
2010 13th International IEEE

Annual Conference on Intelligent Transportation Systems

Madeira Island, Portugal, September 19-22,2010

MC1.2

Soilse: A Decentralized Approach to Optimization

of Fluctuating Urban Traffic Using Reinforcement

Learning
As'ad Salkham and Vinny Cahillt

Distributed Systems Group - School of Computer Science and Statistics

Trinity College Dublin

tMember of Lero - The Irish Software Engineering Research Centre

{salkhama, vinny.cahill}@cs.tcd.ie

Abstract-Increasing traffic congestion is a major problem in
urban areas, which incurs heavy economic and environmental
costs in both developing and developed countries. Efficient urban
traffic control (UTC) can help reduce traffic congestion. However,
the increasing volume and the dynamic nature of urban traffic
pose particular challenges to UTC. Reinforcement Learning (RL)
has been shown to be a promising approach to efficient UTC.
However, most existing work on RL-based UTC does not ade­
quately address the fluctuating nature of urban traffic. This paper
presents SoUseI, a decentralized RL-based UTC optimization
scheme that includes a nonparametric pattern change detection
mechanism to identify local traffic pattern changes that adversely
affect an RL agent's performance. Hence, SoUse is adaptive
as agents learn to optimize for different traffic patterns and
responsive as agents can detect genuine traffic pattern changes
and trigger relearning. We compare the performance of SoUse to
two baselines, a fixed-time approach and a saturation balancing
algorithm that emulates SCATS, a well-known UTC system. The
comparison was performed based on a simulation of traffic in
Dublin's inner city centre. Results from using our scheme show
an approximate 35% - 43% and 40% - 54% better performance
in terms of average vehicle waiting time and average number of
vehicle stops respectively against the best baseline performance
in our simulation.

I. INTRODUCTION

Urban traffic is an evolving problem closely related to
population growth and economic factors. Many countries are
seeing increases in vehicles per capita with each passing year.
In the Organisation for Economic Co-operation and Devel­
opment (OECD) countries, road motor vehicles per thousand
inhabitants have increased over the period from 1990 until
2006 in all studied countries (except the United States) [1].

The negative impact of increasing vehicle numbers can
essentially be summed up in one word "congestion". This
causes worldwide economic, environmental and social prob­
lems. In the EU, congestion costs around 1% of the member
countries' Gross Domestic Product (ODP) annually [2] and
an estimated ",AU$20.4 billion by 2020 in Australia [3]. In
2007, congestion cost the United States rvUS$87.2 billion in

This work was partly supported by Science Foundation Ireland under
Investigator award 02lIN 111250 and grant 03/CE21I303 1 as well as by the
IHEA Programme for Research in Third Level Institutions (as the Networked
Embedded Systems Centre).

I Soilse is the Irish for "lights".

978-1-4244-7659-6/10/$26.00 ©201 0 IEEE

439 urban areas calculated based on wasted time and fuel
[4]. As far as the environment is concerned, congestion is
a major cause of air and noise pollution. Urban mobility
in the EU contributes 40% of the overall CO2 emissions
caused by road transportation while this percentage increases
to 70% of all other pollutants [5]. These costs are due to
increasing traffic growth and to the stop-go nature of driving
in cities and despite advances in vehicle emission reduction
technologies [2]. Furthermore, a survey by the Department of
Transportation in the United States has shown that 47% of
Americans agree that delay caused by traffic congestion is a
top community concern [6].

While it is true that better and more efficient UTC systems
cannot alone solve this increasing problem, they can surely
help to reduce it [5], [7]. Consequently, the need has arisen
for more sophisticated UTC systems to provide efficient traffic
control strategies that reduces road congestion through min­
imizing vehicle delay, providing less-interrupted traffic flow,
minimizing number of vehicle stops and increasing vehicle
velocity. Besides widely deployed UTC systems such as the
Sydney Coordinated Adaptive Traffic System (SCATS) [8], [9]
and the Split Cycle Offset Optimization Technique (SCOOT)
[10], numerous approaches to UTC have been proposed as
computational problem-solving methodologies have evolved.
Such approaches mainly use Dynamic Programming (DP)
[11], [12], [13], [14], graph theory [15], Petri Nets [16] and
game theory [17]. Others simply use heuristic models and rule­
based/logical programming approaches [18], [19].

Among these, RL has emerged as a promising approach
to highly-adaptive UTC optimization [20]. The essence of RL
derives from the manner by which nature's intelligent elements
can learn by interacting with their surrounding environment.
RL is defined by [21] as "learning how to map situations to
actions so as to maximise a numerical reward signal". RL
agents explore their environment by sensing different situa­
tions and then executing some selected action(s) that result
in feedback in the form of a reward. RL is an unsupervised
learning approach in the sense that an agent does not rely on a
knowledgeable master that might have specific domain knowl­
edge. For UTC optimization, we apply an RL strategy that uses
Q-Learning [22] given its applicability to online (re)learning
that allows for the adaptiveness and responsiveness needed

531

by UTC. Q-Learning is a well-established model-free off­
policy (explained below) RL strategy based on the concept
of discounted expected rewards. An RL agent that uses Q­
Learning usually learns with a specific rate 0: : 0 ::; 0: < 1
and a certain discount rate 'Y : 0 ::; 'Y < 1 through a form of
environmental representation, typically, a state-action space.
It is model-free in the sense that it does not require some a
priori likelihood model for the actions that could be executed
on the environment. Q-Learning is considered an off-policy
strategy as it learns and updates the agent's knowledge even
while taking actions that could prove to be non-optimal in the
future [20]. Being an off-policy learning strategy, as well as
allowing for short period knowledge updating per action taken,
Q-Learning is an ideal candidate for UTC optimization given
the non-stationary nature of traffic [20].

