Inferring Dynamic Credentials for Rôle-based Trust Management

Vladimiro Sassone

ECS, University of Southampton

joint work with D. Gorla (Roma) and M. Hennessy (Sussex)

PPDP’06, Venice 11 July 2006
1. Rôle-based trust-management
2. RT₀ operational semantics
3. Context-dependent credentials (CDCs)
4. An enhanced inference system for CDCs
5. Inferring time validity and environmental credentials
6. Conclusions
Trust Management

- **Trust-management**: a form of distributed access control based on policy statements made by multiple principals.

- A key aspect is **delegation**: transfer of limited authority on some resources to other principals.

 Usually, this is done by means of **credentials**.

- Decisions are made according to the identity of the resource requester.

 PROBLEM: when resource owner and requester are unknown to each other, such a form of access control does not work.

 Must shift the focus on the **certificates** it demonstrably holds.
Trust Management

- **Trust-management**: a form of distributed access control based on policy statements made by multiple principals.

- A key aspect is **delegation**: transfer of limited authority on some resources to other principals. Usually, this is done by means of **credentials**.

- Decisions are made according to the identity of the resource requester.

 PROBLEM: when resource owner and requester are unknown to each other, such a form of access control does not work. Must shift the focus on the **certificates** it demonstrably holds.
Rôle-based Trust-management

AN APPROACH: RT (Li, Mitchell, Winsborough@IEEE-SSP02)

- Trust management + rôle-based access control
- Inspired by trust-management languages such as SPKI/SDSI
- Includes basic operations to perform complex forms of delegation
- A family of increasingly powerful languages, RT_0 being the basic form.
An auditor can inspect an enterprise **Ent** only if is authorised by the UK government: `Ent.auditor ← UK.auditor`;

An auditor is authorised if is a member of a government recognised society: `UK.auditor ← UK.authSoc.member`;

Auditing societies must be legally registered and ‘fair’:

```
```

Assume **BSoc** is both legally registered and ‘fair’ for UK law:

```
UK.legalSoc ← BSoc and UK.fairSoc ← BSoc;
```

and that **B** belongs to **BSoc**: `BSoc.member ← B`;

From this, we want to infer that **B** can inspect **Ent**.
RT₀, by example

- An auditor can inspect an enterprise \texttt{ENT} only if is authorised by the UK government: \texttt{ENT.auditor ← UK.auditor};

- An auditor is authorised if is a member of a government recognised society: \texttt{UK.auditor ← UK.authSoc.member};

- Auditing societies must be legally registered and ‘fair’: \texttt{UK.authSoc ← UK.legalSoc ⊓ UK.fairSoc}.

- Assume \texttt{BSoc} is both legally registered and ‘fair’ for UK law:
 \texttt{UK.legalSoc ← BSoc} and \texttt{UK.fairSoc ← BSoc};

 and that \texttt{B} belongs to \texttt{BSoc}: \texttt{BSoc.member ← B};

- From this, we want to infer that \texttt{B} can inspect \texttt{ENT}.

RT₀, by example

- An auditor can inspect an enterprise \textbf{Ent} only if is authorised by the UK government: \textit{Ent.auditor} \leftarrow \textit{UK.auditor};

- An auditor is authorised if is a member of a government recognised society: \textit{UK.auditor} \leftarrow \textit{UK.authSoc.member};

- Auditing societies must be legally registered and ‘fair’: \textit{UK.authSoc} \leftarrow \textit{UK.legalSoc} \sqcap \textit{UK.fairSoc}.

- Assume \textbf{BSoc} is both legally registered and ‘fair’ for UK law:

 \textit{UK.legalSoc} \leftarrow \textbf{BSoc} \quad \text{and} \quad \textit{UK.fairSoc} \leftarrow \textbf{BSoc};

 and that \textbf{B} belongs to \textbf{BSoc}: \textbf{BSoc.member} \leftarrow \textbf{B};

- From this, we want to infer that \textbf{B} can inspect \textbf{Ent}.
RT₀, by example

- An auditor can inspect an enterprise \(E \) only if is authorised by the UK government: \(E . \text{auditor} \leftarrow UK.\text{auditor} \);

- An auditor is authorised if is a member of a government recognised society: \(UK.\text{auditor} \leftarrow UK.\text{authSoc}.\text{member} \);

- Auditing societies must be legally registered and ‘fair’: \(UK.\text{authSoc} \leftarrow UK.\text{legalSoc} \sqcap UK.\text{fairSoc} \).

- Assume \(BSoc \) is both legally registered and ‘fair’ for UK law: \(UK.\text{legalSoc} \leftarrow BSoc \) and \(UK.\text{fairSoc} \leftarrow BSoc \);

- and that \(B \) belongs to \(BSoc \): \(BSoc.\text{member} \leftarrow B \);

- From this, we want to infer that \(B \) can inspect \(E \).
RT₀, more formally

Four kinds of RT₀-credential:

1. \(A.r \leftarrow B \) states that principal \(B \) belongs to the rôle \(r \) governed by principal \(A \);

2. \(A.r \leftarrow B.s \) states that all members of rôle \(s \) governed by \(B \) also belong to rôle \(r \) governed by \(A \);

3. \(A.r \leftarrow B.s \sqcap C.t \) states that rôle \(r \) governed by \(A \) contains all the members of both \(B \)'s rôle \(s \) and of \(C \)'s rôle \(t \);

