wasted time and fuel 
[4]. As far as the environment is concerned, congestion is 
a major cause of air and noise pollution. Urban mobility 
in the EU contributes 40% of the overall CO2 emissions 
caused by road transportation while this percentage increases 
to 70% of all other pollutants [5]. These costs are due to 
increasing traffic growth and to the stop-go nature of driving 
in cities and despite advances in vehicle emission reduction 
technologies [2]. Furthermore, a survey by the Department of 
Transportation in the United States has shown that 47% of 
Americans agree that delay caused by traffic congestion is a 
top community concern [6]. 

While it is true that better and more efficient UTC systems 
cannot alone solve this increasing problem, they can surely 
help to reduce it [5], [7]. Consequently, the need has arisen 
for more sophisticated UTC systems to provide efficient traffic 
control strategies that reduces road congestion through min­
imizing vehicle delay, providing less-interrupted traffic flow, 
minimizing number of vehicle stops and increasing vehicle 
velocity. Besides widely deployed UTC systems such as the 
Sydney Coordinated Adaptive Traffic System (SCATS) [8], [9] 
and the Split Cycle Offset Optimization Technique (SCOOT) 
[10], numerous approaches to UTC have been proposed as 
computational problem-solving methodologies have evolved. 
Such approaches mainly use Dynamic Programming (DP) 
[11], [12], [13], [14], graph theory [15], Petri Nets [16] and 
game theory [17]. Others simply use heuristic models and rule­
based/logical programming approaches [18], [19]. 

Among these, RL has emerged as a promising approach 
to highly-adaptive UTC optimization [20]. The essence of RL 
derives from the manner by which nature's intelligent elements 
can learn by interacting with their surrounding environment. 
RL is defined by [21] as "learning how to map situations to 
actions so as to maximise a numerical reward signal". RL 
agents explore their environment by sensing different situa­
tions and then executing some selected action(s) that result 
in feedback in the form of a reward. RL is an unsupervised 
learning approach in the sense that an agent does not rely on a 
knowledgeable master that might have specific domain knowl­
edge. For UTC optimization, we apply an RL strategy that uses 
Q-Learning [22] given its applicability to online (re)learning 
that allows for the adaptiveness and responsiveness needed 
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by UTC. Q-Learning is a well-established model-free off­
policy (explained below) RL strategy based on the concept 
of discounted expected rewards. An RL agent that uses Q­
Learning usually learns with a specific rate 0: : 0 ::; 0: < 1 
and a certain discount rate 'Y : 0 ::; 'Y < 1 through a form of 
environmental representation, typically, a state-action space. 
It is model-free in the sense that it does not require some a 
priori likelihood model for the actions that could be executed 
on the environment. Q-Learning is considered an off-policy 
strategy as it learns and updates the agent's knowledge even 
while taking actions that could prove to be non-optimal in the 
future [20]. Being an off-policy learning strategy, as well as 
allowing for short period knowledge updating per action taken, 
Q-Learning is an ideal candidate for UTC optimization given 
the non-stationary nature of traffic [20]. 

In a previous work [23], we presented a decentralized 
RL-based scheme for UTC optimization in which each RL­
based agent learns to control a given signalized junction in 
an adaptive round-robin (ARR) manner with possible col­
laboration with upstream and downstream neighbours. That 
scheme did not support pattern change detection and agents 
did not deal with fluctuating traffic patterns. In this paper 
we extend our previous work to allow agents to detect local 
changes in the traffic pattern and consequently respond in 
an adaptive manner. Agents adapt to local traffic conditions 
by learning a sequence of traffic light phases2 to be used. 
They respond to fluctuating traffic patterns or unsatisfactory 
performance by relearning based on a local non-parametric 
traffic-pattern change-detection mechanism. We refer to our 
approach as Soilse. Soilse can be described as an online 
RL-based decentralized UTC optimization scheme that deals 
with fluctuating traffic in an adaptive and responsive manner 
without a priori knowledge of traffic models. We assessed 
Soilse using a microscopic urban traffic simulator, which 
models individual vehicles' behaviours in a detailed map of a 
real city. 

The remainder of the paper is organized as follows. Section 
II presents related work. Soilse is presented in Section III 
where the non-parametric pattern change detection mechanism 
and its collaboration mechanism are detailed. Section IV 
describes our experimental setup and evaluation results. We 
conclude in Section V. 