In a previous work [23], we presented a decentralized
RL-based scheme for UTC optimization in which each RL­
based agent learns to control a given signalized junction in
an adaptive round-robin (ARR) manner with possible col­
laboration with upstream and downstream neighbours. That
scheme did not support pattern change detection and agents
did not deal with fluctuating traffic patterns. In this paper
we extend our previous work to allow agents to detect local
changes in the traffic pattern and consequently respond in
an adaptive manner. Agents adapt to local traffic conditions
by learning a sequence of traffic light phases2 to be used.
They respond to fluctuating traffic patterns or unsatisfactory
performance by relearning based on a local non-parametric
traffic-pattern change-detection mechanism. We refer to our
approach as Soilse. Soilse can be described as an online
RL-based decentralized UTC optimization scheme that deals
with fluctuating traffic in an adaptive and responsive manner
without a priori knowledge of traffic models. We assessed
Soilse using a microscopic urban traffic simulator, which
models individual vehicles' behaviours in a detailed map of a
real city.

The remainder of the paper is organized as follows. Section
II presents related work. Soilse is presented in Section III
where the non-parametric pattern change detection mechanism
and its collaboration mechanism are detailed. Section IV
describes our experimental setup and evaluation results. We
conclude in Section V.

II. RELATED WORK

Despite the existence of some widely-deployed adaptive
UTC systems, such as SCATS and SCOOT, UTC remains
an active research area. Both systems follow an optimization
methodology that uses proprietary mathematical models to
tune specific settings of a traffic controller for each phase,
namely, the offset3, the split;4 and the cycle times. The per­
formance of both SCATS and SCOOT is however poor under
saturated traffic conditions [24], [25].

2 A phase is characterized by the set of traffic directions allowed to proceed
at a given signalized junction from certain approaches at a given time. Only
one phase can be active at a time.

3The time between signalling adjacent traffic controllers.
4The proportioned green time allocated per phase in a cycle.
5The time needed to complete a sequence of phases including offsets.

Alternative UTC optimization approaches vary. [15]
presents a traffic-responsive urban control approach that is
based on a store-and-forward model of signalized junctions
represented as a directed graph. [16] uses hybrid Petri Nets to
model the traffic network and a supervisor to coordinate all
signalized junctions. Several DP approaches to UTC optimiza­
tion also exist [26], [11], [12], [14], [13], [27]. A reservation­
based approach for UTC is presented in [28]. A distributed
game theory-based approach for coordination between traffic
light controller agents is presented in [17]. An approach
for traffic control using decentralized logic programming is
presented in [18].

We concentrate on RL-based UTC approaches. A number
of these approaches use hybrid modelling techniques such
as the combination of genetic programming or fuzzy neural
networks along with RL while others are purely RL-based.
[20] describes the use of Q-Learning for UTC optimization
and presents promising results against pre-timed traffic con­
trollers on a small-scale scenario. [29] also showed showed
that Q-Learning outperformed random and best-effort policies.
More complex RL techniques were used in [30] where they
exploited the Natural Actor-Critic (NAC) [31] algorithm. NAC
outperformed a SCATS inspired technique (termed, SAT) in a
10 x 10 junction grid simulation while optimizing for vehicle
average travel time. However, NAC needed approximately
three days of learning in order to be on par with SAT. [32]
addresses UTC optimization for multiple vehicle types using
an algorithm referred to as Distributed W-Iearning that is
based on a combination of Q-Iearning and W-Iearning [33].
Significant improvements in performance were achieved for
all vehicle types, however, this approach was applied only to
stationary traffic conditions.

In order to provide "intelligent" cooperation schemes among
RL-based traffic control agents, different RL schemes have
been coupled with centrally executed genetic algorithms for
parameters tuning as in [34]. A combination of fuzzy neural
networks and a form of RL is used to build the hierarchical
real-time traffic control architecture presented in [35]. In a
vehicle-centric approach, [36] researched the benefits of using
multi-agent model-based RL for traffic control. In [37], a
similar approach is presented. It is noticeable, that these
two approaches place some serious assumptions on the type
of information, (e.g., probability estimates of waiting time
per vehicle's destination, and its place at every traffic light
controller including the state of that traffic light (green or red))
that is needed and might not be possible to acquire realistically,
especially, if traffic patterns are changing and drivers' nature
is taken into account.

To our knowledge, only two approaches to UTC have
attempted to address the fluctuating nature of traffic, one
using an RL-like technique in an offline manner [38] and
the other using model-based RL in an online manner [39].
The so-called Organic Traffic Control (OTC) approach [38]
uses a combination of evolutionary genetic programing and
a Learning Classifier System (LCS) which learns similarly to
RL in terms of receiving rewards from the environment but
models the problem as a set of rules each represented as a
triplet of {condition, action, value}. Several rules' conditions