4. \(A.r \leftarrow B.s.t \) states that rôle \(r \) governed by \(A \) contains all the members of \(C \)'s rôle \(t \), for every \(C \) belonging to \(B \)'s rôle \(s \).
RT\(_0\), more formally

Four kinds of RT\(_0\)-credential:

1. \(A.r \leftarrow B\) states that principal \(B\) belongs to the rôle \(r\) governed by principal \(A\);

2. \(A.r \leftarrow B.s\) states that all members of rôle \(s\) governed by \(B\) also belong to rôle \(r\) governed by \(A\);

3. \(A.r \leftarrow B.s \sqcap C.t\) states that rôle \(r\) governed by \(A\) contains all the members of both \(B\)'s rôle \(s\) and of \(C\)'s rôle \(t\);

4. \(A.r \leftarrow B.s.t\) states that rôle \(r\) governed by \(A\) contains all the members of \(C\)'s rôle \(t\), for every \(C\) belonging to \(B\)'s rôle \(s\).
RT₀, more formally

Four kinds of RT₀-credential:

1. A.r ← B states that principal B belongs to the rôle r governed by principal A;

2. A.r ← B.s states that all members of rôle s governed by B also belong to rôle r governed by A;

3. A.r ← B.s ∩ C.t states that rôle r governed by A contains all the members of both B’s rôle s and of C’s rôle t;

4. A.r ← B.s.t states that rôle r governed by A contains all the members of C’s rôle t, for every C belonging to B’s rôle s.
RT\(_0\), more formally

Four kinds of RT\(_0\)-credential:

1. \(A.r \leftarrow B\) states that principal \(B\) belongs to the rôle \(r\) governed by principal \(A\);

2. \(A.r \leftarrow B.s\) states that all members of rôle \(s\) governed by \(B\) also belong to rôle \(r\) governed by \(A\);

3. \(A.r \leftarrow B.s \sqcap C.t\) states that rôle \(r\) governed by \(A\) contains all the members of both \(B\)'s rôle \(s\) and of \(C\)'s rôle \(t\);

4. \(A.r \leftarrow B.s.t\) states that rôle \(r\) governed by \(A\) contains all the members of \(C\)'s rôle \(t\), for every \(C\) belonging to \(B\)'s rôle \(s\).
RT₀, more formally

Four kinds of RT₀-credential:

1. \(A.r \leftarrow B \) states that principal \(B \) belongs to the rôle \(r \) governed by principal \(A \);

2. \(A.r \leftarrow B.s \) states that all members of rôle \(s \) governed by \(B \) also belong to rôle \(r \) governed by \(A \);

3. \(A.r \leftarrow B.s \cap C.t \) states that rôle \(r \) governed by \(A \) contains all the members of both \(B \)'s rôle \(s \) and of \(C \)'s rôle \(t \);

4. \(A.r \leftarrow B.s.t \) states that rôle \(r \) governed by \(A \) contains all the members of \(C \)'s rôle \(t \), for every \(C \) belonging to \(B \)'s rôle \(s \).
RT\(_0\), more formally

Four kinds of \textbf{RT\(_0\)-credential:}\(\)

1. \(A.r \leftarrow B\) states that principal \(B\) belongs to the rôle \(r\) governed by principal \(A\);

2. \(A.r \leftarrow B.s\) states that all members of rôle \(s\) governed by \(B\) also belong to rôle \(r\) governed by \(A\);

3. \(A.r \leftarrow B.s \sqcap C.t\) states that rôle \(r\) governed by \(A\) contains all the members of both \(B\)'s rôle \(s\) and of \(C\)'s rôle \(t\);

4. \(A.r \leftarrow B.s.t\) states that rôle \(r\) governed by \(A\) contains all the members of \(C\)'s rôle \(t\), for every \(C\) belonging to \(B\)'s rôle \(s\).
An inference system for RT_0

RT_0 semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

\[
\begin{align*}
c \in P & \quad P \triangleright A.r \leftarrow B.s & \quad P \triangleright B.s \leftarrow C \\
P \triangleright c & \quad P \triangleright A.r \leftarrow C \\
P \triangleright A.r \leftarrow B.s.t & \quad P \triangleright B.s \leftarrow C & \quad P \triangleright C.t \leftarrow D \\
P \triangleright A.r \leftarrow D \\
P \triangleright A.r \leftarrow B.s \cap C.t & \quad P \triangleright B.s \leftarrow D & \quad P \triangleright C.t \leftarrow D \\
P \triangleright A.r \leftarrow D
\end{align*}
\]
An inference system for RT_0

RT_0 semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

\[
\begin{align*}
\text{c} & \in P \\
\hline
P \models \text{c} & \quad P \models \text{A.r} \leftarrow \text{B.s} & P \models \text{B.s} \leftarrow \text{C} \\
& \quad P \models \text{A.r} \leftarrow \text{C} \\
& \quad P \models \text{A.r} \leftarrow \text{B.s.t} & P \models \text{B.s} \leftarrow \text{C} & P \models \text{C.t} \leftarrow \text{D} \\
& \quad P \models \text{A.r} \leftarrow \text{D} \\
& \quad P \models \text{A.r} \leftarrow \text{B.s} \sqcap \text{C.t} & P \models \text{B.s} \leftarrow \text{D} & P \models \text{C.t} \leftarrow \text{D} \\
& \quad P \models \text{A.r} \leftarrow \text{D}
\end{align*}
\]
An inference system for RT_0