II. RELATED WORK 

Despite the existence of some widely-deployed adaptive 
UTC systems, such as SCATS and SCOOT, UTC remains 
an active research area. Both systems follow an optimization 
methodology that uses proprietary mathematical models to 
tune specific settings of a traffic controller for each phase, 
namely, the offset3, the split;4 and the cycle times. The per­
formance of both SCATS and SCOOT is however poor under 
saturated traffic conditions [24], [25]. 

2 A phase is characterized by the set of traffic directions allowed to proceed 
at a given signalized junction from certain approaches at a given time. Only 
one phase can be active at a time. 

3The time between signalling adjacent traffic controllers. 
4The proportioned green time allocated per phase in a cycle. 
5The time needed to complete a sequence of phases including offsets. 

Alternative UTC optimization approaches vary. [15] 
presents a traffic-responsive urban control approach that is 
based on a store-and-forward model of signalized junctions 
represented as a directed graph. [16] uses hybrid Petri Nets to 
model the traffic network and a supervisor to coordinate all 
signalized junctions. Several DP approaches to UTC optimiza­
tion also exist [26], [11], [12], [14], [13], [27]. A reservation­
based approach for UTC is presented in [28]. A distributed 
game theory-based approach for coordination between traffic 
light controller agents is presented in [17]. An approach 
for traffic control using decentralized logic programming is 
presented in [18]. 

We concentrate on RL-based UTC approaches. A number 
of these approaches use hybrid modelling techniques such 
as the combination of genetic programming or fuzzy neural 
networks along with RL while others are purely RL-based. 
[20] describes the use of Q-Learning for UTC optimization 
and presents promising results against pre-timed traffic con­
trollers on a small-scale scenario. [29] also showed showed 
that Q-Learning outperformed random and best-effort policies. 
More complex RL techniques were used in [30] where they 
exploited the Natural Actor-Critic (NAC) [31] algorithm. NAC 
outperformed a SCATS inspired technique (termed, SAT) in a 
10 x 10 junction grid simulation while optimizing for vehicle 
average travel time. However, NAC needed approximately 
three days of learning in order to be on par with SAT. [32] 
addresses UTC optimization for multiple vehicle types using 
an algorithm referred to as Distributed W-Iearning that is 
based on a combination of Q-Iearning and W-Iearning [33]. 
Significant improvements in performance were achieved for 
all vehicle types, however, this approach was applied only to 
stationary traffic conditions. 

In order to provide "intelligent" cooperation schemes among 
RL-based traffic control agents, different RL schemes have 
been coupled with centrally executed genetic algorithms for 
parameters tuning as in [34]. A combination of fuzzy neural 
networks and a form of RL is used to build the hierarchical 
real-time traffic control architecture presented in [35]. In a 
vehicle-centric approach, [36] researched the benefits of using 
multi-agent model-based RL for traffic control. In [37], a 
similar approach is presented. It is noticeable, that these 
two approaches place some serious assumptions on the type 
of information, (e.g., probability estimates of waiting time 
per vehicle's destination, and its place at every traffic light 
controller including the state of that traffic light (green or red)) 
that is needed and might not be possible to acquire realistically, 
especially, if traffic patterns are changing and drivers' nature 
is taken into account. 