532

can however match a single environmental situation. The OTC
architecture per junction is composed of three layers. The
top layer uses an evolutionary algorithm in an offline manner
that interacts with a traffic simulator in order to provide new
classifiers (for different traffic conditions). The middle layer
comprises an LCS while the bottom layer is a tunable traffic
light controller. They have simulated two signalized junctions
of different sizes with a flow of traffic that has one peak on
three different days. Their results show 10-12% improvement
in average delay distributed among the three days for the
bigger junction and 6 - 8% for the smaller junction against
a fixed-time controller. As an extension of the OTC work,
coordination among OTC controllers was added [40], however
on a small-scale Manhattan-like grid simulation, no significant
improvement on their previous results was obtained. In [39],
an RL approach to optimizing UTC while responding to traffic
volume change and driver behaviour (Nagel-Schreckenberg
model [41]) is presented. The main design is divided into
two stages, firstly, learning for a given traffic pattern and,
secondly, detecting changes in traffic patterns. For learning,
they assume that every stationary situation can be defined by
a so called "partial model" that comprises a transition function
that estimates the transition probabilities and a reward function
for reward estimation. Any typical model-based RL can be
used to locally optimize for a given partial model, such as
Prioritized Sweeping (PS) [21]. The detection of changes in
traffic is based on how well a given partial model can represent
the current traffic condition. The experimental setup in [39] is
based on a 3 x 3 Manhattan road network of varying link speed
limits (54, 36, 18 km/h) where different types of traffic pat­
terns are inserted. They have experimented with scenarios of
varying deceleration probabilities; [zero, 0.1, 0.2, 0.3] where
the number of stopped vehicles throughout the experiment
duration was used as a metric. As comparison baselines,
they have used fixed-signal plans, greedy controllers, and Q­
Learning and PS RL methods. Only in one single scenario,
(i.e., where the deceleration probability was set to 0.1) did
their approach outperform the baselines. In the scenario where
the deceleration probability was set to zero, their approach
performed on a par with most of the baselines. In the two
scenarios with deceleration probability 0.2 and 0.3, their
approach failed against the greedy baseline.

A common critique for most of the RL-based, whether
hybrid or not, approaches is that they do not show significantly
better performance in realistic simulations and do not support
online UTC optimization under fluctuating urban traffic con­
ditions without using model-based6 approaches.

III. SOILSE

Soilse models individual traffic light controllers as adaptive
RL agents capable of responding to changing traffic patterns
that might adversely impact their performance. These agents

6Model-based UTe approaches that use RL do not take into account the
fact that using a priori traffic models given the uncertain behaviour of urban
traffic is a strong assumption. This aligns with what [42] argues in relation
to providing a traffic control scheme based on models of traffic flow: "which,
given the highly nonlinear and uncertain aspects of human behaviour, is a
virtually hopeless task in complex multiple-intersection networks."

(built using a generic C++ RL framework described in [23].)
can make use of collaboration with their neighbours to improve
performance. In contrast to previous RL-based work in UTC,
Soilse provides a flexible RL agent design that supports op­
timization for different traffic patterns using a pattern change
detection (PCD) mechanism that causes an agent to relearn
based on the degree of pattern change detected. The PCD
mechanism we use is a nonparametric one that does not depend
on a presumed traffic data distribution.

In a non-collaborative setting, each signalized junction is
controlled by a dedicated Soilse agent that operates indepen­
dently. However, in a collaborative setting each signalized
junction is controlled by a dedicated agent, which we refer
to as a SoilseC agent (presented in Subsection III-C), that op­
erates in collaboration with neighbouring SoilseC agents. Both
Soilse and Soil seC agents make use of a local PCD mechanism
to provide for responsiveness in the face of fluctuating traffic
patterns.

A. Pattern Change Detection

Our PCD mechanism is an online nonparametric change de­
tection mechanism that quantifies the degree of traffic pattern
change affecting on agent's performance. Such a mechanism
is nonparametric in the sense that it does not rely on a specific
distribution for incoming traffic on a given signalized junction.
Our approach was inspired by work on anomaly detection for
attacks or intrusions of a certain type in computer networks
[43]. The technique used is based on sequential analysis of
data series using a cumulative sum of squares (CUSUM) [44]
that can identify change points in data variance (a2). CUSUM
is a nonparametric change detection technique that has been
shown to be accurate in helping to detect flooding attacks in
a short duration [43], [45], [46].

Our PCD mechanism is used to detect variance change
points on each lanes' incoming traffic using CUSUM and also
incorporates knowledge of the agent's performance at each
signalized junction. We choose lanes as the level of granularity
at which to identify changes since lanes represent not only the
traffic load but also its directionality. Therefore, this approach
captures not only changes in traffic load but also changes in
traffic direction. The performance of an RL agent controller
can be naturally assessed based on its recent rewards as they
represent the goodness of its local behaviour. Hence, recent
reward history is used to provide the metric for the overall
near-past agent performance.

The resulting design is based on multistage lane-centric
filtering, see Figure (1). The incoming traffic count per lane
on a given junction is sampled and filtered using a moving
average filter in order to produce a smoother input (since we
assume a fine-grained initial input as frequent as a reading per
second over a minute) for the second stage. The output is then
passed to the CUSUM filter that identifies changes in traffic
variance on a given lane, see Equation (1).

533

Figure 1. Junction PCD High-Level Scheme

Oeo, .. 01
Pane'llCtlalloeOn TtleJullctloll 10 11

o Se�e,e Ctlang.e

The time series {Xal' Xa2, ... , Xan} is formed from the
outputs of the first filtering stage, i.e., a series of size n
of smoothed traffic counts for lane a. The value of k rep­
resents the lagging sample size. Essentially, CUSUM works
by comparing the sum of squares of a portion of a given
sample against the sum of squares of the whole sample. This
allows it to determine what is the proportional relevance of
the smaller sample of size k to the whole sample of size n.
Another moving average filter is applied on the CUSUM filter
outputs (per lane) and the mean of these is then used as the
final representation of the degree of pattern change (DPC) in
incoming traffic for the junction.

Since we are interested in changes that affect the agent's
performance, we need to incorporate the controller agent's
performance in the DPC, which can then be used in the
reparameterization process of the agent for relearning. A
natural metric for the agent performance is the moving average
of rewards (MAR) over a given time window. As rewards are
an intrinsic indicator of RL agents' performance in the first
place, we benefit from their availability without introducing
an extra artificial metric of performance. Thus, the product
(M AR x D PC) is used. Furthermore, in order to confine
(squash) that value to a known range we apply a sigmoid
function, see Equation (2), that has a known range of [-1, 1].