RT_0 semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

$$
\begin{align*}
 c & \in P \\
 \frac{}{P \triangleright c} \\
 P \triangleright A.r & \leftarrow B.s \\
 P \triangleright B.s & \leftarrow C \\
 \frac{}{P \triangleright A.r \leftarrow C} \\
 & \\
 P \triangleright A.r & \leftarrow B.s \cdot t \\
 P \triangleright B.s & \leftarrow C \\
 P \triangleright C.t & \leftarrow D \\
 \frac{}{P \triangleright A.r \leftarrow D} \\
 & \\
 P \triangleright A.r & \leftarrow B.s \sqcap C.t \\
 P \triangleright B.s & \leftarrow D \\
 P \triangleright C.t & \leftarrow D \\
 \frac{}{P \triangleright A.r \leftarrow D}
\end{align*}
$$
An inference system for RT_0

RT_0 semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

\[
\begin{align*}
&c \in P \\
&\quad \Rightarrow P \Rightarrow c
\end{align*}
\]

\[
\begin{align*}
P &\Rightarrow A.r \leftarrow B.s & P &\Rightarrow B.s \leftarrow C \\
&\quad \Rightarrow P \Rightarrow A.r \leftarrow C
\end{align*}
\]

\[
\begin{align*}
P &\Rightarrow A.r \leftarrow B.s.t & P &\Rightarrow B.s \leftarrow C & P &\Rightarrow C.t \leftarrow D \\
&\quad \Rightarrow P \Rightarrow A.r \leftarrow D
\end{align*}
\]

\[
\begin{align*}
P &\Rightarrow A.r \leftarrow B.s \sqcap C.t & P &\Rightarrow B.s \leftarrow D & P &\Rightarrow C.t \leftarrow D \\
&\quad \Rightarrow P \Rightarrow A.r \leftarrow D
\end{align*}
\]
An inference system for RT₀

RT₀ semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

\[
\begin{align*}
\text{c} & \in P \\
\implies & \quad P \triangleright c
\end{align*}
\]

\[
\begin{align*}
P \triangleright A.r & \leftarrow B.s \\
P \triangleright B.s & \leftarrow C \\
\implies & \quad P \triangleright A.r & \leftarrow C
\end{align*}
\]

\[
\begin{align*}
P \triangleright A.r & \leftarrow B.s \cdot t \\
P \triangleright B.s & \leftarrow C \\
P \triangleright C.t & \leftarrow D \\
\implies & \quad P \triangleright A.r & \leftarrow D
\end{align*}
\]

\[
\begin{align*}
P \triangleright A.r & \leftarrow B.s \sqcap C.t \\
P \triangleright B.s & \leftarrow D \\
P \triangleright C.t & \leftarrow D \\
\implies & \quad P \triangleright A.r & \leftarrow D
\end{align*}
\]
An inference system for RT_0

RT_0 semantics: fixpoint construction; equivalently, translation into logic programs and minimal Herbrand models.

A more ‘operational’ flavour: certificate inference from a (finite) set of credentials P.

\[
\begin{align*}
c \in P & \quad \frac{P \triangleright A.r \leftarrow B.s}{P \triangleright c} \\
P \triangleright B.s & \quad \frac{P \triangleright B.s \leftarrow C}{P \triangleright A.r \leftarrow C} \\
P \triangleright A.r \leftarrow B.s.t & \quad P \triangleright B.s \leftarrow C \quad P \triangleright C.t \leftarrow D \\
& \quad \frac{P \triangleright A.r \leftarrow C}{P \triangleright A.r \leftarrow D} \\
P \triangleright A.r \leftarrow B.s \sqcap C.t & \quad P \triangleright B.s \leftarrow D \quad P \triangleright C.t \leftarrow D \\
& \quad \frac{P \triangleright A.r \leftarrow D}{P \triangleright A.r \leftarrow D}
\end{align*}
\]
The auditing example, formalised

Derive a credential for B as a UK Auditor:

\[\begin{align*}
P &\rightarrow \text{UK.legalSoc} \leftarrow \text{BS} \\
& \quad P \rightarrow \text{UK.fairSoc} \leftarrow \text{BS} \\
& \quad P \rightarrow \text{UK.authSoc} \leftarrow \text{UK.legalSoc} \cap \text{UK.fairSoc} \\
& \quad P \rightarrow \text{UK.authSoc} \leftarrow \text{BS} \\
& \quad P \rightarrow \text{BS.member} \leftarrow B \\
& \quad P \rightarrow \text{UK.auditor} \leftarrow \text{UK.authSoc.member} \\
& \quad P \rightarrow \text{UK.auditor} \leftarrow B \\
\end{align*} \]

We can then derive a credential authorising B to inspect Ent:

\[\begin{align*}
& \quad P \rightarrow \text{Ent.auditor} \leftarrow \text{UK.auditor} \\
& \quad P \rightarrow \text{UK.auditor} \leftarrow B \\
& \quad P \rightarrow \text{Ent.auditor} \leftarrow B
\end{align*} \]
The auditing example, formalised