To our knowledge, only two approaches to UTC have 
attempted to address the fluctuating nature of traffic, one 
using an RL-like technique in an offline manner [38] and 
the other using model-based RL in an online manner [39]. 
The so-called Organic Traffic Control (OTC) approach [38] 
uses a combination of evolutionary genetic programing and 
a Learning Classifier System (LCS) which learns similarly to 
RL in terms of receiving rewards from the environment but 
models the problem as a set of rules each represented as a 
triplet of {condition, action, value}. Several rules' conditions 
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can however match a single environmental situation. The OTC 
architecture per junction is composed of three layers. The 
top layer uses an evolutionary algorithm in an offline manner 
that interacts with a traffic simulator in order to provide new 
classifiers (for different traffic conditions). The middle layer 
comprises an LCS while the bottom layer is a tunable traffic 
light controller. They have simulated two signalized junctions 
of different sizes with a flow of traffic that has one peak on 
three different days. Their results show 10-12% improvement 
in average delay distributed among the three days for the 
bigger junction and 6 - 8% for the smaller junction against 
a fixed-time controller. As an extension of the OTC work, 
coordination among OTC controllers was added [40], however 
on a small-scale Manhattan-like grid simulation, no significant 
improvement on their previous results was obtained. In [39], 
an RL approach to optimizing UTC while responding to traffic 
volume change and driver behaviour (Nagel-Schreckenberg 
model [41]) is presented. The main design is divided into 
two stages, firstly, learning for a given traffic pattern and, 
secondly, detecting changes in traffic patterns. For learning, 
they assume that every stationary situation can be defined by 
a so called "partial model" that comprises a transition function 
that estimates the transition probabilities and a reward function 
for reward estimation. Any typical model-based RL can be 
used to locally optimize for a given partial model, such as 
Prioritized Sweeping (PS) [21]. The detection of changes in 
traffic is based on how well a given partial model can represent 
the current traffic condition. The experimental setup in [39] is 
based on a 3 x 3 Manhattan road network of varying link speed 
limits (54, 36, 18 km/h) where different types of traffic pat­
terns are inserted. They have experimented with scenarios of 
varying deceleration probabilities; [zero, 0.1, 0.2, 0.3] where 
the number of stopped vehicles throughout the experiment 
duration was used as a metric. As comparison baselines, 
they have used fixed-signal plans, greedy controllers, and Q­
Learning and PS RL methods. Only in one single scenario, 
(i.e., where the deceleration probability was set to 0.1) did 
their approach outperform the baselines. In the scenario where 
the deceleration probability was set to zero, their approach 
performed on a par with most of the baselines. In the two 
scenarios with deceleration probability 0.2 and 0.3, their 
approach failed against the greedy baseline. 

A common critique for most of the RL-based, whether 
hybrid or not, approaches is that they do not show significantly 
better performance in realistic simulations and do not support 
online UTC optimization under fluctuating urban traffic con­
ditions without using model-based6 approaches. 

III. SOILSE 

Soilse models individual traffic light controllers as adaptive 
RL agents capable of responding to changing traffic patterns 
that might adversely impact their performance. These agents 

6Model-based UTe approaches that use RL do not take into account the 
fact that using a priori traffic models given the uncertain behaviour of urban 
traffic is a strong assumption. This aligns with what [42] argues in relation 
to providing a traffic control scheme based on models of traffic flow: "which, 
given the highly nonlinear and uncertain aspects of human behaviour, is a 
virtually hopeless task in complex multiple-intersection networks." 

(built using a generic C++ RL framework described in [23].) 
can make use of collaboration with their neighbours to improve 
performance. In contrast to previous RL-based work in UTC, 
Soilse provides a flexible RL agent design that supports op­
timization for different traffic patterns using a pattern change 
detection (PCD) mechanism that causes an agent to relearn 
based on the degree of pattern change detected. The PCD 
mechanism we use is a nonparametric one that does not depend 
on a presumed traffic data distribution. 

In a non-collaborative setting, each signalized junction is 
controlled by a dedicated Soilse agent that operates indepen­
dently. However, in a collaborative setting each signalized 
junction is controlled by a dedicated agent, which we refer 
to as a SoilseC agent (presented in Subsection III-C), that op­
erates in collaboration with neighbouring SoilseC agents. Both 
Soilse and Soil seC agents make use of a local PCD mechanism 
to provide for responsiveness in the face of fluctuating traffic 
patterns. 

A. Pattern Change Detection 

Our PCD mechanism is an online nonparametric change de­
tection mechanism that quantifies the degree of traffic pattern 
change affecting on agent's performance. Such a mechanism 
is nonparametric in the sense that it does not rely on a specific 
distribution for incoming traffic on a given signalized junction. 
Our approach was inspired by work on anomaly detection for 
attacks or intrusions of a certain type in computer networks 
[43]. The technique used is based on sequential analysis of 
data series using a cumulative sum of squares (CUSUM) [44] 
that can identify change points in data variance (a2). CUSUM 
is a nonparametric change detection technique that has been 
shown to be accurate in helping to detect flooding attacks in 
a short duration [43], [45], [46]. 