DPC = tanh((MAR x DPC)/ PerFactor) (2)

PerFactor is used to scale down the sigmoid function
(tanh (» input data in order for the function to give sensi­
ble output in the range [-1,1]. Determining PerFactor is
dependant on the range of performance to be measured for
the controller agent. We are only concerned when the final
DPC is negative, i.e., the agent is not performing well while
the local traffic pattern is changing. This is because an agent
should not relearn unless its performance is adversely affected
by the possible traffic pattern change. At this stage, DPC
will have a negative value only if the incorporated MAR
was negative as the result of CUSUM is always positive.
Hence, we chose the final DPC value to be in the range
of [0,1] where DPC f- 1 - abs(DPC[_l,OJ) similar to the
notion of 0 ::; P _value::; 1 in nonparametric statistical tests.
Moreover, the closer DPC is to 0, the more severe the negative

Figure 2. Soilse And SoilseC Agent Structures

change is. At a later stage, we detect a so-called genuine
change as a situation where a sample of DPCs are persistently
crossing a given junction change threshold (JCT) fixed for
all signalized junctions. The sampling of DPC starts when a
single DPC value crosses the JCT and continues until the so­
called persistence sample is ready, (i.e., its size is met). That
sample's mean is then compared against the JCT and a genuine
pattern change is detected if this sample mean crosses the JCT,
however, this is dependent on the thresholding technique used.

B. Soilse Agent

A Soilse agent, see Figure (2), is composed of an RL agent
and a PCD module. The RL agent comprises a representation
of the environment, i.e., a state-action space, strategies for
action selection and learning, and a reward model. Actuation
and sensing are provided through generic interfaces.

The PCD module interacts with the RL agent by enquiring
about the agent's performance, (i.e., rewards) as well as
triggering relearning when required. It periodically polls the
sensing interface for traffic counts per lane on the given
junction in order to carry out the PCD process. If a genuine
traffic pattern change is detected, the PCD mechanism passes
the resulting DPC value to the RL agent. The DPC is used by
the RL agent to calculate new learning parameters including
both the learning and action selection parameters.

Soilse agents use Q-Learning as their learning strategy and
E-greedy as their action selection strategy. The state-action
space representation is based on the ARR design of [23].
A given signalized junction's state-action space is modelled
based on the available phases and their status, (i.e., busy/not
busy). A given phase's status depends on all the incoming
approaches for that phase. A pair of a phase and its status is
considered a state (e.g., So ==;. (Phasex is busy» in the
model. A given phase's status is determined by comparing
the total number of vehicles within queueing range on its
incoming approaches against a specific threshold value. A
Soilse agent provides a number of actions, (i.e., candidate
phase durations including a zero-second duration action) that
could possibly be chosen in a given state. Given that we follow
a round-robin style over n phases, after any action we take in
any state of phase Pi, the next action will be in a state of
phase P(Hl)modn depending on local traffic conditions. The
availability of a zero-second duration action allows the Soilse
agent to skip unnecessary phases while exploring for policy
optimization.

R = (#vehicles crossed - #vehicles waiting on the junction) (3)

534

Algorithm 1 Soilse Agent Process
1* Initialization *1
Action Selection (AS) f-E-greedy
While (Soilse is running)

Execute at; Receive StH
rt+l f- R
QtH (St , at) f- Qt(St , at) +

0: [rtH + 'YmaXaQ(St+l, a) - Qt(St , at)]
Select at+l E At+l : {all actions for st+d using

AS
St f- St+l , at f- at+l
If (relearn) 1* Relearn status is updated by the

PC D where it passes the DPC value to be

used in reparameterization *1

Reparameterize the agent by passing (AS, DPC)
to Algorithm (2)

EndIf
If (Soilse.exploration == true)

Decay 0: and E using eq(5)
EndIf

EndWhile

Algorithm 2 Reparameterize Per Action Selection Strategy
Switch(AS)
case(E-greedy): {

0: f- E f- eq(4)
O:decay rate f- fdecay rate f- eq(6)
} break
EndSwitch

The reward model used (see Equation 3) aims at capturing
the traffic that has crossed the junction during a given phase
duration and the remaining waiting traffic on all approaches on
the junction. The reward will result in a negative reinforcement
if a given action (timing) on a given phase results in more
traffic waiting on the junction as a whole compared to the
traffic that has crossed.

During execution (see Algorithm (1», the agent executes an
action, receives its next state and calculates its local reward.
The agent then uses its local reward for its policy update
using Q-Learning and selects the next action and updates its
state. Furthermore, the agent checks whether it was asked to
relearn by its PCD, if so, it reparameterizes itself using the
DPC value passed by the PCD. Naturally, the agent decays
its learning and action-selection related parameters as long as
it is exploring. The Soilse agent will continue exploration as
long as its learning parameters have not reached their preset
minimum values (0: i'::j f i'::j 0) where exploitation then begins.

When necessary, a new learning and action selection strat­
egy parameters are calculated based on that DPC value.
Given that the lower the DPC value, the more severe is the
traffic pattern change that is adversely affecting the agent
performance, a higher learning rate (0:) is needed in these
cases in order to cope with the severe change, see Equation 4.
Similar to the new learning rate calculation, higher exploration
in case of a lower DPC value is needed. The epsilon used in
f-greedy needs to be higher for the action selection to be more
exploratory, see Equation 4.