Derive a credential for B as a UK **AUDITOR**:

\[
P \triangleright \text{UK.legalSoc} \leftarrow \text{BS} \quad P \triangleright \text{UK.fairSoc} \leftarrow \text{BS} \\
P \triangleright \text{UK.authSoc} \leftarrow \text{UK.legalSoc} \sqcap \text{UK.fairSoc} \\
P \triangleright \text{UK.authSoc} \leftarrow \text{BS} \\
P \triangleright \text{BS.member} \leftarrow B \\
P \triangleright \text{UK.auditor} \leftarrow \text{UK.authSoc.member} \\
P \triangleright \text{UK.auditor} \leftarrow B
\]

We can then derive a credential authorising B to inspect **Ent**:

\[
P \triangleright \text{Ent.auditor} \leftarrow \text{UK.auditor} \\
P \triangleright \text{UK.auditor} \leftarrow B \\
P \triangleright \text{Ent.auditor} \leftarrow B
\]
The auditing example, formalised

Derive a credential for B as a UK $\textbf{AUDITOR}$:

\[
\begin{align*}
P \triangleright & \text{UK.legalSoc} \leftarrow \text{BS} & P \triangleright & \text{UK.fairSoc} \leftarrow \text{BS} \\
& P \triangleright \text{UK.authSoc} \leftarrow \text{UK.legalSoc} \sqcap \text{UK.fairSoc} & P \triangleright & \text{UK.authSoc} \leftarrow \text{BS} \\
& P \triangleright \text{BS.member} \leftarrow B & P \triangleright & \text{UK.auditor} \leftarrow \text{UK.authSoc.member} \\
\hline
& P \triangleright \text{UK.auditor} \leftarrow B
\end{align*}
\]

We can then derive a credential authorising B to inspect Ent:

\[
\begin{align*}
& P \triangleright \text{Ent.auditor} \leftarrow \text{UK.auditor} & P \triangleright & \text{UK.auditor} \leftarrow B \\
\hline
& P \triangleright \text{Ent.auditor} \leftarrow B
\end{align*}
\]
The auditing example, formalised

Derive a credential for B as a UK auditor:

\[
P \triangleright UK.legalSoc \leftarrow BS \quad P \triangleright UK.fairSoc \leftarrow BS \quad P \triangleright UK.authSoc \leftarrow UK.legalSoc \cap UK.fairSoc \quad P \triangleright BS.member \leftarrow B \quad P \triangleright UK.auditor \leftarrow UK.authSoc.member
\]

We can then derive a credential authorising B to inspect Ent:

\[
P \triangleright Ent.auditor \leftarrow UK.auditor \quad P \triangleright UK.auditor \leftarrow B \quad P \triangleright Ent.auditor \leftarrow B
\]
Context-dependent credentials, informally

Extend RT₀ by adding boolean guards and time validity:
- permissions often hold only for specific periods of time;
- can be issued/revoked according to the context.

Example (auditing, revised)

- BSoc becomes legal only after its registration at time τ:
 \[
 \text{UK.legalSOC} \leftarrow \text{BSoc in } [τ, +∞)
 \]

- UK’s fairness certificates are valid only for a period of time \(v₁\), and B is a member of BSoc for a fixed period \(v₂\):
 \[
 \text{UK.fairSOC} \leftarrow \text{BSoc in } v₁, \quad \text{BSoc.member} \leftarrow B \text{ in } v₂
 \]

- B can inspect ENT if he is authorised and is not one of ENT’s employees:
 \[
 \text{if } B \in \text{UK.auditor} \land B \notin \text{ENT.employee} \text{ then ENT.auditor } \leftarrow B
 \]
Context-dependent credentials, informally

Extend RT_0 by adding **boolean guards** and **time validity**:
- permissions often hold only for specific periods of time;
- can be issued/revoked according to the context.

Example (auditing, revised)

- **BSoc** becomes legal only after its registration at time \(\tau \):
 \[
 \text{UK.legalSoc} \leftarrow \text{BSoc in } [\tau, +\infty)
 \]

- UK’s fairness certificates are valid only for a period of time \(v_1 \), and **B** is a member of **BSoc** for a fixed period \(v_2 \):
 \[
 \text{UK.fairSoc} \leftarrow \text{BSoc in } v_1, \quad \text{BSoc.member} \leftarrow \text{B in } v_2
 \]

- **B** can inspect **Ent** if he is authorised and is not one of **Ent**’s employees:
 \[
 \text{if } B \in \text{UK.auditor} \land B \notin \text{Ent.employee} \quad \text{then Ent.auditor} \leftarrow B
 \]
Context-dependent credentials, informally

Extend RT₀ by adding boolean guards and time validity:
- permissions often hold only for specific periods of time;
- can be issued/revoked according to the context.