Our PCD mechanism is used to detect variance change 
points on each lanes' incoming traffic using CUSUM and also 
incorporates knowledge of the agent's performance at each 
signalized junction. We choose lanes as the level of granularity 
at which to identify changes since lanes represent not only the 
traffic load but also its directionality. Therefore, this approach 
captures not only changes in traffic load but also changes in 
traffic direction. The performance of an RL agent controller 
can be naturally assessed based on its recent rewards as they 
represent the goodness of its local behaviour. Hence, recent 
reward history is used to provide the metric for the overall 
near-past agent performance. 

The resulting design is based on multistage lane-centric 
filtering, see Figure (1). The incoming traffic count per lane 
on a given junction is sampled and filtered using a moving 
average filter in order to produce a smoother input (since we 
assume a fine-grained initial input as frequent as a reading per 
second over a minute) for the second stage. The output is then 
passed to the CUSUM filter that identifies changes in traffic 
variance on a given lane, see Equation (1). 
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Figure 1. Junction PCD High-Level Scheme 
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The time series {Xal' Xa2, ... , Xan} is formed from the 
outputs of the first filtering stage, i.e., a series of size n 
of smoothed traffic counts for lane a. The value of k rep­
resents the lagging sample size. Essentially, CUSUM works 
by comparing the sum of squares of a portion of a given 
sample against the sum of squares of the whole sample. This 
allows it to determine what is the proportional relevance of 
the smaller sample of size k to the whole sample of size n. 
Another moving average filter is applied on the CUSUM filter 
outputs (per lane) and the mean of these is then used as the 
final representation of the degree of pattern change (DPC) in 
incoming traffic for the junction. 

Since we are interested in changes that affect the agent's 
performance, we need to incorporate the controller agent's 
performance in the DPC, which can then be used in the 
reparameterization process of the agent for relearning. A 
natural metric for the agent performance is the moving average 
of rewards (MAR) over a given time window. As rewards are 
an intrinsic indicator of RL agents' performance in the first 
place, we benefit from their availability without introducing 
an extra artificial metric of performance. Thus, the product 
(M AR x D PC) is used. Furthermore, in order to confine 
(squash) that value to a known range we apply a sigmoid 
function, see Equation (2), that has a known range of [-1, 1]. 

DPC = tanh((MAR x DPC)/ PerFactor) (2) 

PerFactor is used to scale down the sigmoid function 
(tanh (» input data in order for the function to give sensi­
ble output in the range [-1,1]. Determining PerFactor is 
dependant on the range of performance to be measured for 
the controller agent. We are only concerned when the final 
DPC is negative, i.e., the agent is not performing well while 
the local traffic pattern is changing. This is because an agent 
should not relearn unless its performance is adversely affected 
by the possible traffic pattern change. At this stage, DPC 
will have a negative value only if the incorporated MAR 
was negative as the result of CUSUM is always positive. 
Hence, we chose the final DPC value to be in the range 
of [0,1] where DPC f- 1 - abs(DPC[_l,OJ) similar to the 
notion of 0 ::; P _value::; 1 in nonparametric statistical tests. 
Moreover, the closer DPC is to 0, the more severe the negative 

Figure 2. Soilse And SoilseC Agent Structures 

change is. At a later stage, we detect a so-called genuine 
change as a situation where a sample of DPCs are persistently 
crossing a given junction change threshold (JCT) fixed for 
all signalized junctions. The sampling of DPC starts when a 
single DPC value crosses the JCT and continues until the so­
called persistence sample is ready, (i.e., its size is met). That 
sample's mean is then compared against the JCT and a genuine 
pattern change is detected if this sample mean crosses the JCT, 
however, this is dependent on the thresholding technique used. 

B. Soilse Agent 

A Soilse agent, see Figure (2), is composed of an RL agent 
and a PCD module. The RL agent comprises a representation 
of the environment, i.e., a state-action space, strategies for 
action selection and learning, and a reward model. Actuation 
and sensing are provided through generic interfaces. 

The PCD module interacts with the RL agent by enquiring 
about the agent's performance, (i.e., rewards) as well as 
triggering relearning when required. It periodically polls the 
sensing interface for traffic counts per lane on the given 
junction in order to carry out the PCD process. If a genuine 
traffic pattern change is detected, the PCD mechanism passes 
the resulting DPC value to the RL agent. The DPC is used by 
the RL agent to calculate new learning parameters including 
both the learning and action selection parameters. 