O!new = Enew = (1 - DPC) (4)

In order to determine the duration of the relearning, a

decay rate needs to be calculated per relearning parameter.
The decay should be exponential using a generic Equation (5)
as we need the relearning parameters to decay in a manner
that is proportional to their value but that reduces exploration
gradually.

valuenew = (e
-(valuedecay rate) xtime step) X ValUeinitial (5)

A natural logarithmic function is then used to calculate
decay rates that are proportional to the DPC but inversely
proportional to the PolicyM odelSize (explained below) and
the ExpFactor, (i.e., the larger the PolicyM odelSize and
the ExpFactor the slower the relearning/exploration should
finish). The calculation is carried out as in Equation (6).

loge(l/(l - DPC))
O!deeay rate = Edeeay rate =

P l· M d lS· E F t o �cy 0 e �ze X xp ac or
(6)

For example, if a state-action space has two states where
each has two actions, the PolicyM odelSize for that state­
action space would be (1 X 2) + (1 x 2) = 4. The proportional
relation can also be controlled using a so-called exploration
factor (ExpFactor). The higher the ExpFactor, the more
weight is given to the policy model size relative to the DPC
value.

C. SoilseC Agent

A collaborative (SoilseC) agent has the same design as a
Soilse agent with the addition of an advertisement strategy,
see Figure (2). In addition, a collaborative reward model is
used as opposed to the local reward model in Soilse agents.
That collaborative reward model includes a local reward model
similar to the Soilse agent design but also allows for the
incorporation of exchanged reward information.

Exchanged information includes a series of rewards ordered
by age. The older the reward value is, the less important it is.
The exchanged rewards are discounted using a Net Present
Value (NPV) [47] inspired Equation (7) that is a well-known
method used in economics for discounting a series of values
based on age. The NPV equation diminishes the significance
of older rewards based on a given discrate value.

NPV(r) =
rt (7)

t (1 + disc_rate)(rv_size-(t+l))

The collaborative reward is formed from the combination
of a local reward and the NPV method applied to the adver­
tisements received from neighbours in order to discount the
received rewards by age. A normalization procedure follows
per number of senders and the size of reward vectors for each.

"" L:�Q'U_sizen-l NPVn(rt}
C llSt t L..JVnEsending neighbours rv sizen o a us= . . -

number of sendmg ne�ghbours

reoll f- (rloeal + CollStatus)

(8)

(9)

Consequently, a single value (CollStatus, see Equation (8»
denoting the overall recent performance of all sending SoilseC
agents is calculated and added to the current local reward
value, see Equation (9).

The only difference to the Soilse agent algorithm is that
after the SoilseC agent calculates its local reward, it is added

535

to its local reward history which is used for its performance
information exchange. If it is time for collaboration (depending
on a predefined frequency) and the local reward history is not
empty, the agent advertises its local reward history to a given
set of neighbours predefined by the advertisement strategy,
(i.e., depending on the collaboration mode set). The agent then
calculates its collaborative reward, which is used for its policy
update using Q-Learning.

IV. EVALUATION

The evaluation of our approach is based on a simulation of
traffic in Dublin inner city centre. The UTC simulator [48] that
we use follows a microscopic model. Its input is a set of XML
files describing the road network to be simulated and the valid
phases for each signalized junction. This includes the number
of lanes per road, the maximum allowed speed on a given road,
and the distances between connected junctions. Moreover,
traffic can be generated between specific junctions or among
user-defined zones where the source/destination junctions are
selected randomly within the source/destination zones. In the
UTC simulator, vehicles exhibit different behaviours such as
car-following, acceleration, deceleration and lane-switching.
They also abide by the speed limits on the different roads
they travel on. The UTC simulator was also used in our earlier
work [23] and in [32] for evaluating mUlti-policy optimization
schemes in decentralized autonomic systems.

A. Experimental Setup and Results

The experimental scenario is based on a map of Dublin's
inner city centre. The map (see Figure (3)) represents the
real road network of a considerable portion of Dublin city
centre. In this scenario, there are 62 signalized junctions out
of an overall total of 270 junctions. The overall traffic duration
is '" 19 hours comprising four different patterns: A uniform
low pattern (ULP) where traffic is generated over ", 4 hours
following a uniform pattern of low traffic load consisting of
2000 vehicles. The morning peak pattern (MPP) where traffic
is generated over ", 4 hours following a pattern that reflects
high traffic loads on main roads consisting of 20, 000 vehicles.
The uniform high pattern (UHP) where traffic is generated
over ", 7 hours following a uniform pattern of high traffic load
consisting of 21, 000 vehicles. The evening peak pattern (EPP)
where traffic generated over ", 4 hours following a pattern that
reflects high traffic loads on main roads consisting of 20,000
vehicles but generally opposite in direction to the morning
peak pattern.

For the ULP and UHP traffic patterns, traffic is gener­
ated in both directions from all opposing edges of the map
uniformly. To clarify, traffic incoming from different sources
in zones {A, B, C, D} is destined for different exits on
zones {I, K, L, J} and vice versa. Also, traffic incoming
from different sources in zones {A, E, G, I} is destined for
different exits on zones {D, F, H, , J} and vice versa. The
difference between ULP and UHP is only in the traffic load
and in the pattern duration. For the MPP traffic pattern, two
types of traffic are generated, the first is heavy traffic destined

Figure 3. Dublin Inner City Centre Map

for parking spaces in the city centre and the second is light uni­
form traffic similar to the ULP. Incoming heavy traffic in that
case arrives to a given parking space from all remote zones, for
example, parking space A would receive heavy traffic from
all zones except nearby zone E (as vehicles will arrive almost
immediately) and so on. Such heavy traffic amounts to nearly
6324 vehicles per parking space area over the MPP duration.
The opposite happens in the EPP where heavy traffic leaves
from the parking spaces to all remote zones. Traffic loads
leaving the parking spaces are similar in load to those in the
MPP. Light uniform traffic similar to the ULP is generated
simultaneously. The scenario would run for the joint series of
its patterns, i.e., U LP -t M P P -t U H P -t EP P for a
duration slightly more than 19 hours to allow for the most
recent traffic to clear the map.