Example (auditing, revised)

- **BSoc** becomes legal only after its registration at time \(t₀ \):
 \[
 \text{UK.legalSOC} \leftarrow \text{BSoc in } [t₀, +\infty)
 \]

- UK’s fairness certificates are valid only for a period of time \(v₁ \), and **B** is a member of **BSoc** for a fixed period \(v₂ \):
 \[
 \text{UK.fairSOC} \leftarrow \text{BSoc in } v₁ , \quad \text{BSoc.member} \leftarrow \text{B in } v₂
 \]

- **B** can inspect **ENT** if he is authorised and is not one of **ENT**’s employees:
 \[
 \text{if } B \in \text{UK.auditor} \land B \notin \text{ENT.employee} \text{ then ENT.auditor} \leftarrow B
 \]
Context-dependent credentials, formally

CDCs

Rôle Expressions: \(e ::= B \mid B.s \mid B.s.t \mid B.s \sqcap C.t \)

RT\(_0\) Credential: \(c ::= A.r \leftarrow e \)

Guards: \(g ::= \top \mid B \in A.r \mid B \notin A.r \mid g_1 \land g_2 \)

Time Validity: \(\nu ::= [\tau_1, \tau_2] \mid [\tau_1, \tau_2) \mid (\tau_1, \tau_2] \mid (\tau_1, \tau_2) \\
\mid (\tau_1, +\infty) \mid (\tau, +\infty) \\
\mid (\tau, \infty) \mid \nu_1 \cup \nu_2 \mid \nu_1 \cap \nu_2 \mid \nu_1 \setminus \nu_2 \)

CDCs: \(\chi ::= \text{if } g \text{ then } c \text{ in } \nu \)
Context-dependent credentials, formally

CDCs

Role Expressions:
\[e ::= B \mid B.s \mid B.s.t \mid B.s \cap C.t \]

RT\(_0\) Credential:
\[c ::= A.r \leftarrow e \]

Guards:
\[g ::= \texttt{tt} \mid B \in A.r \mid B \notin A.r \mid g_1 \land g_2 \]

Time Validity:
\[\nu ::= [\tau_1, \tau_2] \mid (\tau_1, \tau_2) \mid (\tau_1, \tau_2] \mid (\tau_1, \tau_2) \]
\[\mid (\tau, \tau] \mid (-\infty, \tau] \mid [\tau, +\infty) \mid (\tau, +\infty) \]
\[\mid (-\infty, +\infty) \mid \nu_1 \cup \nu_2 \mid \nu_1 \cap \nu_2 \mid \nu_1 \setminus \nu_2 \]

CDCs:
\[\chi ::= \textbf{if } g \textbf{ then } c \textbf{ in } \nu \]
Context-dependent credentials, formally

Rôle Expressions: \(e ::= B \mid B.s \mid B.s.t \mid B.s \cap C.t \)

RT\(_0\) Credential: \(c ::= A.r \leftarrow e \)

Guards: \(g ::= \top \mid B \in A.r \mid B \notin A.r \mid g_1 \land g_2 \)

Time Validity: \(\nu ::= [\tau_1, \tau_2] \mid (\tau_1, \tau_2) \mid (\tau_1, \tau_2] \mid (\tau_1, \tau_2) \)

\[\mid (\tau, +\infty) \mid (\tau_1, +\infty) \mid (\tau, +\infty) \]

\[\mid (\tau_1, +\infty) \mid (\tau, +\infty) \mid (\tau, +\infty) \]

\[\mid (\tau_1, +\infty) \mid \nu_1 \cup \nu_2 \mid \nu_1 \cap \nu_2 \mid \nu_1 \setminus \nu_2 \]

CDCs: \(\chi ::= \text{if } g \text{ then } c \text{ in } \nu \)
Context-dependent credentials, formally

CDCs

Rôle Expressions:
\[e ::= B \mid B.s \mid B.s.t \mid B.s \cap C.t \]

RT₀ Credential:
\[c ::= A.r \leftarrow e \]

Guards:
\[g ::= \top \mid B \in A.r \mid B \notin A.r \mid g₁ \land g₂ \]

Time Validity:
\[\nu ::= [τ₁, τ₂] \mid (τ₁, τ₂) \mid (τ₁, τ₂] \mid (τ₁, +\infty) \]
\[\mid (−\infty, τ] \mid (−\infty, τ) \mid [τ, +\infty) \mid (τ, +\infty) \]
\[\mid (−\infty, +\infty) \mid \nu₁ \cup \nu₂ \mid \nu₁ \cap \nu₂ \mid \nu₁ \setminus \nu₂ \]

CDCs:
\[\chi ::= \text{if } g \text{ then } c \text{ in } \nu \]
An inference system for CDCs

Given a (finite) set of CDCs \mathbb{N}, adapt the inference system to derive new certificates.

Judgements take the form

$\mathbb{N} \vdash_{\tau} c$

and mean that c can be inferred, at time τ, from \mathbb{N}.

This entails that \mathbb{N} satisfies

- all the positive guards of the CDCs used in the inference;
- none of their negative guards.
The key rule is:

Rules

\[
\text{if } \bigwedge_{i} B_i \in A_i.r_i \land \bigwedge_{j} B'_j \notin A'_j.r'_j \text{ then } c \text{ in } \nu \in \mathbb{N} \\
\forall i \in \mathbb{N} \vdash_{\tau} A_i.r_i \leftarrow B_i \\
\forall j \in \mathbb{N} \not\vdash_{\tau} A'_j.r'_j \leftarrow B'_j \\
\mathbb{N} \vdash_{\tau} c
\]

To use a CDC

- all its positive guards must be inferrable,
- none of its negative guards must be inferrable, and
- the CDC must be valid at the inference time \(\tau\).
An inference system for CDCs

The other rules are adapted mutatis mutandis from those for RT_0:

Rules

\[
\begin{align*}
\Gamma \vdash \tau & \quad A.r \leftarrow B.s \\
\Gamma \vdash \tau & \quad B.s \leftarrow C \\
\Gamma \vdash \tau & \quad A.r \leftarrow C
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \tau & \quad A.r \leftarrow B.s \cdot t \\
\Gamma \vdash \tau & \quad B.s \leftarrow C \\
\Gamma \vdash \tau & \quad C.t \leftarrow D \\
\Gamma \vdash \tau & \quad A.r \leftarrow D
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash \tau & \quad A.r \leftarrow B.s \sqcap C.t \\
\Gamma \vdash \tau & \quad B.s \leftarrow D \\
\Gamma \vdash \tau & \quad C.t \leftarrow D \\
\Gamma \vdash \tau & \quad A.r \leftarrow D
\end{align*}
\]
Technical results

PROBLEM: the inference system has **negative premises**, which has the potential to undermine its well-foundedness.

SOLUTION: use the **stable model construction** (from LP, adapted to inference systems \(\text{[BOL, GROOTE]} \)) to assign meaning to the inference system whenever possible;

Following the stable model construction, we also adapt to CDCs the two existing semantics (set-theoretic and logic programming-based) of \(\text{RT}_0 \) \(\text{[MITCHELL ET AL]} \).

The three semantics coincide.
Technical results

- **PROBLEM:** the inference system has negative premises, which has the potential to undermine its well-foundedness.

- **SOLUTION:** use the stable model construction (from LP, adapted to inference systems \(\text{Bol, Groote}\)) to assign meaning to the inference system whenever possible;

> Following the stable model construction, we also adapt to CDCs the two existing semantics (set-theoretic and logic programming-based) of \(\text{RT}_0\) \(\text{(Mitchell et al)}\).

- The three semantics coincide.
Technical results

- **PROBLEM:** the inference system has negative premises, which has the potential to undermine its well-foundedness.

- **SOLUTION:** use the stable model construction (from LP, adapted to inference systems (Bol, Groote)) to assign meaning to the inference system whenever possible;

- Following the stable model construction, we also adapt to CDCs the two existing semantics (set-theoretic and logic programming-based) of \(RT_0 \) (Mitchell et al).

- The three semantics coincide.
Technical results

- **PROBLEM:** the inference system has **negative premises**, which has the potential to undermine its well-foundedness.

- **SOLUTION:** use the **stable model construction** (from LP, adapted to inference systems (Bol, Groote)) to assign meaning to the inference system whenever possible;

 Following the stable model construction, we also adapt to CDCs the two existing semantics (set-theoretic and logic programming-based) of RT_0 (Mitchell et al).

- **The three semantics coincide.**
Deriving constraints on the context

CDCs require full knowledge of the context where the evaluation takes place, i.e.,

- the exact time of evaluation, and
- all the CDCs available (to ensure soundness in the presence of negative premises).

In large-scale distributed systems these pieces of information are hardly available (due to asynchrony and the co-existence of multiple administrative entities).

We enhance the inference system for CDCs to also derive constraints on the execution context that validate a given inference.
Deriving time validity

Characterise the instants when a given inference holds.

\[
\begin{align*}
\text{if } & \bigwedge_i B_i \in A_i.r_i \land \bigwedge_j B'_j \notin A'_j.r'_j \text{ then } c \text{ in } \forall i . \mathbb{N} \vdash_i A_i.r_i \leftarrow B_i \quad \forall j . \mathbb{N} \vdash_j A'_j.r'_j \leftarrow B'_j \\
& \mathbb{N} \vdash (\bigcap_i \forall_i \cap \bigcap_j \forall_j) C
\end{align*}
\]

\[
\begin{align*}
\mathbb{N} & \vdash_1 A.r \leftarrow B.s \quad \mathbb{N} \vdash_2 B.s \leftarrow C \\
& \mathbb{N} \vdash_1 \forall_1 \cap \forall_2 A.r \leftarrow C
\end{align*}
\]

\[
\begin{align*}
\mathbb{N} & \vdash_1 A.r \leftarrow B.s.t \quad \mathbb{N} \vdash_2 B.s \leftarrow C \quad \mathbb{N} \vdash_3 D.t \leftarrow D \\
& \mathbb{N} \vdash_1 \forall_1 \cap \forall_2 \cap \forall_3 A.r \leftarrow D
\end{align*}
\]

\[
\begin{align*}
\mathbb{N} & \vdash_1 A.r \leftarrow B.s \cap C.t \quad \mathbb{N} \vdash_2 B.s \leftarrow D \quad \mathbb{N} \vdash_3 C.t \leftarrow D \\
& \mathbb{N} \vdash_1 \forall_1 \cap \forall_2 \cap \forall_3 A.r \leftarrow D
\end{align*}
\]
Deriving time validity

Characterise the instants when a given inference holds.