Soilse agents use Q-Learning as their learning strategy and 
E-greedy as their action selection strategy. The state-action 
space representation is based on the ARR design of [23]. 
A given signalized junction's state-action space is modelled 
based on the available phases and their status, (i.e., busy/not 
busy). A given phase's status depends on all the incoming 
approaches for that phase. A pair of a phase and its status is 
considered a state (e.g., So ==;. (Phasex is busy» in the 
model. A given phase's status is determined by comparing 
the total number of vehicles within queueing range on its 
incoming approaches against a specific threshold value. A 
Soilse agent provides a number of actions, (i.e., candidate 
phase durations including a zero-second duration action) that 
could possibly be chosen in a given state. Given that we follow 
a round-robin style over n phases, after any action we take in 
any state of phase Pi, the next action will be in a state of 
phase P(Hl)modn depending on local traffic conditions. The 
availability of a zero-second duration action allows the Soilse 
agent to skip unnecessary phases while exploring for policy 
optimization. 

R = (#vehicles crossed - #vehicles waiting on the junction) (3) 
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Algorithm 1 Soilse Agent Process 
1* Initialization *1 
Action Selection (AS) f-E-greedy 
While (Soilse is running) 

Execute at; Receive StH 
rt+l f- R 
QtH (St , at) f- Qt(St , at ) + 

0: [rtH + 'YmaXaQ(St+l, a) - Qt(St , at)] 
Select at+l E At+l : {all actions for st+d using 

AS 
St f- St+l , at f- at+l 
If (relearn) 1* Relearn status is updated by the 

PC D where it passes the DPC value to be 

used in reparameterization *1 

Reparameterize the agent by passing (AS, DPC) 
to Algorithm (2) 

EndIf 
If (Soilse.exploration == true) 

Decay 0: and E using eq(5) 
EndIf 

EndWhile 

Algorithm 2 Reparameterize Per Action Selection Strategy 
Switch(AS) 
case(E-greedy): { 

0: f- E f- eq(4) 
O:decay rate f- fdecay rate f- eq(6) 
} break 
EndSwitch 

The reward model used (see Equation 3) aims at capturing 
the traffic that has crossed the junction during a given phase 
duration and the remaining waiting traffic on all approaches on 
the junction. The reward will result in a negative reinforcement 
if a given action (timing) on a given phase results in more 
traffic waiting on the junction as a whole compared to the 
traffic that has crossed. 

During execution (see Algorithm (1», the agent executes an 
action, receives its next state and calculates its local reward. 
The agent then uses its local reward for its policy update 
using Q-Learning and selects the next action and updates its 
state. Furthermore, the agent checks whether it was asked to 
relearn by its PCD, if so, it reparameterizes itself using the 
DPC value passed by the PCD. Naturally, the agent decays 
its learning and action-selection related parameters as long as 
it is exploring. The Soilse agent will continue exploration as 
long as its learning parameters have not reached their preset 
minimum values (0: i'::j f i'::j 0) where exploitation then begins. 

When necessary, a new learning and action selection strat­
egy parameters are calculated based on that DPC value. 
Given that the lower the DPC value, the more severe is the 
traffic pattern change that is adversely affecting the agent 
performance, a higher learning rate (0:) is needed in these 
cases in order to cope with the severe change, see Equation 4. 
Similar to the new learning rate calculation, higher exploration 
in case of a lower DPC value is needed. The epsilon used in 
f-greedy needs to be higher for the action selection to be more 
exploratory, see Equation 4. 

O!new = Enew = (1 - DPC) (4) 

In order to determine the duration of the relearning, a 

decay rate needs to be calculated per relearning parameter. 
The decay should be exponential using a generic Equation (5) 
as we need the relearning parameters to decay in a manner 
that is proportional to their value but that reduces exploration 
gradually. 

valuenew = (e 
-(valuedecay rate) xtime step) X ValUeinitial (5) 

A natural logarithmic function is then used to calculate 
decay rates that are proportional to the DPC but inversely 
proportional to the PolicyM odelSize (explained below) and 
the ExpFactor, (i.e., the larger the PolicyM odelSize and 
the ExpFactor the slower the relearning/exploration should 
finish). The calculation is carried out as in Equation (6). 

loge(l/(l - DPC)) 
O!deeay rate = Edeeay rate = 

P l· M d lS· E F t o �cy 0 e �ze X xp ac or 
(6) 

For example, if a state-action space has two states where 
each has two actions, the PolicyM odelSize for that state­
action space would be (1 X 2) + (1 x 2) = 4. The proportional 
relation can also be controlled using a so-called exploration 
factor (ExpFactor). The higher the ExpFactor, the more 
weight is given to the policy model size relative to the DPC 
value. 