The Soilse and SoilseC agents have no a priori knowledge
of the traffic patterns discussed above. The agents share the
following common learning strategy (LS), action selection
(AS), and PCD specifics:

LS:

AS:

Q-learning is used as the learning strategy with
a (learning rate) initially set to a high value of
0.99 and gradually decreasing based on an initial
adecay rate = 0.03. This allows a to reach the
minimum value of 0.001 after'" 115 minutes. The
discount factor ('Y) is fixed to 0.3.
E-greedy is used. The initial E value is set to a
high 0.99 and gradually decreases based on an initial
Edecay rate = 0.03. Analogous to Q-learning's a, E
reaches the minimum value of 0.001 after'" 115
minutes.

PCD: For the sample size needed for the CUSUM of
squares on a lane, n = 30 and k = 15 are used.
The moving average filter on each lane's traffic has
a moving sample size of 60 traffic counts collected
every second. For the smoothing moving average
filter on the CUSUM of squares output, a sample size
of 10 is used. The reward moving average filter uses
a moving sample of 10 rewards. A fixed thresholding
technique is used with a junction change threshold
set to 0.85. A PerFactor of 10 is used to squash
the resulting DPC while the persistence sample has
a size of 10.

For both Soilse and SoilseC agents, ExpFactor is set to 2
while every SoilseC agent follows an advertisement strategy
with discount rate 0.1 and collaboration frequency of 240

536

Average wailing TIme

-
SAT_2_L5

"""'­
Number of Arrived Vehicles (Tllroughput)

-

.... WT(secords)

-

Average Number of Stops

- --

Figure 4. Dublin Inner City Centre Vehicle's AWT, AvgStops and Throughput

seconds and a collaboration mode where a SoilseC agent
receives information only from upstream neighbours and send
information only to the downstream ones. The threshold used
to determine a phase's busy status is set to 1. The action set
used is composed of 0, 20 and 30 second available for each
state in the Soilse or Soil seC state-action space.

Our baselines for comparison are a SAT-like [49] algorithm
that roughly emulates SCATS' behaviour of saturation
balancing and to a Fixed Time Traffic Controller (FT-TC)
deployment. The FT-TC cycles through a given junction's
phases giving a fixed phase time duration for each. We
chose to compare against FT-TC with 20 seconds phase
time assuming that 20 seconds is a reasonable average
phase time and that the minimum phase time in Soilse and
SoilseC agents is 20 seconds (excluding the zero-second
action used for skipping phases). The SAT deployment tries
to achieve a 90% saturation level and uses a 20 second
minimum phase time and a maximum cycle length of
[min...JJhase_time x factor x number of phases]. The
SAT controllers try to adapt according to the saturation level
by incrementing or decrementing phase durations at the
beginning of each cycle depending on information from the
previous cycle. The decrement or increment amount (DIM) is
a fixed number. The best performing setting for SAT, referred
to as SAT_2_1.5, was under {DIM = 2andfactor = 1.5}
where the number of phases is relative to each controlled
signalized junction.

We rely on two metrics to assess the performance of Soilse
and SoilseC against the baselines. The first metric is the
average waiting time (AWT) for a vehicle which represents
the average amount of time that a vehicle is motionless
throughout the journey to its destination. The second metric
is the average number of vehicle stops (AvgStops) which
represents the average number of times that a vehicle's velocity
reaches zero throughout the journey to its destination. We
also present the number of arrived vehicles as a measure of
overall throughput. The results presented here are based on
the average of three simulation runs. In Figure (4), AWT
and AvgStops results for Soilse and SoilseC against the base­
lines are presented in addition to the throughput. Soilse and
SoilseC achieved the lowest AWT compared to both baselines,
i.e. '" 71.92 sec and ", 63.47 sec respectively. In terms of
AvgStops Soilse and SoilseC also performed best resulting in

Pcrformancc%

Against (fT-TC-20s, SAT 2_1.5)

e-grccdy

Pcrformancc%

Against (FT-TC-20s, SAT 2 1.5)

e-grcedy

Soilsc

I'V#Arrivcd Vchiclcs%

(-88.45%, -35.72%) (+15.05%, +()'08%) (-88.82%, -40.01%)

SoilscC

I'V#Arrivcd Vchiclcs%

(-89.80%, -43.27%) (+15.18%, +0.23%) (-91.53%, -54.56%)

Table I
DUBLIN INNER CITY CENTRE - SOILSE AND SOILSEC AGAINST THE

1.28 .. 08

I
!.
� ae .. 01

f 68+01

� �
�

28+01

0
0

BASELINES

0ubI., Inner CilyCenlr8 - SoilseC vs. SAT

�
f ,. ,

I ,
!fIJ

�
:� , " ,

r w,lt, .. •
48+01

Simulalion nrne (milUseconds)

SAT
SoiIseC

.�-
�-,

Figure 5. Dublin Inner City Centre - SoilseC vs. SAT (SAT_2_ 1.5) - Total
Vehicle Waiting Time Throughout The Simulation Time

'" 17 and ", 13 AvgStops respectively. FT-TC-20s on the other
hand was the highest in terms of AWT ('" 622.74 sec) and
AvgStops ('" 151) and the lowest in terms of throughput, i.e.,
47895 vehicles. Furthermore, SAT_2_1.5, Soilse and Soil seC
achieved similar throughput results; 56337, 56385 and 56470
vehicles respectively.