\[
\text{if } \bigwedge_i B_i \in A_i.r_i \land \bigwedge_j B'_j \notin A'_j.r'_j \text{ then } c \text{ in } v \in \mathbb{N} \\
\forall i . \mathbb{N} \models_{v_i} A_i.r_i \leftarrow B_i \\
\forall j . \mathbb{N} \models_{v_j} A'_j.r'_j \leftarrow B'_j \\
\mathbb{N} \models_{(v \cap \cap_i v_i) \setminus \cup_j v_j} C
\]

\[
\mathbb{N} \models_{v_1} A.r \leftarrow B.s \\
\mathbb{N} \models_{v_2} B.s \leftarrow C \\
\mathbb{N} \models_{v_1 \cap v_2} A.r \leftarrow C
\]

\[
\mathbb{N} \models_{v_1} A.r \leftarrow B.s.t \\
\mathbb{N} \models_{v_2} B.s \leftarrow C \\
\mathbb{N} \models_{v_3} D.t \leftarrow D \\
\mathbb{N} \models_{v_1 \cap v_2 \cap v_3} A.r \leftarrow D
\]

\[
\mathbb{N} \models_{v_1} A.r \leftarrow B.s \sqcap C.t \\
\mathbb{N} \models_{v_2} B.s \leftarrow D \\
\mathbb{N} \models_{v_3} C.t \leftarrow D \\
\mathbb{N} \models_{v_1 \cap v_2 \cap v_3} A.r \leftarrow D
\]
Deriving time validity

The same credential can be inferred in different ways, with different time validity; the following rule takes into account this possibility:

\[\mathcal{N} \vdash_{\tau} C \quad \mathcal{N} \vdash_{\tau'} C \quad \mathcal{N} \vdash_{\tau \cup \tau'} C \]

If such a rule is used whenever possible throughout the inference of \(\mathcal{N} \vdash_{\tau} C \), then we can prove that

\[\mathcal{N} \vdash_{\tau} C \text{ if and only if } \tau \in \psi \text{ and } \mathcal{N} \text{ has a semantics at time } \tau. \]
The same credential can be inferred in different ways, with different time validity; the following rule takes into account this possibility:

\[
\begin{align*}
\mathbb{N} \models_{\nu_1} C & \quad \mathbb{N} \models_{\nu_2} C \\
\mathbb{N} \models_{\nu_1 \cup \nu_2} C
\end{align*}
\]

If such a rule is used whenever possible throughout the inference of \(\mathbb{N} \models_{\nu} C\), then we can prove that

\[\mathbb{N} \models_{\tau} C \text{ if and only if } \tau \in \nu \text{ and } \mathbb{N} \text{ has a semantics at time } \tau.\]
Characterise necessary and conflicting context credentials for an inference to hold.

We aim at an inference system with judgements of the form

$$\mathcal{N} \vdash_{\tau} \phi \ c$$

meaning that \(c\) is derivable from \(\mathcal{N}\) at time \(\tau\) in any execution context that satisfies \(\phi\).

\(\phi\) is a propositional formula over the atoms \(B \in A. r\), i.e.

$$\phi ::= \top | B \in A. r | \neg \phi | \phi_1 \land \phi_2 | \phi_1 \lor \phi_2$$
Deriving Environmental Knowledge

Characterise necessary and conflicting context credentials for an inference to hold.

We aim at an inference system with judgements of the form

\[\text{ℕ} \vdash_τ^φ \text{c} \]

meaning that \(\text{c} \) is derivable from \(\text{ℕ} \) at time \(τ \) in any execution context that satisfies \(φ \).

\(φ \) is a propositional formula over the atoms \(B \in A.r \), i.e.

\[\phi ::= \top | B \in A.r | \neg φ | φ_1 \land φ_2 | φ_1 \lor φ_2 \]
Such propositional formulae characterise sets of CDCs:

Definition

\[\mathbb{N} \models_\tau \text{tt} \iff \mathbb{N} \text{ has a semantics at time } \tau \]

\[\mathbb{N} \models_\tau B \in A.r \iff B \in \llbracket \mathbb{N} \rrbracket_\tau(A.r) \]

\[\mathbb{N} \models_\tau \neg \phi \iff \mathbb{N} \not\models_\tau \phi \]

\[\mathbb{N} \models_\tau \phi_1 \land \phi_2 \iff \mathbb{N} \models_\tau \phi_1 \text{ and } \mathbb{N} \models_\tau \phi_2 \]

\[\mathbb{N} \models_\tau \phi_1 \lor \phi_2 \iff \mathbb{N} \models_\tau \phi_1 \text{ or } \mathbb{N} \models_\tau \phi_2 \]
Straightforward adaptations of the previous rules:

\[
\text{if } \bigwedge_i B_i \in A_i.r_i \land \bigwedge_j B'_i \notin A'_j.r'_j \text{ then } c \text{ in } \nu \in \mathbb{N} \\
\tau \in \nu \quad \forall i \cdot \mathbb{N} \vdash_{\tau} \phi_i \quad A_i.r_i \leftarrow B_i
\]

\[
\mathbb{N} \vdash_{\tau} \bigwedge \phi_i \land \bigwedge B'_i \notin A'_j.r'_j \\
C
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \quad A.r \leftarrow B.s
\mathbb{N} \vdash_{\tau} \phi_2 \quad B.s \leftarrow C
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \quad A.r \leftarrow C
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \quad A.r \leftarrow B.s.t
\mathbb{N} \vdash_{\tau} \phi_2 \quad B.s \leftarrow C
\mathbb{N} \vdash_{\tau} \phi_3 \quad C.t \leftarrow D
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \land \phi_2 \land \phi_3 \quad A.r \leftarrow D
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \quad A.r \leftarrow B.s \sqcap C.t
\mathbb{N} \vdash_{\tau} \phi_2 \quad B.s \leftarrow D
\mathbb{N} \vdash_{\tau} \phi_3 \quad C.t \leftarrow D
\]

\[
\mathbb{N} \vdash_{\tau} \phi_1 \land \phi_2 \land \phi_3 \quad A.r \leftarrow D
\]
Deriving Environmental Knowledge