C. SoilseC Agent 

A collaborative (SoilseC) agent has the same design as a 
Soilse agent with the addition of an advertisement strategy, 
see Figure (2). In addition, a collaborative reward model is 
used as opposed to the local reward model in Soilse agents. 
That collaborative reward model includes a local reward model 
similar to the Soilse agent design but also allows for the 
incorporation of exchanged reward information. 

Exchanged information includes a series of rewards ordered 
by age. The older the reward value is, the less important it is. 
The exchanged rewards are discounted using a Net Present 
Value (NPV) [47] inspired Equation (7) that is a well-known 
method used in economics for discounting a series of values 
based on age. The NPV equation diminishes the significance 
of older rewards based on a given discrate value. 

NPV(r ) = 
rt (7) 

t (1 + disc_rate)(rv_size-(t+l)) 

The collaborative reward is formed from the combination 
of a local reward and the NPV method applied to the adver­
tisements received from neighbours in order to discount the 
received rewards by age. A normalization procedure follows 
per number of senders and the size of reward vectors for each. 

"" L:�Q'U_sizen-l NPVn(rt} 
C llSt t L..JVnEsending neighbours rv sizen o a us= . .  -

number of sendmg ne�ghbours 

reoll f- (rloeal + CollStatus) 

(8) 

(9) 

Consequently, a single value (CollStatus, see Equation (8» 
denoting the overall recent performance of all sending SoilseC 
agents is calculated and added to the current local reward 
value, see Equation (9). 

The only difference to the Soilse agent algorithm is that 
after the SoilseC agent calculates its local reward, it is added 
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to its local reward history which is used for its performance 
information exchange. If it is time for collaboration (depending 
on a predefined frequency) and the local reward history is not 
empty, the agent advertises its local reward history to a given 
set of neighbours predefined by the advertisement strategy, 
(i.e., depending on the collaboration mode set). The agent then 
calculates its collaborative reward, which is used for its policy 
update using Q-Learning. 

IV. EVALUATION 

The evaluation of our approach is based on a simulation of 
traffic in Dublin inner city centre. The UTC simulator [48] that 
we use follows a microscopic model. Its input is a set of XML 
files describing the road network to be simulated and the valid 
phases for each signalized junction. This includes the number 
of lanes per road, the maximum allowed speed on a given road, 
and the distances between connected junctions. Moreover, 
traffic can be generated between specific junctions or among 
user-defined zones where the source/destination junctions are 
selected randomly within the source/destination zones. In the 
UTC simulator, vehicles exhibit different behaviours such as 
car-following, acceleration, deceleration and lane-switching. 
They also abide by the speed limits on the different roads 
they travel on. The UTC simulator was also used in our earlier 
work [23] and in [32] for evaluating mUlti-policy optimization 
schemes in decentralized autonomic systems. 

A. Experimental Setup and Results 

The experimental scenario is based on a map of Dublin's 
inner city centre. The map (see Figure (3)) represents the 
real road network of a considerable portion of Dublin city 
centre. In this scenario, there are 62 signalized junctions out 
of an overall total of 270 junctions. The overall traffic duration 
is '" 19 hours comprising four different patterns: A uniform 
low pattern (ULP) where traffic is generated over ", 4 hours 
following a uniform pattern of low traffic load consisting of 
2000 vehicles. The morning peak pattern (MPP) where traffic 
is generated over ", 4 hours following a pattern that reflects 
high traffic loads on main roads consisting of 20, 000 vehicles. 
The uniform high pattern (UHP) where traffic is generated 
over ", 7 hours following a uniform pattern of high traffic load 
consisting of 21, 000 vehicles. The evening peak pattern (EPP) 
where traffic generated over ", 4 hours following a pattern that 
reflects high traffic loads on main roads consisting of 20,000 
vehicles but generally opposite in direction to the morning 
peak pattern. 