A performance comparison of Soilse and SoilseC against the
baselines is presented in Table (I). Soilse and Soil seC has out­
performed FT-TC-20s in terms of all metrics. Soilse provided
'" 88.45% lower AWT and SoilseC '" 89.80% lower AWT
against FT-TC-20s. Soilse and Soil seC also provided a better
performance against FT-TC-20s in terms of AvgStops, i.e.,
'" 88.82% and ", 91.53% lower respectively. In terms of the
number of arrived vehicles, Soilse and Soil seC allowed more
vehicles to arrive to their destinations in comparison to FT­
TC-20s. Specifically, Soilse and SoilseC allowed '" 15.05%
and ", 15.18% more vehicles to arrive to their destinations
respectively when compared to FT-TC-20s.

The SAT deployment, i.e., SAT_2_1.5 provided a more
competitive baseline than FT-TC-20s. However, Soilse and
SoilseC also outperformed SAT_2_1.5 in terms of both AWT
and AvgStops but differences in the number of arrived vehicles
were generally marginal against SAT_2_1.5. Soilse provided
'" 35.72% lower AWT than SAT_2_1.5. On the other hand,
SoilseC achieved '" 43.27% lower AWT as opposed to
SAT_2_1.5. Furthermore, Soilse outperformed SAT_2_1.5 by
'" 40.01 % in terms of AvgStops. SoilseC achieved ", 54.56%
less AvgStops than SAT_2_1.5. Moreover, a plot showing the
difference between SoilseC and SAT_2_1.5 throughout the
simulation time in terms of total vehicle waiting time is shown

537

in Figure (5). It is noticeable that SAT_2_1.5 could not respond
to the change in traffic patterns in an adequately adaptive
manner leaving vehicles to wait more on the way to their
destinations.

V. CONCLUSIONS

This paper described and evaluated a decentralized scheme
for online RL-based UTC optimization in a responsive and
adaptive manner. RL has been shown to be a promising path
for modelling and optimizing UTC when paired with a PCD
mechanism. The collaborative version of Soilse, i.e., SoilseC
shows that collaboration among agents controlling adjacent
signalized junctions is beneficial in terms of vehicle AWT and
AvgStops. In an evaluation based on a simulation of a real map
of Dublin inner city centre (62 signalized junctions), Soilse
and SoilseC outperformed both baselines in terms of vehicle
AWT and AvgStops.

REFERENCES

[1) OECD, OECD Factbook 2008: Economic, Environmental and Social
Statistics, 2008.

[2) European Commission, "Memo - towards a new culture for urban
mobility," 2007.

[3) D. Cosgrove and D. Gargett, "Estimating urban traffic and congestion
cost trends for australian cities;' 2007.

[4) D. Schrank and T. Lomax, "2009 annual urban mobility report," 2009.
[5) European Commission, "Green paper - towards a new culture for urban

mobility sec(2007) 1209," vol. COMf2007/055 1 final, 2007.
[6) United States FHWA, "Managing our congested streets and highways,"

Washington, DC, 2001.
[7) United States Dar, "Intelligent transportation systems for traffic signal

control - deployment benefits and lessons learned;' 2007.
[8) P. R. Lowrie, "Scats: The sydney co-ordinated adaptive traffic system­

principles, methodology, algorithms," in Proceedings of the lEE Inter­
national Conference on Road Traffic Signalling, 1982, pp. 67-70.

[9) A. Sims and K. Dobinson, ''The sydney coordinated adaptive traffic
(scat) system philosophy and benefits," Vehicular Technology, IEEE
Transactions on, vol. 29, no. 2, pp. 130-137, May 1980.

[10) D. 1. Robertson and R. D. Bretherton, "Optimizing networks of traffic
signals in real time-the scoot method," Vehicular Technology, IEEE
Transactions on, vol. 40, no. 1, pp. 1 1- 15, 199 1.

[1 1) P. Mirchandani and E-y' Wang, "Rhodes to intelligent transportation
systems," Intelligent Systems, IEEE, vol. 20, no. 1, pp. 10 - 15, jan.­
feb. 2005.

[12) v. Mauro and C. Di Taranto, "Utopia," Control Computers Communi­
cations in Transportation, pp. 245-252, 1990, pergamon Press, Oxford.

[13) 1. Porche and S. Lafortune, "Dynamic traffic control: Decentralized and
coordinated methods," in Proceedings of the IEEE Conference on ITS,
1997.

[14) J. L. Farges, J. J. Henry, and J. Tuffal, "The prodyn real-time traffic
algorithm," in Proceedings of the lEE International Conference on Road
Traffic Signalling, 1983, pp. 307-312.

[15) v. Dinopoulou, C. Diakaki, and M. Papageorgiou, "Applications of the
urban traffic control strategy tuc." European Journal of Operational
Research, vol. 175, no. 3, pp. 1652-1665, 2006.

[16) A. Di Febbraro, D. Giglio, and N. Sacco, "Urban traffic control structure
based on hybrid petri nets," Intelligent Transportation Systems, IEEE
Transactions on, vol. 5, no. 4, pp. 224--237, Dec. 2004.

[17) A. L. C. Bazzan, "A distributed approach for coordination of traffic
signal agents," AAMAS, vol. 10, no. 1, pp. 131-164, 2004.

[18) G. Felici, G. Rinaldi, A. Sforza, and K. Truemper, "A logic programming
based approach for on-line traffic control," Transportation Research Part
C: Emerging Technologies, vol. 14, no. 3, pp. 175 - 189, 2006.

[19) B. De Schutter, "Optimal traffic light control for a single intersection,"
in Proc. American Control Conference the 1999, vol. 3, 1999, pp. 2 195-
2 199 vol.3.

[20) B. Abdulhai, P. Pringle, and G. J. Karakoulas, "Reinforcement learning
for true adaptive traffic signal control," in ASCE Journal of Transporta­
tion Engineering, vol. 129(3), 2003, pp. 278-284.