Straightforward adaptations of the previous rules:

\[
\text{if } \bigwedge_i B_i \in A_i.r_i \land \bigwedge_j B'_j \notin A'_j.r'_j \text{ then } c \in v \in \mathbb{N}
\]

\[
\tau \in v \quad \forall i \cdot \mathbb{N} \models \phi_i A_i.r_i \leftarrow B_i
\]

\[
\mathbb{N} \models \bigwedge_i \phi_i \land \bigwedge_j B'_j \notin A'_j.r'_j \quad c
\]

\[
\mathbb{N} \models \phi_1 A.r \leftarrow B.s \quad \mathbb{N} \models \phi_2 B.s \leftarrow C
\]

\[
\mathbb{N} \models \phi_1 \land \phi_2 A.r \leftarrow C
\]

\[
\mathbb{N} \models \phi_1 A.r \leftarrow B.s.t \quad \mathbb{N} \models \phi_2 B.s \leftarrow C \quad \mathbb{N} \models \phi_3 C.t \leftarrow D
\]

\[
\mathbb{N} \models \phi_1 \land \phi_2 \land \phi_3 A.r \leftarrow D
\]

\[
\mathbb{N} \models \phi_1 A.r \leftarrow B.s \sqcap C.t \quad \mathbb{N} \models \phi_2 B.s \leftarrow D \quad \mathbb{N} \models \phi_3 C.t \leftarrow D
\]

\[
\mathbb{N} \models \phi_1 \land \phi_2 \land \phi_3 A.r \leftarrow D
\]
Deriving Environmental Knowledge (4)

A rule like

\[
\begin{align*}
\text{N} \models \phi_1 \quad \text{N} \models \phi_2 \\
\therefore \text{N} \models \phi_1 \lor \phi_2
\end{align*}
\]

is sound, but not strictly necessary.

An additional set of axioms is needed for the inference system to work properly:

\[
\begin{align*}
\text{N} \models B \in A \quad r \\
\therefore \text{N} \models A. r \leftarrow B
\end{align*}
\]

Theorem (soundness and completeness)

Let \(\mathcal{N} \) be such that \(\mathcal{N} \cup \mathcal{N}' \models_\tau \phi \); then, \(\mathcal{N} \models_\tau \phi \) \iff \(\mathcal{N} \cup \mathcal{N}' \models_\tau \phi \).
Deriving Environmental Knowledge

A rule like

\[\models \phi_1 \quad \models \phi_2 \]

is sound, but not strictly necessary.

An additional set of axioms is needed for the inference system work properly:

\[\models B \in A.r \quad A.r \leftarrow B \]

Theorem (soundness and completeness)

Let \(\mathcal{N} \) be such that \(\mathcal{N} \cup \mathcal{N}' \models \phi \); then, \(\mathcal{N} \models \phi \quad \text{iff} \quad \mathcal{N} \cup \mathcal{N}' \models \phi \).
Deriving Environmental Knowledge

A rule like

\[
\begin{align*}
\mathbb{N} \models \phi_1 \quad \mathbb{N} \models \phi_2 \\
\hline
\mathbb{N} \models \phi_1 \lor \phi_2
\end{align*}
\]

is sound, but not strictly necessary.

An additional set of axioms is needed for the inference system work properly:

\[
\mathbb{N} \models B \in A.r \\
\hline
A.r \leftarrow B
\]

Theorem (soundness and completeness)

Let \(\mathbb{N}' \) be such that \(\mathbb{N} \cup \mathbb{N}' \models \phi \); then, \(\mathbb{N} \vdash_{\tau} \phi \) iff \(\mathbb{N} \cup \mathbb{N}' \vdash_{\tau} \phi \).
Conclusion

- Expressive variant of RT_0 with enhanced inference system;
- Set-theoretic and logic-programming semantics for CDCs;
- Use of stable model theory to handle divergence arising from the presence of negative premises;
- Inference of constraints on the execution environment; these are equivalent to abductive constraint LP (cf. the paper)

Future Work

- Allow CDCs with richer kinds of premises; e.g.,

 $\text{if } A.r \subseteq B.s \text{ then } c \text{ in } v \quad \text{or} \quad \text{if } A.r \cap B.s = \emptyset \text{ then } c \text{ in } v$

- Allow negative forms of delegations; e.g.,

 $A.r \leftarrow B.s \cap \neg C.t$
Conclusion

- Expressive variant of RT\(_0\) with enhanced inference system;
- Set-theoretic and logic-programming semantics for CDCs;
- Use of stable model theory to handle divergence arising from the presence of negative premises;
- Inference of constraints on the execution environment; these are equivalent to abductive constraint LP (cf. the paper)

Future Work

- Allow CDCs with richer kinds of premises; e.g.,

 \[
 \text{if } A.r \subseteq B.s \text{ then } c \text{ in } \upsilon \quad \text{or} \quad \text{if } A.r \cap B.s = \emptyset \text{ then } c \text{ in } \upsilon
 \]

- Allow negative forms of delegations; e.g.,

 \[
 A.r \leftarrow B.s \cap \neg C.t
 \]