For the ULP and UHP traffic patterns, traffic is gener­
ated in both directions from all opposing edges of the map 
uniformly. To clarify, traffic incoming from different sources 
in zones {A, B, C, D} is destined for different exits on 
zones {I, K, L, J} and vice versa. Also, traffic incoming 
from different sources in zones {A, E, G, I} is destined for 
different exits on zones {D, F, H, , J} and vice versa. The 
difference between ULP and UHP is only in the traffic load 
and in the pattern duration. For the MPP traffic pattern, two 
types of traffic are generated, the first is heavy traffic destined 

Figure 3. Dublin Inner City Centre Map 

for parking spaces in the city centre and the second is light uni­
form traffic similar to the ULP. Incoming heavy traffic in that 
case arrives to a given parking space from all remote zones, for 
example, parking space A would receive heavy traffic from 
all zones except nearby zone E (as vehicles will arrive almost 
immediately) and so on. Such heavy traffic amounts to nearly 
6324 vehicles per parking space area over the MPP duration. 
The opposite happens in the EPP where heavy traffic leaves 
from the parking spaces to all remote zones. Traffic loads 
leaving the parking spaces are similar in load to those in the 
MPP. Light uniform traffic similar to the ULP is generated 
simultaneously. The scenario would run for the joint series of 
its patterns, i.e., U LP -t M P P -t U H P -t EP P for a 
duration slightly more than 19 hours to allow for the most 
recent traffic to clear the map. 

The Soilse and SoilseC agents have no a priori knowledge 
of the traffic patterns discussed above. The agents share the 
following common learning strategy (LS), action selection 
(AS), and PCD specifics: 

LS: 

AS: 

Q-learning is used as the learning strategy with 
a (learning rate) initially set to a high value of 
0.99 and gradually decreasing based on an initial 
adecay rate = 0.03. This allows a to reach the 
minimum value of 0.001 after'" 115 minutes. The 
discount factor ('Y) is fixed to 0.3. 
E-greedy is used. The initial E value is set to a 
high 0.99 and gradually decreases based on an initial 
Edecay rate = 0.03. Analogous to Q-learning's a, E 
reaches the minimum value of 0.001 after'" 115 
minutes. 

PCD: For the sample size needed for the CUSUM of 
squares on a lane, n = 30 and k = 15 are used. 
The moving average filter on each lane's traffic has 
a moving sample size of 60 traffic counts collected 
every second. For the smoothing moving average 
filter on the CUSUM of squares output, a sample size 
of 10 is used. The reward moving average filter uses 
a moving sample of 10 rewards. A fixed thresholding 
technique is used with a junction change threshold 
set to 0.85. A PerFactor of 10 is used to squash 
the resulting DPC while the persistence sample has 
a size of 10. 

For both Soilse and SoilseC agents, ExpFactor is set to 2 
while every SoilseC agent follows an advertisement strategy 
with discount rate 0.1 and collaboration frequency of 240 
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Figure 4. Dublin Inner City Centre Vehicle's AWT, AvgStops and Throughput 

seconds and a collaboration mode where a SoilseC agent 
receives information only from upstream neighbours and send 
information only to the downstream ones. The threshold used 
to determine a phase's busy status is set to 1. The action set 
used is composed of 0, 20 and 30 second available for each 
state in the Soilse or Soil seC state-action space. 

Our baselines for comparison are a SAT-like [49] algorithm 
that roughly emulates SCATS' behaviour of saturation 
balancing and to a Fixed Time Traffic Controller (FT-TC) 
deployment. The FT-TC cycles through a given junction's 
phases giving a fixed phase time duration for each. We 
chose to compare against FT-TC with 20 seconds phase 
time assuming that 20 seconds is a reasonable average 
phase time and that the minimum phase time in Soilse and 
SoilseC agents is 20 seconds (excluding the zero-second 
action used for skipping phases). The SAT deployment tries 
to achieve a 90% saturation level and uses a 20 second 
minimum phase time and a maximum cycle length of 
[min...JJhase_time x factor x number of phases]. The 
SAT controllers try to adapt according to the saturation level 
by incrementing or decrementing phase durations at the 
beginning of each cycle depending on information from the 
previous cycle. The decrement or increment amount (DIM) is 
a fixed number. The best performing setting for SAT, referred 
to as SAT_2_1.5, was under {DIM = 2andfactor = 1.5} 
where the number of phases is relative to each controlled 
signalized junction. 