[2 1) R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[22) c. J. C. H. Watkins and P. Dayan, "Q-learning;' Machine Learning,
vol. 8, no. 3-4, pp. 279-292, 1992.

[23) A. Salkham, R. Cunningham, A. Garg, and V. Cahill, "A collaborative
reinforcement learning approach to urban traffic control optimization,"
Web Intelligence and Intelligent Agent Technology, IEEF/WICIACM
International Conference on, vol. 2, pp. 560-566, 2008.

[24) M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialosa, and
Y. Wang, "Review of road traffic control strategies," in Proceedings
of the IEEE, vol. 9 1, 2003, pp. 2043-2067.

[25) United States FHWA, "Signal timing under saturated conditions,"
FHWA-HOP-09-008, November 2008.

[26) P. Mirchandani and L. Head, "A real-time traffic signal control system:
architecture, algorithms, and analysis," Transportation Research Part C:
Emerging Technologies, vol. 9, pp. 4 15-432, December 2001.

[27) N. Gartner, "Opac: A demand-responsive strategy for traffic signal
control," U.S. Dept. Transportation, Transp. Res. Record 906, 1983.

[28) K. Dresner and P. Stone, "Multiagent traffic management: A reservation­
based intersection control mechanism," in AAMAS '04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 530-537.

[29) E. Camponogara and K. J. Werner, "Distributed learning agents in urban
traffic control." in LNCS, vol. 2902. Springer, 2003, pp. 324--335.

[30) S. Richter, D. Aberdeen, and J. Yu, "Natural actor-critic for road traffic
optimisation;' in Advances in Neural Information Processing Systems,
vol. 19. The MIT Press, Cambridge, MA, 2007.

[31) J. Peters, S. Vijayakumar, and S. Schaal, "Natural actor-critic." in ECML,
2005, pp. 280-29 1.

[32) 1. Dusparic and V. Cahill, "Distributed W-Learning: Multi-policy opti­
mization in self-organizing systems;' in Third IEEE SASO, 2009.

[33) M. Humphrys, "Action selection methods using reinforcement learning,"
Ph.D. dissertation, University of Cambridge, 1996.

[34) Z.-s. Yang, X. Chen, Y.-s. Tang, and J.-p. Sun, "Intelligent cooperation
control of urban traffic networks," in Proceedings of2005 ICMLC, vol. 3,
2005, pp. 1482-1486.

[35) D. Srinivasan, M. C. Choy, and R. Cheu, "Neural networks for real­
time traffic signal control;' Intelligent Transportation Systems, IEEE
Transactions on, vol. 7, no. 3, pp. 26 1-272, Sept. 2006.

[36) M. Wiering, "Multi-agent reinforcement learning for traffic light con-
trol," in Proceedings of the 17th ICML. Morgan Kaufmann, San
Francisco, CA, 2000, pp. 1 15 1- 1 158.

[37) M. Steingriiver, R. Schouten, S. Peelen, E. Nijhuis, and B. Bakker,
"Reinforcement learning of traffic light controllers adapting to traffic
congestion." in BNA/C, 2005, pp. 216-223.

[38) H. Prothmann, E Rochner, S. Tomforde, J. Branke, C. Miiller-Schloer,
and H. Schmeck, "Organic control of traffic lights," pp. 2 19-233, 2008.

[39) D. d. Oliveira, A. L. C. Bazzan, B. C. d. Silva, E. W. Basso, and
L. Nunes, "Reinforcement learning based control of traffic lights in non­
stationary environments: A case study in a microscopic simulator," in
CEUR Workshop Proceedings, vol. 223. CEUR-WS.org, 2006.

[40) S. Tomforde, H. Prothmann, E Rochner, J. Branke, J. Hahner, C. Muller­
Schloer, and H. Schmeck, "Decentralised progressive signal systems for
organic traffic control," in Proc. Second IEEE SASO '08, 20-24 Oct.
2008, pp. 4 13-422.

[4 1) K. Nagel and M. Schreckenberg, "A cellular automaton model for
freeway traffic," Journal de Physique 1, no. 1 15, p. 222 1, 1992.

[42) J. C. Spall, Introduction to Stochastic Search and Optimization: Estima­
tion, Simulation, and Control. Hoboken, NJ: Wiley

"
2003.

[43) M. Thottan and C. Ji, "Anomaly detection in ip networks," IEEE
Transactions on Signal Processing, vol. 5 1, no. 8, pp. 2 19 1-2204, 2003.

[44) K. J. Oh, M. S. Moon, and T. Y. Kim, "Variance change point detection
via artificial neural networks for data separation," Neurocomputing,
vol. 68, pp. 239-250, 2005.

[45) H. Wang, D. Zhang, and K. G. Shin, "Detecting syn flooding attacks,"
in In Proceedings of the IEEE Infocom. IEEE, 2002, pp. 1530-1539.

[46) v. A. Siris and E Papagalou, "Application of anomaly detection algo­
rithms for detecting syn flooding attacks," Computer Communications,
vol. 29, no. 9, pp. 1433 - 1442, 2006, iCON 2004 - 12th IEEE
International Conference on Network 2004.

[47) G. c. 1. Lin and S. V. Nagalingam, CIM justification and optimisation.
London, UK: Taylor & Francis, 2000.

[48) v. Reynolds, V. Cahill, and A. Senart, "Requirements for an ubiquitous
computing simulation and emulation environment," in InterSense'06.
New York, NY, USA: ACM, 2006.

[49) S. Richter, "Learning traffic control - towards practical traffic control
using policy gradients - diplomarbeit." Albert-Ludwigs-Universitat
Freiburg, 2006.

538