We rely on two metrics to assess the performance of Soilse 
and SoilseC against the baselines. The first metric is the 
average waiting time (AWT) for a vehicle which represents 
the average amount of time that a vehicle is motionless 
throughout the journey to its destination. The second metric 
is the average number of vehicle stops (AvgStops) which 
represents the average number of times that a vehicle's velocity 
reaches zero throughout the journey to its destination. We 
also present the number of arrived vehicles as a measure of 
overall throughput. The results presented here are based on 
the average of three simulation runs. In Figure (4), AWT 
and AvgStops results for Soilse and SoilseC against the base­
lines are presented in addition to the throughput. Soilse and 
SoilseC achieved the lowest AWT compared to both baselines, 
i.e. '" 71.92 sec and ", 63.47 sec respectively. In terms of 
AvgStops Soilse and SoilseC also performed best resulting in 
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Figure 5. Dublin Inner City Centre - SoilseC vs. SAT (SAT_2_ 1.5) - Total 
Vehicle Waiting Time Throughout The Simulation Time 

'" 17 and ", 13 AvgStops respectively. FT-TC-20s on the other 
hand was the highest in terms of AWT ('" 622.74 sec) and 
AvgStops ('" 151) and the lowest in terms of throughput, i.e., 
47895 vehicles. Furthermore, SAT_2_1.5, Soilse and Soil seC 
achieved similar throughput results; 56337, 56385 and 56470 
vehicles respectively. 

A performance comparison of Soilse and SoilseC against the 
baselines is presented in Table (I). Soilse and Soil seC has out­
performed FT-TC-20s in terms of all metrics. Soilse provided 
'" 88.45% lower AWT and SoilseC '" 89.80% lower AWT 
against FT-TC-20s. Soilse and Soil seC also provided a better 
performance against FT-TC-20s in terms of AvgStops, i.e., 
'" 88.82% and ", 91.53% lower respectively. In terms of the 
number of arrived vehicles, Soilse and Soil seC allowed more 
vehicles to arrive to their destinations in comparison to FT­
TC-20s. Specifically, Soilse and SoilseC allowed '" 15.05% 
and ", 15.18% more vehicles to arrive to their destinations 
respectively when compared to FT-TC-20s. 

The SAT deployment, i.e., SAT_2_1.5 provided a more 
competitive baseline than FT-TC-20s. However, Soilse and 
SoilseC also outperformed SAT_2_1.5 in terms of both AWT 
and AvgStops but differences in the number of arrived vehicles 
were generally marginal against SAT_2_1.5. Soilse provided 
'" 35.72% lower AWT than SAT_2_1.5. On the other hand, 
SoilseC achieved '" 43.27% lower AWT as opposed to 
SAT_2_1.5. Furthermore, Soilse outperformed SAT_2_1.5 by 
'" 40.01 % in terms of AvgStops. SoilseC achieved ", 54.56% 
less AvgStops than SAT_2_1.5. Moreover, a plot showing the 
difference between SoilseC and SAT_2_1.5 throughout the 
simulation time in terms of total vehicle waiting time is shown 
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in Figure (5). It is noticeable that SAT_2_1.5 could not respond 
to the change in traffic patterns in an adequately adaptive 
manner leaving vehicles to wait more on the way to their 
destinations. 

V. CONCLUSIONS 

This paper described and evaluated a decentralized scheme 
for online RL-based UTC optimization in a responsive and 
adaptive manner. RL has been shown to be a promising path 
for modelling and optimizing UTC when paired with a PCD 
mechanism. The collaborative version of Soilse, i.e., SoilseC 
shows that collaboration among agents controlling adjacent 
signalized junctions is beneficial in terms of vehicle AWT and 
AvgStops. In an evaluation based on a simulation of a real map 
of Dublin inner city centre (62 signalized junctions), Soilse 
and SoilseC outperformed both baselines in terms of vehicle 
AWT and AvgStops. 
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